1
|
Belaouni HA, Yekkour A, Zitouni A, Meklat A. Organization, conservation, and diversity of biosynthetic gene clusters in Bacillus sp. BH32 and its closest relatives in the Bacillus cereus group. FEMS Microbiol Lett 2024; 371:fnae071. [PMID: 39256169 DOI: 10.1093/femsle/fnae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024] Open
Abstract
This study explores the organization, conservation, and diversity of biosynthetic gene clusters (BGCs) among Bacillus sp. strain BH32, a plant-beneficial bacterial endophyte, and its closest nontype Bacillus cereus group strains. BGC profiles were predicted for each of the 17 selected strains using antiSMASH, resulting in the detection of a total of 198 BGCs. We quantitatively compared the BGCs and analysed their conservation, distribution, and evolutionary relationships. The study identified both conserved and singleton BGCs across the studied Bacillus strains, with minimal variation, and discovered two major BGC synteny blocks composed of homologous BGCs conserved within the B. cereus group. The identified BGC synteny blocks provide insight into the evolutionary relationships and diversity of BGCs within this complex group.
Collapse
Affiliation(s)
- Hadj Ahmed Belaouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, 16050, Algeria
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast BT9 5PX, Northern Ireland, United Kingdom
| | - Amine Yekkour
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, 16050, Algeria
| | - Abdelghani Zitouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, 16050, Algeria
| | - Atika Meklat
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, 16050, Algeria
| |
Collapse
|
2
|
Microbiome composition modulates secondary metabolism in a multispecies bacterial community. Proc Natl Acad Sci U S A 2022; 119:e2212930119. [PMID: 36215464 PMCID: PMC9586298 DOI: 10.1073/pnas.2212930119] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial secondary metabolites are a major source of antibiotics and other bioactive compounds. In microbial communities, these molecules can mediate interspecies interactions and responses to environmental change. Despite the importance of secondary metabolites in human health and microbial ecology, little is known about their roles and regulation in the context of multispecies communities. In a simplified model of the rhizosphere composed of Bacillus cereus, Flavobacterium johnsoniae, and Pseudomonas koreensis, we show that the dynamics of secondary metabolism depend on community species composition and interspecies interactions. Comparative metatranscriptomics and metametabolomics reveal that the abundance of transcripts of biosynthetic gene clusters (BGCs) and metabolomic molecular features differ between monocultures or dual cultures and a tripartite community. In both two- and three-member cocultures, P. koreensis modified expression of BGCs for zwittermicin, petrobactin, and other secondary metabolites in B. cereus and F. johnsoniae, whereas the BGC transcriptional response to the community in P. koreensis itself was minimal. Pairwise and tripartite cocultures with P. koreensis displayed unique molecular features that appear to be derivatives of lokisin, suggesting metabolic handoffs between species. Deleting the BGC for koreenceine, another P. koreensis metabolite, altered transcript and metabolite profiles across the community, including substantial up-regulation of the petrobactin and bacillibactin BGCs in B. cereus, suggesting that koreenceine represses siderophore production. Results from this model community show that bacterial BGC expression and chemical output depend on the identity and biosynthetic capacity of coculture partners, suggesting community composition and microbiome interactions may shape the regulation of secondary metabolism in nature.
Collapse
|
3
|
Chevrette MG, Handelsman J. Needles in haystacks: reevaluating old paradigms for the discovery of bacterial secondary metabolites. Nat Prod Rep 2021; 38:2083-2099. [PMID: 34693961 DOI: 10.1039/d1np00044f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Natural products research is in the midst of a renaissance ushered in by a modern understanding of microbiology and the technological explosions of genomics and metabolomics. As the exploration of uncharted chemical space expands into high-throughput discovery campaigns, it has become increasingly clear how design elements influence success: (bio)geography, habitat, community dynamics, culturing/induction methods, screening methods, dereplication, and more. We explore critical considerations and assumptions in natural products discovery. We revisit previous estimates of chemical rediscovery and discuss their relatedness to study design and producer taxonomy. Through frequency analyses of biosynthetic gene clusters in publicly available genomic data, we highlight phylogenetic biases that influence rediscovery rates. Through selected examples of how study design at each level determines discovery outcomes, we discuss the challenges and opportunities for the future of high-throughput natural product discovery.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jo Handelsman
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021; 48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.,DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
5
|
Autochthonous Acid-Producing Bacteria from Catfish ( Clarias sp.) with Antibacterial Activity against Selected Fish Pathogens: A Preliminary Study. Int J Microbiol 2020; 2020:8526581. [PMID: 32190055 PMCID: PMC7068145 DOI: 10.1155/2020/8526581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 11/08/2019] [Accepted: 01/23/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, the application of an autochthonous microorganism as probiotic on catfish (Clarias sp.) was scarcely reported. This study aimed to obtain probiotic candidates from the digestive tract (intestinal and gastric) of catfish. A total of nine isolates were successfully isolated from the catfish. Almost all bacterial colonies were morphologically round, had flat edges, were yellow, and produced clear zones as a sign of producing acid during culture. The analysis showed that the three isolates had the best activity in inhibiting fish pathogen isolates. Furthermore, molecular analysis revealed that those three isolates were Bacillus velezensis UB-C1, Bacillus amyloliquifaciens UB-C5, and Bacillus cereus UB-C8. Interestingly, those three bacteria were non-lactic acid bacteria.
Collapse
|
6
|
Draft Genome Sequence of Marine Bacillus sp. Strain ISO11, a Candidate Finfish and Shellfish Probiotic. Microbiol Resour Announc 2018; 7:MRA01227-18. [PMID: 30533731 PMCID: PMC6256438 DOI: 10.1128/mra.01227-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/26/2018] [Indexed: 11/20/2022] Open
Abstract
Bacillus sp. strain ISO11, a Bacillus cereus clade member isolated from the intestinal tract of Fundulus heteroclitus, possesses potential probiotic and antibacterial activity against Vibrio sp. Bacillus sp. strain ISO11, a Bacillus cereus clade member isolated from the intestinal tract of Fundulus heteroclitus, possesses potential probiotic and antibacterial activity against Vibrio sp. pathogens. Antibacterial activity is likely due to production of microcin and a zwittermicin A-like aminopolyol. The genome sequence will assist in identifying additional related processes.
Collapse
|
7
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 572] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
8
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
9
|
Pseudomonas fluorescens: A Potential Biocontrol Agent for Management of Fungal Diseases of Crop Plants. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Souza JT, Raaijmakers JM. Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol Ecol 2012; 43:21-34. [PMID: 19719693 DOI: 10.1111/j.1574-6941.2003.tb01042.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract Pyrrolnitrin (PRN) and pyoluteorin (PLT) are broad-spectrum antibiotics produced by several strains of Pseudomonas and Burkholderia species. Both antibiotics play an important role in the suppression of multiple plant pathogenic fungi. Primers were developed from conserved sequences and amplified prnD and pltC fragments from 18 Pseudomonas and four Burkholderia spp. of worldwide origin that produce either PRN or PLT or both. Subsequent RFLP (restriction fragment length polymorphisms) analysis of the 438-bp pltC fragment showed no polymorphisms among PLT-producing Pseudomonas strains. Polymorphisms within the 786-bp prnD fragment, however, allowed the assessment of the diversity among PRN-producing Pseudomonas and Burkholderia spp. to a level similar to that obtained by three 10-mer primers in random amplified polymorphic DNA analysis. Phylogenetic analysis of 16S rDNA sequences of strains representative of PRN-producing Pseudomonas and Burkholderia species correlated well with their taxonomic status. Phylogenetic relationships inferred from each of the four prn genes and from the complete sequence of the prn biosynthetic locus were similar to 16S rDNA-based phylogeny for most strains, except for Burkholderia pyrrocinia DSM 10685. Both RFLP analysis and comparison of the prn gene sequences showed that B. pyrrocinia DSM 10685 was more closely related to PRN-producing Pseudomonas strains, suggesting that lateral gene transfer may have occurred. Colony hybridization and PCR with PRN- and PLT-specific probes and primers showed that Pseudomonas and Burkholderia spp. harboring the prnD and pltC gene were not present at detectable levels on roots of wheat grown in five agricultural soils collected in The Netherlands, two of them being naturally suppressive to Gaeumannomyces graminis var. tritici. These results suggest that PRN- and PLT-producing Pseudomonas and Burkholderia sp. do not contribute to the natural suppressiveness found in these Dutch take-all decline soils.
Collapse
Affiliation(s)
- Jorge T Souza
- Wageningen University, Department of Plant Sciences, Laboratory of Phytopathology, Binnenhaven 5, P.O. Box 8025, 6709 PD Wageningen, The Netherlands
| | | |
Collapse
|
11
|
Musiol EM, Weber T. Discrete acyltransferases involved in polyketide biosynthesis. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20048a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Luo Y, Ruan LF, Zhao CM, Wang CX, Peng DH, Sun M. Validation of the intact zwittermicin A biosynthetic gene cluster and discovery of a complementary resistance mechanism in Bacillus thuringiensis. Antimicrob Agents Chemother 2011; 55:4161-9. [PMID: 21730118 PMCID: PMC3165285 DOI: 10.1128/aac.00111-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 02/26/2011] [Accepted: 06/23/2011] [Indexed: 11/20/2022] Open
Abstract
Zwittermicin A (ZmA) is a hybrid polyketide-nonribosomal peptide produced by certain Bacillus cereus group strains. It displays broad-spectrum antimicrobial activity. Its biosynthetic pathway in B. cereus has been proposed through analysis of the nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) modules involved in ZmA biosynthesis. In this study, we constructed a bacterial artificial chromosome (BAC) library from Bacillus thuringiensis subsp. kurstaki strain YBT-1520 genomic DNA. The presence of known genes involved in the biosynthesis of ZmA in this BAC library was investigated by PCR techniques. Nine positive clones were identified, two of which (covering an approximately 60-kb region) could confer ZmA biosynthesis ability upon B. thuringiensis BMB171 after simultaneous transfer into this host by two compatible shuttle BAC vectors. Another previously unidentified gene cluster, named zmaWXY, was found to improve the yield of ZmA and was experimentally defined to function as a ZmA resistance transporter which expels ZmA from the cells. Putative transposase genes were detected on the flanking regions of the two gene clusters (the ZmA synthetic cluster and zmaWXY), which suggests a mobile nature of these two gene clusters. The intact ZmA gene cluster was validated, and a resistance mechanism complementary to that for zmaR (the previously identified ZmA self-resistance gene) was revealed. This study also provided a straightforward strategy to isolate and identify a huge gene cluster from Bacillus.
Collapse
Affiliation(s)
- Yi Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Li-Fang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chang-Ming Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Cheng-Xian Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Dong-Hai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
13
|
Gulder TAM, Freeman MF, Piel J. The Catalytic Diversity of Multimodular Polyketide Synthases: Natural Product Biosynthesis Beyond Textbook Assembly Rules. Top Curr Chem (Cham) 2011. [PMID: 21360321 DOI: 10.1007/128_2010_113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bacterial multimodular polyketide synthases (PKSs) are responsible for the biosynthesis of a wide range of pharmacologically active natural products. These megaenzymes contain numerous catalytic and structural domains and act as biochemical templates to generate complex polyketides in an assembly line-like fashion. While the prototypical PKS is composed of only a few different domain types that are fused together in a combinatorial fashion, an increasing number of enzymes is being found that contain additional components. These domains can introduce remarkably diverse modifications into polyketides. This review discusses our current understanding of such noncanonical domains and their role in expanding the biosynthetic versatility of bacterial PKSs.
Collapse
|
14
|
Rogers EW, Dalisay DS, Molinski TF. Zwittermicin A: synthesis of analogs and structure-activity studies. Bioorg Med Chem Lett 2010; 20:2183-5. [PMID: 20189808 DOI: 10.1016/j.bmcl.2010.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/04/2010] [Accepted: 02/08/2010] [Indexed: 11/18/2022]
Abstract
Analogs and diastereomers of the natural product zwittermicin A were prepared. SAR studies of these compounds reveal the antifungal activity to be dependent singularly upon the natural constitution and configuration.
Collapse
Affiliation(s)
- Evan W Rogers
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | | | | |
Collapse
|
15
|
Rogers EW, Molinski TF. (+)-Zwittermicin A. Rapid assembly of C9-C15 and a formal total synthesis. J Org Chem 2009; 74:7660-4. [PMID: 19746943 DOI: 10.1021/jo901007v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A short, enantioselective synthesis of the C9-C15 portion of (+)-zwittermicin A is reported that exploits directional functionalization of the known hepta-2,5-diyne-1,7-diol by partial reduction of the two triple bonds followed by Sharpless asymmetric epoxidation and boron-directed double ring-opening with sodium azide under Miyashita conditions. Subsequent desymmetrization of the C(2)-symmetric diazidotetraol product converges upon (-)-3--the enantiomer of the key intermediate of our earlier structural proof and synthesis of (-)-zwittermicin A--and constitutes a formal synthesis of (+)-zwitttermicin A.
Collapse
Affiliation(s)
- Evan W Rogers
- Department of Chemistry and Biochemistry and Skaggs School of Pharmacy, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
| | | |
Collapse
|
16
|
Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus. Appl Environ Microbiol 2008; 75:1144-55. [PMID: 19098220 DOI: 10.1128/aem.02518-08] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus UW85 produces the linear aminopolyol antibiotic zwittermicin A (ZmA). This antibiotic has diverse biological activities, such as suppression of disease in plants caused by protists, inhibition of fungal and bacterial growth, and amplification of the insecticidal activity of the toxin protein from Bacillus thuringiensis. ZmA has an unusual chemical structure that includes a d amino acid and ethanolamine and glycolyl moieties, as well as having an unusual terminal amide that is generated from the modification of the nonproteinogenic amino acid beta-ureidoalanine. The diverse biological activities and unusual structure of ZmA have stimulated our efforts to understand how this antibiotic is biosynthesized. Here, we present the identification of the complete ZmA biosynthesis gene cluster from B. cereus UW85. A nearly identical gene cluster is identified on a plasmid from B. cereus AH1134, and we show that this strain is also capable of producing ZmA. Bioinformatics and biochemical analyses of the ZmA biosynthesis enzymes strongly suggest that ZmA is initially biosynthesized as part of a larger metabolite that is processed twice, resulting in the formation of ZmA and two additional metabolites. Additionally, we propose that the biosynthesis gene cluster for the production of the amino sugar kanosamine is contained within the ZmA biosynthesis gene cluster in B. cereus UW85.
Collapse
|
17
|
Rogers E, Dalisay D, Molinski T. (+)-Zwittermicin A: Assignment of its Complete Configuration by Total Synthesis of the Enantiomer and Implication of D-Serine in its Biosynthesis. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Zhao C, Song C, Luo Y, Yu Z, Sun M. L-2,3-diaminopropionate: one of the building blocks for the biosynthesis of Zwittermicin A in Bacillus thuringiensis subsp. kurstaki strain YBT-1520. FEBS Lett 2008; 582:3125-31. [PMID: 18692050 DOI: 10.1016/j.febslet.2008.07.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022]
Abstract
Zwittermicin A (ZwA) is a hybrid polyketide-non-ribosomal peptide that is thought to be biosynthesized from five proposed building blocks, including the 2,3-diaminopropionate. Candidate genes for de novo biosynthesis of 2,3-diaminopropionate, zwa5A and zwa5B, have been identified in a previous study. In this research, zwa5A was interrupted and chemically synthesized 2,3-diaminopropionate was used to feed the zwa5A(-) mutant. Results showed that feeding with 2,3-diaminopropionate restored the ability of the zwa5A(-) mutant to produce ZwA. Another non-ribosomal peptide synthase gene, designated orf3, was identified. Amino acid dependent PPi release assay showed that the adenylation domain ZWAA2 of ORF3 acyl-adenylated l-2,3-diaminopropionate effectively. Taken together, it can be concluded that l-2,3-diaminopropionate is indeed one of the building blocks for the biosynthesis of Zwittermicin A.
Collapse
Affiliation(s)
- Changming Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Shao T, Bai L, Zhang J, Wang G, Liu D, Li Z, Liu J, Song F, Huang D. A nonribosomal peptide synthetase gene tzw1 is involved in zwittermicin A biosynthesis in Bacillus thuringiensis G03. Curr Microbiol 2008; 57:61-5. [PMID: 18446411 DOI: 10.1007/s00284-008-9153-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 02/08/2008] [Indexed: 11/30/2022]
Abstract
A 4.20-kb SspI fragment from Bacillus thuringiensis G03 was cloned and sequenced. Sequencing analysis revealed two complete open reading frames (ORF; tzw1 and tzw2), and one incomplete ORF (tzw3) (GenBank accession no. EU293887). Tzw1 encodes a putative nonribosomal peptide synthetase with thiolation and condensation domains localized at the C-termini, whereas tzw2 and tzw3 encode acyl carrier protein and Acyl-CoA dehydrogenase, respectively. To investigate the function of tzw1 in zwittermicin A (ZA) biosynthesis, an in-frame deletion of 1,461 bp within tzw1 was constructed. The mutant abolished ZA production. Complementation of the mutant with cloned tzw1 restored ZA productivity. These results revealed that tzw1 is required for ZA biosynthesis in B. thuringiensis G03.
Collapse
Affiliation(s)
- Tiemei Shao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Skepper CK, Molinski TF. Long-Chain 2H-Azirines with Heterogeneous Terminal Halogenation from the Marine Sponge Dysidea fragilis. J Org Chem 2008; 73:2592-7. [DOI: 10.1021/jo702435s] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Colin K. Skepper
- Department of Chemistry and Biochemistry and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, MC0358, 9500 Gilman Drive, La Jolla, California 92093
| | - Tadeusz F. Molinski
- Department of Chemistry and Biochemistry and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, MC0358, 9500 Gilman Drive, La Jolla, California 92093
| |
Collapse
|
21
|
Rogers EW, Dalisay DS, Molinski TF. (+)-Zwittermicin A: assignment of its complete configuration by total synthesis of the enantiomer and implication of D-serine in its biosynthesis. Angew Chem Int Ed Engl 2008; 47:8086-9. [PMID: 18798190 PMCID: PMC3957322 DOI: 10.1002/anie.200801561] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Evan W. Rogers
- Department of Chemistry and Biochemistry and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA, Fax: +1 858 822 0386,
| | - Doralyn S. Dalisay
- Department of Chemistry and Biochemistry and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA, Fax: +1 858 822 0386,
| | - Tadeusz F. Molinski
- Department of Chemistry and Biochemistry and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA, Fax: +1 858 822 0386,
| |
Collapse
|
22
|
Rogers EW, Molinski TF. Asymmetric synthesis of diastereomeric diaminoheptanetetraols. A proposal for the configuration of (+)-zwittermicin a. Org Lett 2007; 9:437-40. [PMID: 17249781 PMCID: PMC2729442 DOI: 10.1021/ol062804a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure: see text] A proposed absolute configuration for the 7 stereocenters in (+)-zwittermicin A is described based on asymmetric synthesis of six diastereomeric 2,6-diamino-1,3,5,7-heptanetetraols corresponding to the C9-C15 segment, pairwise 13C NMR chemical shift difference analysis of the models with the natural product, interpretation of enantiospecificity of the serine loading domain of the zwittermicin A biosynthetic gene cluster, and degradation of the natural product.
Collapse
Affiliation(s)
- Evan W Rogers
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | |
Collapse
|
23
|
Zhao C, Luo Y, Song C, Liu Z, Chen S, Yu Z, Sun M. Identification of three Zwittermicin A biosynthesis-related genes from Bacillus thuringiensis subsp. kurstaki strain YBT-1520. Arch Microbiol 2007; 187:313-9. [PMID: 17225146 DOI: 10.1007/s00203-006-0196-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 11/06/2006] [Accepted: 11/14/2006] [Indexed: 11/26/2022]
Abstract
Zwittermicin A (ZwA) is a novel, broad-spectrum linear aminopolyol antibiotic produced by some Bacillus cereus and Bacillus thuringiensis. However, only part of its biosynthesis cluster has been identified and characterized from B. cereus UW85. To better understand the biosynthesis cluster of ZwA, a bacterial artificial chromosome (BAC) library of B. thuringiensis subsp. kurstaki strain YBT-1520, a ZwA-producing strain, was constructed. Two BAC clones, 1F8 and 5E2, were obtained by PCR, which overlap the known ZwA biosynthesis cluster of B. cereus UW85. This ZwA biosynthesis cluster is at least 38.6 kb and is located on the chromosome, instead of the plasmid. Partial DNA sequencing revealed both BAC clones carry three new ZwA biosynthesis-related genes, zwa6, zwa5A and zwa5B, which were found at the corresponding location of B. cereus UW85. Putative amino acid sequences of these genes shown that ZWA6 is homologous to a typical carbamoyltransferase from Streptomyces avermitilis, while ZWA5A and ZWA5B are homologs of cysteine synthetase and ornithine cyclodeaminase which jointly synthesize 2,3-diaminopropionate in the viomycin biosynthesis pathway, respectively. The identification of these three genes further supports the hypothesized ZwA biosynthesis pathway.
Collapse
Affiliation(s)
- Changming Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang L, Ruan L, Hu C, Wu H, Chen S, Yu Z, Sun M. Fusion of the genes for AHL-lactonase and S-layer protein in Bacillus thuringiensis increases its ability to inhibit soft rot caused by Erwinia carotovora. Appl Microbiol Biotechnol 2007; 74:667-75. [PMID: 17216466 DOI: 10.1007/s00253-006-0696-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 09/28/2006] [Accepted: 09/30/2006] [Indexed: 10/23/2022]
Abstract
Two genes, ctc and ctc2, responsible for surface layer (S-layer) protein synthesis in Bacillus thuringiensis CTC, were mutated and resulted in B. thuringiensis Tr5. To synthesize and express the N-acyl-homoserine lactonase (AHL-lactonase) in the extracellular space of B. thuringiensis, the aiiA ( 4Q7 ) gene (an AHL-lactonase gene from B. thuringiensis 4Q7), which confers the ability to inhibit plant soft rot disease in B. thuringiensis 4Q7, was fused with the upstream sequence of the ctc gene, which in turn is essential for S-layer protein secretion and anchoring on the cell surface. The resulting fusion gene, slh-aiiA, was expressed in B. thuringiensis Tr5 to avoid competition for the extracellular space with the native S-layer protein. Our results indicate that B. thuringiensis Tr5 containing the fusion gene slh-aiiA displayed high extracellular AHL-degrading activity. When compared with wild-type B. thuringiensis strains, the ability of the constructed strain to inhibit soft rot disease caused by Erwinia carotovora SCG1 was markedly increased. These findings provide evidence for a significant advance in our ability to inhibit soft rot disease caused by E. carotovora.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Coste G, Gerber-Lemaire S. A New Efficient Synthesis of Long-Chain Di- and Triaminopolyols. European J Org Chem 2006. [DOI: 10.1002/ejoc.200600276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Zhang Y, Fernando WGD, de Kievit TR, Berry C, Daayf F, Paulitz TC. Detection of antibiotic-related genes from bacterial biocontrol agents with polymerase chain reaction. Can J Microbiol 2006; 52:476-81. [PMID: 16699573 DOI: 10.1139/w05-152] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas chlororaphis PA23, Pseudomonas spp. strain DF41, and Bacillus amyloliquefaciens BS6 consistently inhibit infection of canola petals by Sclerotinia sclerotiorum in both greenhouse and field experiments. Bacillus thuringiensis BS8, Bacillus cereus L, and Bacillus mycoides S have shown significant inhibition against S. sclerotiorum on plate assays. The presence of antibiotic biosynthetic or self-resistance genes in these strains was investigated with polymerase chain reaction and, in one case, Southern blotting. Thirty primers were used to amplify (i) antibiotic biosythetic genes encoding phenazine-1-carboxylic acid, 2,4-diacetylphloroglucinol, pyoluteorin, and pyrrolnitrin, and (ii) the zwittermicin A self-resistance gene. Our findings revealed that the fungal antagonist P. chlororaphis PA23 contains biosynthetic genes for phenazine-1-carboxylic acid and pyrrolnitrin. Moreover, production of these compounds was confirmed by high performance liquid chromatography. Pseudomonas spp. DF41 and B. amyloliquefaciens BS6 do not appear to harbour genes for any of the antibiotics tested. Bacillus thuringiensis BS8, B. cereus L, and B. mycoides S contain the zwittermicin A self-resistance gene. This is the first report of zmaR in B. mycoides.
Collapse
Affiliation(s)
- Y Zhang
- Department of Plant Science, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Cai J, Xiao L, Yan B, Bin G, Chen Y, Ren G. Vip3A is responsible for the potency of Bacillus thuringiensis 9816C culture supernatant against Helicoverpa armigera and Spodoptera exigua. J GEN APPL MICROBIOL 2006; 52:83-9. [PMID: 16778351 DOI: 10.2323/jgam.52.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Culture supernatant of Bacillus thuringiensis 9816C had high toxicity against Helicoverpa armigera and Spodoptera exigua. However, it lost insecticidal activities after being bathed in boiling water for 5 min. Acrystalliferous mutants of Bt9816C (Bt9816C-NP1 and Bt9816C-NP2) cured of its endogenous plasmids no longer possessed vip3A gene and toxicity. The 89 kD protein which existed in Bt9816C supernatant disappeared in the two mutants' supernatant; nevertheless, the two mutants still exhibited hemolytic and phospholipase C activity as Bt9816C did. The vip3A gene of Bt9816C, vip3Aa18, was cloned and expressed in Escherichia coli BL21. Bioassay demonstrated that the recombinant E. coli had high toxicity against S. exigua. Taken together, it suggested that Vip3A protein was responsible for the toxicity of Bt9816C culture supernatants.
Collapse
Affiliation(s)
- Jun Cai
- Tianjin Key Laboratory of Microbial Functional Genomics, Department of Microbiology, College of Life Sciences, Nankai University, China.
| | | | | | | | | | | |
Collapse
|
28
|
Saile E, Koehler TM. Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl Environ Microbiol 2006; 72:3168-74. [PMID: 16672454 PMCID: PMC1472387 DOI: 10.1128/aem.72.5.3168-3174.2006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, is known for its rapid proliferation and dissemination in mammalian hosts. In contrast, little information exists regarding the lifestyle of this important pathogen outside of the host. Considering that Bacillus species, including close relatives of B. anthracis, are saprophytic soil organisms, we investigated the capacity of B. anthracis spores to germinate in the rhizosphere and to establish populations of vegetative cells that could support horizontal gene transfer in the soil. Using a simple grass plant-soil model system, we show that B. anthracis strains germinate on and around roots, growing in characteristic long filaments. From 2 to 4 days postinoculation, approximately one-half of the B. anthracis CFU recovered from soil containing grass seedlings arose from heat-sensitive organisms, while B. anthracis CFU retrieved from soil without plants consisted of primarily heat-resistant spores. Co-inoculation of the plant-soil system with spores of a fertile B. anthracis strain carrying the tetracycline resistance plasmid pBC16 and a selectable B. anthracis recipient strain resulted in transfer of pBC16 from the donor to the recipient as early as 3 days postinoculation. Our findings demonstrate that B. anthracis can survive as a saprophyte outside of the host. The data suggest that horizontal gene transfer in the rhizosphere of grass plants may play a role in the evolution of the Bacillus cereus group species.
Collapse
Affiliation(s)
- Elke Saile
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, 6431 Fannin St., JFB 1.765, Houston, TX 77030, USA
| | | |
Collapse
|
29
|
Walton LJ, Corre C, Challis GL. Mechanisms for incorporation of glycerol-derived precursors into polyketide metabolites. J Ind Microbiol Biotechnol 2005; 33:105-20. [PMID: 16187096 DOI: 10.1007/s10295-005-0026-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 08/01/2005] [Indexed: 10/25/2022]
Abstract
Several polyketide secondary metabolites are shown by feeding experiments to incorporate glycerol-derived 3-carbon starter units, 2-carbon extender units, or 3-carbon branches into their hydrocarbon chains. In recent years, genetic studies have begun to elucidate the mechanisms by which this occurs. In this article we review the incorporation of glycerol-derived precursors into polyketides and propose new mechanisms for the incorporation processes.
Collapse
Affiliation(s)
- Laura J Walton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | | |
Collapse
|
30
|
Nair JR, Narasimman G, Sekar V. Cloning and partial characterization of zwittermicin A resistance gene cluster from Bacillus thuringiensis subsp. kurstaki strain HD1. J Appl Microbiol 2004; 97:495-503. [PMID: 15281929 DOI: 10.1111/j.1365-2672.2004.02312.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The study seeks to shed light on the aminopolyol, broad-spectrum antibiotic zwittermicin A gene cluster of Bacillus thuringiensis subsp. kurstaki HD1 and to identify any new uncharacterized genes with an eventual goal to establish a better understanding of the resistance gene cluster. METHODS AND RESULTS We screened 51 serovars of B. thuringiensis by PCR and identified 12 zmaR-positive strains. The zmaR-positive B. thuringiensis subsp. kurstaki HD1 strain displayed inhibition zones against indicator fungal strain Phytophthora meadii and bacterial strain Erwinia herbicola as well as against Rhizopus sp., Xanthomonas campestris and B. thuringiensis subsp. finitimus. The zmaR gene cluster of strain HD1 was partially cloned using a lambda library and was extensively characterized based on the information available from a study performed on a similar group of genes in Bacillus cereus. CONCLUSIONS Three of the five genes in the zwittermicin gene cluster, including the zmaR gene, had counterparts in B. cereus, and the other two were new members of the B. thuringiensis zmaR gene cluster. SIGNIFICANCE AND IMPACT OF THE STUDY The two new genes were extensively analysed and the data is presented. Understanding antifungal activity of B. thuringiensis may help us to design suitable Cry toxin delivery agents with antifungal activity as well as enhanced insecticidal activity.
Collapse
Affiliation(s)
- J R Nair
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | | | |
Collapse
|
31
|
Emmert EAB, Klimowicz AK, Thomas MG, Handelsman J. Genetics of zwittermicin a production by Bacillus cereus. Appl Environ Microbiol 2004; 70:104-13. [PMID: 14711631 PMCID: PMC321298 DOI: 10.1128/aem.70.1.104-113.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zwittermicin A represents a new chemical class of antibiotic and has diverse biological activities, including suppression of oomycete diseases of plants and potentiation of the insecticidal activity of Bacillus thuringiensis. To identify genes involved in zwittermicin A production, we generated 4,800 transposon mutants of B. cereus UW101C and screened them for zwittermicin A accumulation. Nine mutants did not produce detectable zwittermicin A, and one mutant produced eightfold more than the parent strain. The DNA flanking the transposon insertions in six of the nine nonproducing mutants contains significant sequence similarity to genes involved in peptide and polyketide antibiotic biosynthesis. The mutant that overproduced zwittermicin A contained a transposon insertion immediately upstream from a gene that encodes a deduced protein that is a member of the MarR family of transcriptional regulators. Three genes identified by the mutant analysis mapped to a region that was previously shown to carry the zwittermicin A self-resistance gene, zmaR, and a biosynthetic gene (E. A. Stohl, J. L. Milner, and J. Handelsman, Gene 237:403-411, 1999). Further sequencing of this region revealed genes proposed to encode zwittermicin A precursor biosynthetic enzymes, in particular, those involved in the formation of the aminomalonyl- and hydroxymalonyl-acyl carrier protein intermediates. Additionally, nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) homologs are present, suggesting that zwittermicin A is synthesized by a mixed NRPS/PKS pathway.
Collapse
Affiliation(s)
- Elizabeth A B Emmert
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
32
|
Cassady JM, Chan KK, Floss HG, Leistner E. Recent Developments in the Maytansinoid Antitumor Agents. Chem Pharm Bull (Tokyo) 2004; 52:1-26. [PMID: 14709862 DOI: 10.1248/cpb.52.1] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maytansine and its congeners have been isolated from higher plants, mosses and from an Actinomycete, Actinosynnema pretiosum. Many of these compounds are antitumor agents of extraordinary potency, yet phase II clinical trials with maytansine proved disappointing. The chemistry and biology of maytansinoids has been reviewed repeatedly in the late 1970s and early 1980s; the present review covers new developments in this field during the last two decades. These include the use of maytansinoids as "warheads" in tumor-specific antibodies, preliminary metabolism studies, investigations of their biosynthesis at the biochemical and genetic level, and ecological issues related to the occurrence of such typical microbial metabolites in higher plants.
Collapse
Affiliation(s)
- John M Cassady
- College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
33
|
Duffy B, Schouten A, Raaijmakers JM. Pathogen self-defense: mechanisms to counteract microbial antagonism,. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:501-538. [PMID: 12730392 DOI: 10.1146/annurev.phyto.41.052002.095606] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Natural and agricultural ecosystems harbor a wide variety of microorganisms that play an integral role in plant health, crop productivity, and preservation of multiple ecosystem functions. Interactions within and among microbial communities are numerous and range from synergistic and mutualistic to antagonistic and parasitic. Antagonistic and parasitic interactions have been exploited in the area of biological control of plant pathogenic microorganisms. To date, biocontrol is typically viewed from the perspective of how antagonists affect pathogens. This review examines the other face of this interaction: how plant pathogens respond to antagonists and how this can affect the efficacy of biocontrol. Just as microbial antagonists utilize a diverse arsenal of mechanisms to dominate interactions with pathogens, pathogens have surprisingly diverse responses to counteract antagonism. These responses include detoxification, repression of biosynthetic genes involved in biocontrol, active efflux of antibiotics, and antibiotic resistance. Understanding pathogen self-defense mechanisms for coping with antagonist assault provides a novel approach to improving the durability of biologically based disease control strategies and has implications for the deployment of transgenes (microorganisms or plants).
Collapse
Affiliation(s)
- Brion Duffy
- Swiss Federal Research Center for Fruit Production, Viticulture and Horticulture, FAW, Postfach 185, CH-8820 Wadenswil, Switzerland.
| | | | | |
Collapse
|
34
|
Carroll BJ, Moss SJ, Bai L, Kato Y, Toelzer S, Yu TW, Floss HG. Identification of a set of genes involved in the formation of the substrate for the incorporation of the unusual "glycolate" chain extension unit in ansamitocin biosynthesis. J Am Chem Soc 2002; 124:4176-7. [PMID: 11960423 DOI: 10.1021/ja0124764] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The unusual "glycolate" extender unit at C-9/C-10 of ansamitocin is not derived from 2-hydroxymalonyl-CoA or 2-methoxymalonyl-CoA, as demonstrated by feeding experiments with the corresponding 1-13C-labeled N-acetylcysteamine thioesters but is formed from an acyl carrier protein (ACP)-bound substrate, possibly 2-methoxymalonyl-ACP, elaborated by enzymes encoded by a subcluster of five genes, asm12-17, from the ansamitocin bisosynthetic gene cluster.
Collapse
Affiliation(s)
- Brian J Carroll
- Department of Chemistry, Box 351700, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Bloemberg GV, Lugtenberg BJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:343-50. [PMID: 11418345 DOI: 10.1016/s1369-5266(00)00183-7] [Citation(s) in RCA: 355] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant-growth-promoting rhizobacteria (PGPRs) are used as inoculants for biofertilization, phytostimulation and biocontrol. The interactions of PGPRs with their biotic environment, for example with plants and microorganisms, are often complex. Substantial advances in elucidating the genetic basis of the beneficial effects of PGPRs on plants have been made, some from whole-genome sequencing projects. This progress will lead to a more efficient use of these strains and possibly to their improvement by genetic modification.
Collapse
Affiliation(s)
- G V Bloemberg
- Leiden University, Institute of Molecular Plant Sciences, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands.
| | | |
Collapse
|