1
|
Fukunaga J, Nomura Y, Tanaka Y, Torigoe H, Nakamura Y, Sakamoto T, Kozu T. A G-quadruplex-forming RNA aptamer binds to the MTG8 TAFH domain and dissociates the leukemic AML1-MTG8 fusion protein from DNA. FEBS Lett 2020; 594:3477-3489. [PMID: 32870501 DOI: 10.1002/1873-3468.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/11/2022]
Abstract
MTG8 (RUNX1T1) is a fusion partner of AML1 (RUNX1) in the leukemic chromosome translocation t(8;21). The AML1-MTG8 fusion gene encodes a chimeric transcription factor. One of the highly conserved domains of MTG8 is TAFH which possesses homology with human TAF4 [TATA-box binding protein-associated factor]. To obtain specific inhibitors of the AML1-MTG8 fusion protein, we isolated RNA aptamers against the MTG8 TAFH domain using systematic evolution of ligands by exponential enrichment. All TAF aptamers contained guanine-rich sequences. Analyses of a TAF aptamer by NMR, CD, and mutagenesis revealed that it forms a parallel G-quadruplex structure in the presence of K+ . Furthermore, the aptamer could bind to the AML1-MTG8 fusion protein and dissociate the AML1-MTG8/DNA complex, suggesting that it can inhibit the dominant negative effects of AML1-MTG8 against normal AML1 function and serve as a potential therapeutic agent for leukemia.
Collapse
Affiliation(s)
- Junichi Fukunaga
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Japan
| | - Yusuke Nomura
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Narashino, Japan.,Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yoichiro Tanaka
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Japan.,Facility for RI Research and Education, Instrumental Analysis Center, Research Initiatives and Promotion Organization, Yokohama National University, Hodogaya-ku, Japan
| | - Hidetaka Torigoe
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yoshikazu Nakamura
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Minato-ku, Japan.,Ribomic Inc., Minato-ku, Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Narashino, Japan
| | - Tomoko Kozu
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Japan
| |
Collapse
|
2
|
Thiel VN, Giaimo BD, Schwarz P, Soller K, Vas V, Bartkuhn M, Blätte TJ, Döhner K, Bullinger L, Borggrefe T, Geiger H, Oswald F. Heterodimerization of AML1/ETO with CBFβ is required for leukemogenesis but not for myeloproliferation. Leukemia 2017; 31:2491-2502. [PMID: 28360416 PMCID: PMC5668496 DOI: 10.1038/leu.2017.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/18/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
The AML1/Runx1 transcription factor and its heterodimerization partner CBFβ are essential regulators of myeloid differentiation. The chromosomal translocation t(8;21), fusing the DNA binding domain of AML1 to the corepressor eight-twenty-one (ETO), is frequently associated with acute myeloid leukemia and generates the AML1/ETO (AE) fusion protein. AE represses target genes usually activated by AML1 and also affects the endogenous repressive function of ETO at Notch target genes. In order to analyze the contribution of CBFβ in AE-mediated leukemogenesis and deregulation of Notch target genes, we introduced two point mutations in a leukemia-initiating version of AE in mice, called AE9a, that disrupt the AML1/CBFβ interaction (AE9aNT). We report that the AE9a/CBFβ interaction is not required for the AE9a-mediated aberrant expression of AML1 target genes, while upregulation/derepression of Notch target genes does require the interaction with CBFβ. Using retroviral transduction to express AE9a in murine adult bone marrow-derived hematopoietic progenitors, we observed that both AE9a and AE9aNT lead to increased myeloproliferation in vivo. However, both development of leukemia and long-term replating capacity are only observed with AE9a but not with AE9aNT. Thus, deregulation of both AML1 and Notch target genes is required for the development of AE9a-driven leukemia.
Collapse
Affiliation(s)
- V N Thiel
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - B D Giaimo
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - P Schwarz
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - K Soller
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - V Vas
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - M Bartkuhn
- Institute for Genetics, University of Giessen, Giessen, Germany
| | - T J Blätte
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - K Döhner
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - L Bullinger
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - T Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - H Geiger
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
- Division of Experimental Hematology and Cancer Biology, CCHMC, Cincinnati, OH, USA
| | - F Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany
| |
Collapse
|
3
|
Barrett CW, Fingleton B, Williams A, Ning W, Fischer MA, Washington MK, Chaturvedi R, Wilson KT, Hiebert SW, Williams CS. MTGR1 is required for tumorigenesis in the murine AOM/DSS colitis-associated carcinoma model. Cancer Res 2011; 71:1302-12. [PMID: 21303973 DOI: 10.1158/0008-5472.can-10-3317] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myeloid Translocation Gene, Related-1 (MTGR1) CBFA2T2 is a member of the Myeloid Translocation Gene (MTG) family of transcriptional corepressors. The remaining two family members, MTG8 (RUNX1T1) and MTG16 (CBFA2T3) are identified as targets of chromosomal translocations in acute myeloid leukemia (AML). Mtgr1(-/-) mice have defects in intestinal lineage allocation and wound healing. Moreover, these mice show signs of impaired intestinal stem cell function. Based on these phenotypes, we hypothesized that MTGR1 may influence tumorigenesis arising in an inflammatory background. We report that Mtgr1(-/-) mice were protected from tumorigenesis when injected with azoxymethane (AOM) and then subjected to repeated cycles of dextran sodium sulfate (DSS). Tumor cell proliferation was comparable, but Mtgr1(-/-) tumors had significantly higher apoptosis rates. These phenotypes were dependent on epithelial injury, the resultant inflammation, or a combination of both as there was no difference in aberrant crypt foci (ACF) or tumor burden when animals were treated with AOM as the sole agent. Gene expression analysis indicated that Mtgr1(-/-) tumors had significant upregulation of inflammatory networks, and immunohistochemistry (IHC) for immune cell subsets revealed a marked multilineage increase in infiltrates, consisting predominately of CD3(+) and natural killer T (NKT) cells as well as macrophages. Transplantation of wild type (WT) bone marrow into Mtgr1(-/-) mice, and the reciprocal transplant, did not alter the phenotype, ruling out an MTGR1 hematopoietic cell-autonomous mechanism. Our findings indicate that MTGR1 is required for efficient inflammatory carcinogenesis in this model, and implicate its dysfunction in colitis-associated carcinoma. This represents the first report functionally linking MTGR1 to intestinal tumorigenesis.
Collapse
Affiliation(s)
- Caitlyn W Barrett
- Department of Medicine/Gastroenterology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Alishahi A, Koyano-Nakagawa N, Nakagawa Y. Regional expression of MTG genes in the developing mouse central nervous system. Dev Dyn 2009; 238:2095-102. [PMID: 19618476 DOI: 10.1002/dvdy.22021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myeloid translocation gene (MTG) proteins are transcriptional repressors that are highly conserved across species. We studied the expression of three members of this gene family, MTGR1, MTG8, and MTG16 in developing mouse central nervous system by in situ hybridization. All of these genes are detected as early as embryonic day 11.5. Because these genes are known to be induced by proneural genes during neurogenesis, we analyzed the expression of MTG genes in relation to two proneural genes, Neurog2 (also known as Ngn2 or Neurogenin 2) and Ascl1 (also known as Mash1). While MTGR1 are generally expressed in regions that also express Neurog2, MTG8 and MTG16 expression is associated more tightly with that of Ascl1-expressing neural progenitor cells. These results suggest the possibility that expression of MTG genes is differentially controlled by specific proneural genes during neurogenesis.
Collapse
Affiliation(s)
- Amin Alishahi
- Department of Neuroscience and Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
5
|
Loss of function genetic screens reveal MTGR1 as an intracellular repressor of beta1 integrin-dependent neurite outgrowth. J Neurosci Methods 2008; 177:322-33. [PMID: 19026687 DOI: 10.1016/j.jneumeth.2008.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 09/13/2008] [Accepted: 10/15/2008] [Indexed: 02/07/2023]
Abstract
Integrins are transmembrane receptors that promote neurite growth and guidance. To identify regulators of integrin-dependent neurite outgrowth, here we used two loss of function genetic screens in SH-SY5Y neuroblastoma cells. First, we screened a genome-wide retroviral library of genetic suppressor elements (GSEs). Among the many genes identified in the GSE screen, we isolated the hematopoetic transcriptional factor MTGR1 (myeloid translocation gene-related protein-1). Treatment of SH-SY5Y cells with MTGR1 siRNA enhanced neurite outgrowth and concurrently increased expression of GAP-43, a protein linked to neurite outgrowth. Second, we transduced SH-SY5Y with a genome-wide GFP-labeled lentiviral siRNA library, which expressed 40,000 independent siRNAs targeting 8500 human genes. From this screen we isolated GFI1 (growth factor independence-1), which, like MTGR1, is a member of the myeloid translocation gene on 8q22 (MTG8)/ETO protein complex of nuclear repressor proteins. These results reveal novel contributions of MTGR1 and GFI1 to the regulation of neurite outgrowth and identify novel repressors of integrin-dependent neurite outgrowth.
Collapse
|
6
|
Farmer TE, Williams CS, Washington MK, Hiebert SW. Inactivation of the p19(ARF) tumor suppressor affects intestinal epithelial cell proliferation and integrity. J Cell Biochem 2008; 104:2228-40. [PMID: 18442038 DOI: 10.1002/jcb.21779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
p19(ARF) is a tumor suppressor that is frequently deleted in human cancer. It lies at chromosome 9p21 and shares exons 2 and 3 with p16(ink4a), which is also inactivated by these cancer-associated deletions. The "canonical pathway" by which p19(ARF) is thought to suppress tumorigenesis through activation of the p53 tumor suppressor. In response to hyperproliferative signals, such as expression of oncogenes, p19(ARF) is induced and binds to the MDM2 ubiquitin ligase, sequestering it in the nucleolus to allow the accumulation of p53. However, p19(ARF) also has MDM2 and p53 independent functions. In human colon cancer, p19(ARF) is only rarely deleted, but it is more frequently silenced by DNA promoter methylation. Here we show that inactivation of p19(ARF) in mice increases the number of cycling cells in the crypts of the colonic epithelium. Moreover, inactivation of p19(ARF) exacerbated the ulceration of the colonic epithelium caused by dextran sodium sulfate (DSS). These effects were similar to those observed in mice lacking myeloid translocation gene-related-1 (Mtgr1), and mice lacking both of these genes showed an even greater sensitivity to DSS. Surprisingly, inactivation of p19(ARF) restored the loss of the secretory lineage in mice deficient in Mtgr1, suggesting an additional role for p19(ARF) in the small intestinal epithelium.
Collapse
Affiliation(s)
- Tiffany E Farmer
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
7
|
Dhanda RS, Lindberg SR, Olsson I. The human SIN3B corepressor forms a nucleolar complex with leukemia-associated ETO homologues. BMC Mol Biol 2008; 9:8. [PMID: 18205948 PMCID: PMC2266940 DOI: 10.1186/1471-2199-9-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 01/19/2008] [Indexed: 12/05/2022] Open
Abstract
Background SIN3 (SWI-Independent) is part of a transcriptional deacetylase complex, which generally mediates the formation of repressive chromatin. The purpose of this work was to study possible interactions between corepressors human SIN3B (hSIN3B) and the ETO homologues – ETO (eight twenty-one), MTG16 (myeloid-transforming gene 16) and MTGR1 (MTG-related protein 1). In addition, the subnuclear localization of the hSIN3B and the ETO homologues was also examined. Results A ubiquitous expression of hSIN3B was observed in adult and fetal tissues. Results with both ectopically expressed proteins in COS-7 cells and endogeneous proteins in the K562 human erytholeukemia cell line demonstrated interactions between hSIN3B and ETO or MTG16 but not MTGR1. Furthermore, nuclear extract of primary placental cells showed complexes between hSIN3B and ETO. The interaction between hSIN3B and ETO required an intact amino-terminus of ETO and the NHR2 domain. A nucleolar localization of hSIN3B and all the ETO homologues was demonstrated upon overexpression in COS-7 cells, and confirmed for the endogeneously expressed proteins in K562 cells. However, hSIN3B did not colocalize or interact with the leukemia-associated AML1 -ETO. Conclusion Our data from protein-protein interactions and immunolocalization experiments support that hSIN3B is a potential member of a corepressor complex involving selective ETO homologues.
Collapse
|
8
|
Okumura AJ, Peterson LF, Lo MC, Zhang DE. Expression of AML/Runx and ETO/MTG family members during hematopoietic differentiation of embryonic stem cells. Exp Hematol 2007; 35:978-88. [PMID: 17533052 DOI: 10.1016/j.exphem.2007.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 11/20/2022]
Abstract
Runx1/AML1 plays important roles in hematopoiesis, including the commitment of cells to hematopoiesis during embryonic development, and in the maintenance of hematopoietic cell populations. It is also one of the most common genes involved in chromosomal translocations related to leukemia. One such translocation is t(8;21), which fuses the Runx1 gene to the MTG8/ETO gene and generates the Runx1-MTG8 (AML1-ETO) fusion gene. Both Runx1 and MTG8 have two additional family members that are much less studied in hematopoiesis. Here we report the expression of every member of the Runx and MTG families as well as the Runx heterodimerization partner CBFbeta during hematopoietic differentiation of murine embryonic stem cells. We observed substantially increased expression of Runx1, Runx2, and MTG16 during hematopoietic differentiation. Furthermore, the increase in Runx2 expression is delayed relative to Runx1 expression, suggesting their possible sequential contribution to hematopoiesis.
Collapse
Affiliation(s)
- Akiko Joo Okumura
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
9
|
Dunne J, Cullmann C, Ritter M, Soria NM, Drescher B, Debernardi S, Skoulakis S, Hartmann O, Krause M, Krauter J, Neubauer A, Young BD, Heidenreich O. siRNA-mediated AML1/MTG8 depletion affects differentiation and proliferation-associated gene expression in t(8;21)-positive cell lines and primary AML blasts. Oncogene 2006; 25:6067-78. [PMID: 16652140 DOI: 10.1038/sj.onc.1209638] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chromosomal translocation t(8;21) is associated with 10-15% of all cases of acute myeloid leukaemia (AML). The resultant fusion protein AML1/MTG8 interferes with haematopoietic gene expression and is an important regulator of leukaemogenesis. We studied the effects of small interfering RNA (siRNA)-mediated AML1/MTG8 depletion on global gene expression in t(8;21)-positive leukaemic cell lines and in primary AML blasts using cDNA arrays, oligonucleotide arrays and real-time reverse transcription-polymerase chain reaction (RT-PCR). Suppression of AML1/MTG8 results in the increased expression of genes associated with myeloid differentiation, such as AZU1, BPI, CTSG, LYZ and RNASE2 as well as of antiproliferative genes such as IGFBP7, MS4A3 and SLA both in blasts and in cell lines. Furthermore, expression levels of several genes affiliated with drug resistance or indicative of poor prognosis AML (BAALC, CD34, PRG2, TSPAN7) are affected by AML1/MTG8 depletion. In conclusion, siRNA-mediated suppression of AML1/MTG8 cause very similar changes in gene expression pattern in t(8;21)-positive cell lines and in primary AML blasts. Furthermore, the results suggest that the specific targeting of AML1/MTG8 function may be a promising approach for complementing existing treatment strategies.
Collapse
MESH Headings
- Acute Disease
- Base Sequence
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Proliferation
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/physiology
- DNA Primers
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Male
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- RNA, Small Interfering/physiology
- RUNX1 Translocation Partner 1 Protein
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/genetics
- Transcription Factors/physiology
- Translocation, Genetic
Collapse
Affiliation(s)
- J Dunne
- Cancer Research UK Medical Oncology Laboratory, Barts and the London School of Medicine, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Runx1/AML1 (also known as CBFA2 and PEBP23B) is a Runt family transcription factor critical for normal hematopoiesis. Runx1 forms a heterodimer with CBF3 and binds to the consensus PEBP2 sequence through the Runt domain. Runx1 enhances gene transcription by interacting with transcriptional coactivators such as p300 and CREB-binding protein. However, Runx1 can also suppress gene transcription by interacting with transcriptional corepressors, including mSin3A, TLE (mammalian homolog of Groucho), and histone deacetylases. Runx1 not only is critical for definitive hematopoiesis in the fetus but also is required for normal megakaryocytic maturation and T-lymphocyte and B-lymphocyte development in adult mice. Runx1 has been identified in leukemia-associated chromosomal translocations, including t(8;21) (Runx1-ETO/MTG8), t(16;21) (Runx1-MTG16), t(3;21) (Runx1-Evi1), t(12;21) (TEL-Runx1), and t(X;21) (Runx1-Fog2). The molecular mechanism of leukemogenesis by these fusion proteins is discussed. Various mutant mice expressing these fusion proteins have been created. However, expression of the fusion protein is not sufficient by itself to cause leukemia and likely requires additional events for leukemogenesis. Point mutations in a Runx1 allele cause haploinsufficiency and a biallelic null for Runx1, which are associated with familial platelet disorder with a propensity for acute myeloid leukemia (FPD/AML) and AML-M0, respectively. Thus, the correct protein structure and the precise dosage of Runx1 are essential for the maintenance of normal hematopoiesis.
Collapse
Affiliation(s)
- Tetsuya Yamagata
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
11
|
Amann JM, Chyla BJI, Ellis TC, Martinez A, Moore AC, Franklin JL, McGhee L, Meyers S, Ohm JE, Luce KS, Ouelette AJ, Washington MK, Thompson MA, King D, Gautam S, Coffey RJ, Whitehead RH, Hiebert SW. Mtgr1 is a transcriptional corepressor that is required for maintenance of the secretory cell lineage in the small intestine. Mol Cell Biol 2005; 25:9576-85. [PMID: 16227606 PMCID: PMC1265807 DOI: 10.1128/mcb.25.21.9576-9585.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two members of the MTG/ETO family of transcriptional corepressors, MTG8 and MTG16, are disrupted by chromosomal translocations in up to 15% of acute myeloid leukemia cases. The third family member, MTGR1, was identified as a factor that associates with the t(8;21) fusion protein RUNX1-MTG8. We demonstrate that Mtgr1 associates with mSin3A, N-CoR, and histone deacetylase 3 and that when tethered to DNA, Mtgr1 represses transcription, suggesting that Mtgr1 also acts as a transcriptional corepressor. To define the biological function of Mtgr1, we created Mtgr1-null mice. These mice are proportionally smaller than their littermates during embryogenesis and throughout their life span but otherwise develop normally. However, these mice display a progressive reduction in the secretory epithelial cell lineage in the small intestine. This is not due to the loss of small intestinal progenitor cells expressing Gfi1, which is required for the formation of goblet and Paneth cells, implying that loss of Mtgr1 impairs the maturation of secretory cells in the small intestine.
Collapse
Affiliation(s)
- Joseph M Amann
- Department of Biochemistry, 512 Preston Research Building, Vanderbilt University School of Medicine, 23rd and Pierce Avenue, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lindberg SR, Olsson A, Persson AM, Olsson I. The Leukemia-associated ETO homologues are differently expressed during hematopoietic differentiation. Exp Hematol 2005; 33:189-98. [PMID: 15676213 DOI: 10.1016/j.exphem.2004.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 10/11/2004] [Accepted: 10/19/2004] [Indexed: 10/25/2022]
Abstract
The Eight twenty-one (ETO) homologues are nuclear repressor proteins including ETO, myeloid-transforming gene-related protein 1 (MTGR1), and myeloid-transforming gene chromosome 16 (MTG16). ETO and MTG16 are both part of fusion proteins resulting from chromosomal translocations associated with acute myeloid leukemia. Expression of these chimeras results in a differentiation block that contributes to the onset of leukemia. In order to elucidate the relation between the ETO homologues and hematopoietic differentiation, we determined the expression of the homologues during differentiation of leukemic and normal hematopoietic cells. Our results showed MTGR1 and MTG16 to be ubiquitously expressed in leukemic cell lines, whereas expression of ETO was observed only in an erythroleukemic cell line. The MTGR1 and MTG16 proteins decreased during all trans-retinoic acid-, but not vitamin D(3)-induced differentiation of leukemic cells. The reduction seemed to reflect a decrease in transcript levels as well as in protein stability. MTGR1 transcripts were ubiquitously expressed in human bone marrow cells. The MTG16 transcripts of CD34(+) progenitor cells were rapidly downregulated by cytokine-induced differentiation into myeloid or erythroid lineages. ETO transcripts, present at very low abundance in CD34(+) progenitor cells, were transiently upregulated during erythroid differentiation. In conclusion, the differential expression of the ETO homologues suggests that they may have a potential role in hematopoietic differentiation.
Collapse
|
13
|
Abstract
The 8;21 translocation produces a fusion between the ETO gene and that encoding the myeloid transcription factor AML1. The AML1-ETO fusion substitutes the majority of the ETO protein for the coregulator recruitment domains of AML1. Biochemical analyses of ETO have led to the identification of numerous interacting proteins including many corepressors. Importantly, the proteins interacting with ETO are different from those of wild-type AML1, suggesting that altered coregulator recruitment underlies the oncogenic properties of AML1-ETO. The list of corepressors capable of binding ETO includes histone deacetylases (HDACs) and components of distinct HDAC core complexes. These investigations have provided mechanistic insight into corepressor recruitment by ETO and clues to the leukemogenic activity of AML1-ETO.
Collapse
Affiliation(s)
- Bruce A Hug
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
14
|
Lindberg SR, Olsson A, Persson AM, Olsson I. Interactions between the leukaemia-associated ETO homologues of nuclear repressor proteins. Eur J Haematol 2003; 71:439-47. [PMID: 14703694 DOI: 10.1046/j.0902-4441.2003.00166.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The eight-twenty-one (ETO) homologues, represented by ETO, myeloid transforming gene-related protein 1 (MTGR1) and myeloid transforming gene chromosome 16 (MTG16), are nuclear repressor proteins. ETO is part of the fusion protein acute myeloid leukaemia (AML)1-ETO, resulting from the translocation (8;21). Similarly, MTG16 is disrupted to become part of AML1/MTG16 in t(16;21). The aberrant expression of these chimeras could affect interplay between ETO homologues and contribute to the leukaemogenic process. We investigated possible interactions between the ETO homologues. Ectopic co-expression in COS-cells resulted in heterodimerisation of the various ETO homologues suggesting that they may co-operate. Similarly, the chimeric oncoprotein AML1-ETO interacted with both MTGR1 and MTG16. However, results from cell lines endogenously expressing more than one ETO homologue did not demonstrate co-precipitation. Results from IP-Western and size determination by gel filtration of deletion mutants expressed in COS-cells, indicated an important role of the HHR domain for oligomerisation. A role was also suggested for the Nervy domain in the homologue interactions. Our results suggest that ETO homologues can interact with each other as well as with AML1-ETO, although it is unclear as to what extent these interactions occur in vivo.
Collapse
|
15
|
Abstract
Cloning and characterization of the 8;21 chromosomal breakpoint identified AML1 on chromosome 21 and ETO (MTG8) on chromosome 8, and the resultant chimeric gene product, AML-1/ETO. The ETO gene family now includes three human members encoding proteins composed of four evolutionarily conserved domains termed nervy homology regions (NHR) 1-4. ETO associates with N-CoR/Sin3a/HDAC complexes in vivo and acts as a corepressor for the promyelocytic zinc finger protein. Moreover, ETO is nuclear matrix attached at sites coincident with histone deacetylase enzymes and mSin3a. These data suggest that ETO proteins function as transcriptional corepressors. This review focuses on the ETO gene family in terms of expression and function. Specifically, the role of ETO as a co-repressor will be detailed. Additionally, the impact of this recent discovery on treatment of t(8;21)-containing leukemia will be discussed.
Collapse
Affiliation(s)
- J Nathan Davis
- Department of Biochemistry and Molecular Biology F7-26, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport 71130, USA
| | | | | |
Collapse
|
16
|
Hoogeveen AT, Rossetti S, Stoyanova V, Schonkeren J, Fenaroli A, Schiaffonati L, van Unen L, Sacchi N. The transcriptional corepressor MTG16a contains a novel nucleolar targeting sequence deranged in t (16; 21)-positive myeloid malignancies. Oncogene 2002; 21:6703-12. [PMID: 12242670 DOI: 10.1038/sj.onc.1205882] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2002] [Revised: 07/15/2002] [Accepted: 07/18/2002] [Indexed: 11/09/2022]
Abstract
The MTG (Myeloid Translocation Gene) proteins are a family of novel transcriptional corepressors. We report that MTG16a, a protein isoform encoded by the MTG16 gene deranged by the t (16; 21) in myeloid malignancies, is targeted to the nucleolus. The amino acid sequence necessary for nucleolar localization was mapped to the MTG16a N-terminal region. MTG16a, like MTG8, the nuclear corepressor deranged by the t (8; 21), is capable to interact with specific histone deacetylases (HDACs) suggesting that the protein may mediate silencing of nucleolar gene transcription. In addition, MTG16a is capable to form oligomers with other MTG proteins. As a consequence of the t (16; 21) the AML1 DNA-binding domain replaces the MTG16a N-terminal region. The AML1-MTG16 fusion protein is targeted to the nucleoplasm where it is capable to oligomerize with MTG16a and interact with HDAC1 and HDAC3. The deficiency of HDAC-containing complexes at nucleolar sites and the accumulation of HDAC-containing complexes at AML1-sites may be critical in the pathogenesis of t (16; 21) myeloid malignancies.
Collapse
Affiliation(s)
- André T Hoogeveen
- Department of Clinical Genetics, Erasmus University, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Scarr RB, Sharp PA. PDCD2 is a negative regulator of HCF-1 (C1). Oncogene 2002; 21:5245-54. [PMID: 12149646 DOI: 10.1038/sj.onc.1205647] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Revised: 05/03/2002] [Accepted: 05/07/2002] [Indexed: 11/10/2022]
Abstract
Temperature sensitive mutations in host cell factor 1 (HCF-1) arrest cells in the middle of the G1 phase of the cycle. We have shown that the highly conserved C-terminal WYF domain of HCF-1 protein interacts with the MYND domain of the PDCD2 protein. This inter-action is conserved between human HCF-1 and HCF-2 and the C. elegans HCF. Overexpression of PDCD2, which interacts with the N-CoR/mSin3A corepressor complexes, suppresses cotransfected HCF-1 complement-ation of a temperature lesion in the endogenous HCF-1 protein. Overexpression of domains of either PDCD2 or HCF-1, which should interfere with interactions between these two proteins, enhances the complementation.
Collapse
Affiliation(s)
- Rebecca B Scarr
- Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, MA 02139-4307, USA
| | | |
Collapse
|
18
|
MESH Headings
- Animals
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Models, Genetic
- Multigene Family
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/physiology
- Proto-Oncogene Proteins
- RUNX1 Translocation Partner 1 Protein
- Structure-Activity Relationship
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- J D Licht
- Derald H. Ruttenberg Cancer Center and Department of Medicine, Mount Sinai School of Medicine, Box 1130, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
19
|
Szyrach M, Münchberg FE, Riehle H, Nordheim A, Krauter J, Nagel S, Heil G, Heidenreich O. Cleavage of AML1/MTG8 by asymmetric hammerhead ribozymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3550-7. [PMID: 11422386 DOI: 10.1046/j.1432-1327.2001.02259.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chromosomal translocation t(8;21) is one of the most frequent aberrations associated with acute myeloid leukaemia. It joins the 5' section of the AML1 gene with the almost complete open reading frame of MTG8 (ETO). The resulting fusion RNA represents a leukaemia-specific target for antisense/ribozyme inhibition. We tested several asymmetric hammerhead ribozymes targeted against the fusion site for their ability to cleave the AML1/MTG8 RNA at low magnesium concentrations. One ribozyme cleaves AML1/MTG8 RNA with high catalytic efficiency without binding or cleaving the wild-type AML1 transcript. The presence of cellular RNA does not affect the cleavage. Injection of AML1/MTG8 RNA and ribozyme RNA into Xenopus eggs or oocytes causes a specific reduction of AML1/MTG8 protein expression. Asymmetric anti-AML1/MTG8 ribozymes may be valuable modulators of AML1/MTG8 expression in leukaemic cells.
Collapse
Affiliation(s)
- M Szyrach
- Department of Molecular Biology, Institute for Cell Biology, University of Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hildebrand D, Tiefenbach J, Heinzel T, Grez M, Maurer AB. Multiple regions of ETO cooperate in transcriptional repression. J Biol Chem 2001; 276:9889-95. [PMID: 11150306 DOI: 10.1074/jbc.m010582200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In acute myeloid leukemias (AMLs) with t(8;21), the transcription factor AML1 is juxtaposed to the zinc finger nuclear protein ETO (Eight-Twenty-One), resulting in transcriptional repression of AML1 target genes. ETO has been shown to interact with corepressors, such as N-CoR and mSin3A to form complexes containing histone deacetylases. To define regions of ETO required for maximal repressor activity, we analyzed amino-terminal deletions in a transcriptional repression assay. We found that ETO mutants lacking the first 236 amino acids were not affected in their repressor activity, whereas a further deletion of 85 amino acids drastically reduced repressor function and high molecular weight complex formation. This latter mutant can still homodimerize and bind to N-CoR but shows only weak binding to mSin3A. Furthermore, we could show that a "core repressor domain" comprising nervy homology region 2 and its amino- and carboxyl-terminal flanking sequences recruits mSin3A and induces transcriptional repression. These results suggest that mSin3A and N-CoR bind to ETO independently and that both binding sites cooperate to maximize ETO-mediated transcriptional repression. Thus, ETO has a modular structure, and the interaction between the individual elements is essential for the formation of a stable repressor complex and efficient transcriptional repression.
Collapse
Affiliation(s)
- D Hildebrand
- Georg-Speyer-Haus, Institute for Biomedical Research, Paul-Ehrlich Strasse 42-44, 60596 Frankfurt, Germany
| | | | | | | | | |
Collapse
|