1
|
Gandhi NN, Inzana TJ, Rajagopalan P. Bovine Airway Models: Approaches for Investigating Bovine Respiratory Disease. ACS Infect Dis 2023; 9:1168-1179. [PMID: 37257116 DOI: 10.1021/acsinfecdis.2c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bovine respiratory disease (BRD) is a multifactorial condition where different genera of bacteria, such as Mannheimia haemolytica, Histophilus somni, Pasteurella multocida, and Mycoplasma bovis, and viruses, like bovine respiratory syncytial virus, bovine viral diarrhea virus, and bovine herpes virus-1, infect the lower respiratory tract of cattle. These pathogens can co-infect cells in the respiratory system, thereby making specific treatment very difficult. Currently, the most common models for studying BRD include a submerged tissue culture (STC), where monolayers of epithelial cells are typically covered either in cellular or spent biofilm culture medium. Another model is an air-liquid interface (ALI), where epithelial cells are exposed on their apical side and allowed to differentiate. However, limited work has been reported on the study of three-dimensional (3D) bovine models that incorporate multiple cell types to represent the architecture of the respiratory tract. The roles of different defense mechanisms in an infected bovine respiratory system, such as mucin production, tight junction barriers, and the production of antimicrobial peptides in in vitro cultures require further investigation in order to provide a comprehensive understanding of the disease pathogenesis. In this report, we describe the different aspects of BRD, including the most implicated pathogens and the respiratory tract, which are important to incorporate in disease models assembled in vitro. Although current advancements of bovine respiratory cultures have led to knowledge of the disease, 3D multicellular organoids that better recapitulate the in vivo environment exhibit potential for future investigations.
Collapse
Affiliation(s)
- Neeti N Gandhi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Thomas J Inzana
- College of Veterinary Medicine, Long Island University, Brookville, New York 11548, United States
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Bajzert J, Gorczykowski M, Galli J, Stefaniak T. The evaluation of immunogenic impact of selected bacterial, recombinant Hsp60 antigens in DBA/2J mice. Microb Pathog 2017; 115:100-111. [PMID: 29246635 DOI: 10.1016/j.micpath.2017.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/31/2017] [Accepted: 12/01/2017] [Indexed: 01/21/2023]
Abstract
Heat Shock Proteins (HSP) are highly conserved proteins that are widely spread throughout all organisms. They function in the cytoplasm as chaperones; however, they could be expressed on the cell surface. It has been shown that Hsp60 obtained from gram-negative bacteria are able to stimulate cells of the acquired and innate immune system. The aim of this study was the evaluation of the immunogenic properties of recombinant Hsp60 proteins derived from four common pathogenic bacteria: Escherichia coli, Histophilus somni, Pasteurella multocida and Salmonella Enteritidis. The analysis of the humoral immune response in DBA/2J mice hyperimmunized with selected rHsp60 revealed high levels of IgG rHsp60-antibody with the predominance of the IgG1 subclass, in the reaction with both homologous and heterologous antigens. The presence of IgG2a and IgG2b was also observed; however, no antibodies of subclass IgG3 were detected. The comparison of plasma IgG antibody reactivity of mice immunized with two different doses of rHsp60 (10/20 μg) showed that the lower dose was sufficient to induce a strong humoral response. The reactivity of the IgG rHsp60-antibody with whole bacterial cells showed a significantly higher reaction with H. somni compared with other pathogens. It was demonstrated that the addition of all rHsp60 with polymyxin B to the culture medium stimulated splenocytes isolated from hyperimmunized mice to release IL-1β and IL-6. As a strong stimulator of the immune system, bacterial-origin Hsp60 seems to be an interesting potential component of subunit vaccines aimed at the development of protection for animals during infections caused by gram-negative bacteria.
Collapse
Affiliation(s)
- Joanna Bajzert
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Poland.
| | - Michał Gorczykowski
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, Poland
| | - Józef Galli
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Poland
| | - Tadeusz Stefaniak
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Poland
| |
Collapse
|
3
|
Confer AW, Snider TA, Taylor JD, Montelongo M, Sorensen NJ. Clinical disease and lung lesions in calves experimentally inoculated with Histophilus somni five days after metaphylactic administration of tildipirosin or tulathromycin. Am J Vet Res 2016; 77:358-66. [PMID: 27027834 DOI: 10.2460/ajvr.77.4.358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare clinical disease and lung lesions in calves experimentally inoculated with Histophilus somni 5 days after metaphylactic administration of tildipirosin or tulathromycin. ANIMALS Twenty-four 3-month-old Holstein and Holstein-crossbreed steers. PROCEDURES Calves were randomly allocated to 3 groups of 8 calves. On day 0, calves in group 1 received tildipirosin (4 mg/kg, SC), calves in group 2 received tulathromycin (2.5 mg/kg, SC), and calves in group 3 received isotonic saline (0.9% NaCl) solution (1 mL/45 kg, SC; control). On day 5, calves were inoculated with 10 mL of a solution containing H somni strain 7735 (1.6 × 10(9) CFUs/mL, intrabronchially; challenge). Calves were clinically evaluated on days 5 through 8 and euthanized on day 8. The lungs were grossly evaluated for evidence of pneumonia, and bronchial secretion samples underwent bacteriologic culture. RESULTS The mean clinical score for each group was significantly increased 12 hours after challenge, compared with that immediately before challenge, and was significantly lower for tildipirosin-treated calves on days 6, 7, and 8, compared with those for tulathromycin-treated and control calves. The mean percentage of lung consolidation for tildipirosin-treated calves was significantly lower than those for tulathromycin-treated and control calves. Histophilus somni was isolated from the bronchial secretions of some tulathromycin-treated and control calves but was not isolated from tildipirosin-treated calves. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that metaphylactic administration of tildipirosin to calves 5 days prior to H somni challenge prevented subsequent culture of the pathogen from bronchial secretions and was more effective in minimizing clinical disease and lung lesions than was metaphylactic administration of tulathromycin.
Collapse
|
4
|
Corbeil LB, Campero CM, Rhyan JC, Anderson ML, Gershwin LJ, Agnew DW, Munson L, Bondurant RH. Uterine Mast Cells and Immunoglobulin-E Antibody Responses During Clearance of Tritrichomonas foetus. Vet Pathol 2016; 42:282-90. [PMID: 15872374 DOI: 10.1354/vp.42-3-282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We showed earlier that Tritrichomonas foetus-specific bovine immunoglobulin (Ig)G1 and IgA antibodies in uterine and vaginal secretions are correlated with clearance of this sexually transmitted infection. Eosinophils have been noted in previous studies of bovine trichomoniasis but the role of mast cells and IgE responses have not been reported. The hypothesis that IgE and mast cell degranulation play a role in clearance was tested in 25 virgin heifers inseminated experimentally and infected intravaginally with T. foetus strain D1 at estrus and cultured weekly. Groups were euthanatized at 3, 6, 9, or 12 weeks, when tissues were fixed and secretions were collected for culture and antibody analysis. Immunohistochemistry using a monoclonal antibody to a soluble lipophosphoglycan (LPG)-containing surface antigen (TF1.17) demonstrated antigen uptake by uterine epithelial cells. Lymphoid nodules were detected below antigen-positive epithelium. Little IgG2 antibody was detected but IgG1, IgA, IgM, and IgE T. foetus-specific antibodies increased in uterine secretions at weeks 6 and 9 after infection. This was inversely proportional to subepithelial mast cells numbers and most animals cleared the infection by the sampling time after the lowest mast cell count. Furthermore, soluble antigen was found in uterine epithelium above inductive sites (lymphoid nodules). Cross-linking of IgE on mast cells by antigen and perhaps LPG triggering appears to have resulted in degranulation. Released cytokines may account for production of predominantly Th2 (IgG1 and IgE) and IgA antibody responses, which are related to clearance of the infection.
Collapse
Affiliation(s)
- L B Corbeil
- Department of Pathology, UCSD Medical Center, 200 West Arbor Drive, San Diego, CA 92103-8416, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Allergic responses occur in humans, rodents, non-human primates, avian species, and all of the domestic animals. These responses are mediated by immunoglobulin E (IgE) antibodies that bind to mast cells and cause release/synthesis of potent mediators. Clinical syndromes include naturally occurring asthma in humans and cats; atopic dermatitis in humans, dogs, horses, and several other species; food allergies; and anaphylactic shock. Experimental induction of asthma in mice, rats, monkeys, sheep, and cats has helped to reveal mechanisms of pathogenesis of asthma in humans. All of these species share the ability to develop a rapid and often fatal response to systemic administration of an allergen--anaphylactic shock. Genetic predisposition to development of allergic disease (atopy) has been demonstrated in humans, dogs, and horses. Application of mouse models of IgE-mediated allergic asthma has provided evidence for a role of air pollutants (ozone, diesel exhaust, environmental tobacco smoke) in enhanced sensitization to allergens.
Collapse
Affiliation(s)
- Laurel J Gershwin
- School of Veterinary Medicine, University of California, Davis, California 95616;
| |
Collapse
|
6
|
Geertsema RS, Zekarias B, La Franco Scheuch L, Worby C, Russo R, Gershwin LJ, Herdman DS, Lo K, Corbeil LB. IbpA DR2 subunit immunization protects calves against Histophilus somni pneumonia. Vaccine 2011; 29:4805-12. [PMID: 21557979 DOI: 10.1016/j.vaccine.2011.04.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Histophilus somni is a prevalent cause of pneumonia and septicemia in cattle. Yet evidence for protection against pneumonia by current vaccines is controversial. We have identified a new H. somni virulence factor, IbpA. Previous studies implicated three likely protective subunits or domains in IbpA (A3, A5, and DR2), which were expressed as recombinant GST fusion proteins and purified for systemic vaccination of calves. After two subcutaneous immunizations, calves were challenged intrabronchially with virulent H. somni strain 2336 and clinical signs were monitored for four days before necropsy. Serum samples were collected throughout. At necropsy, the area of gross pneumonia was estimated, bronchial lavage fluid was collected, lesions were cultured and tissue samples were fixed for histopathology. Results showed that calves immunized with IbpA DR2 had a statistically lower percentage of lung with gross lesions than controls, fewer histologic abnormalities in affected areas and no H. somni isolated from residual pneumonic lesions. Calves immunized with the control GST vaccine, IbpA3 or IbpA5 had larger H. somni positive pneumonic lesions. ELISA results for serum antibodies showed that calves immunized with the IbpA DR2 antigen had high IgG1 and IgG2 and lowest IgE responses to the immunizing antigen. Specific IgG responses were also high in the bronchial lavage fluid. High specific serum IgE responses were previously shown to be associated with more severe pneumonia, but high IgG specific anti-IbpA DR2 responses seem to be critically related to protection. Since the IbpA DR2 Fic motif has been shown to cause bovine alveolar cells to retract, we tested the neutralizing ability of pooled serum from the IbpA DR2 immunized group. This pooled serum reduced cytotoxicity by 75-80%, suggesting that the protection was due to antibody neutralization of IbpA cytotoxicity, at least in part. Therefore, IbpA DR2 appears to be an important protective antigen of H. somni. The study shows, for the first time, that immunization with a purified Fic protein protects against disease in a natural host.
Collapse
Affiliation(s)
- R S Geertsema
- Animal Care Program, Department of Pharmacology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0614, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The recognition of homocytotropic antibodies and their occurrence in response to parasite infection preceded the recognition of IgE as a distinct antibody isotype in the bovine species. Passive cutaneous anaphylaxis was an early reliable and antigen specific method to detect IgE in bovine serum. Yet studies on the role of IgE in bovine disease awaited the production of polyclonal and monoclonal antisera specific for the bovine epsilon chain. Applications of antigen specific ELISA and Western blot techniques have demonstrated IgE responses not only to parasite antigens, but also to viral and bacterial pathogens. The role of IgE in vaccine enhanced disease and in eliciting anaphylactic responses to some vaccines has been elucidated using these immunological assays.
Collapse
Affiliation(s)
- Laurel J Gershwin
- Department of Pathology, Microbiology, & Immunology, School of Veterinary Medicine, VM3A, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Cho YS, Lee HS, Lim SK, Joo YS, Kim JM, Kim JH. Safety and efficacy testing of a novel multivalent bovine bacterial respiratory vaccine composed of five bacterins and two immunogens. J Vet Med Sci 2008; 70:959-64. [PMID: 18840971 DOI: 10.1292/jvms.70.959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine bacterial respiratory diseases have been one of the most serious problems due to their high mortality and economic loss in calves. The vaccinations of bovine bacterial respiratory vaccines have been complex because of no multivalent vaccine. In this study, novel multivalent bovine bacterial respiratory vaccine (BRV) was developed and tested for its safety and efficacy. BRV was composed of two immunogens and five bacterins. These were leukotoxoid and bacterin of Mannheimia haemolytica type A, outer membrane protein and bacterin of Pasteurella multocida type A, and bacterins of Haemophilus somnus, Mycoplasma bovis, and Arcanobacterium pyogenes. ELISA antibody titers to five bacterial antigens in vaccinated guinea pigs increased, compared with those in unvaccinated ones. BRV was safe for calves and pregnant cattle in this study. In calves challenged with M. haemolytica and P. multocida, the average daily weight gain and antibody titers of vaccinated calves increased, and respiratory symptoms (P<0.05) and treatment frequency (P<0.01) of vaccinated calves significantly decreased, compared with those of unvaccinated calves. Interestingly, the antibody titers of M. haemolytica leukotoxoid and Mycoplasma bovis were closely related with the reduction of respiratory symptoms. BRV would be an ecomonical measure for the protection against bovine bacterial respiratory diseases.
Collapse
Affiliation(s)
- Yun Sang Cho
- Bacteriology and Parasitology Division, Animal Disease Research Department, National Veterinary Research & Quarantine Service, Anyang, Kyounggi, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Histophilus somni (Haemophilus somnus) is one of the key bacterial pathogens involved in the multifactorial etiology of the Bovine Respiratory Disease Complex. This Gram negative pleomorphic rod also causes bovine septicemia, thrombotic meningencephalitis, myocarditis, arthritis, abortion and infertility, as well as disease in sheep, bison and bighorn sheep. Virulence factors include lipooligosaccharide, immunoglobulin binding proteins (as a surface fibrillar network), a major outer membrane protein (MOMP), other outer membrane proteins (OMPs) and exopolysaccharide. Histamine production, biofilm formation and quorum sensing may also contribute to pathogenesis. Antibodies are very important in protection as shown in passive protection studies. The lack of long-term survival of the organism in macrophages, unlike facultative intracellular bacteria, also suggests that antibodies should be critical in protection. Of the immunoglobulin classes, IgG2 antibodies are most implicated in protection and IgE antibodies in immunopathogenesis. The immunodominant antigen recognized by IgE is the MOMP and by IgG2 is a 40 kDa OMP. Pathogenetic synergy of bovine respiratory syncytial virus (BRSV) and H. somni in calves can be attributed, in part at least, to the higher IgE anti-MOMP antibody responses in dually infected calves. Other antigens are probably involved in stimulating host defense or immunopathology as well.
Collapse
|
10
|
Corbeil LB, Arnold KF, Kimball R, Berghaus L, Gershwin LJ. Specificity of IgG and IgE antibody responses to Haemophilus somnus infection of calves. Vet Immunol Immunopathol 2006; 113:191-9. [PMID: 16824620 DOI: 10.1016/j.vetimm.2006.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 05/08/2006] [Indexed: 11/30/2022]
Abstract
Haemophilus somnus is an important cause of bovine respiratory disease and septicemia with all it's sequelae. The role of immune responses in protection and immunopathogenesis is not well understood. We showed that infection with bovine respiratory syncytial virus (BRSV) 6 days before H. somnus increased clinical scores and levels of IgE antibody to H. somnus over that of infection with H. somnus alone. To determine whether antigenic specificity of IgE responses differed from IgG responses, Western blots were done with sera from the infected calves, at 0 time and at 21 days post infection. Thus each calf was its own control. IgG antibodies recognized primarily a 40 kDa outer membrane protein (OMP) in whole cell H. somnus preparations and a 270 kDa immunoglobulin binding protein (IgBPs) in culture supernatants but generally not the 41 kDa major OMP (MOMP). IgE antibodies recognized primarily the 41 kDa MOMP in whole cell pellet preparations. Results were consistent among calves. With culture supernatants, IgE antibodies recognized both the 270 kDa IgBPs and the MOMP. Since some H. somnus strains from asymptomatic carriers (including strain 129Pt), do not have IgBPs and express a truncated MOMP (33 kDa rather than 41 kDa), reaction of strain 129Pt cells with serum from calves infected with H. somnus or BRSV and H. somnus was studied. IgE did not react with the truncated MOMP even at much lower (1:100) dilutions than in Western blots with virulent strain 2336 (serum dilution of 1:500). Reactions of IgE with the 40 and 78 kDa antigens in strain 129Pt were noted but since the major reactivities with the IgBPs and the MOMP were not detected, this strain may be useful for inducing protective rather than immunopathogenic responses.
Collapse
Affiliation(s)
- Lynette B Corbeil
- Department of Pathology, School of Medicine, University of California, San Diego, CA 92103-8416, USA.
| | | | | | | | | |
Collapse
|
11
|
Zhao Y, Jackson SM, Aitken R. The bovine antibody repertoire. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:175-86. [PMID: 16054212 DOI: 10.1016/j.dci.2005.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cattle are able to produce a full range of Ig classes including the long-elusive IgD through rearrangement of their germline genes. Several IgL groupings have been reported but as in several other livestock species (e.g. sheep, rabbits, chickens), rearrangement per se fails to generate significant IgH diversity. This is largely because of the modest number of bovine VH segments that participate in rearrangement and their conserved sequences. Perhaps in compensation, bovine Ig heavy chains carry CDR3 sequences of exceptional length. Processes that operate post-rearrangement to generate diversity remain ill defined as are the location, timing and triggers to these events. Reagents are needed to understand better the maturation of B lymphocytes, their responses to antigens and cytokines, and to provide standards for the quantitation of Ig responses in cattle; recombinant methods may help meet this need as Ab engineering technologies become more widely used.
Collapse
Affiliation(s)
- Yaofeng Zhao
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital at Huddinge, SE-14186 Stockholm, Sweden
| | | | | |
Collapse
|
12
|
Gershwin LJ, Berghaus LJ, Arnold K, Anderson ML, Corbeil LB. Immune mechanisms of pathogenetic synergy in concurrent bovine pulmonary infection with Haemophilus somnus and bovine respiratory syncytial virus. Vet Immunol Immunopathol 2005; 107:119-30. [PMID: 15979157 DOI: 10.1016/j.vetimm.2005.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/07/2005] [Accepted: 04/06/2005] [Indexed: 11/20/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) and Haemophilus somnus are two bovine respiratory pathogens that cause disease singly or as part of a polymicrobial infection. BRSV infection is often associated with a predisposition towards production of a T helper type 2 (Th2) response and IgE production. In contrast, an IgG2 response to H. somnus has been shown to be most important for recovery. An experiment was performed to evaluate the hypothesis that infection with H. somnus on day 6 of experimental BRSV infection would result in disease enhancement and potentially an altered immune response when compared with single infection. Three groups of calves were either dually infected or singly infected with H. somnus or BRSV. Serum and bronchoalveolar lavage fluid (BALF) pathogen specific IgG1, IgG2, IgE, and IgA responses were evaluated by ELISA. TaqMan RT-PCR was used to examine cytokine gene expression by PBMC and BAL cells. Clinical signs were evaluated for 28 days after BRSV infection, followed by necropsy and histological examination of the lungs. In dually infected calves, disease was significantly more severe, H. somnus was isolated from the lungs at necropsy, and high IgE and IgG responses were detected to H. somnus antigens. Cytokine profiles on day 27 were elevated in dually infected calves, but did not reflect a skewed profile. These results contrasted with singly infected calves that were essentially normal by day 10 of infection and lacked both lung pathology and the presence of H. somnus in the lung at necropsy. The increase in IgE antibodies specific for antigens of H. somnus presents a possible mechanism for pathogenesis of the disease enhancement.
Collapse
Affiliation(s)
- Laurel J Gershwin
- Department of Pathology, Microbiology and Immunology, University of California, School of Veterinary Medicine, Davis, CA 95616 8739, USA.
| | | | | | | | | |
Collapse
|
13
|
Kashino SS, Resende J, Sacco AMS, Rocha C, Proença L, Carvalho WA, Firmino AA, Queiroz R, Benavides M, Gershwin LJ, De Miranda Santos IKF. Boophilus microplus: the pattern of bovine immunoglobulin isotype responses to high and low tick infestations. Exp Parasitol 2005; 110:12-21. [PMID: 15804374 DOI: 10.1016/j.exppara.2005.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 01/19/2005] [Accepted: 01/20/2005] [Indexed: 10/25/2022]
Abstract
Cattle present variable levels of resistance to ticks and the immune correlates of these heritable phenotypes must be known in order to develop effective vaccines. The antibody responses to tick salivary antigens were examined in cattle of tick-susceptible (Holstein) and tick-resistant (Nelore) breeds. After heavy infestations, levels of IgG1 and IgG2 antibodies decreased in Holsteins and remained the same in Nelores. Conversely, levels of IgE antibodies increased in Holsteins. Different sizes of tick burdens modulated the IgG1 antibody response in a susceptible breed (Aberdeen): levels were higher than in controls in heavily infested animals, but not in those undergoing intermediary or minimal infestations. The three experimental groups presented similar levels of IgG2 antibodies. Levels of IgE antibodies were higher only in animals undergoing intermediate infestations. These results indicate that tick infestations suppress the IgG antibody response in susceptible breeds, that IgE antibodies are not protective, and that the dose of tick saliva modulates the isotype of host antibody responses.
Collapse
Affiliation(s)
- Suely S Kashino
- Empresa Brasileira de Pesquisa Agropecuária--Embrapa, Brasília DF, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Ten Haemophilus somnus isolates were grown on blood agar plates under a 5% CO2 atmosphere for 48 h. Harvested whole cells were washed and evaluated for the presence of histamine by ELISA. All H. somnus isolates had cell-associated histamine concentrations of between 18.5 and 200 ng/ml. In a separate study, the ability of H. somnus to secrete histamine into BHI growth medium was evaluated using H. somnus strains 8025 and 156A as well as a recent 156A respiratory isolate. Each strain or isolate was grown under various concentrations of CO2 to approximate the CO2 concentration in the bronchi. The histamine content of washed whole cells and medium supernatant were determined at various stages of incubation. Highest histamine concentrations were detected in the recent respiratory isolate; whole cells (225 ng/ml) after 120 h incubation in 15% CO2 and supernatant (1721 ng/ml) after incubation for 41 h in 25% CO2. This study indicates that different H. somnus isolates can produce and secrete histamine which may be enhanced by CO2 concentrations which approximate those in the bronchial tree. Results of this study may partially explain some of the post-vaccination reactions occasionally observed with H. somnus bacterins. Additional studies are needed to determine the actual role of H. somnus-derived histamine in the pathogenesis of bovine respiratory disease and airway hyperresponsiveness.
Collapse
Affiliation(s)
- Kevin W Ruby
- US Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Veterinary Biologics, Licensing and Policy Development, Ames, IA 50010, USA.
| | | | | |
Collapse
|
15
|
Abstract
Protective immune responses in the genital tract are robust, as shown by convalescent and vaccine-induced immunity. Systemic immunity is crucial for systemic infections that result in reproductive failure (such as brucellosis, leptospirosis, and the systemic forms of C. fetus and H. somnus infection). Although IgA responses can protect against sexually transmitted or venereal infections, systemically induced IgG antibody responses also protect. IgA responses can be induced by immunization of the genital tract, where inductive sites develop after antigenic stimulation. The common mucosal immune system can also be used to induce a genital IgA response, as shown by intranasal vaccination. Lastly, it is necessary to determine which antigens of each infectious agent are protective and which types of immune responses protect best.
Collapse
Affiliation(s)
- L B Corbeil
- Division of Infectious Diseases, University of California, San Diego, California, USA.
| | | |
Collapse
|
16
|
Gershwin LJ. Immunoglobulin E-mediated hypersensitivity in food-producing animals. Vet Clin North Am Food Anim Pract 2001; 17:599-619. [PMID: 11692511 DOI: 10.1016/s0749-0720(15)30009-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type I hypersensitivity has been described as a cause of allergic reactivity to inhalants, injectables, endoparasites, and ectoparasites in food animal species. In addition, IgE is credited with showing some host-sparing effect when produced in response to certain gastrointestinal and other parasites. Recently, the sophistication of diagnostic procedures has increased with the elucidation of epsilon heavy chain sequences, expressed protein, development of chimeric IgE antibodies, and production of species-specific anti-IgE reagents. Application of ELISA and Western blotting has replaced the passive cutaneous anaphylaxis test for demonstration of antigen-specific IgE in serum. Regulation of the IgE response is complex, and its dependence on induction of T helper cell type 2 cytokines is now established. The next frontier in IgE research, as for many inherited diseases, lies in understanding the genetic make-up of the animal and which genes are important in controlling the IgE response.
Collapse
Affiliation(s)
- L J Gershwin
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA.
| |
Collapse
|