1
|
Juyal VK, Thakuri SC, Panwar M, Rashmi, Prakash O, Perveen K, Bukhari NA, Nand V. Manganese(II) and Zinc(II) metal complexes of novel bidentate formamide-based Schiff base ligand: synthesis, structural characterization, antioxidant, antibacterial, and in-silico molecular docking study. Front Chem 2024; 12:1414646. [PMID: 39100916 PMCID: PMC11294232 DOI: 10.3389/fchem.2024.1414646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
A new bidentate Schiff base ligand (C16H16Cl2N4), condensation product of ethylene diamine and 4-chloro N-phenyl formamide, and its metal complexes [M(C16H16Cl2N4)2(OAc)2] (where M = Mn(II) and Zn(II)) were synthesized and characterized using various analytical and spectral techniques, including high-resolution mass spectrometry (HRMS), elemental analysis, ultraviolet-visible (UV-vis), Fourier-transform infrared (FTIR) spectroscopy, AAS, molar conductance, 1H NMR, and powder XRD. All the compounds were non-electrolytes and nanocrystalline. The synthesized compounds were assessed for antioxidant potential by DPPH radical scavenging and FRAP assay, with BHT serving as the positive control. Inhibitory concentration at 50% inhibition (IC50) values were calculated and used for comparative analysis. Furthermore, the prepared compounds were screened for antibacterial activity against two Gram-negative bacteria (Staphylococcus aureus and Bacillus subtilis) and two Gram-positive bacteria (Escherichia coli and Salmonella typhi) using disk-diffusion methods, with amikacin employed as the standard reference. The comparison of inhibition zones revealed that the complexes showed better antibacterial activity than the ligand. To gain insights into the molecular interactions underlying the antibacterial activity, the ligand and complexes were analyzed for their binding affinity with S. aureus tyrosyl-tRNA synthetase (PDB ID: 1JIL) and S. typhi cell membrane protein OmpF complex (PDB ID: 4KR4). These analyses revealed robust interactions, validating the observed antibacterial effects against the tested bacterial strains.
Collapse
Affiliation(s)
- Vijay Kumar Juyal
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Shweta Chand Thakuri
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Mohit Panwar
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Rashmi
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Om Prakash
- Regional Ayurveda Research Institute, Ministry of Ayush, Gwalior, India
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Najat A. Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Viveka Nand
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| |
Collapse
|
2
|
Xu L, Ma W, Jin Y, Sun X, Chen N, Zhu X, Luo J, Li C, Zhao K, Zheng Y, Yu D. N, N-dimethylformamide exposure induced liver abnormal mitophagy by targeting miR-92a-1-5p-BNIP3L pathway in vivo and vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156218. [PMID: 35623527 DOI: 10.1016/j.scitotenv.2022.156218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
N, N-dimethylformamide (DMF) is a widely existing harmful environmental pollutant from industrial emission which can threat human health for both occupational and general populations. Epidemiological and experimental studies have indicated liver as the primary target organ of DMF. However, the molecular mechanism under DMF-induced hepatoxicity remains unclear. In the present study, we identified that DMF could induce abnormal autophagy flux in cells. We also showed that DMF-induced mitochondrial dysfunction and lethal mitophagy which further leads to autophagic cell death. Next, miRNA microarray analysis identified miR-92a-1-5p as the most down-regulated miRNA upon DMF exposure. Mechanistically, miR-92a-1-5p regulated mitochondrial function and mitophagy by targeting mitochondrial protein BNIP3L. Exogenous miR-92a-1-5p significantly attenuated DMF-induced mitochondrial dysfunction and mitophagy in vitro and in vivo. Our study highlights the mechanistic link between miRNAs and mitophagy under environmental stress, which provided a new clue for the mitochondrial epigenetics mechanism on environmental toxicant-induced hepatoxicity.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Emmanuel O, Uche ME, Dike ED, Etumnu LR, Ugbogu OC, Ugbogu EA. A review on garcinia kola heckel: traditional uses, phytochemistry, pharmacological activities, and toxicology. Biomarkers 2021; 27:101-117. [PMID: 34904497 DOI: 10.1080/1354750x.2021.2016974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Garcinia kola is a medicinal plant commonly known as bitter kola. It is utilised in ethnomedicine for the treatment of diarrhoea, bronchitis, bacterial infection, cough, hepatitis, gonorrhoea, laryngitis, food poison, liver and gastric diseases. OBJECTIVE This study reviewed the phytochemistry, pharmacological activities, and ethnomedicinal potentials of G. kola. MATERIALS AND METHODS An extensive review was performed using electronic literature collated from ScienceDirect, Springer, Wiley, and PubMed databases. RESULTS Phytochemical analysis revealed the isolation of several chemical compounds including 9-octadecenoic acid, linoleic acid, 14-methylpentadecanoic acid, 1-butanol, hexadecanamide, I-4',II-4',I-5,II-5,I-7,II-7-hexahydroxy-I-3,II-8-biflavanone, lanost-7-en-3-one, kolaflavanone (8E)-4-geranyl-3,5-dihydroxybenzophenone, glutinol, Garcinia biflavonoid (GB-2a-II-4'-OMe), 9,19-cyclolanost-24-en-3-ol, 24-methylene, tirucallol, lupeol, β-amyrin, obtusifoliol and Kolaviron. Diverse pharmacological in-vivo and in vitro investigations revealed that G. kola has anti-inflammatory, antimalarial, hepatoprotective, cardioprotective, anti-asthmatic, neuroprotective, antioxidant, and antidiabetic activities. CONCLUSION The present study revealed that G. kola has preventive and therapeutic potentials against various diseases in both in vivo and in vitro studies and therefore can be utilised as a raw material in the pharmaceutical industries for the development of therapeutic products. However, there is a need for clinical trial experiments to validate and provide accurate and substantial information on the required safe dosage and efficacy for the treatment of several diseases.
Collapse
Affiliation(s)
- Okezie Emmanuel
- Department of Biochemistry, Abia State University, Uturu, Nigeria
| | - Miracle E Uche
- Department of Biochemistry, Abia State University, Uturu, Nigeria
| | - Emmanuel D Dike
- Department of Biochemistry, Abia State University, Uturu, Nigeria
| | - Lotanna R Etumnu
- Department of Biochemistry, Abia State University, Uturu, Nigeria
| | | | - Eziuche A Ugbogu
- Department of Biochemistry, Abia State University, Uturu, Nigeria
| |
Collapse
|
4
|
Human Family 1-4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Arch Toxicol 2021; 95:395-472. [PMID: 33459808 DOI: 10.1007/s00204-020-02971-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic activation of drugs, natural products, physiological compounds, and general chemicals by the catalytic activity of cytochrome P450 enzymes belonging to Families 1-4. The data were collected from > 5152 references. The total number of data entries of reactions catalyzed by P450s Families 1-4 was 7696 of which 1121 (~ 15%) were defined as bioactivation reactions of different degrees. The data were divided into groups of General Chemicals, Drugs, Natural Products, and Physiological Compounds, presented in tabular form. The metabolism and bioactivation of selected examples of each group are discussed. In most of the cases, the metabolites are directly toxic chemicals reacting with cell macromolecules, but in some cases the metabolites formed are not direct toxicants but participate as substrates in succeeding metabolic reactions (e.g., conjugation reactions), the products of which are final toxicants. We identified a high level of activation for three groups of compounds (General Chemicals, Drugs, and Natural Products) yielding activated metabolites and the generally low participation of Physiological Compounds in bioactivation reactions. In the group of General Chemicals, P450 enzymes 1A1, 1A2, and 1B1 dominate in the formation of activated metabolites. Drugs are mostly activated by the enzyme P450 3A4, and Natural Products by P450s 1A2, 2E1, and 3A4. Physiological Compounds showed no clearly dominant enzyme, but the highest numbers of activations are attributed to P450 1A, 1B1, and 3A enzymes. The results thus show, perhaps not surprisingly, that Physiological Compounds are infrequent substrates in bioactivation reactions catalyzed by P450 enzyme Families 1-4, with the exception of estrogens and arachidonic acid. The results thus provide information on the enzymes that activate specific groups of chemicals to toxic metabolites.
Collapse
|
5
|
Xu L, Zhao Q, Luo J, Ma W, Jin Y, Li C, Hou Y, Feng M, Wang Y, Chen J, Zhao J, Zheng Y, Yu D. Integration of proteomics, lipidomics, and metabolomics reveals novel metabolic mechanisms underlying N, N-dimethylformamide induced hepatotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111166. [PMID: 32827966 DOI: 10.1016/j.ecoenv.2020.111166] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
N, N-Dimethylformamide (DMF) is a universal organic solvent which widely used in various industries, and a considerable amount of DMF is detected in industrial effluents. Accumulating animal and epidemiological studies have identified liver injury as an early toxic effect of DMF exposure; however, the detailed mechanisms remain poorly understood. In this study, we systematically integrated the quantitative proteomics, lipidomics, and metabolomics data obtained from the primary human hepatocytes exposed to DMF, to depict the complicated biochemical reactions correlated to liver damage. Eventually, we identified 284 deregulated proteins (221 downregulated and 63 upregulated) and 149 deregulated lipids or metabolites (99 downregulated and 50 upregulated) induced by DMF exposure. Further, the integration of the protein-metabolite (lipid) interactions revealed that N-glycan biosynthesis (involved in the endoplasmic reticulum stress and the unfolded protein response), bile acid metabolism (involved in the lipid metabolism and the inflammatory process), and mitochondrial dysfunction and glutathione depletion (both contributed to reactive oxygen species) were the typical biochemical reactions disturbed by DMF exposure. In summary, our study identified the versatile protein, lipid, and metabolite molecules in multiple signaling and metabolic pathways involved in DMF induced liver injury, and provided new insights to elucidate the toxic mechanisms of DMF.
Collapse
Affiliation(s)
- Lin Xu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qianwen Zhao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yufei Hou
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Meiyao Feng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jing Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jinquan Zhao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Wang J, Chen G. Dimethylacetamide-induced toxic hepatitis in spandex workers: clinical presentation and treatment outcomes. QJM 2020; 113:324-329. [PMID: 31693155 DOI: 10.1093/qjmed/hcz282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/19/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dimethylacetamide (DMAc) exposure has been associated with toxic hepatitis, and no clinical treatment has been reported. AIM To investigate the clinical manifestations of DMAc-induced symptoms and how to rescue the functional loss due to occupational exposure. DESIGN Clinical observations of 60 spandex factory workers with the exposure to DMAc from January, 2017-19. METHODS Chinese drugs (reduced glutathione, polyene phosphatidylcholine, glycyrrhizin compound, Hugan tablets and ornithine aspartate) were used to evaluate the therapeutic improvements in DMAc-exposed patients. RESULTS Our data found that 58.3% patients had no distinct clinical symptoms, but 41.7% patients felt fatigue, and 21.7% patients suffered abdominal discomfort and appetite loss, and 8.3% patients had yellow skin and sclera. The ultrasonic and CT imaging revealed that some patients have fatty livers, intrahepatic calcifications, hepatomegaly, gallbladder wall edema and abdominal effusions. Biochemical analysis showed that the alanine aminotransferase (ALT) (P < 0.001), aspartate aminotransferase (AST) (P < 0.001), lactate dehydrogenase (LDH) (P < 0.001) and bilirubin (P < 0.01) statistically decreased after the drug treatment, but alkaline phosphatase (P >0.05) and glutamyl transpeptidase (P> 0.05) did not decrease. Twenty-nine out of the thirty-one patients' abnormal blood ammonia recovered. The risk factor of ALT on hospitalization time was significantly related (P < 0.01). CONCLUSIONS The drugs above are sufficient to rescue functional loss in DMAc-induced toxic hepatitis, in part via the regulations of ALT, AST, LDH, bilirubin and ammonia. Workers with the exposure to DMAc should receive specific drugs to maintain the health and prevent functional loss in the long term.
Collapse
Affiliation(s)
- J Wang
- Department of Gastroenterology, Zhejiang Rongjun Hospital, Jiaxing 314000
| | - G Chen
- Department of Biopharmaceutical Sciences, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| |
Collapse
|
7
|
Wu Z, Liu Q, Wang L, Zheng M, Guan M, Zhang M, Zhao W, Wang C, Lu S, Cheng J, Leng S. The essential role of CYP2E1 in metabolism and hepatotoxicity of N,N-dimethylformamide using a novel Cyp2e1 knockout mouse model and a population study. Arch Toxicol 2019; 93:3169-3181. [PMID: 31501917 DOI: 10.1007/s00204-019-02567-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
N,N-Dimethylformamide (DMF) is a widespread contaminant of leather factories and their surrounding environment. There is a lack of direct in vivo evidence supporting CYP2E1 as a primary enzyme responsible for DMF metabolism and hepatotoxicity. In this study, a novel Cyp2e1 knockout (KO) mouse model was generated and used to assess whether DMF metabolism and hepatotoxicity is CYP2E1 dependent using an acute toxicity protocol with a single dose of 1500 mg DMF/kg. An epidemiological study in 698 DMF-exposed workers and 188 non-DMF-exposed controls was conducted to investigate the associations between functional polymorphisms of CYP2E1 (rs6413432/rs2031920) and DMF metabolite (N-methylcarbmoylated-hemoglobin [NMHb]). We successfully established Cyp2e1 KO mice with evidence from DNA sequence analysis, which showed 1-bp insertion at 65 bp (C) site of Cyp2e1 Exon 1. In addition, western blot and in vivo pharmacokinetic study also showed a complete absence of CYP2E1 protein and a 92% and 88% reduction in CYP2E1 activity among males and females, respectively. DMF metabolism as evidenced by increased blood NMHb, and hepatotoxicity as evidenced by elevated liver/body weight ratio, activity of liver enzymes and massive liver necrosis were detected in wild-type (WT) mice but were completely abrogated in KO mice, strongly supporting a CYP2E1-dependent pattern of DMF metabolism and hepatotoxicity. Moreover, variant allele of CYP2E1-rs6413432 was also significantly associated with higher NMHb levels in DMF-exposed workers (P = 0.045). The increase of glucose-regulated protein 94 detected in WT mice but not in KO mice suggested CYP2E1-dependent endoplasmic reticulum stress may be a key mechanism underlying DMF-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhijun Wu
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Qiang Liu
- Department of Environmental Health, Suzhou Center for Disease Control and Prevention, Jiangsu, 215004, China
| | - Lei Wang
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Min Zheng
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Mingyue Guan
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Man Zhang
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Wenjin Zhao
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Chunmin Wang
- Department of Physical and Chemical Laboratory, Suzhou Center for Disease Control and Prevention, Jiangsu, 215004, China
| | - Songwen Lu
- Department of Environmental Health, Suzhou Center for Disease Control and Prevention, Jiangsu, 215004, China
| | - Juan Cheng
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Shuguang Leng
- School of Public Health, Qingdao University, Shandong, 266021, China.
| |
Collapse
|
8
|
Li MJ, Zeng T. The deleterious effects of N,N-dimethylformamide on liver: A mini-review. Chem Biol Interact 2019; 298:129-136. [DOI: 10.1016/j.cbi.2018.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 01/14/2023]
|
9
|
Song X, Gong W, Shen H, Li X, Ding L, Han L, Zhang H, Zhu B, Liu X. Correlation between CAT polymorphism and susceptibility to DMAc-induced abnormal liver function: a case-control study of Chinese population. Biomarkers 2017; 23:147-153. [DOI: 10.1080/1354750x.2017.1360942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xianping Song
- Department of Occupational and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Wei Gong
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Huanxi Shen
- Kunshan Municipal Center for Disease Prevention and Control, Suzhou, Jiangsu, China
| | - Xiuting Li
- Department of Occupational and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Prevention and Treatment Center for Occupational Diseases, Nanjing, Jiangsu, China
| | - Lu Ding
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, Jiangsu, China
| | - Lei Han
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Hengdong Zhang
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Baoli Zhu
- Department of Occupational and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Xin Liu
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Kilo S, Göen T, Drexler H. Cross-sectional study on N,N-dimethylformamide (DMF); effects on liver and alcohol intolerance. Int Arch Occup Environ Health 2016; 89:1309-1320. [DOI: 10.1007/s00420-016-1164-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/22/2016] [Indexed: 01/25/2023]
|
11
|
Zhang Q, Huang C, Wei Y, Zhu Q, Tian W, Wang C. Risk assessment of N,N-dimethylformamide on residents living near synthetic leather factories. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3534-3539. [PMID: 24271731 DOI: 10.1007/s11356-013-2336-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
Dimethylformamide (DMF) is a broad solvent used in the production of synthetic leather. Decades of year's research have been focused on workers in leather factories suffering from the release of DMF. However, little attention was paid on general population. Here, we examined the relationship between consistent DMF exposure and annual hospitalizations of local residents in Longwan, China, in 2008. We found a positive correlation with a relative risk (RR) increase of 1.110 for total hospitalizations. When the data were stratified by sex, we observed a higher correlation for female hospitalizations than for male hospitalizations, with RR values of 1.55 and 1.084, respectively. This might be attributed to the differences in genotypes of oxidant enzyme between gender. The significance of the correlations did not disappear after we excluded the extreme value of DMF or adjusted for SO2, NO2, and PM10. Population living near the leather factory has experienced almost constant DMF exposure, and real concern should be raised regarding such exposure. Governments should take responsibility for the protection of not only occupational workers but also residents, especially women.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | |
Collapse
|
12
|
Kennedy GL. Toxicology of dimethyl and monomethyl derivatives of acetamide and formamide: a second update. Crit Rev Toxicol 2012; 42:793-826. [DOI: 10.3109/10408444.2012.725028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Abstract
Considerable support exists for the roles of metabolism in modulating the carcinogenic properties of chemicals. In particular, many of these compounds are pro-carcinogens that require activation to electrophilic forms to exert genotoxic effects. We systematically analyzed the existing literature on the metabolism of carcinogens by human enzymes, which has been developed largely in the past 25 years. The metabolism and especially bioactivation of carcinogens are dominated by cytochrome P450 enzymes (66% of bioactivations). Within this group, six P450s--1A1, 1A2, 1B1, 2A6, 2E1, and 3A4--accounted for 77% of the P450 activation reactions. The roles of these P450s can be compared with those estimated for drug metabolism and should be considered in issues involving enzyme induction, chemoprevention, molecular epidemiology, interindividual variations, and risk assessment.
Collapse
|
14
|
Smythe NC, Butler DP, Moore CE, McGowan WR, Rheingold AL, Beauvais LG. A heterobimetallic metal–organic framework with tunable reactive metal sites: synthesis, characterization, and reactivity. Dalton Trans 2012; 41:7855-8. [DOI: 10.1039/c2dt30184a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Peña B, de Ménorval LC, Garcia-Valls R, Gumí T. Characterization of polysulfone and polysulfone/vanillin microcapsules by 1H NMR spectroscopy, solid-state 13C CP/MAS-NMR spectroscopy, and N2 adsorption-desorption analyses. ACS APPLIED MATERIALS & INTERFACES 2011; 3:4420-4430. [PMID: 22008282 DOI: 10.1021/am201092r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Textile detergent and softener industries have incorporated perfume microencapsulation technology to improve their products. Perfume encapsulation allows perfume protection until use and provides a long-lasting fragrance release. But, certain industrial microcapsules show low encapsulation capacity and low material stability. Polysulfone capsules have been already proposed to solve these drawbacks. Among them, PSf/Vanillin capsules were considered as a desirable system. They present both good material stability and high encapsulation capacity. However, several factors such as the final location of the perfume in the polymeric matrix, the aggregation state that it has in the capsule and its interaction with the capsule components have not been studied yet. These factors can provide vast information about the capsule performance and its improvement. With the aim to characterize these parameters, the physical and chemical properties of PSf/Vanillin capsules have been investigated by nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and N(2) adsorption-desorption measurements. AFM micrograph and N(2) isotherms confirm that the presence of vanillin modify the physical structure of PSf/Vanillin microcapsules as it is trapped in the capsule porosity. NMR results show that vanillin is present in solid state in PSf/Vanillin microcapsules.
Collapse
Affiliation(s)
- Brisa Peña
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain
| | | | | | | |
Collapse
|
16
|
Clinical outcomes of occupational exposure to n,n-dimethylformamide: perspectives from experimental toxicology. Saf Health Work 2011; 2:97-104. [PMID: 22953193 PMCID: PMC3431905 DOI: 10.5491/shaw.2011.2.2.97] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/12/2011] [Indexed: 11/08/2022] Open
Abstract
N,N-Dimethylformamide (DMF) is globally used as an organic solvent in the production of synthetic leather and resins because of its low volatility, making it an attractive industrial material. Despite its excellent property as a chemical solvent, utilization of DMF is somewhat controversial nowadays due to its hazardous effects on exposed workers in work places. Many toxification cases are being reported globally and the number of cases of liver damage is still increasing in developing countries. On account of this, a series of epidemiologic surveys are being conducted to understand the degrees of liver damage caused by DMF exposure. Furthermore, many investigations have been performed to clarify the mechanism of DMF-induced liver toxicity using both human and experimental animal models. This review summarizes the current occupational cases reported on liver damage from workers exposed to DMF in industrial work places and the research results that account for DMF-induced liver failure and possible carcinogenesis. The findings reviewed here show the synergistic toxicity of DMF exposure with other toxicants, which might occur through complicated but distinct mechanisms, which may extend our knowledge for establishing risk assessments of DMF exposure in industrial work places.
Collapse
|
17
|
Perrin L, Loiseau N, André F, Delaforge M. Metabolism of N-methyl-amide by cytochrome P450s. FEBS J 2011; 278:2167-78. [DOI: 10.1111/j.1742-4658.2011.08133.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Rui D, Daojun C, Yongjian Y. Liver and heart toxicity due to 90-day oral exposure of ICR mice to N,N-dimethylformamide. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:357-363. [PMID: 21787705 DOI: 10.1016/j.etap.2011.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 01/21/2011] [Accepted: 01/23/2011] [Indexed: 05/31/2023]
Abstract
N,N-dimethylformamide (DMF) is a colorless liquid with a faint amine odor, which is widely used in the world. DMF exposure may induce adverse effects on liver, but few studies showed damage to heart after exposure to DMF. In the present study, DMF was administered to ICR mice with the doses of 0.32, 0.63 and 1.26 g/kg of body weight by gavage for 90 days. The increase in the relative liver weight is accompanied with the presence of the centrilobular hepatocellular hypertrophy as well as increased serum levels of aspartate transaminase (AST) and alanine transaminase (ALT). An increase of malondialdehyde (MDA) level was shown in liver homogenate, while superoxide dismutase (SOD) and glutathione (GSH) activities decreased. Heart damage was also shown in mice exposed to DMF for 90 days, although pathological examination showed only slight inflammatory cell infiltration. Increased levels of serum lactate dehydrogenase (LDH), isoenzymes of creatine kinase (CK-MB) and cardiac troponin I (cTnI) were shown. Increased level of MDA was also shown in heart homogenate, in contrast with the decreased activity of SOD. These data suggested that the administration of DMF could induce liver and heart injuries and oxidative stress was involved in the toxic effects.
Collapse
Affiliation(s)
- Ding Rui
- School of Public Health, Anhui Medical University, China.
| | | | | |
Collapse
|
19
|
Role of urinary biomarkers of N,N-dimethylformamide in the early detection of hepatic injury among occupational exposed workers. Int Arch Occup Environ Health 2010; 83:399-406. [DOI: 10.1007/s00420-010-0520-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 01/28/2010] [Indexed: 11/26/2022]
|