1
|
Zhang Y, Zhang Y, Zhang L, Liu Y. Oriented immobilization of nanobodies using SpyCatcher/SpyTag significantly enhances the capacity of affinity chromatography. J Chromatogr A 2024; 1730:465107. [PMID: 38905946 DOI: 10.1016/j.chroma.2024.465107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The use of nanobodies (Nbs) in affinity chromatography for biomacromolecule purification is gaining popularity. However, high-performance Nb-based affinity resins are not readily available, mainly due to the lack of suitable immobilization methods. In this study, we explored an autocatalytic coupling strategy based on the SpyCatcher/SpyTag chemistry to achieve oriented immobilization of Nb ligands. To facilitate this approach, a variant cSpyCatcher003 (cSC003) was coupled onto agarose microspheres, providing a specific attachment site for SpyTagged nanobody ligands. The cSC003 easily purified from Escherichia coli through a two-step procedure, exhibits exceptional alkali resistance and structural recovery capability, highlighting its robustness as a linker in the coupling strategy. To validate the effectiveness of cSC003-derivatized support, we employed VHSA, a nanobody against human serum albumin (HSA), as the model ligand. Notably, the immobilization of SpyTagged VHSA onto the cSC003-derivatized support was achieved with a coupling efficiency of 90 %, significantly higher than that of traditional thiol-based coupling method. This improvement directly correlated to the preservation of the native conformation of nanobodies during the coupling process. In addition, the Spy-immobilized resin demonstrated better performance in the binding capacity, with a 3-fold improvement in capture efficiency, underscoring the advantages of the Spy immobilization strategy for oriented immobilization of VHSA ligands. Moreover, online purification and immobilization of SpyTagged VHSA from crude bacterial lysate was achieved using the cSC003-derivatized support. The resulting resin exhibited high binding specificity towards HSA, yielding a purity above 95 % directly from human serum, and maintained good stability throughout multiple purification cycles. These findings highlight the potential of the Spy immobilization strategy for developing Nb-based affinity chromatographic materials, with significant implications for biopharmaceutical downstream processes.
Collapse
Affiliation(s)
- Yuxiang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Luyao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongdong Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
2
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Tavano O, Abellanas-Perez P, de Andrades D, Santiz-Gómez JA, Berenguer-Murcia Á, Fernandez-Lafuente R. A review on the immobilization of bromelain. Int J Biol Macromol 2024; 273:133089. [PMID: 38878936 DOI: 10.1016/j.ijbiomac.2024.133089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
This review shows the endeavors performed to prepare immobilized formulations of bromelain extract, usually from pineapple, and their use in diverse applications. This extract has a potent proteolytic component that is based on thiol proteases, which differ depending on the location on the fruit. Stem and fruit are the areas where higher activity is found. The edible origin of this enzyme is one of the features that determines the applications of the immobilized bromelain to a more significant degree. The enzyme has been immobilized on a wide diversity of supports via different strategies (covalent bonds, ion exchange), and also forming ex novo solids (nanoflowers, CLEAs, trapping in alginate beads, etc.). The use of preexisting nanoparticles as immobilization supports is relevant, as this facilitates one of the main applications of the immobilized enzyme, in therapeutic applications (as wound dressing and healing components, antibacterial or anticancer, mucus mobility control, etc.). A curiosity is the immobilization of this enzyme on spores of probiotic microorganisms via adsorption, in order to have a perfect in vivo compatibility. Other outstanding applications of the immobilized enzyme are in the stabilization of wine versus haze during storage, mainly when immobilized on chitosan. Curiously, the immobilized bromelain has been scarcely applied in the production of bioactive peptides.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Daniel Castañeda-Valbuena
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - José Alfredo Santiz-Gómez
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | | |
Collapse
|
3
|
Castillo P, Cutiño-Avila BV, González-Bacerio J, Chávez Planes MDLÁ, Díaz Brito J, Guisán Seijas JM, Del Monte-Martínez A. Rational design of biocatalysts based on covalent immobilization of acylase enzymes. Enzyme Microb Technol 2023; 171:110323. [PMID: 37703637 DOI: 10.1016/j.enzmictec.2023.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Acylases catalyze the hydrolysis of amide bonds. Penicillin G acylase (PGA) is used for the semi-synthesis of penicillins and cephalosporins. Although protein immobilization increases enzyme stability, the design of immobilized systems is difficult and usually it is empirically performed. We describe a novel application of our strategy for the Rational Design of Immobilized Derivatives (RDID) to produce optimized acylase-based immobilized biocatalysts for enzymatic bioconversion. We studied the covalent immobilization of the porcine kidney aminoacylase-1 onto aldehyde-based supports. Predictions of the RDID1.0 software and the experimental results led to the selection of glyoxyl-Sepharose CL 4B support and pH 10.0. One of the predicted clusters of reactive amino groups generates an enzyme-support configuration with highly accessible active sites, contributing with 82% of the biocatalyst's total activity. For Escherichia coli PGA, the predictions and experimental results show similar maximal amounts of immobilized protein and activity at pH 8.0 and 10.0 on glyoxyl-Sepharose CL 10B. However, thermal stability of the immobilized derivative is higher at pH 10.0 due to an elevated probability of multipoint covalent attachment. In this case, two clusters of amino groups are predicted to be relevant for PGA immobilization in catalytically competent configurations at pH 10.0, showing accessible active sites and contributing with 36% and 44% of the total activity, respectively. Our results support the usefulness of the RDID strategy to model different protein engineering approaches (site-directed mutagenesis or obtainment of fusion proteins) and select the most promising ones, saving time and laboratory work, since the in silico-designed modified proteins could have higher probabilities of success on bioconversion processes.
Collapse
Affiliation(s)
- Patricio Castillo
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, calle 25, # 455 e/ J e I, Vedado, CP 10400 La Habana, Cuba
| | - Bessy V Cutiño-Avila
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, calle 25, # 455 e/ J e I, Vedado, CP 10400 La Habana, Cuba
| | - Jorge González-Bacerio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, calle 25, # 455 e/ J e I, Vedado, CP 10400 La Habana, Cuba.
| | - María de Los Ángeles Chávez Planes
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, calle 25, # 455 e/ J e I, Vedado, CP 10400 La Habana, Cuba
| | - Joaquín Díaz Brito
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, calle 25, # 455 e/ J e I, Vedado, CP 10400 La Habana, Cuba
| | | | - Alberto Del Monte-Martínez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, calle 25, # 455 e/ J e I, Vedado, CP 10400 La Habana, Cuba.
| |
Collapse
|
4
|
Yi Y, Shi K, Ding S, Hu J, Zhang C, Mei J, Ying G. A general strategy for protein affinity-ligand oriented-immobilization and screening for bioactive compounds. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1218:123591. [PMID: 36809735 DOI: 10.1016/j.jchromb.2023.123591] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Natural products containing complex mixtures of potentially bioactive compounds are a major source of new drugs, however, conventional screening for active compounds is a time-consuming and inefficient process. Here, we reported that a facile and efficient protein affinity-ligand oriented-immobilization strategy based on the SpyTag/SpyCatcher(ST/SC) chemistry, was used for bioactive compound screening. Two ST-fused model proteins, that is, GFP (green fluorescent protein) and PqsA (a critical enzyme in the quorum sensing pathway of Pseudomonas aeruginosa), were used to verify the feasibility of this screening method. GFP, as the capturing protein model, was ST-labeled and anchored at a specific orientation onto the surface of activated agarose coupled with SC protein via ST/SC self-ligation. The affinity carriers were characterized by infrared spectroscopy and fluorography. The spontaneity and site-specificity of this unique reaction were confirmed via electrophoresis and fluorescence analyses. Although the alkaline stability of the affinity carriers was not ideal, its pH stability was acceptable under pH < 9. The general preparation strategy of this affinity carriers was validated by replacing GFP with PqsA, and PqsA inhibitor, 2-amino-6-fluorobenzoic acid, was successfully isolated from the fermentation broth. The proposed strategy can immobilize protein ligands in one-step and screen compounds that interact specifically with the ligands.
Collapse
Affiliation(s)
- Yu Yi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Kefan Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Shenwei Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jianming Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Cheng Zhang
- Gmax Biopharm International Limited, Hangzhou 310014, China.
| | - Jianfeng Mei
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Guoqing Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Tuckmantel Bido A, Azarakhshi A, Brolo AG. Exploring Intensity Distributions and Sampling in SERS-Based Immunoassays. Anal Chem 2022; 94:17031-17038. [PMID: 36455025 DOI: 10.1021/acs.analchem.2c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a sensitive, widely used spectroscopic technique. However, SERS is perceived as poorly reproducible and insufficiently robust for standard applications in analytical chemistry. Here, we demonstrated that reliable SERS immunoassay quantification at low concentrations (pM range) can be achieved by careful experimental design and appropriate data analysis statistics. A SERS-based immunoassay for IgG in human serum (3.1-50.0 ng mL-1 or 20.6-333 pM) was developed as a proof of concept. Calibration curves were created using the population median of the band area, centered at 592 cm-1, of a SERS reporter (Nile Blue A). Histograms of 7200 SERS spectra show lognormal distributions. SEM images of the sensor platform confirm a correlation between the number of SERS probes (ERLs) at the surface and the SERS intensity response. The IgG immunosensor reported here presented a limit of detection of 1.11 ng mL-1 or 7.39 pM and a limit of quantification of 9.04 ng mL-1 or 60.30 pM, within a 95% confidence level. The % error of the predicted versus the actual response of a quality control (QC) sample was 0.13%. The percent error of the QC sample decreases exponentially with the number of measurements. Randomly selected spatially separated measurements provided lower QC % error than a larger number of measurements that were closely spaced. We propose that it is necessary to describe the measured populations using an appropriate sample size for good statistics and consider the interrogation of sufficiently large and well-separated areas of the sensor surface to achieve a reliable sampling.
Collapse
Affiliation(s)
| | - Arash Azarakhshi
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V9P 5C2, Canada
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
6
|
Ishihara K, Fukazawa K. Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. J Mater Chem B 2022; 10:3397-3419. [PMID: 35389394 DOI: 10.1039/d2tb00242f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fabrication of devices that accurately recognize, detect, and separate target molecules from mixtures is a crucial aspect of biotechnology for applications in medical, pharmaceutical, and food sciences. This technology has also been recently applied in solving environmental and energy-related problems. In molecular recognition, biomolecules are typically complexed with a substrate, and specific molecules from a mixture are recognized, captured, and reacted. To increase sensitivity and efficiency, the activity of the biomolecules used for capture should be maintained, and non-specific reactions on the surface should be prevented. This review summarizes polymeric materials that are used for constructing biointerfaces. Precise molecular recognition occurring at the surface of cell membranes is fundamental to sustaining life; therefore, materials that mimic the structure and properties of this particular surface are emphasized in this article. The requirements for biointerfaces to eliminate nonspecific interactions of biomolecules are described. In particular, the major issue of protein adsorption on biointerfaces is discussed by focusing on the structure of water near the interface from a thermodynamic viewpoint; moreover, the structure of polymer molecules that control the water structure is considered. Methodologies enabling stable formation of these interfaces on material surfaces are also presented.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
7
|
Liu Y, Wang P, Tian J, Seidi F, Guo J, Zhu W, Xiao H, Song J. Carbohydrate-Binding Modules of Potential Resources: Occurrence in Nature, Function, and Application in Fiber Recognition and Treatment. Polymers (Basel) 2022; 14:1806. [PMID: 35566977 PMCID: PMC9100146 DOI: 10.3390/polym14091806] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Great interests have recently been aroused in the independent associative domain of glycoside hydrolases that utilize insoluble polysaccharides-carbohydrate-binding module (CBM), which responds to binding while the catalytic domain reacts with the substrate. In this mini-review, we first provide a brief introduction on CBM and its subtypes including the classifications, potential sources, structures, and functions. Afterward, the applications of CBMs in substrate recognition based on different types of CBMs have been reviewed. Additionally, the progress of CBMs in paper industry as a new type of environmentally friendly auxiliary agent for fiber treatment is summarized. At last, other applications of CBMs and the future outlook have prospected. Due to the specificity in substrate recognition and diversity in structures, CBM can be a prosperous and promising 'tool' for wood and fiber processing in the future.
Collapse
Affiliation(s)
- Yena Liu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Peipei Wang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Jing Tian
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Jiaqi Guo
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Wenyuan Zhu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| |
Collapse
|
8
|
Macchia E, Torricelli F, Bollella P, Sarcina L, Tricase A, Di Franco C, Österbacka R, Kovács-Vajna ZM, Scamarcio G, Torsi L. Large-Area Interfaces for Single-Molecule Label-free Bioelectronic Detection. Chem Rev 2022; 122:4636-4699. [PMID: 35077645 DOI: 10.1021/acs.chemrev.1c00290] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioelectronic transducing surfaces that are nanometric in size have been the main route to detect single molecules. Though enabling the study of rarer events, such methodologies are not suited to assay at concentrations below the nanomolar level. Bioelectronic field-effect-transistors with a wide (μm2-mm2) transducing interface are also assumed to be not suited, because the molecule to be detected is orders of magnitude smaller than the transducing surface. Indeed, it is like seeing changes on the surface of a one-kilometer-wide pond when a droplet of water falls on it. However, it is a fact that a number of large-area transistors have been shown to detect at a limit of detection lower than femtomolar; they are also fast and hence innately suitable for point-of-care applications. This review critically discusses key elements, such as sensing materials, FET-structures, and target molecules that can be selectively assayed. The amplification effects enabling extremely sensitive large-area bioelectronic sensing are also addressed.
Collapse
Affiliation(s)
- Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Angelo Tricase
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Cinzia Di Franco
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy
| | - Ronald Österbacka
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Zsolt M Kovács-Vajna
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Gaetano Scamarcio
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy.,Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Luisa Torsi
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
9
|
Park JM, Kim MY, Jose J, Park M. Covalently Immobilized Regenerable Immunoaffinity Layer with Orientation-Controlled Antibodies Based on Z-Domain Autodisplay. Int J Mol Sci 2021; 23:ijms23010459. [PMID: 35008883 PMCID: PMC8745110 DOI: 10.3390/ijms23010459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
A regenerable immunoaffinity layer comprising covalently immobilized orientation-controlled antibodies was developed for use in a surface plasmon resonance (SPR) biosensor. For antibody orientation control, antibody-binding Z-domain-autodisplaying Escherichia coli (E. coli) cells and their outer membrane (OM) were utilized, and a disuccinimidyl crosslinker was employed for covalent antibody binding. To fabricate the regenerable immunoaffinity layer, capture antibodies were bound to autodisplayed Z-domains, and then treated with the crosslinker for chemical fixation to the Z-domains. Various crosslinkers, namely disuccinimidyl glutarate (DSG), disuccinimidyl suberate (DSS) and poly (ethylene glycol)-ylated bis (sulfosuccinimidyl)suberate (BS(PEG)5), were evaluated, and DSS at a concentration of 500 μM was confirmed to be optimal. The E. coli-cell-based regenerable HRP immunoassay was evaluated employing three sequential HRP treatment and regeneration steps. Then, the Oms of E. coli cells were isolated and layered on a microplate and regenerable OM-based HRP immunoassaying was evaluated. Five HRP immunoassays with four regeneration steps were found to be feasible. This regenerable, covalently immobilized, orientation-controlled OM-based immunoaffinity layer was applied to an SPR biosensor, which was capable of quantifying C-reactive protein (CRP). Five regeneration cycles were repeated using the demonstrated immunoaffinity layer with a signal difference of <10%.
Collapse
Affiliation(s)
- Jong-Min Park
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea; (J.-M.P.); (M.Y.K.)
- Cooperative Course of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Mi Yeon Kim
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea; (J.-M.P.); (M.Y.K.)
- Cooperative Course of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
| | - Min Park
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea; (J.-M.P.); (M.Y.K.)
- Cooperative Course of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
- Correspondence:
| |
Collapse
|
10
|
Poddar S, Sharmeen S, Hage DS. Affinity monolith chromatography: A review of general principles and recent developments. Electrophoresis 2021; 42:2577-2598. [PMID: 34293192 PMCID: PMC9536602 DOI: 10.1002/elps.202100163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022]
Abstract
Affinity monolith chromatography (AMC) is a liquid chromatographic technique that utilizes a monolithic support with a biological ligand or related binding agent to isolate, enrich, or detect a target analyte in a complex matrix. The target-specific interaction exhibited by the binding agents makes AMC attractive for the separation or detection of a wide range of compounds. This article will review the basic principles of AMC and recent developments in this field. The supports used in AMC will be discussed, including organic, inorganic, hybrid, carbohydrate, and cryogel monoliths. Schemes for attaching binding agents to these monoliths will be examined as well, such as covalent immobilization, biospecific adsorption, entrapment, molecular imprinting, and coordination methods. An overview will then be given of binding agents that have recently been used in AMC, along with their applications. These applications will include bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, and dye-ligand or biomimetic affinity chromatography. The use of AMC in chiral separations and biointeraction studies will also be discussed.
Collapse
Affiliation(s)
- Saumen Poddar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
11
|
Multicatalytic Hybrid Materials for Biocatalytic and Chemoenzymatic Cascades—Strategies for Multicatalyst (Enzyme) Co-Immobilization. Catalysts 2021. [DOI: 10.3390/catal11080936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During recent decades, the use of enzymes or chemoenzymatic cascades for organic chemistry has gained much importance in fundamental and industrial research. Moreover, several enzymatic and chemoenzymatic reactions have also served in green and sustainable manufacturing processes especially in fine chemicals, pharmaceutical, and flavor/fragrance industries. Unfortunately, only a few processes have been applied at industrial scale because of the low stabilities of enzymes along with the problematic processes of their recovery and reuse. Immobilization and co-immobilization offer an ideal solution to these problems. This review gives an overview of all the pathways for enzyme immobilization and their use in integrated enzymatic and chemoenzymatic processes in cascade or in a one-pot concomitant execution. We place emphasis on the factors that must be considered to understand the process of immobilization. A better understanding of this fundamental process is an essential tool not only in the choice of the best route of immobilization but also in the understanding of their catalytic activity.
Collapse
|
12
|
Cutiño-Avila BV, Sánchez-López MI, Cárdenas-Moreno Y, González-Durruthy M, Ramos-Leal M, Guerra-Rivera G, González-Bacerio J, Guisán JM, Ruso JM, Del Monte-Martínez A. Modeling and experimental validation of covalent immobilization of Trametes maxima laccase on glyoxyl and MANA-Sepharose CL 4B supports, for the use in bioconversion of residual colorants. Biotechnol Appl Biochem 2021; 69:479-491. [PMID: 33580532 DOI: 10.1002/bab.2125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/09/2021] [Indexed: 11/05/2022]
Abstract
Our novel strategy for the rational design of immobilized derivatives (RDID) is directed to predict the behavior of the protein immobilized derivative before its synthesis, by the usage of mathematic algorithms and bioinformatics tools. However, this approach needs to be validated for each target enzyme. The objective of this work was to validate the RDID strategy for covalent immobilization of the enzyme laccase from Trametes maxima MUCL 44155 on glyoxyl- and monoaminoethyl-N-aminoethyl (MANA)-Sepharose CL 4B supports. Protein surface clusters, more probable configurations of the protein-supports systems at immobilization pHs, immobilized enzyme activity, and protein load were predicted by RDID1.0 software. Afterward, immobilization was performed and predictions were experimentally confirmed. As a result, the laccase-MANA-Sepharose CL 4B immobilized derivative is better than laccase-glyoxyl-Sepharose CL 4B in predicted immobilized derivative activity (63.6% vs. 29.5%). Activity prediction was confirmed by an experimentally expressed enzymatic activity of 68%, using 2,6-dimethoxyphenol as substrate. Experimental maximum protein load matches the estimated value (11.2 ± 1.3 vs. 12.1 protein mg/support mL). The laccase-MANA-Sepharose CL 4B biocatalyst has a high specificity for the acid blue 62 colorant. The results obtained in this work suggest the possibility of using this biocatalyst for wastewater treatment.
Collapse
Affiliation(s)
- Bessy V Cutiño-Avila
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - María I Sánchez-López
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - Yosberto Cárdenas-Moreno
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - Michael González-Durruthy
- LAQV-REQUIMTE of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.,Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Ramos-Leal
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, La Habana, Cuba.,Instituto de Fruticultura Tropical, La Habana, Cuba
| | - Gilda Guerra-Rivera
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - Jorge González-Bacerio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana, Cuba.,Departamento de Bioquímica, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - José M Guisán
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | |
Collapse
|
13
|
Monteiro RR, Virgen-Ortiz JJ, Berenguer-Murcia Á, da Rocha TN, dos Santos JC, Alcántara AR, Fernandez-Lafuente R. Biotechnological relevance of the lipase A from Candida antarctica. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Measuring Binding Constants of His-Tagged Proteins Using Affinity Chromatography and Ni-NTA Immobilized Enzymes. Methods Mol Biol 2021; 2178:405-416. [PMID: 33128763 DOI: 10.1007/978-1-0716-0775-6_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Affinity chromatography is one way to measure the binding constants of a protein-ligand interaction. Here, we describe a method of measuring a binding constant using Ni-NTA resin to immobilize a His-tagged enzyme and the method of frontal analysis. While other methods of immobilization are possible, using the strong affinity interaction between His-tagged proteins and Ni-NTA supports results in a fast, easy, and gentle method of immobilization. Once the affinity support is created, frontal analysis can be used to measure the binding constant between the protein and various analytes.
Collapse
|
15
|
García-Maceira T, García-Maceira FI, González-Reyes JA, Paz-Rojas E. Highly enhanced ELISA sensitivity using acetylated chitosan surfaces. BMC Biotechnol 2020; 20:41. [PMID: 32814567 PMCID: PMC7437170 DOI: 10.1186/s12896-020-00640-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background The enzyme-linked immunosorbent assay (ELISA), is the most widely used and reliable clinical routine method for the detection of important protein markers in healthcare. Improving ELISAs is crucial for detecting biomolecules relates to health disorders and facilitating diagnosis at the early diseases stages. Several methods have been developed to improve the ELISA sensitivity through immobilization of antibodies on the microtiter plates. We have developed a highly sensitive ELISA strategy based on the preparation of acetylated chitosan surfaces in order to improve the antibodies orientation. Results Chitin surfaces were obtained by mixing small quantities of chitosan and acetic anhydride in each well of a microtiter plate. Anti-c-myc 9E10 low affinity antibody fused to ChBD was cloned and expressed in CHO cells obtaining the anti-c-myc-ChBD antibody. We found that anti c-myc-ChBD binds specifically to the chitin surfaces in comparison with anti-c-myc 9E10, which did not. Chitin surface was used to develop a sandwich ELISA to detect the chimeric human protein c-myc-GST-IL8 cloned and expressed in Escherichia coli. The ELISA assays developed on chitin surfaces were 6-fold more sensitive than those performed on standard surface with significant differences (p<0,0001). Conclusions As shown here, acetylated chitosan surfaces improve the antibody orientation on the substrate and constitute a suitable method to replace the standard surfaces given the stability over time and the low cost of its preparation.
Collapse
Affiliation(s)
- Tania García-Maceira
- Canvax Biotech; Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain.
| | - Fé I García-Maceira
- Canvax Biotech; Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14014, Córdoba, Spain
| | - Elier Paz-Rojas
- Canvax Biotech; Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| |
Collapse
|
16
|
Capecchi E, Piccinino D, Tomaino E, Bizzarri BM, Polli F, Antiochia R, Mazzei F, Saladino R. Lignin nanoparticles are renewable and functional platforms for the concanavalin a oriented immobilization of glucose oxidase-peroxidase in cascade bio-sensing. RSC Adv 2020; 10:29031-29042. [PMID: 35520043 PMCID: PMC9055843 DOI: 10.1039/d0ra04485g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Lignin nanoparticles (LNPs) acted as a renewable and efficient platform for the immobilization of horseradish peroxidase (HRP) and glucose oxidase (GOX) by a layer by layer procedure. The use of concanavalin A as a molecular spacer ensured the correct orientation and distance between the two enzymes as confirmed by Förster resonance energy transfer measurement. Layers with different chemo–physical properties tuned in a different way the activity and kinetic parameters of the enzymatic cascade, with cationic lignin performing as the best polyelectrolyte in the retention of the optimal Con A aggregation state. Electrochemical properties, temperature and pH stability, and reusability of the novel systems have been studied, as well as their capacity to perform as colorimetric biosensors in the detection of glucose using ABTS and dopamine as chromogenic substrates. A boosting effect of LNPs was observed during cyclovoltammetry analysis. The limit of detection (LOD) was found to be better than, or comparable to, that previously reported for other HRP–GOX immobilized systems, the best results being again obtained in the presence of a cationic lignin polyelectrolyte. Thus renewable lignin platforms worked as smart and functional devices for the preparation of green biosensors in the detection of glucose. Lignin nanoparticles as functional renewable nanoplatform for the immobilization of cascade process in colorimetric biosensing of β-d-glucose.![]()
Collapse
Affiliation(s)
- Eliana Capecchi
- Department of Biological and Ecological Sciences (DEB), University of Tuscia via S. Camillo de Lellis 01100 Viterbo Italy
| | - Davide Piccinino
- Department of Biological and Ecological Sciences (DEB), University of Tuscia via S. Camillo de Lellis 01100 Viterbo Italy
| | - Elisabetta Tomaino
- Department of Biological and Ecological Sciences (DEB), University of Tuscia via S. Camillo de Lellis 01100 Viterbo Italy
| | - Bruno Mattia Bizzarri
- Department of Biological and Ecological Sciences (DEB), University of Tuscia via S. Camillo de Lellis 01100 Viterbo Italy
| | - Francesca Polli
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5 Rome 00185 Italy
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5 Rome 00185 Italy
| | - Franco Mazzei
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5 Rome 00185 Italy
| | - Raffaele Saladino
- Department of Biological and Ecological Sciences (DEB), University of Tuscia via S. Camillo de Lellis 01100 Viterbo Italy
| |
Collapse
|
17
|
Jarczewska M, Malinowska E. The application of antibody-aptamer hybrid biosensors in clinical diagnostics and environmental analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3183-3199. [PMID: 32930180 DOI: 10.1039/d0ay00678e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The growing number of various diseases and the increase of environmental contamination are the causes for the development of novel methods for their detection. The possibility of the application of affinity-based biosensors for such purposes seems particularly promising as they provide high selectivity and low detection limits. Recently, the usage of hybrid antibody-aptamer sandwich constructs was shown to be more advantageous in terms of working parameters in comparison to aptamer-based and immune-based biosensors. This review is focused on the usage of hybrid antibody-aptamer receptor layers for the determination of clinically and environmentally important target molecules. In this work, antibodies and aptamer molecules are characterized and the methods of their immobilization as well as analytical signal generation are shown. This is followed by the critical presentation of examples of hybrid sandwich biosensors that have been elaborated in the past 12 years.
Collapse
Affiliation(s)
- Marta Jarczewska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland.
| | - Elżbieta Malinowska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland.
- Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
18
|
Korodi M, Rákosi K, Baibarac M, Fejer SN. Reusable on-plate immunoprecipitation method with covalently immobilized antibodies on a protein G covered microtiter plate. J Immunol Methods 2020; 483:112812. [PMID: 32569597 DOI: 10.1016/j.jim.2020.112812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/17/2020] [Accepted: 06/16/2020] [Indexed: 01/19/2023]
Abstract
Covalent immobilization of antibodies to protein G beads is a basic molecular biology method, although the beads present poor recovery results. Our aim was to reuse the immobilized antibody-protein G complex on a very small scale, therefore we optimized the crosslinking procedure to be used on the wells of a standard 96-well microplate. The method used involves the affinity binding of the antibody to the protein G surface, followed by the immobilization step using different crosslinking reagents, DMP and BS3, quenching the crosslinking reaction, and binding the antibody-specific antigen. By scaling down the procedure, we were able to reuse the anti-EGFR crosslinked wells more than 20 times. This method can be used to perform assays on a wide range of solid supports containing the protein G in an immobilized form, including functionalized nanosensors, for immunoprecipitation, protein and cell lysate purification, target protein enrichment.
Collapse
Affiliation(s)
- Mónika Korodi
- Pro-Vitam Ltd., Muncitorilor Street 16, RO-520032 Sfantu Gheorghe, Romania; University of Pécs, Department of Chemistry, Department of Chemistry, Faculty of Sciences, Ifjúság Street 6, H-7624 Pécs, Hungary
| | - Kinga Rákosi
- Pro-Vitam Ltd., Muncitorilor Street 16, RO-520032 Sfantu Gheorghe, Romania
| | - Mihaela Baibarac
- National Institute of Materials Physics, Laboratory of Optical Processes in Nanostructured Materials, Atomistilor street 405A, P.O.Box MG-7, R077125 Bucharest, Romania
| | - Szilard N Fejer
- Pro-Vitam Ltd., Muncitorilor Street 16, RO-520032 Sfantu Gheorghe, Romania; University of Pécs, Department of Chemistry, Department of Chemistry, Faculty of Sciences, Ifjúság Street 6, H-7624 Pécs, Hungary.
| |
Collapse
|
19
|
Characterizing protein G B1 orientation and its effect on immunoglobulin G antibody binding using XPS, ToF-SIMS, and quartz crystal microbalance with dissipation monitoring. Biointerphases 2020; 15:021002. [PMID: 32168986 DOI: 10.1116/1.5142560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Controlling how proteins are immobilized (e.g., controlling their orientation and conformation) is essential for developing and optimizing the performance of in vitro protein-binding devices, such as enzyme-linked immunosorbent assays. Characterizing the identity, orientation, etc., of proteins in complex mixtures of immobilized proteins requires a multitechnique approach. The focus of this work was to control and characterize the orientation of protein G B1, an immunoglobulin G (IgG) antibody-binding domain of protein G, on well-defined surfaces and to measure the effect of protein G B1 orientation on IgG antibody binding. The surface sensitivity of time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to distinguish between different proteins and their orientation on both flat and nanoparticle gold surfaces by monitoring intensity changes of characteristic amino acid mass fragments. Amino acids distributed asymmetrically were used to calculate peak intensity ratios from ToF-SIMS data to determine the orientation of protein G B1 cysteine mutants covalently attached to a maleimide surface. To study the effect of protein orientation on antibody binding, multilayer protein films on flat gold surfaces were formed by binding IgG to the immobilized protein G B1 films. Quartz crystal microbalance with dissipation monitoring and x-ray photoelectron spectroscopy analysis revealed that coverage and orientation affected the antibody-binding process. At high protein G B1 coverage, the cysteine mutant immobilized in an end-on orientation with the C-terminus exposed bound 443 ng/cm2 of whole IgG (H + L) antibodies. In comparison, the high coverage cysteine mutant immobilized in an end-on orientation with the N-terminus exposed did not bind detectable amounts of whole IgG (H + L) antibodies.
Collapse
|
20
|
Li M, Cheng F, Li H, Jin W, Chen C, He W, Cheng G, Wang Q. Site-Specific and Covalent Immobilization of His-Tagged Proteins via Surface Vinyl Sulfone-Imidazole Coupling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16466-16475. [PMID: 31756107 DOI: 10.1021/acs.langmuir.9b02933] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Site-specific immobilization of proteins on a surface has been a long-lasting challenge in the fields of biosensing and biotechnology because of the need for improving the biological activity of immobilized protein via the maximal exposure of its bioactive domain. Herein, we reported a new site-specific immobilization method for His-tagged proteins onto a vinyl sulfone (VS)-bearing surface in a covalent manner. X-ray photoelectron spectroscopy characterization indicated the specificity of the addition reaction of the imidazole group in histidine on the VS-bearing surface at pH 7.0. Solution-based experiments were carried out to verify the reaction priority of the imidazole residue of histidine with the VS group at neutral conditions. The real-time immobilization process of two His-tagged proteins (HaloTag-6His and anti-HER2 Fab-6His) on surfaces presenting VS, preactivated carboxyl, and NTA groups were studied by quartz crystal microbalance. Compared to the existing methods utilizing covalent (NHS/EDC activated carboxyl) and coordinate (Ni2+-NTA) linking, our method offers two significant advantages for protein immobilization: high density and high specificity. The orientation of the two His-tagged proteins on the VS-bearing surface was confirmed by an enzyme-linked assay and an HER2+ liposome binding experiment. Our method of site-specific immobilization of His-tagged proteins is efficient and straightforward, which would be helpful to expand the applications of recombinant proteins in enzyme immobilization, biosensor and array fabrication, and drug delivery system.
Collapse
Affiliation(s)
| | | | - Haoqiang Li
- Hangzhou HealSun Biopharm Co., Ltd. , Hangzhou , Zhejiang 735400 , China
| | - Weiwei Jin
- Hangzhou HealSun Biopharm Co., Ltd. , Hangzhou , Zhejiang 735400 , China
| | | | | | - Gang Cheng
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | | |
Collapse
|
21
|
Hamaloğlu KÖ, Çelikbıçak Ö, Salih B, Pişkin E. Performances of protein array platforms prepared by soft lithography and self-assemblying monolayers-approach by using SPR, ellipsometry and MALDI-MS. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Preparation of azidophenyl-low molecular chitosan derivative micro particles for enhance drug delivery. Int J Biol Macromol 2019; 133:875-880. [DOI: 10.1016/j.ijbiomac.2019.04.168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/20/2019] [Accepted: 04/24/2019] [Indexed: 01/12/2023]
|
23
|
Awsiuk K, Stetsyshyn Y, Raczkowska J, Lishchynskyi O, Dąbczyński P, Kostruba A, Ohar H, Shymborska Y, Nastyshyn S, Budkowski A. Temperature-Controlled Orientation of Proteins on Temperature-Responsive Grafted Polymer Brushes: Poly(butyl methacrylate) vs Poly(butyl acrylate): Morphology, Wetting, and Protein Adsorption. Biomacromolecules 2019; 20:2185-2197. [PMID: 31017770 DOI: 10.1021/acs.biomac.9b00030] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly( n-butyl methacrylate) (PBMA) or poly( n-butyl acrylate) (PBA)-grafted brush coatings attached to glass were successfully prepared using atom-transfer radical polymerization "from the surface". The thicknesses and composition of the PBMA and PBA coatings were examined using ellipsometry and time-of-flight secondary ion mass spectrometry (ToF-SIMS), respectively. For PBMA, the glass-transition temperature constitutes a range close to the physiological limit, which is in contrast to PBA, where the glass-transition temperature is around -55 °C. Atomic force microscopy studies at different temperatures suggest a strong morphological transformation for PBMA coatings, in contrast to PBA, where such essential changes in the surface morphology are absent. Besides, for PBMA coatings, protein adsorption depicts a strong temperature dependence. The combination of bovine serum albumin and anti-IgG structure analysis with the principal component analysis of ToF-SIMS spectra revealed a different orientation of proteins adsorbed to PBMA coatings at different temperatures. In addition, the biological activity of anti-IgG molecules adsorbed at different temperatures was evaluated through tracing the specific binding with goat IgG.
Collapse
Affiliation(s)
- Kamil Awsiuk
- Smoluchowski Institute of Physics , Jagiellonian University , Łojasiewicza 11 , 30-348 Kraków , Poland
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University , St. George's Square 2 , 79013 Lviv , Ukraine
| | - Joanna Raczkowska
- Smoluchowski Institute of Physics , Jagiellonian University , Łojasiewicza 11 , 30-348 Kraków , Poland
| | - Ostap Lishchynskyi
- Lviv Polytechnic National University , St. George's Square 2 , 79013 Lviv , Ukraine
| | - Paweł Dąbczyński
- Smoluchowski Institute of Physics , Jagiellonian University , Łojasiewicza 11 , 30-348 Kraków , Poland
| | - Andrij Kostruba
- Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies , Pekarska 50 , 79000 Lviv , Ukraine
| | - Halyna Ohar
- Lviv Polytechnic National University , St. George's Square 2 , 79013 Lviv , Ukraine
| | - Yana Shymborska
- Lviv Polytechnic National University , St. George's Square 2 , 79013 Lviv , Ukraine
| | - Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics , Jagiellonian University , Łojasiewicza 11 , 30-348 Kraków , Poland
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics , Jagiellonian University , Łojasiewicza 11 , 30-348 Kraków , Poland
| |
Collapse
|
24
|
Abstract
Immobilization of lipases and phospholipases, mainly on water-insoluble carriers, helps in their economic reusing and in the development of continuous bioprocesses. Design of efficient lipase and phospholipase-immobilized systems is rather a difficult task. A lot of research work has been done in order to optimize immobilization techniques and procedures and to develop efficient immobilized systems. We conceived a new strategy for the rational design of immobilized derivatives (RDID) in favor of the successful synthesis of optimal lipase and phospholipase-immobilized derivatives, aiming the prediction of the immobilized derivative's functionality and the optimization of load studies. The RDID strategy begins with the knowledge of structural and functional features of synthesis components (protein and carrier) and the practical goal of the immobilized product. The RDID strategy was implemented in a software named RDID1.0. The employment of RDID allows selecting the most appropriate way to prepare immobilized derivatives more efficient in enzymatic bioconversion processes and racemic mixture resolution.
Collapse
|
25
|
Bacelo E, Alves da Silva M, Cunha C, Faria S, Carvalho A, Reis RL, Martins A, Neves NM. Biofunctional Nanofibrous Substrate for Local TNF-Capturing as a Strategy to Control Inflammation in Arthritic Joints. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E567. [PMID: 30965588 PMCID: PMC6523323 DOI: 10.3390/nano9040567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that affects the synovial cavity of joints, and its pathogenesis is associated with an increased expression of pro-inflammatory cytokines, namely tumour necrosis factor-alpha (TNF-α). It has been clinically shown to have an adequate response to systemic administration of TNF-α inhibitors, although with many shortcomings. To overcome such limitations, the immobilization of a TNF-α antibody on a nanofibrous substrate to promote a localized action is herein proposed. By using this approach, the antibody has its maximum therapeutic efficacy and a prolonged therapeutic benefit, avoiding the systemic side-effects associated with conventional biological agents' therapies. To technically achieve such a purpose, the surface of electrospun nanofibers is initially activated and functionalized, allowing TNF-α antibody immobilization at a maximum concentration of 6 µg/mL. Experimental results evidence that the biofunctionalized nanofibrous substrate is effective in achieving a sustained capture of soluble TNF-α over time. Moreover, cell biology assays demonstrate that this system has no deleterious effect over human articular chondrocytes metabolism and activity. Therefore, the developed TNF-capturing system may represent a potential therapeutic approach for the local management of severely affected joints.
Collapse
Affiliation(s)
- Elisa Bacelo
- 3B's Research Group, I3Bs-Research Institute of Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Barco, 4805-017 Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal.
| | - Marta Alves da Silva
- 3B's Research Group, I3Bs-Research Institute of Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Barco, 4805-017 Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal.
| | - Cristina Cunha
- ICVS/3B's-PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal.
- Life and Health Sciences Research Institute, Scholl of Medicine, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal.
| | - Susana Faria
- Department of Mathematics for Science and Technology Research CMAT, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal.
| | - Agostinho Carvalho
- ICVS/3B's-PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal.
- Life and Health Sciences Research Institute, Scholl of Medicine, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute of Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Barco, 4805-017 Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal.
| | - Albino Martins
- 3B's Research Group, I3Bs-Research Institute of Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Barco, 4805-017 Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal.
| | - Nuno M Neves
- 3B's Research Group, I3Bs-Research Institute of Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Barco, 4805-017 Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal.
| |
Collapse
|
26
|
Abstract
Modern analysis of food and feed is mostly focused on development of fast and reliable portable devices intended for field applications. In this review, electrochemical biosensors based on immunological reactions and aptamers are considered in the determination of mycotoxins as one of most common contaminants able to negatively affect human health. The characteristics of biosensors are considered from the point of view of general principles of bioreceptor implementation and signal transduction providing sub-nanomolar detection limits of mycotoxins. Moreover, the modern trends of bioreceptor selection and modification are discussed as well as future trends of biosensor development for mycotoxin determination are considered.
Collapse
|
27
|
An impedimetric biosensor for E. coli O157:H7 based on the use of self-assembled gold nanoparticles and protein G. Mikrochim Acta 2019; 186:169. [DOI: 10.1007/s00604-019-3282-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
|
28
|
Bilal M, Zhao Y, Noreen S, Shah SZH, Bharagava RN, Iqbal HMN. Modifying bio-catalytic properties of enzymes for efficient biocatalysis: a review from immobilization strategies viewpoint. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2018.1564744] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Sadia Noreen
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | | | - Ram Naresh Bharagava
- Department of Microbiology (DM), Laboratory for Bioremediation and Metagenomics Research (LBMR), Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| |
Collapse
|
29
|
Lee C, Hwang A, Jose L, Park JH, Song JK, Shim K, An SSA, Paik HJ. Orientation Controlled Protein Nanocapsules by Enzymatic Removal of a Polymer Template. Biomacromolecules 2018; 19:4219-4227. [PMID: 30265806 DOI: 10.1021/acs.biomac.8b00965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein nanocapsules are potentially useful as functional nanocarriers because of their hollow structure and high biocompatibility and the intrinsic activity of their protein constituents. However, the development of a facile method for the preparation of oriented nanocapsules that retain their protein activity has been challenging. Here we describe the preparation of protein nanocapsules through the enzymatic removal of polymer templates. Nickel(II) nitrilotriacetic acid-end-functionalized poly(lactic acid) (Ni2+-NTA-PLA) was introduced as a polymeric template to immobilize hexa-histidine-tagged green fluorescence protein (His6-GFP) with consistent orientation. Following protein cross-linking and core-degradation, various measurements as a function of degradation time indicated the formation of hollow structures. We also demonstrated orientational control and activity preservation of the protein after capsule preparation. Protein nanocapsules prepared by this method can act as functional containers, taking advantage of the intrinsic function of their constituent proteins without additional modification.
Collapse
Affiliation(s)
- Chaeyeon Lee
- Department of Polymer Science and Engineering , Pusan National University , Busan , Korea 46241
| | - Aran Hwang
- Department of Polymer Science and Engineering , Pusan National University , Busan , Korea 46241
| | - Leeja Jose
- Department of Polymer Science and Engineering , Pusan National University , Busan , Korea 46241
| | - Ji Hyun Park
- Research Center for Bio-Based Chemistry , Korea Research Institute of Chemical Technology (KRICT) , Daejeon , Korea 34114
| | - Jae Kwang Song
- Research Center for Bio-Based Chemistry , Korea Research Institute of Chemical Technology (KRICT) , Daejeon , Korea 34114
| | - KyuHwan Shim
- Department of Bionano Technology , Gachon University , Sungnam , Korea 13120
| | - Seong Soo A An
- Department of Bionano Technology , Gachon University , Sungnam , Korea 13120
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering , Pusan National University , Busan , Korea 46241
| |
Collapse
|
30
|
Engineered nanomaterials and human health: Part 1. Preparation, functionalization and characterization (IUPAC Technical Report). PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-0101] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
Nanotechnology is a rapidly evolving field, as evidenced by the large number of publications on the synthesis, characterization, and biological/environmental effects of new nano-sized materials. The unique, size-dependent properties of nanomaterials have been exploited in a diverse range of applications and in many examples of nano-enabled consumer products. In this account we focus on Engineered Nanomaterials (ENM), a class of deliberately designed and constructed nano-sized materials. Due to the large volume of publications, we separated the preparation and characterisation of ENM from applications and toxicity into two interconnected documents. Part 1 summarizes nanomaterial terminology and provides an overview of the best practices for their preparation, surface functionalization, and analytical characterization. Part 2 (this issue, Pure Appl. Chem. 2018; 90(8): 1325–1356) focuses on ENM that are used in products that are expected to come in close contact with consumers. It reviews nanomaterials used in therapeutics, diagnostics, and consumer goods and summarizes current nanotoxicology challenges and the current state of nanomaterial regulation, providing insight on the growing public debate on whether the environmental and social costs of nanotechnology outweigh its potential benefits.
Collapse
|
31
|
Bioinspired detoxification of blood: The efficient removal of anthrax toxin protective antigen using an extracorporeal macroporous adsorbent device. Sci Rep 2018; 8:7518. [PMID: 29760471 PMCID: PMC5951949 DOI: 10.1038/s41598-018-25678-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/26/2018] [Indexed: 12/28/2022] Open
Abstract
Whilst various remedial human monoclonal antibodies have been developed to treat the potentially life-threatening systemic complications associated with anthrax infection, an optimal and universally effective administration route has yet to be established. In the later stages of infection when antibody administration by injection is more likely to fail one possible route to improve outcome is via the use of an antibody-bound, adsorbent haemoperfusion device. We report here the development of an adsorbent macroporous polymer column containing immobilised B. anthracis exotoxin-specific antibodies, PANG (a non-glycosylated, version of a plant-produced human monoclonal antibody) and Valortim (a fully human monoclonal N-linked glycosylated antibody), for removal of anthrax protective antigen (PA) from freshly frozen human plasma and human whole blood. In addition, we have demonstrated that continuous extracorporeal blood recirculation through a Valortim-bound haemoperfusion column significantly reduced the blood plasma concentration of anthrax PA over 2 hours using an in vivo PA rat infusion model. This work provides proof-of-concept evidence to support the development of such alternative detoxification platforms.
Collapse
|
32
|
|
33
|
Affiliation(s)
- Nika Kruljec
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Tomaž Bratkovič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
34
|
Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017; 12:02D301. [DOI: 10.1116/1.4978435] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Zengin A, Caykara T. A novel route to prepare a multilayer system via the combination of interface-mediated catalytic chain transfer polymerization and thiol-ene click chemistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 74:103-109. [PMID: 28254273 DOI: 10.1016/j.msec.2017.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/09/2016] [Accepted: 02/06/2017] [Indexed: 11/29/2022]
Abstract
Herein, we have designed a novel multilayer system composed of poly(methyl methacrylate) [poly(MMA)] brush, biotin, streptavidin and protein-A on a silicon substrate to attach onanti-immunoglobulin G (anti-IgG). poly(MMA) brush with vinyl end-group was first synthesized by the interface-mediated catalytic chain transfer polymerization. The brush was then modified with cysteamine molecules to generate the polymer chains with amine end-group via a thiol-ene click chemistry. The amine end-groups of poly(MMA) chains were also modified with biotin units to ensure selective connection points for streptavidin molecules. Finally, a multilayer system on the silicon substrate was formed by using streptavidin and protein-A molecules, respectively. This multilayer system was employed to attach anti-IgG molecules in a highly oriented manner and provide anti-IgG molecular functional configuration on the multilayer. High reproducibility of the amount of anti-IgG adsorption and homogeneous anti-IgG adsorption layer on the silicon surface could be provided by this multilayer system. The multilayer system with protein A may be opened the door for designing an efficient immunoassay protein chip.
Collapse
Affiliation(s)
- Adem Zengin
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Yuzuncu Yil University, TR-65080 Van, Turkey
| | - Tuncer Caykara
- Department of Chemistry, Faculty of Science, Gazi University, 06500 Besevler, Ankara, Turkey.
| |
Collapse
|
36
|
Jeong S, Park JY, Cha MG, Chang H, Kim YI, Kim HM, Jun BH, Lee DS, Lee YS, Jeong JM, Lee YS, Jeong DH. Highly robust and optimized conjugation of antibodies to nanoparticles using quantitatively validated protocols. NANOSCALE 2017; 9:2548-2555. [PMID: 28150822 DOI: 10.1039/c6nr04683e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antibody-conjugated nanoparticles (NPs) have attracted great attention in diagnostic and therapeutic applications due to their high sensitivity and specificity for biotargets, as well as their wide applicability. Unfortunately, these features are significantly affected by antibody conjugation methods in terms of conjugation efficiency, orientation of the target binding site in the antibody, and denaturation during chemical conjugation reactions. Furthermore, the number of conjugated antibodies on each NP and the overall targeting efficacy are critical factors for a quantitative bioassay with antibody-conjugated NPs. Herein, we report a versatile and oriented antibody conjugation method using copper-free click chemistry. Moreover, the number of conjugated antibodies and their binding capacity were quantitatively and experimentally evaluated using fluorescently-labeled antibodies and antigens. The strong binding capability of antibody-conjugated NPs prepared using the copper-free click chemistry-based conjugation strategy was 8 times superior to the binding capability seen following the use of the EDC/NHS-coupling method. Additionally, the versatility of the developed antibody conjugation method was also demonstrated by conjugation of the antibody to three kinds of silica-encapsulated NPs.
Collapse
Affiliation(s)
- Sinyoung Jeong
- Department of Chemistry Education, Seoul National University, Seoul 08826, Korea.
| | - Ji Yong Park
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Korea. and Major in Biomedical Sciences, Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 08826, Korea
| | - Myeong Geun Cha
- Department of Chemistry Education, Seoul National University, Seoul 08826, Korea.
| | - Hyejin Chang
- Department of Chemistry Education, Seoul National University, Seoul 08826, Korea.
| | - Yong-Il Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Korea. and Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea
| | - Jae Min Jeong
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Korea. and Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
37
|
Fitzgerald J, Leonard P, Darcy E, Sharma S, O'Kennedy R. Immunoaffinity Chromatography: Concepts and Applications. Methods Mol Biol 2017; 1485:27-51. [PMID: 27730547 DOI: 10.1007/978-1-4939-6412-3_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Antibody-based separation methods, such as immunoaffinity chromatography (IAC), are powerful purification and isolation techniques. Antibodies isolated using these techniques have proven highly efficient in applications ranging from clinical diagnostics to environmental monitoring. Immunoaffinity chromatography is an efficient antibody separation method which exploits the binding efficiency of a ligand to an antibody. Essential to the successful design of any IAC platform is the optimization of critical experimental parameters such as (a) the biological affinity pair, (b) the matrix support, (c) the immobilization coupling chemistry, and (d) the effective elution conditions. These elements and the practicalities of their use are discussed in detail in this review. At the core of all IAC platforms is the high affinity interactions between antibodies and their related ligands; hence, this review entails a brief introduction to the generation of antibodies for use in immunoaffinity chromatography and also provides specific examples of their potential applications.
Collapse
Affiliation(s)
- Jenny Fitzgerald
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paul Leonard
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Biomedical Diagnostics Institute, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Elaine Darcy
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Shikha Sharma
- Biomedical Diagnostics Institute, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland. .,Biomedical Diagnostics Institute, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
38
|
Karav S, Cohen JL, Barile D, de Moura Bell JMLN. Recent advances in immobilization strategies for glycosidases. Biotechnol Prog 2016; 33:104-112. [PMID: 27718339 DOI: 10.1002/btpr.2385] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/31/2016] [Indexed: 11/11/2022]
Abstract
Glycans play important biological roles in cell-to-cell interactions, protection against pathogens, as well as in proper protein folding and stability, and are thus interesting targets for scientists. Although their mechanisms of action have been widely investigated and hypothesized, their biological functions are not well understood due to the lack of deglycosylation methods for large-scale isolation of these compounds. Isolation of glycans in their native state is crucial for the investigation of their biological functions. However, current enzymatic and chemical deglycosylation techniques require harsh pretreatment and reaction conditions (high temperature and use of detergents) that hinder the isolation of native glycan structures. Indeed, the recent isolation of new endoglycosidases that are able to cleave a wider variety of linkages and efficiently hydrolyze native proteins has opened up the opportunity to elucidate the biological roles of a higher variety of glycans in their native state. As an example, our research group recently isolated a novel Endo-β-N-acetylglucosaminidase from Bifidobacterium longum subsp. infantis ATCC 15697 (EndoBI-1) that cleaves N-N'-diacetyl chitobiose moieties found in the N-linked glycan (N-glycan) core of high mannose, hybrid, and complex N-glycans. This enzyme is also active on native proteins, which enables native glycan isolation, a key advantage when evaluating their biological activities. Efficient, stable, and economically viable enzymatic release of N-glycans requires the selection of appropriate immobilization strategies. In this review, we discuss the state-of-the-art of various immobilization techniques (physical adsorption, covalent binding, aggregation, and entrapment) for glycosidases, as well as their potential substrates and matrices. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:104-112, 2017.
Collapse
Affiliation(s)
- Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale 18 Mart University, Canakkale, Turkey
| | - Joshua L Cohen
- Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA, 95616
| | - Daniela Barile
- Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA, 95616.,Foods for Health Institute, University of California, One Shields Avenue, Davis, CA, 95616
| | | |
Collapse
|
39
|
Lin YH, Chen YP, Liu TP, Chien FC, Chou CM, Chen CT, Mou CY. Approach To Deliver Two Antioxidant Enzymes with Mesoporous Silica Nanoparticles into Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17944-17954. [PMID: 27353012 DOI: 10.1021/acsami.6b05834] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Reactive oxygen species (ROS) are important factors in many clinical diseases. However, direct delivery of antioxidant enzymes into cells is difficult due to poor cell uptake. A proper design of delivery of enzymes by nanoparticles is very desirable for therapeutic purposes. To overcome the cell barrier problem, a designed mesoporous silica nanoparticle (MSN) system with attached TAT-fusion denatured enzyme for enhancing cell membrane penetration has been developed. Simultaneous delivery of two up-downstream antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase(GPx), reveals synergistic efficiency of ROS scavenging, compared to single antioxidant enzyme delivery. TAT peptide conjugation provided a facile nonendocytosis cell uptake and escape from endosome while moving and aggregating along the cytoskeleton that would allow them to be close to each other at the same time, resulting in the cellular antioxidation cascade reaction. The two-enzyme delivery shows a significant synergistic effect for protecting cells against ROS-induced cell damage and cell cycle arrest. The nanocarrier strategy for enzyme delivery demonstrates that intracellular anti-ROS cascade reactions could be regulated by multifunctional MSNs carrying image fluorophore and relevant antioxidation enzymes.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
| | | | - Tsang-Pai Liu
- Mackay Junior College of Medicine , Nursing and Management, Taipei 112, Taiwan
- Department of Surgery, Mackay Memorial Hospital , Taipei 104, Taiwan
| | - Fan-Ching Chien
- Department of Optics and Photonics, National Central University , Taoyuan City 320, Taiwan
| | | | | | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
| |
Collapse
|
40
|
Garny S, Beeton-Kempen N, Gerber I, Verschoor J, Jordaan J. The co-immobilization of P450-type nitric oxide reductase and glucose dehydrogenase for the continuous reduction of nitric oxide via cofactor recycling. Enzyme Microb Technol 2016; 85:71-81. [DOI: 10.1016/j.enzmictec.2015.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022]
|
41
|
Laux EM, Knigge X, Bier FF, Wenger C, Hölzel R. Aligned Immobilization of Proteins Using AC Electric Fields. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1514-1520. [PMID: 26779699 DOI: 10.1002/smll.201503052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Protein molecules are aligned and immobilized from solution by AC electric fields. In a single-step experiment, the enhanced green fluorescent proteins are immobilized on the surface as well as at the edges of planar nanoelectrodes. Alignment is found to follow the molecules' geometrical shape with their longitudinal axes parallel to the electric field. Simultaneous dielectrophoretic attraction and AC electroosmotic flow are identified as the dominant forces causing protein movement and alignment. Molecular orientation is determined by fluorescence microscopy based on polarized excitation of the proteins' chromophores. The chromophores' orientation with respect to the whole molecule supports X-ray crystal data.
Collapse
Affiliation(s)
- Eva-Maria Laux
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam-Golm, Germany
| | - Xenia Knigge
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam-Golm, Germany
| | - Frank F Bier
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam-Golm, Germany
| | - Christian Wenger
- IHP GmbH-Leibniz Institute for Innovative Microelectronics, Im Technologiepark 25, 15235, Frankfurt/Oder, Germany
| | - Ralph Hölzel
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam-Golm, Germany
| |
Collapse
|
42
|
Pfaunmiller EL, Anguizola JA, Milanuk ML, Carter N, Hage DS. Use of protein G microcolumns in chromatographic immunoassays: A comparison of competitive binding formats. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:91-100. [PMID: 26777776 DOI: 10.1016/j.jchromb.2015.12.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022]
Abstract
Affinity microcolumns containing protein G were used as general platforms for creating chromatographic-based competitive binding immunoassays. Human serum albumin (HSA) was used as a model target for this work and HSA tagged with a near infrared fluorescent dye was utilized as the label. The protein G microcolumns were evaluated for use in several assay formats, including both solution-based and column-based competitive binding immunoassays and simultaneous or sequential injection formats. All of these methods were characterized by using the same amounts of labeled HSA and anti-HSA antibodies per sample, as chosen for the analysis of a protein target in the low-to-mid ng/mL range. The results were used to compare these formats in terms of their response, precision, limit of detection, and analysis time. All these methods gave detection limits in the range of 8-19ng/mL and precisions ranging from ±5% to ±10% when using an injection flow rate of 0.10mL/min. The column-based sequential injection immunoassay provided the best limit of detection and the greatest change in response at low target concentrations, while the solution-based simultaneous injection method had the broadest linear and dynamic ranges. These results provided valuable guidelines that can be employed to develop and extend the use of protein G microcolumns and these competitive binding formats to other protein biomarkers or biological agents of clinical or pharmaceutical interest.
Collapse
Affiliation(s)
| | | | - Mitchell L Milanuk
- Chemistry Department, University of Nebraska, Lincoln, NE, United States
| | - NaTasha Carter
- Chemistry Department, University of Nebraska, Lincoln, NE, United States
| | - David S Hage
- Chemistry Department, University of Nebraska, Lincoln, NE, United States.
| |
Collapse
|
43
|
Ouerghi O, Diouani MF, Belkacem A, Elsanousi A, Jaffrezic-Renault N. Adjunction of Avidin to a Cysteamine Self-Assembled Monolayer for Impedimetric Immunosensor. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jbnb.2016.71001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Koch C, Wabbel K, Eber FJ, Krolla-Sidenstein P, Azucena C, Gliemann H, Eiben S, Geiger F, Wege C. Modified TMV Particles as Beneficial Scaffolds to Present Sensor Enzymes. FRONTIERS IN PLANT SCIENCE 2015; 6:1137. [PMID: 26734040 PMCID: PMC4689848 DOI: 10.3389/fpls.2015.01137] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/30/2015] [Indexed: 05/22/2023]
Abstract
Tobacco mosaic virus (TMV) is a robust nanotubular nucleoprotein scaffold increasingly employed for the high density presentation of functional molecules such as peptides, fluorescent dyes, and antibodies. We report on its use as advantageous carrier for sensor enzymes. A TMV mutant with a cysteine residue exposed on every coat protein (CP) subunit (TMVCys) enabled the coupling of bifunctional maleimide-polyethylene glycol (PEG)-biotin linkers (TMVCys/Bio). Its surface was equipped with two streptavidin [SA]-conjugated enzymes: glucose oxidase ([SA]-GOx) and horseradish peroxidase ([SA]-HRP). At least 50% of the CPs were decorated with a linker molecule, and all thereof with active enzymes. Upon use as adapter scaffolds in conventional "high-binding" microtiter plates, TMV sticks allowed the immobilization of up to 45-fold higher catalytic activities than control samples with the same input of enzymes. Moreover, they increased storage stability and reusability in relation to enzymes applied directly to microtiter plate wells. The functionalized TMV adsorbed to solid supports showed a homogeneous distribution of the conjugated enzymes and structural integrity of the nanorods upon transmission electron and atomic force microscopy. The high surface-increase and steric accessibility of the viral scaffolds in combination with the biochemical environment provided by the plant viral coat may explain the beneficial effects. TMV can, thus, serve as a favorable multivalent nanoscale platform for the ordered presentation of bioactive proteins.
Collapse
Affiliation(s)
- Claudia Koch
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Katrin Wabbel
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Fabian J. Eber
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Peter Krolla-Sidenstein
- Chemistry of Oxydic and Organic Interfaces, Karlsruhe Institute of Technology, Institute of Functional InterfacesKarlsruhe, Germany
| | - Carlos Azucena
- Chemistry of Oxydic and Organic Interfaces, Karlsruhe Institute of Technology, Institute of Functional InterfacesKarlsruhe, Germany
| | - Hartmut Gliemann
- Chemistry of Oxydic and Organic Interfaces, Karlsruhe Institute of Technology, Institute of Functional InterfacesKarlsruhe, Germany
| | - Sabine Eiben
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Fania Geiger
- Department of New Materials and Biosystems, Max-Planck-Institute for Intelligent SystemsStuttgart, Germany
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| |
Collapse
|
45
|
Manoli K, Magliulo M, Mulla MY, Singh M, Sabbatini L, Palazzo G, Torsi L. Druckbare Bioelektronik zur Untersuchung funktioneller biologischer Grenzflächen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Manoli K, Magliulo M, Mulla MY, Singh M, Sabbatini L, Palazzo G, Torsi L. Printable Bioelectronics To Investigate Functional Biological Interfaces. Angew Chem Int Ed Engl 2015; 54:12562-76. [DOI: 10.1002/anie.201502615] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Indexed: 01/14/2023]
|
47
|
Abstract
The cellular microenvironment is extremely complex, and a plethora of materials and methods have been employed to mimic its properties in vitro. In particular, scientists and engineers have taken an interdisciplinary approach in their creation of synthetic biointerfaces that replicate chemical and physical aspects of the cellular microenvironment. Here the focus is on the use of synthetic materials or a combination of synthetic and biological ligands to recapitulate the defined surface chemistries, microstructure, and function of the cellular microenvironment for a myriad of biomedical applications. Specifically, strategies for altering the surface of these environments using self-assembled monolayers, polymer coatings, and their combination with patterned biological ligands are explored. Furthermore, methods for augmenting an important physical property of the cellular microenvironment, topography, are highlighted, and the advantages and disadvantages of these approaches are discussed. Finally, the progress of materials for prolonged stem cell culture, a key component in the translation of stem cell therapeutics for clinical use, is featured.
Collapse
Affiliation(s)
- A.M. Ross
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - J. Lahann
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Biointerfaces Institute,
- Department of Chemical Engineering,
- Department of Materials Science and Engineering, and
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
48
|
A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:437-46. [DOI: 10.1007/s00249-015-1044-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
49
|
A highly sensitive SPR biosensor based on a graphene oxide sheet modified with gold bipyramids, and its application to an immunoassay for rabbit IgG. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1497-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Ingavle GC, Baillie LWJ, Zheng Y, Lis EK, Savina IN, Howell CA, Mikhalovsky SV, Sandeman SR. Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen. Biomaterials 2015; 50:140-53. [PMID: 25736504 DOI: 10.1016/j.biomaterials.2015.01.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/21/2014] [Accepted: 01/20/2015] [Indexed: 01/17/2023]
Abstract
Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim(®)), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim(®) attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim(®) antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0.05) decreased relative to the amount of PA remained in the solution after passing through unmodified as well as protein A modified poly(AAm-AGE) cryogel columns, indicates efficient PA removal from spiked PBS over 60 min of circulation. The high adsorption capacity towards anthrax toxin PA of the cryogel adsorbents indicated potential application of these materials for treatment of Bacillus anthracis infection.
Collapse
Affiliation(s)
- Ganesh C Ingavle
- Biomaterials and Medical Devices Research Group, School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, East Sussex BN2 4GJ, UK.
| | - Les W J Baillie
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| | - Yishan Zheng
- Biomaterials and Medical Devices Research Group, School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, East Sussex BN2 4GJ, UK.
| | - Elzbieta K Lis
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| | - Irina N Savina
- Biomaterials and Medical Devices Research Group, School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, East Sussex BN2 4GJ, UK.
| | - Carol A Howell
- Biomaterials and Medical Devices Research Group, School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, East Sussex BN2 4GJ, UK.
| | - Sergey V Mikhalovsky
- Biomaterials and Medical Devices Research Group, School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, East Sussex BN2 4GJ, UK; School of Engineering, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan.
| | - Susan R Sandeman
- Biomaterials and Medical Devices Research Group, School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, East Sussex BN2 4GJ, UK.
| |
Collapse
|