1
|
Han W, Liu F, Muhammad M, Liu G, Li H, Xu Y, Sun S. Application of biomacromolecule-based passive penetration enhancement technique in superficial tumor therapy: A review. Int J Biol Macromol 2024; 272:132745. [PMID: 38823734 DOI: 10.1016/j.ijbiomac.2024.132745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Transdermal drug delivery (TDD) has shown great promise in superficial tumor therapy due to its noninvasive and avoidance of the first-pass effect. Especially, passive penetration enhancement technique (PPET) provides the technical basis for TDD by temporarily altering the skin surface structure without requiring external energy. Biomacromolecules and their derived nanocarriers offer a wide range of options for PPET development, with outstanding biocompatibility and biodegradability. Furthermore, the abundant functional groups on biomacromolecule surfaces can be modified to yield functional materials capable of targeting specific sites and responding to stimuli. This enables precise drug delivery to the tumor site and controlled drug release, with the potential to replace traditional drug delivery methods and make PPET-related personalized medicine a reality. This review focuses on the mechanism of biomacromolecules and nanocarriers with skin, and the impact of nanocarriers' surface properties of nanocarriers on PPET efficiency. The applications of biomacromolecule-based PPET in superficial tumor therapy are also summarized. In addition, the advantages and limitations are discussed, and their future trends are projected based on the existing work of biomacromolecule-based PPET.
Collapse
Affiliation(s)
- Weiqiang Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116023, China.
| | - Mehdi Muhammad
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guoxin Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China.
| |
Collapse
|
2
|
Araújo-Silva H, Teixeira PV, Gomes AC, Lúcio M, Lopes CM. Lyotropic liquid crystalline 2D and 3D mesophases: Advanced materials for multifunctional anticancer nanosystems. Biochim Biophys Acta Rev Cancer 2023; 1878:189011. [PMID: 37923232 DOI: 10.1016/j.bbcan.2023.189011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cancer remains a leading cause of mortality. Despite significant breakthroughs in conventional therapies, treatment is still far from ideal due to high toxicity in normal tissues and therapeutic inefficiency caused by short drug lifetime in the body and resistance mechanisms. Current research moves towards the development of multifunctional nanosystems for delivery of chemotherapeutic drugs, bioactives and/or radionuclides that can be combined with other therapeutic modalities, like gene therapy, or imaging to use in therapeutic screening and diagnosis. The preparation and characterization of Lyotropic Liquid Crystalline (LLC) mesophases self-assembled as 2D and 3D structures are addressed, with an emphasis on the unique properties of these nanoassemblies. A comprehensive review of LLC nanoassemblies is also presented, highlighting the most recent advances and their outstanding advantages as drug delivery systems, including tailoring strategies that can be used to overcome cancer challenges. Therapeutic agents loaded in LLC nanoassemblies offer qualitative and quantitative enhancements that are superior to conventional chemotherapy, particularly in terms of preferential accumulation at tumor sites and promoting enhanced cancer cell uptake, lowering tumor volume and weight, improving survival rates, and increasing the cytotoxicity of their loaded therapeutic agents. In terms of quantitative anticancer efficacy, loaded LLC nanoassemblies reduced the IC50 values from 1.4-fold against lung cancer cells to 125-fold against ovarian cancer cells.
Collapse
Affiliation(s)
- Henrique Araújo-Silva
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Patricia V Teixeira
- Centro de Física das Universidades do Minho e Porto (CF-UM-UP), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Marlene Lúcio
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centro de Física das Universidades do Minho e Porto (CF-UM-UP), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Carla M Lopes
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
3
|
Mahmood A, Erum A, Tulain UR, Malik NS, Saleem A, Alqahtani MS, Malik MZ, Siddiqui M, Safdar A, Malik A. Exploring the gelling properties of Plantago ovata-based Arabinoxylan: Fabrication and optimization of a topical emulgel using response surface methodology. PLoS One 2023; 18:e0290223. [PMID: 37607173 PMCID: PMC10443879 DOI: 10.1371/journal.pone.0290223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Prime objective of the current research was to develop a stable nimesulide emulgel with the help of arabinoxylan, a natural gelling agent extracted from Plantago ovata. The response surface methodology was used by a Design Expert 10 software to formulate and optimize the emulgel. The experimental design approach evaluated the impact of independent and dependent variables. Independent variables were different concentrations of arabinoxylan, span 80 and tween 20, whereas, dependent variables were viscosity, pH, and content uniformity. FTIR demonstrated the compatibility of nimesulide with the excipients. Stability study indicated no phase separation and no change in pH for formulation F1, F3 and F4. The negative values of zeta potential revealed the excellent stability of emulgel. Viscosity, spreadability and extrudability values were in desired range. Ex-vivo permeation study illustrated 86%, 55% and 66% release of the drug over a period of 24 h from the formulations F1, F3 and F4, respectively. Analgesic effect of the optimized emulgel was significantly higher in test group as compared to control and did not produce any sort of irritation. Therefore, it can be concluded that the newly developed emulgel based on arabinoxylan, as gelling agent, appear to be an effective drug delivery system.
Collapse
Affiliation(s)
- Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi, UAE
- AAU Health and Biomedical Research Center (HBRC) Al Ain University, Abu Dhabi, UAE
| | - Alia Erum
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | | | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Aneeqa Saleem
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Mohammed S. Alqahtani
- Department of Pharmaceutics, Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Mahwish Siddiqui
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Asif Safdar
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Abdul Malik
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
4
|
Cintra AB, Delboni LA, Lara MG. Influence of additives on swelling and mucoadhesion properties of glyceryl monooleate liquid crystals. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
5
|
Statistical optimization of nanostructured gels for enhancement of vinpocetine transnasal and transdermal permeation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Pence IJ, Kuzma BA, Brinkmann M, Hellwig T, Evans CL. Multi-window sparse spectral sampling stimulated Raman scattering microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:6095-6114. [PMID: 34745724 PMCID: PMC8547998 DOI: 10.1364/boe.432177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Stimulated Raman scattering (SRS) is a nondestructive and rapid technique for imaging of biological and clinical specimens with label-free chemical specificity. SRS spectral imaging is typically carried out either via broadband methods, or by tuning narrowband ultrafast light sources over narrow spectral ranges thus specifically targeting vibrational frequencies. We demonstrate a multi-window sparse spectral sampling SRS (S4RS) approach where a rapidly-tunable dual-output all-fiber optical parametric oscillator is tuned into specific vibrational modes across more than 1400 cm-1 during imaging. This approach is capable of collecting SRS hyperspectral images either by scanning a full spectrum or by rapidly tuning into select target frequencies, hands-free and automatically, across the fingerprint, silent, and high wavenumber windows of the Raman spectrum. We further apply computational techniques for spectral decomposition and feature selection to identify a sparse subset of Raman frequencies capable of sample discrimination. Here we have applied this novel method to monitor spatiotemporal dynamic changes of active pharmaceutical ingredients in skin, which has particular relevance to topical drug product delivery.
Collapse
Affiliation(s)
- Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Benjamin A Kuzma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | - Tim Hellwig
- Refined Laser Systems GmbH, Münster, Germany
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
7
|
Singhal K, Kaushik N, Kumar A. Cubosomes: Versatile Nanosized Formulation for Efficient Delivery of Therapeutics. Curr Drug Deliv 2021; 19:644-657. [PMID: 34238187 DOI: 10.2174/1567201818666210708123855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
Cubosomes are bicontinuous cubic phase nanoparticles with a size range from 10-500 nm. They offer various advantages with some limitations at the production level, e.g., cubosomes have the feature to encapsulate a large amount of the drug due to its large internal area owing to cuboidal shape thus has a larger area but limited in large scale production due to its high viscosity which is associated with the problem in homogenization. This nanoparticulate formulation is compatible for administration by various routes like oral, transdermal, topical, buccal, etc. The drug release mechanism from cubosomes was reported to be dependent on the partition coefficient and diffusion process. Compared with liposomes, cubosomes show many differences in various aspects like shape, size, ingredients, and mode of action. The main ingredients for the preparation of cubosomes include lipids, stabilizer, aqueous phases, and therapeutic agents. Several methods have been reported for cubosomes, including the top-down method, the bottom-up method, and the adopted coarse method. For the optimization of cubosomes, the key factors to be considered, which will affect the cubosomes characteristics include; the concentration of lipid, temperature, and pH. At present, many research groups are exploring the potential of cubosomes as biosensors and nanocarriers. Based on the latest reports and research, this review illuminates the structure of the Cubosomes, mechanism of the drug release, different methods of preparation with factors affecting the cubosomes, application of cubosomes in different sectors, differences from the liposomes, and advantages.
Collapse
Affiliation(s)
- Keshav Singhal
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, India
| | - Niranjan Kaushik
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, India
| | - Amrish Kumar
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, India
| |
Collapse
|
8
|
Said M, Aboelwafa AA, Elshafeey AH, Elsayed I. Central composite optimization of ocular mucoadhesive cubosomes for enhanced bioavailability and controlled delivery of voriconazole. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Krishnan V, Mitragotri S. Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Adv Drug Deliv Rev 2020; 153:87-108. [PMID: 32497707 DOI: 10.1016/j.addr.2020.05.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Nanoparticles offer new opportunities for the treatment of skin diseases. The barrier function of the skin poses a significant challenge for nanoparticles to permeate into the tissue, although the barrier is partially compromised in case of injury or inflammation, as in the case of skin cancer. This may facilitate the penetration of nanoparticles. Extensive research has gone into developing nanoparticles for topical delivery; however, relatively little progress has been made in translating them to the clinic for treating skin cancers. We summarize the types of skin cancers and practices in current clinical management. The review provides a comprehensive outlook of the various nanoparticle technologies tested for topical therapy of skin cancers and summarizes the obstacles that impede its progress from the bench-to-bedside. The review also aims to provide an understanding of the pathways that govern nanoparticle penetration into the skin and a critical analysis of the approaches used to study nanoparticle interactions within the tissue.
Collapse
Affiliation(s)
- Vinu Krishnan
- John A. Paulson School of Engineering & Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States of America
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States of America.
| |
Collapse
|
10
|
Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discov Today 2019; 24:1405-1412. [DOI: 10.1016/j.drudis.2019.05.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/16/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022]
|
11
|
Padula C, Pescina S, Nicoli S, Santi P. New Insights on the Mechanism of Fatty Acids as Buccal Permeation Enhancers. Pharmaceutics 2018; 10:pharmaceutics10040201. [PMID: 30355980 PMCID: PMC6321376 DOI: 10.3390/pharmaceutics10040201] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022] Open
Abstract
Buccal mucosa has recently received much attention as a potential route for systemic delivery of drugs, including biologics and vaccines. The aim of this work was to gain insight into the mechanism of fatty acids as buccal permeation enhancers, by studying the effect of a series of medium and long chain fatty acids on the permeation of a model high molecular weight and hydrophilic molecule, fluorescein isothiocyanate labelled dextran (FD-4, m.w. 4 kDa) across porcine esophageal epithelium. A parabolic relationship between fatty acid lipophilicity and enhancement was obtained, regardless of the presence and number of double bonds. The relationship, which resembles the well-known relationship between permeability and lipophilicity of transdermal delivery, presents a maximum value in correspondence of C10 (logP approx. 4). This is probably the ideal lipophilicity for the fatty acid to interact with the lipid domains of the mucosa. When the same analysis was performed on skin data, the same trend was observed, although the maximum value was reached for C12 (logP approx. 5), in agreement with the higher lipophilicity of the skin. The results obtained in the present work represent a significant advancement in the understanding of the mechanisms of action of fatty acids as buccal penetration enhancers.
Collapse
Affiliation(s)
- Cristina Padula
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Silvia Pescina
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Sara Nicoli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Patrizia Santi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| |
Collapse
|
12
|
Liquid Crystalline Systems Based on Glyceryl Monooleate and Penetration Enhancers for Skin Delivery of Celecoxib: Characterization, In Vitro Drug Release, and In Vivo Studies. J Pharm Sci 2018; 107:870-878. [DOI: 10.1016/j.xphs.2017.10.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/15/2017] [Accepted: 10/27/2017] [Indexed: 11/21/2022]
|
13
|
Akram MR, Ahmad M, Abrar A, Sarfraz RM, Mahmood A. Formulation design and development of matrix diffusion controlled transdermal drug delivery of glimepiride. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:349-364. [PMID: 29503528 PMCID: PMC5826210 DOI: 10.2147/dddt.s147082] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background The present work was conducted to prepare and evaluate transdermal patches with optimization of suitable polymeric blend of poly(meth) acrylates (Eudragit®) (Ammonio Methacrylate Copolymer Ph Eur) for sustained transdermal delivery of glimepiride. Method Polymeric matrix transdermal films were prepared by using Ammonio Methacrylate Copolymer Ph Eur RL 100 and Ammonio Methacrylate Copolymer Ph Eur RS 100 as the film former, and dibutyl phthalate (30% w/w) as the plasticizer. Patches were characterized by physical appearance, thickness, weight variation, folding endurance, percentage erosion, swelling index, moisture content, and moisture uptake capacity. Fourier transform infrared spectroscopic studies and differential scanning calorimetry analysis of physical mixtures of contents were performed to identify any chemical and physical interaction between drug and excipients. Five different enhancers (isopropyl myristate [IPM], Span® 80, Tween® 20, eucalyptus oil, and limonene) were employed at three different concentrations of polymer (2%, 5%, and 10% w/w) in order to enhance permeation through rabbit skin. In vitro drug release studies were performed at pH 7.4, and scanning electron microscopy was conducted to elucidate surface morphology before and after the drug release. In vitro permeation studies through rabbit skin were performed on Franz diffusion cells and permeation kinetics followed the Higuchi model. Results Results of in vitro permeation studies revealed that these enhancers not only increased drug release but also augmented the skin permeation of glimepiride. Conclusion IPM was the most effective enhancer with the highest permeation flux of 51.763 μg/cm2/hr, and the enhancement effect of different enhancers on glimepiride permeation through rabbit skin was in the rank order of IPM > eucalyptus oil > Span® 80 > Tween® 20> limonene.
Collapse
Affiliation(s)
- Muhammad Rouf Akram
- Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mahmood Ahmad
- Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Asad Abrar
- Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Asif Mahmood
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| |
Collapse
|
14
|
Mendonsa NS, Thipsay P, Kim DW, Martin ST, Repka MA. Bioadhesive Drug Delivery System for Enhancing the Permeability of a BCS Class III Drug via Hot-Melt Extrusion Technology. AAPS PharmSciTech 2017; 18:2639-2647. [PMID: 28247291 PMCID: PMC5600703 DOI: 10.1208/s12249-017-0728-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/23/2017] [Indexed: 11/30/2022] Open
Abstract
As the buccal route of administration has the ability to avoid the GI tract and first-pass effect by directing the absorption toward the cheek area, the bioavailability of BCS class III drugs can be increased through this route. Only a handful of studies have been conducted using oleic acid as a permeation enhancer in any transbuccal drug delivery system. Therefore, the objectives of this novel study were to develop a buccal tablet using two concentrations of oleic acid for a model BCS class III drug via hot-melt extrusion technology and to investigate the effects of oleic acid on the physicochemical properties of the tablet. The model drug selected was ondansetron hydrochloride. Formulations consisting of polymers (hydroxypropyl methylcellulose and polyethylene oxide) and two concentrations of oleic acid were prepared by hot-melt extrusion techniques. A melting point depression of the drug was obtained in the extruded granules as seen by the DSC thermograms. The ex vivo permeation studies showed a greater permeation of the drug in the formulation containing 10% oleic acid (F2) as compared to the formulation containing 20% oleic acid (F1), although not statistically significant. The in vitro bioadhesion studies, swelling studies, and surface pH measurements of the tablets were also conducted. In conclusion, permeation studies exhibited the potential of oleic acid as a buccal permeation enhancer as a significant permeation of the drug was obtained in the formulations. Hot-melt extrusion technology was successfully employed to formulate buccal tablets of ondansetron hydrochloride.
Collapse
Affiliation(s)
- Nicole S Mendonsa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Priyanka Thipsay
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Dong Wuk Kim
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Scott T Martin
- Thermo Fisher Scientific, Tewksbury, Massachusetts, 01876, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, School of Pharmacy, The University of Mississippi, Oxford, Mississippi, 38677, USA.
| |
Collapse
|
15
|
Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today 2016; 21:789-801. [PMID: 26780385 DOI: 10.1016/j.drudis.2016.01.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/14/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
Cubosomes are nanostructured liquid crystalline particles, made of certain amphiphilic lipids in definite proportions, known as biocompatible carriers in drug delivery. Cubosomes comprise curved bicontinuous lipid bilayers that are organized in three dimensions as honeycombed structures and divided into two internal aqueous channels that can be exploited by various bioactive ingredients, such as chemical drugs, peptides and proteins. Owing to unique properties such as thermodynamic stability, bioadhesion, the ability of encapsulating hydrophilic, hydrophobic and amphiphilic substances, and the potential for controlled release through functionalization, cubosomes are regarded as promising vehicles for different routes of administration. Based on the most recent reports, this review introduces cubosomes focusing on their structure, preparation methods, mechanism of release and potential routes of administration.
Collapse
Affiliation(s)
- Zahra Karami
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.
| |
Collapse
|
16
|
Jaipal A, Pandey MM, Charde SY, Sadhu N, Srinivas A, Prasad RG. Controlled release effervescent buccal discs of buspirone hydrochloride: in vitro and in vivo evaluation studies. Drug Deliv 2015; 23:452-8. [PMID: 24892624 DOI: 10.3109/10717544.2014.917388] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present study controlled release effervescent buccal discs of buspirone hydrochloride (BS) were designed using HPMC as rate controlling and bioadhesive polymer by direct compression method. Sodium bicarbonate and citric acid were used in varying amounts as effervescence forming agents. Carbon dioxide evolved due to reaction of sodium bicarbonate and citric acid was explored for its potential as buccal permeation enhancer. The designed buccal discs were evaluated for physical characteristics and in vitro drug release studies. Bioadhesive behavior of designed buccal discs was assessed using texture analyzer. In vivo animal studies were performed in rabbits to study bioavailability of BS in the designed buccal discs and to establish permeation enhancement ability of carbon dioxide. It was observed that effervescent buccal discs have faster drug release compared to non-effervescent buccal discs in vitro and effervescent buccal discs demonstrated significant increase in bioavailability of drug when compared to non-effervescent formulation. Hence, effervescent buccal discs can be used as an alternative to improve the drug permeation resulting in better bioavailability. However, the amount of acid and base used for generation of carbon dioxide should be selected with care as this may damage the integrity of bioadhesive dosage form.
Collapse
Affiliation(s)
- A Jaipal
- a Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus , Rajasthan , India and
| | - M M Pandey
- a Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus , Rajasthan , India and
| | - S Y Charde
- b Department of Pharmacy , Birla Institute of Technology and Science Pilani, Hyderabad Campus , Andhra Pradesh , India
| | - N Sadhu
- a Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus , Rajasthan , India and
| | - A Srinivas
- a Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus , Rajasthan , India and
| | - R G Prasad
- a Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus , Rajasthan , India and
| |
Collapse
|
17
|
Enhancing the buccal mucosal delivery of peptide and protein therapeutics. Pharm Res 2014; 32:1-21. [PMID: 25168518 DOI: 10.1007/s11095-014-1485-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
Abstract
With continuing advances in biotechnology and genetic engineering, there has been a dramatic increase in the availability of new biomacromolecules, such as peptides and proteins that have the potential to ameliorate the symptoms of many poorly-treated diseases. Although most of these macromolecular therapeutics exhibit high potency, their large molecular mass, susceptibility to enzymatic degradation, immunogenicity and tendency to undergo aggregation, adsorption, and denaturation have limited their ability to be administered via the traditional oral route. As a result, alternative noninvasive routes have been investigated for the systemic delivery of these macromolecules, one of which is the buccal mucosa. The buccal mucosa offers a number of advantages over the oral route, making it attractive for the delivery of peptides and proteins. However, the buccal mucosa still exhibits some permeability-limiting properties, and therefore various methods have been explored to enhance the delivery of macromolecules via this route, including the use of chemical penetration enhancers, physical methods, particulate systems and mucoadhesive formulations. The incorporation of anti-aggregating agents in buccal formulations also appears to show promise in other mucosal delivery systems, but has not yet been considered for buccal mucosal drug delivery. This review provides an update on recent approaches that have shown promise in enhancing the buccal mucosal transport of macromolecules, with a major focus on proteins and peptides.
Collapse
|
18
|
Caon T, Pan Y, Simões CM, Nicolazzo JA. Exploiting the Buccal Mucosa as an Alternative Route for the Delivery of Donepezil Hydrochloride. J Pharm Sci 2014; 103:1643-51. [DOI: 10.1002/jps.23950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 11/09/2022]
|
19
|
Sattar M, Sayed OM, Lane ME. Oral transmucosal drug delivery--current status and future prospects. Int J Pharm 2014; 471:498-506. [PMID: 24879936 DOI: 10.1016/j.ijpharm.2014.05.043] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/14/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Oral transmucosal drug delivery (OTDD) dosage forms have been available since the 1980s. In contrast to the number of actives currently delivered locally to the oral cavity, the number delivered as buccal or sublingual formulations remains relatively low. This is surprising in view of the advantages associated with OTDD, compared with conventional oral drug delivery. This review examines a number of aspects related to OTDD including the anatomy of the oral cavity, models currently used to study OTDD, as well as commercially available formulations and emerging technologies. The limitations of current methodologies to study OTDD are considered as well as recent publications and new approaches which have advanced our understanding of this route of drug delivery.
Collapse
Affiliation(s)
- Mohammed Sattar
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1 N 1AX, United Kingdom; Department of Pharmaceutics, College of Pharmacy, University of Basrah, Basrah, Iraq
| | - Ossama M Sayed
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1 N 1AX, United Kingdom; Pharmaceutics Department, Faculty of Pharmacy, Beni Suef University, P.O. Box 62514, Egypt
| | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1 N 1AX, United Kingdom.
| |
Collapse
|
20
|
Du JD, Liu Q, Salentinig S, Nguyen TH, Boyd BJ. A novel approach to enhance the mucoadhesion of lipid drug nanocarriers for improved drug delivery to the buccal mucosa. Int J Pharm 2014; 471:358-65. [PMID: 24879939 DOI: 10.1016/j.ijpharm.2014.05.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/26/2014] [Indexed: 11/26/2022]
Abstract
Targeted drug delivery to the buccal mucosa offers distinct advantages over oral delivery to the gastrointestinal tract including by-passing hepatic first-pass metabolism. However, the buccal route is often limited by low bioavailability, low drug loading and reduced residence time due to salivary excretion and clearance. To overcome these limitations, a novel mucoadhesive formulation based on liquid crystalline nanoparticles was designed. Utilising a pH induced in situ transition from a stable vesicle formulation to dispersed inverse hexagonal phase nanoparticles (hexosomes) enhanced adsorption onto the mucosal surface was enabled. Firstly, the phase behaviour of the amphiphilic lipid phytantriol (PHY) and oleic acid (OA) was assessed from pH 2-9 using small-angle X-ray scattering (SAXS) and cryo-transmission electron microscopy (cryo-TEM) to determine the appropriate composition for the vesicle to hexosome transition. The colloidal stability of the formulation was determined using turbidity studies. Dispersions comprising 30% w/w OA in PHY were able to form stable vesicles at pH 8 and transition to hexosomes when exposed to pH<7 (as encountered on the buccal mucosal surface). Subsequent ex vivo studies utilising excised porcine buccal tissue indicated significant retention of the in situ-formed PHY/OA hexosomes when compared to control DOPC vesicles (p<0.005), confirmed independently using confocal fluorescence microscopy, radioactive scintillation counting and HPLC analysis for incorporated drug. Thus, a novel approach providing a stable vesicle formulation, with in situ transformation to mucoadhesive hexosomes has been identified with the potential to enhance drug delivery to mucosal surfaces.
Collapse
Affiliation(s)
- Joanne D Du
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, Australia
| | - Qingtao Liu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, Australia
| | - Stefan Salentinig
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, Australia
| | - Tri-Hung Nguyen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, Australia.
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, Australia.
| |
Collapse
|
21
|
Wu W, Li J, Wu L, Wang B, Wang Z, Xu Q, Xin H. Ophthalmic delivery of brinzolamide by liquid crystalline nanoparticles: in vitro and in vivo evaluation. AAPS PharmSciTech 2013; 14:1063-71. [PMID: 23813437 DOI: 10.1208/s12249-013-9997-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/11/2013] [Indexed: 11/30/2022] Open
Abstract
Brinzolamide (BLZ) is a drug used to treat glaucoma; however, its use is restricted due to some unwanted adverse events. The goal of this study was to develop BLZ-loaded liquid crystalline nanoparticles (BLZ LCNPs) and to figure out the possibility of LCNPs as a new therapeutic system for glaucoma. BLZ LCNPs were produced by a modified emulsification method and their physicochemical aspects were estimated. In vitro release study revealed BLZ LCNPs displayed to some extent prolonged drug release behavior in contrast to that of BLZ commercial product (Azopt®). The ex vivo apparent permeability coefficient of BLZ LCNP systems demonstrated a 3.47-fold increase compared with that of Azopt®. The pharmacodynamics was checked over by calculating the percentage fall in intraocular pressure and the pharmacodynamic test showed that BLZ LCNPs had better therapeutic potential than Azopt®. Furthermore, the in vivo ophthalmic irritation was evaluated by Draize test. In conclusion, BLZ LCNPs would be a promising delivery system used for the treatment of glaucoma, with advantages such as lower doses but maintaining the effectiveness, better ocular bioavailability, and patient compliance compared with Azopt®.
Collapse
|
22
|
du Toit LC, Pillay V, Choonara YE, Govender T, Carmichael T. Ocular drug delivery - a look towards nanobioadhesives. Expert Opin Drug Deliv 2011; 8:71-94. [PMID: 21174606 DOI: 10.1517/17425247.2011.542142] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD A major challenge emanating in the design of topical ophthalmic preparations is their short precorneal residence time. Retention of a drug delivery system in the front of the eye is thus desirable. One solution identified to address this concern is a retentive system that can preferably be delivered in a liquid drop form and ultimately remain attached to the corneal tissue owing to incorporation of a bioadhesive component. Forward-thinking approaches are required to achieve advancements in this approach for the attainment of an effective drug concentration at the site of action. Accordingly, several investigators have identified the benefits of nanotechnology-based drug delivery systems for ophthalmic drug delivery. AREAS COVERED IN THIS REVIEW A concerted effort was made to review critically all 'nanobioadhesives', that is, nanosystems designed for ocular drug delivery with the goal of attaining prolonged ocular retention, in a systematic, chronological manner, from their reported point of inception to the present. WHAT THE READER WILL GAIN A perspective on possible future trends in this growing field of ocular drug delivery is formulated. TAKE HOME MESSAGE The importance of and need for new developments in the field of ocular nanobioadhesives is emphasized.
Collapse
Affiliation(s)
- Lisa C du Toit
- University of the Witwatersrand, Department of Pharmacy and Pharmacology, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
23
|
LCM and Nanoparticle Subpopulations for Drug Delivery. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-444-53798-0.00018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Optimization of skin permeation and distribution of ibuprofen by using nanostructures (coagels) based on alkyl vitamin C derivatives. Eur J Pharm Biopharm 2010; 76:443-9. [DOI: 10.1016/j.ejpb.2010.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 07/29/2010] [Accepted: 08/16/2010] [Indexed: 11/23/2022]
|
25
|
Identification and assessment of permeability enhancing vehicles for transdermal delivery of glucosamine hydrochloride. Arch Pharm Res 2010; 33:293-9. [PMID: 20195831 DOI: 10.1007/s12272-010-0215-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 11/26/2009] [Accepted: 12/04/2009] [Indexed: 10/19/2022]
Abstract
As an initial step to develop the transdermal delivery system of glucosamine hydrochloride (GL-HCl), the permeation study across the rat skin in vitro was performed to identify the most efficient vehicle with regard to the ability to deliver GL-HCl transdermally. The GL-HCl formulations such as o/w cream, liposome suspension, liposomal gel, and liquid crystalline vehicles were prepared and compared for transdermal flux of GL-HCl. The liquid crystalline vehicles were more effective in increasing the skin permeation of GL-HCl than o/w cream and liposomal vehicles. Of the liquid crystalline vehicles tested, the permeation enhancing ability of the cubic phase was greater than that of the hexagonal phase when the nanoparticle dispersion was used. The skin permeation enhancing ability of the cubic nanoparticles for GL-HCl was further increased by employing both oleic acid and polyethylene glycol 200. Therefore, the cubic liquid crystalline nanodispersion containing oleic acid and PEG 200 can provide a possibility of clinical application of transdermal GL-HCl.
Collapse
|
26
|
Sohi H, Ahuja A, Ahmad FJ, Khar RK. Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Dev Ind Pharm 2010. [DOI: 10.3109/03639040903117348] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Dhiman MK, Dhiman A, Sawant KK. Transbuccal delivery of 5-fluorouracil: permeation enhancement and pharmacokinetic study. AAPS PharmSciTech 2009; 10:258-65. [PMID: 19280347 DOI: 10.1208/s12249-009-9203-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 01/31/2009] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to determine the effect of permeation enhancers on the transbuccal delivery of 5-fluorouracil (FU). The effect of permeation enhancers on in vitro buccal permeability was assessed using sodium deoxycholate (SDC), sodium dodecyl sulphate (SDS), sodium tauroglycocholate (STGC), and oleic acid and their concentrations for absorption enhancement were optimized. STGC appeared to be most effective for enhancing the buccal permeation of FU than the other enhancers. These enhancements by STGC were statistically significant (p < 0.05) compared to control. The order of permeation enhancement was STGC > SDS > SDC > oleic acid. Histological investigations were performed on buccal mucosa and indicated no major morphological changes. The enhancing effect of STGC on the buccal absorption of FU was evaluated from the mucoadhesive gels in rabbits. The absolute bioavailability of FU from mucoadhesive gels containing STGC increased 1.6-fold as compared to the gels containing no permeation enhancer. The mean residence time and mean absorption time considerably increased following administration of gel containing penetration enhancer compared with the gel without penetration enhancer.
Collapse
|
28
|
Thakur RA, Michniak BB, Meidan VM. Transdermal and Buccal Delivery of Methylxanthines Through Human Tissue In Vitro. Drug Dev Ind Pharm 2008; 33:513-21. [PMID: 17520442 DOI: 10.1080/03639040600901994] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We examined the in vitro permeation of central nervous stimulants - caffeine, theophylline, and theobromine across human skin with the aid of six chemical enhancers. It was found that oleic acid was the most potent enhancer for all three methylxanthines. Further optimization studies with different solvents showed that caffeine transport could be enhanced to give flux values up to 585 microg/cm2.hr-1. Theobromine and theophylline delivery rates proved insufficient. An additional study involving a buccal tissue equivalent showed that this membrane was more permeable than skin for all model actives tested and would offer an alternate way of delivery.
Collapse
Affiliation(s)
- Rashmi A Thakur
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
29
|
Swarnakar NK, Jain V, Dubey V, Mishra D, Jain NK. Enhanced Oromucosal Delivery of Progesterone Via Hexosomes. Pharm Res 2007; 24:2223-30. [PMID: 17828445 DOI: 10.1007/s11095-007-9409-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Accepted: 07/10/2007] [Indexed: 11/29/2022]
Abstract
PURPOSE Formulation and characterization of progesterone loaded hexosomes employing a novel method for oromucosal delivery. METHOD Hexosomes were prepared employing a method in which ethanolic solution of lipid phase (monolein and oleic acid) was vortexed with aqueous phase (surfactant solution) and characterized for particle size, morphology and internal structure. FT-IR and confocal laser scanning microscopy (CLSM) were performed to investigate the possible mechanism and penetration pathway of hexosomes within the mucosa. RESULTS Hexosomes exhibited anisotropy, hexagonal shape and nanometric size (251.2+/-1.8 nm). Internal structure confirmed by X-ray diffraction peaks with spacing ratio of radical1:radical3:radical4 proved two-dimensional hexagonal arrangements. Entrapment efficiency of system was greater than 95%. In vitro release studies revealed an enhanced transmucosal flux (4.67+/-0.14 microg cm(-2) h(-1)) and decreased lag time (1.54 h) across albino rabbit mucosa. FT-IR and CLSM of treated mucosa shows lipid extraction phenomena as well as structural irregularities within intercellular lipids respectively. These irregularities can function as 'virtual channels' facilitating hexosome's penetration. CONCLUSION Developed hexosomes formulation exhibited high entrapment efficiency, high permeability and better stability on storage, thus proposing itself a novel carrier for enhanced oromucosal delivery of progesterone.
Collapse
Affiliation(s)
- Nitin K Swarnakar
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar (M.P.), 470003, India
| | | | | | | | | |
Collapse
|
30
|
Giannola LI, De Caro V, Giandalia G, Siragusa MG, Tripodo C, Florena AM, Campisi G. Release of naltrexone on buccal mucosa: Permeation studies, histological aspects and matrix system design. Eur J Pharm Biopharm 2007; 67:425-33. [PMID: 17451927 DOI: 10.1016/j.ejpb.2007.02.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 02/14/2007] [Accepted: 02/26/2007] [Indexed: 11/30/2022]
Abstract
Transbuccal drug delivery has got several well-known advantages especially with respect to peroral way. Since a major limitation in buccal drug delivery could be the low permeability of the epithelium, the aptitude of NLX to penetrate the mucosal barrier was assessed. Ex vivo permeation across porcine buccal mucosa 800 microm thick was investigated using Franz type diffusion cells and compared with in vitro data previously obtained by reconstituted human oral epithelium 100 microm thick. Both fluxes (Js) and permeability coefficients (K(p)) are in accordance, using either buffer solution simulating saliva or natural human saliva. Permeation was evaluated also in presence of chemical enhancers or iontophoresis. No significant differences in penetration rate were observed using chemical enhancers; in contrast, Js and K(p) were extensively affected by application of electric fields. Tablets, designed for Naltrexone hydrochloride (NLX) administration on buccal mucosa, were developed and prepared by direct compression of drug loaded (56%) poly-octylcyanocrylate (poly-OCA) matrices. NLX is slowly discharged from buccal tablets following Higuchian kinetic. Histologically, no signs of flogosis ascribable to NLX and/or poly-OCA were observed, while cytoarchitectural changes due to iontophoresis were detected. Buccal tablets containing NLX may represent a potential alternative dosage form in addiction management.
Collapse
Affiliation(s)
- Libero Italo Giannola
- Dipartimento di Chimica e Tecnologie Farmaceutiche, Università di Palermo, Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
31
|
Issa JPM, do Nascimento C, Bentley MVLB, Del Bel EA, Iyomasa MM, Sebald W, de Albuquerque RF. Bone repair in rat mandible by rhBMP-2 associated with two carriers. Micron 2007; 39:373-9. [PMID: 17482469 DOI: 10.1016/j.micron.2007.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/15/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
This study evaluated the quantity and quality of newly formed bone, stimulated by rhBMP-2 in combination with monoolein or chitosan gel as carriers, in critical bone defects created in 36 Wistar rat mandibles. Two weeks after surgery, the animals were anesthetized with 37.5% urethane submitted to perfusion and the hemi-mandibles removed for histological and histomorphometrical analysis. The results showed that there was a statistical difference between groups of animals receiving or not rhBMP-2 (p<0.05). Newly formed bone was more intense in the occlusal region, followed by the basal and middle regions, respectively. Both carriers, monoolein and chitosan gels were adequate for defect filling and control of protein release.
Collapse
|
32
|
Abstract
Cubosomes are nanoparticles but instead of the solid particles, cubosomes are self-assembled liquid crystalline particles of certain surfactant with proper ratio of water with a microstructure that provides unique properties of practical interest. The discovery of cubosomes is a unique story and spans the field of food science, differential geometry, biological membranes and digestive processes. One of the most common surfactants used to make cubosomes is the monoglyceride glycerol monoolein. Bicontinuous cubic liquid crystalline phase is an optically clear, very viscous material that has a unique structure at the nanometer scale. The word bicontinuous refers to the division of the two continuous but non-intersecting aqueous regions by a lipid bilayer that is contorted into a space-filling structure. Hydrating a surfactant or polar lipid that forms cubic phase and then dispersing the solid-like phase into smaller particles usually form Cubosomes. There is a lot of excitement about the cubic phases because its unique microstructure is biologically compatible and capable of controlled release of solubilized active ingredients like drugs and proteins.
Collapse
Affiliation(s)
- Gopal Garg
- Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India.
| | | | | |
Collapse
|
33
|
Lopes LB, Lopes JLC, Oliveira DCR, Thomazini JA, Garcia MTJ, Fantini MCA, Collett JH, Bentley MVLB. Liquid crystalline phases of monoolein and water for topical delivery of cyclosporin A: Characterization and study of in vitro and in vivo delivery. Eur J Pharm Biopharm 2006; 63:146-55. [PMID: 16621488 DOI: 10.1016/j.ejpb.2006.02.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
Reverse cubic and hexagonal phases of monoolein have been studied as drug delivery systems. The present study was aimed at investigating whether these systems enhance the cutaneous penetration of cyclosporin A (CysA) in vitro (using porcine ear skin) and in vivo (using hairless mice). Different mesophases were obtained depending on CysA concentration. CysA at 4% allowed the formation of reverse cubic and hexagonal phases in a temperature range of 25-40 degrees C. At 8%, CysA induced the formation of other phases, which might be due to an interaction between the polar groups of the peptide and monoolein. In vitro, the cubic phase increased the penetration of CysA in the stratum corneum (SC) and epidermis plus dermis ([E+D]) at 12 h post-application. The reverse hexagonal phase increased CysA penetration in [E+D] at 6 h and percutaneous delivery at 7.5 h post-application. In vivo, both liquid crystalline phases increased CysA skin penetration. Topical application of these systems, though, induced skin irritation after a 3-day exposure. These results demonstrate that liquid crystalline systems of monoolein are effective in optimizing the delivery of peptides to the skin. The skin irritation observed after topical application of cubic and hexagonal phases should be minimized for their safe use as topical delivery systems.
Collapse
Affiliation(s)
- Luciana B Lopes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lopes LB, Ferreira DA, de Paula D, Garcia MTJ, Thomazini JA, Fantini MCA, Bentley MVLB. Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A. Pharm Res 2006; 23:1332-42. [PMID: 16715364 DOI: 10.1007/s11095-006-0143-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Accepted: 01/27/2006] [Indexed: 11/30/2022]
Abstract
PURPOSE To obtain and characterize reverse hexagonal phase nanodispersions of monoolein and oleic acid, and to evaluate the ability of such system to improve the skin penetration of a model peptide (cyclosporin A, CysA) without causing skin irritation. METHODS The nanodispersion was prepared by mixing monoolein, oleic acid, poloxamer, and water. CysA was added to the lipid mixture to obtain a final concentration of 0.6% (w/w). The nanodispersion was characterized; the skin penetration of CysA was assessed in vitro (using porcine ear skin mounted in a Franz diffusion cell) and in vivo (using hairless mice). RESULTS The obtainment of the hexagonal phase nanodispersion was demonstrated by polarized light microscopy, cryo-TEM and small angle X-ray diffraction. Particle diameter was 181.77 +/- 1.08 nm. At 0.6%, CysA did not change the liquid crystalline structure of the particles. The nanodispersion promoted the skin penetration of CysA both in vitro and in vivo. In vitro, the maximal concentrations (after 12 h) of CysA obtained in the stratum corneum (SC) and in the epidermis without stratum corneum (E) + dermis (D) were approximately 2 fold higher when CysA was incorporated in the nanodispersion than when it was incorporated in the control formulation (olive oil). In vivo, 1.5- and 2.8-times higher concentrations were achieved in the SC and [E+D], respectively, when the nanodispersion was employed. No histopathological alterations were observed in the skin of animals treated with the nanodispersion. CONCLUSION These results demonstrate that the hexagonal phase nanodispersion is effective in improving the topical delivery of peptides without causing skin irritation.
Collapse
Affiliation(s)
- Luciana B Lopes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Nicolazzo JA, Reed BL, Finnin BC. Buccal penetration enhancers--how do they really work? J Control Release 2005; 105:1-15. [PMID: 15894393 DOI: 10.1016/j.jconrel.2005.01.024] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
Certain agents that increase drug delivery through the skin, including surfactants, bile salts, and fatty acids, have been shown to exert a similar effect on the buccal mucosa. These agents enhance skin permeability by interacting with and disrupting the ordered intercellular lipid lamellae within the keratinized stratum corneum, and it has been assumed that a similar mechanism of action occurs in the nonkeratinized buccal mucosa. However, the chemical and structural nature of the lipids present within the intercellular regions of the buccal mucosa is quite different to that found within the stratum corneum, and so extrapolation of results between these two tissues may be misleading. To assume that the mechanism of action of buccal penetration enhancers is based on the disruption of intercellular lipids may be erroneous, and may result in the inappropriate prediction that certain skin penetration enhancers will similarly enhance drug delivery through the buccal mucosa. The data available in the literature suggest that agents that enhance buccal penetration exert their effect by a mechanism other than by disruption of intercellular lipids. Rather, buccal penetration enhancement appears to result from agents being able to (a) increase the partitioning of drugs into the buccal epithelium, (b) extract (and not disrupt) intercellular lipids, (c) interact with epithelial protein domains, and/or (d) increase the retention of drugs at the buccal mucosal surface. The purpose of this review is to identify the major differences in the structural and chemical nature of the permeability barriers between the buccal mucosa and skin, to clarify the mechanisms of action of buccal penetration enhancers, and to identify the limitations of certain models that are used to assess the effect of buccal penetration enhancers.
Collapse
Affiliation(s)
- Joseph A Nicolazzo
- Department of Pharmaceutics, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
36
|
Lopes LB, Collett JH, Bentley MVLB. Topical delivery of cyclosporin A: an in vitro study using monoolein as a penetration enhancer. Eur J Pharm Biopharm 2005; 60:25-30. [PMID: 15848052 DOI: 10.1016/j.ejpb.2004.12.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/01/2004] [Accepted: 12/07/2004] [Indexed: 11/17/2022]
Abstract
Topical delivery of cyclosporin A (CysA) is of great interest for the treatment of autoimmune skin disorders, but it is frequently ineffective due to poor drug penetration in the skin. The present study was aimed at investigating whether the presence of monoolein (a lipidic penetration enhancer) in a preparation of propylene glycol can improve CysA delivery to the skin. CysA was incorporated in a propylene glycol preparation containing 5-70% (w/w) of monoolein. The topical (to the skin) and transdermal (across the skin) delivery of CysA were evaluated in vitro using porcine ear skin mounted in a Franz diffusion cell. CysA was quantified by UV-HPLC. At 5%, monoolein increased only the transdermal delivery of CysA. At 10%, it increased both topical and transdermal delivery. When the concentration of monoolein was further increased (20-70% w/w), an interesting phenomenon was observed: the topical delivery of CysA was still elevated but its transdermal delivery was substantially reduced. It was concluded that monoolein (in propylene glycol formulations) can promote the topical delivery of CysA, with reduced transdermal delivery.
Collapse
Affiliation(s)
- Luciana B Lopes
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
37
|
Attia MA, El-Gibaly I, Shaltout SE, Fetih GN. Transbuccal permeation, anti-inflammatory activity and clinical efficacy of piroxicam formulated in different gels. Int J Pharm 2004; 276:11-28. [PMID: 15113610 DOI: 10.1016/j.ijpharm.2004.01.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 01/21/2004] [Accepted: 01/26/2004] [Indexed: 11/29/2022]
Abstract
In attempts to avoid the systemic side effects of piroxicam (PC) (e.g. gastrotoxicity), several buccal gel formulations containing PC were prepared and their effects on the characteristics of the drug permeation through rabbit buccal mucosa in-vitro were evaluated using a Franz-type diffusion cell. The general rank order of the total flux of 0.5% PC from gels was found to be: hydroxypropylmethylcellulose (HPMC, 2.5%) > hydroxypropylcellulose (HPC, 2.5%) >or= sodium alginate (Na alg., 7%) > methylcellulose (MC, 3%) > hydroxyethylcellulose (HEC, 1.5%) > carbopol 934 (Carb. 934, 1%) >or= sodium carboxymethylcellulose (NaCMC, 2%) > pluronic F-127 (PF-127, 20%) > polyvinyl alcohol (PVA, 10%). The effect of various penetration enhancers 1% sodium lauryl sulphate (NaLS), 3% sodium deoxycholate (NaDC), 3% sodium tauroglycocholate (NaTGC) on the rate of permeation across the excised buccal mucosa (of 0.5% PC in gels prepared using 3% MC, 2.5% HPMC or 7% Na alg. base) and histology of the buccal epithelium was also investigated. Pharmacodynamic evaluation of the anti-inflammatory activity of PC in these gel formulations (containing 3% NaDC as an enhancer) was carried out using the kaolin-induced rat paw oedema method. The results obtained indicated that PC administered in 7% Na alg. or 2.5% HPMC gel bases was significantly more effective than the 3% MC gel and oral drug solution in suppressing oedema formation in rats. Comparative clinical studies were conducted in patients with post-operative dental pain and oedema following maxillofacial operations. The results revealed that 7% Na alg. and 2.5% HPMC gel formulations applied to the buccal mucosa were slightly better than or equally effective to the orally administered commercial product (Feldene Flash) tablet) in reducing pain level, swelling and tenderness within a period of 4 days. These findings suggest that PC (0.5%) administered in the buccal gel may present a potential therapeutical use as a strong anti-inflammatory and analgesic agent.
Collapse
Affiliation(s)
- M A Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | | | | | | |
Collapse
|
38
|
Lee J, Kellaway IW. Peptide washout and permeability from glyceryl monooleate buccal delivery systems. Drug Dev Ind Pharm 2002; 28:1155-62. [PMID: 12455474 DOI: 10.1081/ddc-120014582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Simultaneous evaluation of the permeation and washout of a peptide from the mucoadhesive liquid crystalline phases of glyceryl monooleate (GMO) has been investigated using a donor compartment flow-through diffusion cell. [D-Ala2, D-Leu5]enkephalin (DADLE) was incorporated into the cubic and lamellar liquid crystalline phases of GMO and applied to excised porcine buccal mucosa mounted in the donor compartment flow-through cell. Phosphate-buffered saline pH 7.4 (PBS) was pumped across the upper surface of the liquid crystalline phases to mimic salivary flow. The steady-state fluxes of DADLE and GMO from the cubic phase were significantly greater than that from the lamellar phase (P < 0.01). There was no statistical difference between the amounts of DADLE and GMO washed out from the lamellar and cubic phases (P > 0.05). The donor compartment flow-through diffusion cell was found to be a useful tool to evaluate the impact of salivary washout on mucoadhesive oral mucosal delivery systems.
Collapse
Affiliation(s)
- Jaehwi Lee
- School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | | |
Collapse
|