1
|
Lai R, Fang Q, Wu F, Pan S, Haque K, Sha SH. Prevention of noise-induced hearing loss by calpain inhibitor MDL-28170 is associated with upregulation of PI3K/Akt survival signaling pathway. Front Cell Neurosci 2023; 17:1199656. [PMID: 37484825 PMCID: PMC10359991 DOI: 10.3389/fncel.2023.1199656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Noise-induced calcium overload in sensory hair cells has been well documented as an early step in the pathogenesis of noise-induced hearing loss (NIHL). Alterations in cellular calcium homeostasis mediate a series of cellular events, including activation of calcium-dependent protein kinases and phosphatases. Using cell-membrane- and blood-brain-barrier-permeable calpain-1 (μ-calpain) and calpain-2 (m-calpain) inhibitor MDL-28170, we tested the involvement of calpains, a family of calcium-dependent cysteine proteases, and the potential of MDL-28170 in preventing NIHL. Methods CBA/J mice at the age of 12 weeks were exposed to broadband noise with a frequency spectrum from 2-20 kHz for 2 h at 101 dB sound pressure level to induce permanent hearing loss as measured by auditory brainstem response and distortion product otoacoustic emissions. Morphological damage was assessed by quantification of remaining sensory hair cells and inner hair cell synapses 2 weeks after the exposure. Results MDL-28170 treatment by intraperitoneal injection significantly attenuated noise-induced functional deficits and cochlear pathologies. MDL-28170 treatment also prevented noise-induced cleavage of alpha-fodrin, a substrate for calpain-1. Furthermore, MDL-28170 treatment prevented reduction of PI3K/Akt signaling after exposure to noise and upregulated p85α and p-Akt (S473) in outer hair cells. Discussion These results indicate that noise-induced calpain activation negatively regulates PI3K/Akt downstream signaling, and that prevention of NIHL by treatment with MDL-28170 is associated with upregulation of PI3K/Akt survival signaling pathways.
Collapse
Affiliation(s)
- Ruosha Lai
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiaojun Fang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Fan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Song Pan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Khujista Haque
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
2
|
Protective effects of nigella sativa oil against gentamicin-induced ototoxicity in rats: A dose-ranging study. Int J Pediatr Otorhinolaryngol 2023; 164:111405. [PMID: 36481814 DOI: 10.1016/j.ijporl.2022.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Aminoglycosides are relatively potent antibiotics used against some life-threatening infections but contribute to ototoxicity. Although the beneficial effects of high-dose nigella sativa oil (NSO) on ototoxicity in the form of intratympanic or oral use have been demonstrated, no variable-dose studies have been conducted on this subject. We aimed to investigate the potential protective effect of different doses of intraperitoneal (i.p.) NSO on Gentamicin (GM)-induced ototoxicity with auditory brainstem responses (ABR) testing. METHODS Thirty adult male Sprague-Dawley rats (300-400 gr) were used in this study. Rats were randomly divided into 5 groups, with six animals in each group: All the groups received GM (120 mg/kg i.p) for ten days. Group 1: 0.9% saline solution (0.3 ml/kg i.p.), Group 2: NSOL (low dose 0.1 ml/kg i.p.), Group 3: NSOM (median dose 0.3 ml/kg i.p.), Group 4: NSOH (high dose 3 ml/kg i.p.), Group 5: NSOML (late onset median dose 0.3 ml/kg i.p) were given for fifteen days. But death occurred in 3 rats in group 4 and they were excluded from the study. The pretreatment and posttreatment ABR testings were performed. RESULTS The posttreatment ABR results were compared with the pretreatment values. A significant difference was found in group 1 (p:0,002), group 2 (p: 0,040), and group 4 (p: 0,027). When the posttreatment tests were compared with each other, there was a significant difference between groups 1 and 2 (p < 0,001), groups 1 and 3 (p < 0,001), and groups 1 and 5 (p < 0,001). CONCLUSIONS The administration of 0.1 ml/kg and 3 ml/kg dose of NSO does not prevent ototoxicity. The 0.3 ml/kg dose of NSO effectively prevents GM-induced ototoxicity within both prophylactic and therapeutic use.
Collapse
|
3
|
Febles NK, Bauer MA, Ding B, Zhu X, Gallant ND, Frisina RD. A combinatorial approach to protect sensory tissue against cisplatin-induced ototoxicity. Hear Res 2022; 415:108430. [PMID: 35051751 PMCID: PMC8810742 DOI: 10.1016/j.heares.2022.108430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022]
Abstract
Sensorineural Hearing Loss (SNHL) is a highly prevalent disorder involving permanent damage or loss to the inner ear's mechano-sensory hair cells and nerve fibers. Major contributing causes are ototoxic drugs, loud noises, and aging. Drug-induced hearing loss (DIHL), affects over 25% of patients treated with common therapeutics such as aminoglycoside antibiotics, loop diuretics or chemotherapeutics. A commonly used chemotherapeutic agent, cisplatin, is very effective for treating malignant tumors, but results in a majority of patients experiencing irreversible hearing loss and/or tinnitus. Additionally, since there is currently no FDA-approved treatments for SNHL, attenuation of ototoxicity is a major area of investigation in oncology, otolaryngology and hearing research. Several potential otoprotective agents have been investigated at the clinical trial stage, but none have progressed to a full FDA-approval. In this study, we investigated a combinatorial approach comprised of an antioxidant, a p53 inhibitor and a neurotrophin, as a multifactorial otoprotective treatment for cisplatin exposure. In vitro, HEI-OC1 cells, an immortalized organ of Corti epithelial cell line, pre-treated with this biotherapeutic cocktail had significantly reduced cisplatin-induced cell death, DNA fragmentation, and apoptotic activation. In an ex vivo study, rat pup D2-D3 organ of Corti explants, significant protection against cisplatin-based hair cell and neuronal loss was achieved by delivery of the same combinatorial pretreatment. Interestingly, the hair cell protection was localized to the basal and middle regions of the organ of Corti. Together, these findings highlight a novel approach to attenuate cisplatin ototoxicity and potentially prevent DIHL by addressing biological mechanisms of cisplatin ototoxicity.
Collapse
Affiliation(s)
- Nicole K Febles
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Mark A Bauer
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Bo Ding
- Department of Communicative Sciences and Disorders, University of South Florida, Tampa, FL 33602, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Xiaoxia Zhu
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Nathan D Gallant
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33602, USA.
| | - Robert D Frisina
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Department of Communicative Sciences and Disorders, University of South Florida, Tampa, FL 33602, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA.
| |
Collapse
|
4
|
Abstract
Vestibular hair cells are mechanosensory receptors that are capable of detecting changes in head position and thereby allow animals to maintain their posture and coordinate their movement. Vestibular hair cells are susceptible to ototoxic drugs, aging, and genetic factors that can lead to permanent vestibular dysfunction. Vestibular dysfunction mainly results from the injury of hair cells, which are located in the vestibular sensory epithelium. This review summarizes the mechanisms of different factors causing vestibular hair cell damage and therapeutic strategies to protect vestibular hair cells.
Collapse
Affiliation(s)
- Luoying Jiang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Zhiwei Zheng
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
5
|
Ding D, Prolla T, Someya S, Manohar S, Salvi R. Roles of Bak and Sirt3 in Paraquat-Induced Cochlear Hair Cell Damage. Neurotox Res 2021; 39:1227-1237. [PMID: 33900547 DOI: 10.1007/s12640-021-00366-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022]
Abstract
Paraquat, a superoxide generator, can damage the cochlea causing an ototoxic hearing loss. The purpose of the study was to determine if deletion of Bak, a pro-apoptotic gene, would reduce paraquat ototoxicity or if deletion of Sirt3, which delays age-related hearing loss under caloric restriction, would increase paraquat ototoxicity. We tested these two hypotheses by treating postnatal day 3 cochlear cultures from Bak±, Bak-/-, Sirt3±, Sirt3-/-, and WT mice with paraquat and compared the results to a standard rat model of paraquat ototoxicity. Paraquat damaged nerve fibers and dose-dependently destroyed rat outer hair cells (OHCs) and inner hair cells (IHCs). Rat hair cell loss began in the base of the cochlea with a 10 μM dose and as the dose increased from 50 to 500 μM, the hair cell loss increased near the base of the cochlea and spread toward the apex of the cochlea. Rat OHC losses were consistently greater than IHC losses. Unexpectedly, in all mouse genotypes, paraquat-induced hair cell lesions were maximal near the apex of the cochlea and minimal near the base. This unusual damage gradient is opposite to that seen in paraquat-treated rats and in mice and rats treated with other ototoxic drugs. However, paraquat always induced greater OHC loss than IHC loss in all mouse strains. Contrary to our hypothesis, Bak deficient mice were more vulnerable to paraquat ototoxicity than WT mice (Bak-/- > Bak± > WT), suggesting that Bak plays a protective role against hair cell stress. Also, contrary to expectation, Sirt3-deficient mice did not differ significantly from WT mice, possibly due to the fact that Sirt3 was not experimentally upregulated in Sirt3-expressing mice prior to paraquat treatment. Our results show for the first time a gradient of ototoxic damage in mice that is greater in the apex than the base of the cochlea.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cells, Cultured
- Cochlea/drug effects
- Cochlea/metabolism
- Cochlea/pathology
- Dose-Response Relationship, Drug
- Female
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Herbicides/toxicity
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organ Culture Techniques
- Paraquat/toxicity
- Rats
- Rats, Sprague-Dawley
- Sirtuin 3/deficiency
- Sirtuin 3/genetics
- bcl-2 Homologous Antagonist-Killer Protein/deficiency
- bcl-2 Homologous Antagonist-Killer Protein/genetics
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Tomas Prolla
- Department of Genetics and Medical Genetics, University of Wisconsin, 702 W Johnson St 1101, Madison, WI, 53715, USA
| | - Shinichi Someya
- Department of Aging and Geriatrics, University of Florida, Gainsville, FL, 32611, USA
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA.
| |
Collapse
|
6
|
Yuan X, Liu H, Li Y, Li W, Yu H, Shen X. Ribbon Synapses and Hearing Impairment in Mice After in utero Sevoflurane Exposure. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2685-2693. [PMID: 32753847 PMCID: PMC7354911 DOI: 10.2147/dddt.s253031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Introduction In utero, exposure to sevoflurane (a commonly used inhalation anesthetic) can lead to hearing impairment in offspring mice, but the underlying impairment mechanism is not known. Materials and Methods Day-15 pregnant mice were treated with 2.5% sevoflurane for 2 h to investigate sevoflurane ototoxicity. Cochleae from offspring mice were harvested for hair-cell and ribbon-synapse assessments. Hearing in offspring mice was assessed at postnatal day 30 using an auditory brainstem-response (ABR) test. Cochlear-explant cultures from offspring mice were exposed to 2.5% sevoflurane for 6 h. Immediately after treatment, explants were assessed for hair-cell morphology, mitochondrial oxidative stress, and autophagy. Results In utero, sevoflurane exposure impaired hearing in the offspring is demonstrated by a decrease in ABR wave I amplitudes, a marker for ribbon-synapse functionality. Sevoflurane exposure caused no obvious damage to hair cells, but cochlear ribbon synapses were reduced in postnatal day 15 offspring, and partially recovered by postnatal day 30. Sevoflurane treatment also increased mitochondrial reactive-oxygen species stress and decreased autophagy in the cochlear explants. Conclusion These results suggest that oxidative stress and reduced autophagy may underly ribbon-synapse involvement in sevoflurane-induced hearing loss.
Collapse
Affiliation(s)
- Xia Yuan
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Hongjun Liu
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Yufeng Li
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Wen Li
- Research Center, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Huiqian Yu
- Department of Otorhinolaryngology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Xia Shen
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| |
Collapse
|
7
|
Ye H, Xing Y, Zhang L, Zhang J, Jiang H, Ding D, Shi H, Yin S. Bilirubin-induced neurotoxic and ototoxic effects in rat cochlear and vestibular organotypic cultures. Neurotoxicology 2018; 71:75-86. [PMID: 30578813 DOI: 10.1016/j.neuro.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
Exposure to high levels of bilirubin in hyperbilirubinemia patients and animal models can result in sensorineural deafness. However, the mechanisms underlying bilirubin-induced damage to the inner ear, including the cochlear and vestibular organs, remain unknown. The present analyses of cochlear and vestibular organotypic cultures obtained from postnatal day 3 rats exposed to bilirubin at varying concentrations (0, 10, 50, 100, or 250 μM) for 24 h revealed that auditory nerve fibers (ANFs) and vestibular nerve endings were destroyed even at low doses (10 and 50 μM). Additionally, as the bilirubin dose increased, spiral ganglion neurons (SGNs) and vestibular ganglion neurons (VGNs) exhibited gradual shrinkage in conjunction with nuclei condensation or fragmentation in a dose-dependent manner. The loss of cochlear and vestibular hair cells (HCs) was only evident in explants treated with the highest concentration of bilirubin (250 μM), and bilirubin-induced major apoptosis most likely occurred via the extrinsic apoptotic pathway. Thus, the present results indicate that inner ear neurons and fibers were more sensitive to, and exhibited more severe damage following, bilirubin-induced neurotoxicity than sensory HCs, which illustrates the underlying causes of auditory neuropathy and vestibulopathy in hyperbilirubinemia patients.
Collapse
Affiliation(s)
- Haibo Ye
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China
| | - Yazhi Xing
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China
| | - Ling Zhang
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China
| | - Jianhui Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, PR China
| | - Haiyan Jiang
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences State, University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Dalian Ding
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China; Center for Hearing and Deafness, Department of Communicative Disorders and Sciences State, University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Haibo Shi
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China.
| | - Shankai Yin
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China
| |
Collapse
|
8
|
Musazzi UM, Franzé S, Cilurzo F. Innovative pharmaceutical approaches for the management of inner ear disorders. Drug Deliv Transl Res 2018; 8:436-449. [PMID: 28462501 DOI: 10.1007/s13346-017-0384-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sense of hearing is essential for permitting human beings to interact with the environment, and its dysfunctions can strongly impact on the quality of life. In this context, the cochlea plays a fundamental role in the transformation of the airborne sound waves into electrical signals, which can be processed by the brain. However, several diseases and external stimuli (e.g., noise, drugs) can damage the sensorineural structures of cochlea, inducing progressive hearing dysfunctions until deafness. In clinical practice, the current pharmacological approaches to treat cochlear diseases are based on the almost exclusive use of systemic steroids. In the last decades, the efficacy of novel therapeutic molecules has been proven, taking advantage from a better comprehension of the pathological mechanisms underlying many cochlear diseases. In addition, the feasibility of intratympanic administration of drugs also permitted to overcome the pharmacokinetic limitations of the systemic drug administration, opening new frontiers in drug delivery to cochlea. Several innovative drug delivery systems, such as in situ gelling systems or nanocarriers, were designed, and their efficacy has been proven in vitro and in vivo in cochlear models. The current review aims to describe the art of state in the cochlear drug delivery, highlighting lights and shadows and discussing the most critical aspects still pending in the field.
Collapse
Affiliation(s)
- Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy.
| | - Silvia Franzé
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy
| |
Collapse
|
9
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
10
|
Zhang LW, Cang XH, Chen Y, Guan MX. In vitro culture of mammalian inner ear hair cells. J Zhejiang Univ Sci B 2018; 20:170-179. [PMID: 30187712 DOI: 10.1631/jzus.b1700613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Auditory function in vertebrates depends on the transduction of sound vibrations into electrical signals by inner ear hair cells. In general, hearing loss resulting from hair cell damage is irreversible because the human ear has been considered to be incapable of regenerating or repairing these sensory elements following severe injury. Therefore, regeneration and protection of inner ear hair cells have become an exciting, rapidly evolving field of research during the last decade. However, mammalian auditory hair cells are few in number, experimentally inaccessible, and barely proliferate postnatally in vitro. Various in vitro primary culture systems of inner ear hair cells have been established by different groups, although many challenges remain unresolved. Here, we briefly explain the structure of the inner ear, summarize the published methods of in vitro hair cell cultures, and propose a feasible protocol for culturing these cells, which gave satisfactory results in our study. A better understanding of in vitro hair cell cultures will substantially facilitate research involving auditory functions, drug development, and the isolation of critical molecules involved in hair cell biology.
Collapse
Affiliation(s)
- Lu-Wen Zhang
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Hui Cang
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
11
|
Zhang J, Sun H, Salvi R, Ding D. Paraquat initially damages cochlear support cells leading to anoikis-like hair cell death. Hear Res 2018; 364:129-141. [PMID: 29563067 PMCID: PMC5984146 DOI: 10.1016/j.heares.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
Abstract
Paraquat (PQ), one of the most widely used herbicides, is extremely dangerous because it generates the highly toxic superoxide radical. When paraquat was applied to cochlear organotypic cultures, it not only damaged the outer hair cells (OHCs) and inner hair cells (IHCs), but also caused dislocation of the hair cell rows. We hypothesized that the dislocation arose from damage to the support cells (SCs) that anchors hair cells within the epithelium. To test this hypothesis, rat postnatal cochlear cultures were treated with PQ. Shortly after PQ treatment, the rows of OHCs separated from one another and migrated radially away from IHCs suggesting loss of cell-cell adhesion that hold the hair cells in proper alignment. Hair cells dislocation was associated with extensive loss of SCs in the organ of Corti, loss of tympanic border cells (TBCs) beneath the basilar membrane, the early appearance of superoxide staining and caspase-8 labeling in SCs below the OHCs and disintegration of E-cadherin and β-catenin in the organ of Corti. Damage to the TBCs and SCs occurred prior to loss of OHC or IHC loss suggesting a form of detachment-induced apoptosis referred to as anoikis.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | - Hong Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan, ROC
| | - Dalian Ding
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
12
|
Seigel GM, Manohar S, Bai YY, Ding D, Salvi R. An immortalized microglial cell line (Mocha) derived from rat cochlea. Mol Cell Neurosci 2017; 85:202-210. [PMID: 29109020 DOI: 10.1016/j.mcn.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 01/18/2023] Open
Abstract
Microglia are glial-immune cells that are essential for the function and survival of the central nervous system. Microglia not only protect neural tissues from immunological insults, but also play a critical role in neural development and repair. However, little is known about the biology of microglia in the cochlea, the auditory portion of the inner ear. In this study, we detected TMEM119+, CD11b+, CD45+ and Iba1+ populations of cells in the rat cochlea, particularly in Rosenthal's canal, inner sulcus and stria vascularis. Next, we isolated and enriched the population of CD11b+ cells from the cochlea and immortalized these cells with the 12S E1A gene of adenovirus in a replication-incompetent retroviral vector to derive a novel microglial cell line, designated Mocha (microglia of the cochlea). The resulting Mocha cells express a number of markers consistent with microglia and respond to lipopolysaccharide (LPS) stimulation by upregulation of genes (Cox2, ICAM-1, Il6r, Ccl2, Il13Ra and Il15Ra) as well as releasing cytokines (IL-1beta, IL-12, IL-13 and RANTES). As evidence of microglial function, Mocha cells phagocytose fluorescent beads at 37°C, but not at 4°C. The expression pattern of microglial markers in Mocha cells suggests that immortalization leads to a more primitive phenotype, a common phenomenon in immortalized cell lines. In summary, Mocha cells display key characteristics of microglia and are now available as a useful model system for the study of cochlear microglial behavior, both in vitro and in vivo.
Collapse
Affiliation(s)
- G M Seigel
- University at Buffalo, Center For Hearing & Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.
| | - S Manohar
- University at Buffalo, Center For Hearing & Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.
| | - Y Y Bai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China.
| | - D Ding
- University at Buffalo, Center For Hearing & Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.
| | - R Salvi
- University at Buffalo, Center For Hearing & Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States; Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan.
| |
Collapse
|
13
|
Gao K, Ding D, Sun H, Roth J, Salvi R. Kanamycin Damages Early Postnatal, but Not Adult Spiral Ganglion Neurons. Neurotox Res 2017; 32:603-613. [PMID: 28656549 PMCID: PMC5711550 DOI: 10.1007/s12640-017-9773-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 01/13/2023]
Abstract
Although aminoglycoside antibiotics such as kanamycin are widely used clinically to treat life-threatening bacterial infections, ototoxicity remains a significant dose-limiting side effect. The prevailing view is that the hair cells are the primary ototoxic target of aminoglycosides and that spiral ganglion neurons begin to degenerate weeks or months after the hair cells have died due to lack of neurotrophic support. To test the early developmental aspects of this issue, we compared kanamycin-induced hair cell and spiral ganglion pathology in rat postnatal day 3 cochlear organotypic cultures with adult whole cochlear explants. In both adult and postnatal day 3 cultures, hair cell damage began at the base of the cochleae and progressed toward the apex in a dose-dependent manner. In postnatal day 3 cultures, spiral ganglion neurons were rapidly destroyed by kanamycin prior to hair cell loss. In contrast, adult spiral ganglion neurons were resistant to kanamycin damage even at the highest concentration, consistent with in vivo models of delayed SGN degeneration. In postnatal day 3 cultures, kanamycin preferentially damaged type I spiral ganglion neurons, whereas type II neurons were resistant. Spiral ganglion degeneration of postnatal day 3 neurons was associated with upregulation of the superoxide radical and caspase-3-mediated cell death. These results show for the first time that kanamycin is toxic to postnatal day 3 spiral ganglion neurons, but not adult neurons.
Collapse
Affiliation(s)
- Kelei Gao
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Hong Sun
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Jerome Roth
- Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan
| | - Richard Salvi
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China.
- Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan.
| |
Collapse
|
14
|
Zhao N, Tai X, Zhai L, Shi L, Chen D, Yang B, Ji F, Hou K, Yang S, Gong S, Liu K. Unitary ototoxic gentamicin exposure may not disrupt the function of cochlear outer hair cells in mice. Acta Otolaryngol 2017; 137:842-849. [PMID: 28332931 DOI: 10.1080/00016489.2017.1295470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Previous study showed that mild ototoxic exposure could induce a reversible hearing impairment, and the loss and secondary incomplete recovery of cochlear ribbon synapses could be responsible for the hearing loss. However, it remains unclear whether cochlear outer hair cells' (OHCs) functions are affected. OBJECTIVE To verify whether the function of OHCs are also affected significantly after the ototoxic exposure. METHODS Mice were injected intraperitoneally with 100 mg/kg concentration of gentamicin daily for 14 days. Distortion Product of Oto-acoustic Emission (DPOAE) was detected at control (pre-treatment), Day 0, day 4, day 7, day 14 and day 28 after the ototoxic exposure, respectively. In addition, the morphology of OHCs was observed by electron microscopy, OHCs has been counted by light microscopy, and the hearing thresholds were detected by auditory brain response (ABR). RESULTS No significant changes have been found in OHC and OHC stereocilia among the experimental groups (p > .05). Further, no significant changes or loss was found in the morphology of OHCs either. However, we found ABR threshold elevations occurred after ototoxic exposure. CONCLUSIONS Unitary ototoxic gentamicin exposure may not disrupt the function of cochlear OHCs in mice, regardless of hearing loss identified in this ototoxic exposure.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Otolaryngology—Head and Neck Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Otolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - XuHui Tai
- Department of Otolaryngology, The No 463rd Hospital of PLA, Shenyang, China
| | - LiJie Zhai
- Department of Otolaryngology—Head and Neck Surgery, The First Affiliated Hospital of DaLian Medical Universty, Dalian, China
| | - Lin Shi
- Department of Otolaryngology—Head and Neck Surgery, The First Affiliated Hospital of DaLian Medical Universty, Dalian, China
| | - DaiShi Chen
- Department of Neurosurgery, Medical Faculty of the Friedrich Alexander University of Erlangen-Numberg (FAU), Erlangen, Germany
- Department of Otolaryngology—Head and Neck Surgery, General Hospital of PLA and the E.N.T Institute of PLA, Beijing, China
| | - Bo Yang
- Department of Otolaryngology—Head and Neck Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Ji
- Department of Otolaryngology—Head and Neck Surgery, General Hospital of PLA and the E.N.T Institute of PLA, Beijing, China
| | - Kun Hou
- Department of Otolaryngology—Head and Neck Surgery, General Hospital of PLA and the E.N.T Institute of PLA, Beijing, China
| | - ShiMing Yang
- Department of Otolaryngology—Head and Neck Surgery, General Hospital of PLA and the E.N.T Institute of PLA, Beijing, China
| | - ShuSheng Gong
- Department of Otolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Edizer DT, Yigit O, Cinar Z, Gul M, Kara E, Yigitcan B, Hayır D, Atas A. Protective role of intratympanic nigella sativa oil against gentamicin induced hearing loss. Int J Pediatr Otorhinolaryngol 2017; 97:83-88. [PMID: 28483257 DOI: 10.1016/j.ijporl.2017.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/26/2017] [Accepted: 03/29/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Aminoglycosides, used to combat with life-threatening infections, have a substantial risk of hearing loss. Nigella sativa is an annual herbaceous plant and used for treatment of many diseases for ages. We aimed to investigate the protective role of intratympanic nigella sativa oil against gentamicin induced hearing loss in an animal model. METHODS AND MATERIALS Twenty eight guinea pigs were randomly divided into four groups: i-control, ii- Intratympanic nigella sativa oil (IT-NSO), iii- Intraperitoneal gentamicin (IP-G) and iv- Intraperitoneal gentamicin and intratympanic nigella sativa oil (IP-G + IT-NSO). Preoperative and postoperative hearing thresholds were determined with auditory brainstem response with click and 8 kHz tone-burst stimuli. Histological analysis of the cochlea specimens were performed under light microscope. Semiquantitative grading of the histological findings was carried out and compared between the groups. RESULTS Highest posttreatment hearing thresholds were detected in IP-G group. Posttreatment mean hearing threshold of the IP-G group with click stimulus was significantly higher than the IP-G + IT-NSO group (p = 0.004). whereas the difference was not significant with 8 kHz tone-burst stimulus (p = 0.137). Both IP-G and IP-G + IT-NSO groups had significantly higher hearing thresholds compared to control and IT-NSO groups (p > 0.05). Histological examination of the control and IT-NSO groups demonstrated normal appearance of cochlear nerve, stria vascularis and organ of Corti. IP-G group showed the most severe histological alterations including hydropic and vacuolar degenerations, hair cell damage and deformation of the basilar mambrane. Histological evidence of damage was significantly reduced in IP-G + IT-NSO group compared to IP-G group. CONCLUSION Addition of intratympanic NSO to systemic gentamicin was demonstrated to have beneficial effects in hearing thresholds which was supported by histological findings.
Collapse
Affiliation(s)
- Deniz Tuna Edizer
- Istanbul Training and Research Hospital, Department of Otorhinolaryngology, Istanbul, Turkey.
| | - Ozgur Yigit
- Istanbul Training and Research Hospital, Department of Otorhinolaryngology, Istanbul, Turkey
| | - Zehra Cinar
- Istanbul Training and Research Hospital, Department of Otorhinolaryngology, Istanbul, Turkey
| | - Mehmet Gul
- Inonu University Medical Faculty, Department of Histology and Embryology, Malatya, Turkey
| | - Eyyup Kara
- Istanbul University, Faculty of Health Sciences, Department of Audiology, Istanbul, Turkey
| | - Birgul Yigitcan
- Inonu University Medical Faculty, Department of Histology and Embryology, Malatya, Turkey
| | - Duygu Hayır
- Istanbul University, Faculty of Health Sciences, Department of Audiology, Istanbul, Turkey
| | - Ahmet Atas
- Istanbul University, Cerrahpasa Medical School, Department of Otorhinolaryngology, Istanbul, Turkey
| |
Collapse
|
16
|
Sang L, Zheng T, Min L, Zhang X, Ma X, Entenman S, Su Y, Zheng Q. Otoprotective effects of ethosuximide in NOD/LtJ mice with age-related hearing loss. Int J Mol Med 2017; 40:146-154. [PMID: 28560432 PMCID: PMC5466398 DOI: 10.3892/ijmm.2017.3004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/12/2017] [Indexed: 11/30/2022] Open
Abstract
Despite long-term efforts to elucidate the mechanisms responsible for age-related hearing loss (AHL), there is currently no available treatment strategy able to provide a cure. Apoptotic cell death, including that of hair cells and spiral ganglion neurons (SGNs) in the cochlea has been proposed to be the classic theory behind the development of AHL. As calcium signaling plays key roles in signal transduction in apoptosis, in this study, we selected ethosuximide, which is able to block T-type calcium (Ca2+ion) channels, suppressing Ca2+. We hypothesized that the apoptotic pathway may be blocked through the inhibition of T-type Ca2+ channels in cochlear cells in NOD/LtJ mice. NOD/LtJ mice were divided into 2 groups as follows: the ethosuximide-treated and untreated (control) groups. Ethosuximide was administered by intraperitoneal injection every other day from post-natal day seven (P7) until the mice were 8 weeks of age. Following treatment, auditory-evoked brainstem response (ABR) thresholds and distortion product oto-acoustic emission (DPOAE) of the mice in the 2 groups were measured at different time points. Morphometric analysis and the expression of genes involved in the T-type Ca2+-mediated apoptotic pathway were monitored. The ABR and DPOAE results revealed that the NOD/LtJ mice exhibited early-onset and rapidly progressive AHL. A histological examination revealed that hair cell degeneration coincided with the progression of hearing loss. Hair cell and SGN was were significantly lower and auditory function was significantly improved in the ethosuximide-treated group compared to the untreated group. Our data thus indicate that ethosuximide prevents the degeneration of cochlear cells by regulating the expression of genes in apoptotic pathways. Our findings suggest that activating the T-type Ca2+ channel and downstream genes may be key pathological mechanisms responsible for AHL in NOD/LtJ mice.
Collapse
Affiliation(s)
- Lu Sang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Tihua Zheng
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Lingqian Min
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Xiaolin Zhang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Xiufang Ma
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Shami Entenman
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106-4952, USA
| | - Yipeng Su
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Qingyin Zheng
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106-4952, USA
| |
Collapse
|
17
|
Ma X, Liu Y, Muhammad W, Liu D, Wang J, Zhou H, Gao X, Qian X. Autophagy-related protein 12 associates with anti-apoptotic B cell lymphoma-2 to promote apoptosis in gentamicin-induced inner ear hair cell loss. Mol Med Rep 2017; 15:3819-3825. [PMID: 28440437 DOI: 10.3892/mmr.2017.6458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 02/15/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the underlying mechanisms of autophagy in a gentamicin (GM)-induced ototoxic model, and to establish whether the blocking of autophagy significantly increases the survival of inner ear hair cells. Cochleae were carefully dissected from four day‑old C57BL/6J mice and randomly divided into three groups prior to explant culture: Control (culture medium), GM‑treated (culture medium + GM) and GM + 3-methyladenine (3-MA; culture medium + GM + 3‑MA). Transmission electron microscopy, immunofluorescence and western blotting were performed to observe the expression of the autophagy protein microtubule‑associated protein 1A/B‑light chain 3 in explant cultures treated with GM and the autophagy inhibitor 3‑MA. Administration of GM in in vitro mouse cochlear culture induced apoptosis and the formation of autophagic vesicles and autophagosomes in hair cells. Notably, combined treatment with GM and 3‑MA to block autophagy significantly increased the survival of inner ear hair cells. Furthermore, it was indicated that the simultaneous expression and interaction of Atg12 with Bcl‑2 following GM treatment co‑integrated autophagy with apoptosis in the cochlea. The results of the present study demonstrated that autophagy was involved in GM-induced ototoxicity. Additionally, Atg12 may serve a protective role by binding to Bcl‑2. Therefore, Atg12 may be a potential therapeutic target for the treatment of GM-induced cochlear hair loss.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Otorhinolaryngology‑Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Yongze Liu
- Department of Otorhinolaryngology‑Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China
| | - Waqas Muhammad
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, P.R. China
| | - Dingding Liu
- Department of Otorhinolaryngology‑Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China
| | - Junguo Wang
- Department of Otorhinolaryngology‑Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China
| | - Han Zhou
- Department of Otorhinolaryngology‑Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China
| | - Xia Gao
- Department of Otorhinolaryngology‑Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaoyun Qian
- Department of Otorhinolaryngology‑Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
18
|
Park C, Ji HM, Kim SJ, Kil SH, Lee JN, Kwak S, Choe SK, Park R. Fenofibrate exerts protective effects against gentamicin-induced toxicity in cochlear hair cells by activating antioxidant enzymes. Int J Mol Med 2017; 39:960-968. [PMID: 28290603 PMCID: PMC5360428 DOI: 10.3892/ijmm.2017.2916] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 02/24/2017] [Indexed: 12/19/2022] Open
Abstract
Fenofibrate, an activator of peroxisome proliferator-activated receptors (PPARs), has been shown to protect the kidneys and brain cells from oxidative stress; however, its role in preventing hearing loss has not been reported to date, at least to the best of our knowledge. In this study, we demonstrated the protective effects of fenofibrate against gentamicin (GM)-induced ototoxicity. We found that the auditory brainstem response threshold which was increased by GM was significantly reduced by pre-treatment with fenofibrate in rats. In cochlear explants, the disruption of hair cell layers by GM was also markedly attenuated by pre-treatment with fenofibrate. In addition, fenofibrate almost completely abolished GM-induced reactive oxygen species generation, which seemed to be mediated at least in part by the restoration of the expression of PPAR-α-dependent antioxidant enzymes, including catalase and superoxide dismutase (SOD)-1. Of note, fenofibrate markedly increased the expression of heme oxygenase-1 (HO-1) which was also induced to a certain degree by GM alone. The induced expression of HO-1 by fenofibrate appeared to be essential for mediating the protective effects of fenofibrate, as the inhibition of HO-1 activity significantly diminished the protective effects of fenofibrate against the GM-mediated death of sensory hair cells in cochlea explant culture, as well as in zebrafish neuromasts. These results suggest that fenofibrate protects sensory hair cells from GM-induced toxicity by upregulating PPAR-α-dependent antioxidant enzymes, including HO-1. Our results provide insight into the preventive therapy for hearing loss caused by aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Channy Park
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hye-Min Ji
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Se-Jin Kim
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Hee Kil
- Division of Cell Biology and Genetics, House Research Institute, Los Angeles, CA 90057, USA
| | - Joon No Lee
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seongae Kwak
- Zoonosis Research Center, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
19
|
O'Leary TP, Shin S, Fertan E, Dingle RN, Almuklass A, Gunn RK, Yu Z, Wang J, Brown RE. Reduced acoustic startle response and peripheral hearing loss in the 5xFAD mouse model of Alzheimer's disease. GENES BRAIN AND BEHAVIOR 2017; 16:554-563. [DOI: 10.1111/gbb.12370] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/30/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022]
Affiliation(s)
- T. P. O'Leary
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - S. Shin
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - E. Fertan
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - R. N. Dingle
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - A. Almuklass
- Department of Basic Medical Sciences; King Saud Bin Abdulaziz University for Health Science; Riyadh Saudi Arabia
| | - R. K. Gunn
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - Z. Yu
- Department of School of Human Communication Disorders; Dalhousie University; Halifax Nova Scotia Canada
| | - J. Wang
- Department of School of Human Communication Disorders; Dalhousie University; Halifax Nova Scotia Canada
| | - R. E. Brown
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
20
|
Zeng S, Sun X, Chen Z, Yu D, Chen B, Yin S. Low, but Not High, Doses of Cisplatin Damage Cochlear Hair Cells in C57 Mouse Organotypic Cultures. ORL J Otorhinolaryngol Relat Spec 2016; 78:177-86. [PMID: 27270730 DOI: 10.1159/000446189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/12/2016] [Indexed: 11/19/2022]
Abstract
AIMS The purpose of this study was to investigate the characteristics of cisplatin-induced C57 mouse cochlear hair cell damage in vitro. METHODS Forty-seven cochleae harvested from 2- to 4-day-old C57 mice were used. Forty specimens were treated with different concentrations of cisplatin (10, 25, 50, 100, 400, and 1,000 μmol/l) for 48 h. The remaining seven specimens were used as a control group. RESULTS The rate of hair cell loss increased from 14.5 to 78.4% over cisplatin concentrations of 10 to 100 μmol/l, whereas hair cell loss decreased to 48.8 and 8.77% at concentrations of 400 and 1,000 μmol/l, respectively. Apoptosis was detected by DAPI staining in the areas of hair cell damage. Hair cell loss rates differed significantly among the cisplatin-treated groups. Linear regression analysis of cisplatin dose versus hair cell number showed a significant negative correlation for cisplatin doses up to 100 μmol/l and a positive correlation with further increases up to 1,000 μmol/l. CONCLUSIONS We conclude that cisplatin-induced hair cell damage was concentration dependent only up to a certain dose and that injury resistance may occur in cochlear cells treated with higher doses of cisplatin.
Collapse
Affiliation(s)
- Shan Zeng
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | | | | | | | |
Collapse
|
21
|
Astolfi L, Simoni E, Martini A. OC-k3 cells, anin vitromodel for cochlear implant biocompatibility. HEARING BALANCE AND COMMUNICATION 2015. [DOI: 10.3109/21695717.2015.1063232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Hu Y, Zhou LQ, Lu HT, Yuan K, Gong SS. Excitotoxic effects of glutamate on cochlear organotypic cultures. ACTA ACUST UNITED AC 2015; 35:117-121. [PMID: 25673204 DOI: 10.1007/s11596-015-1399-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/30/2014] [Indexed: 11/30/2022]
Abstract
Glutamate (Glu) is the major afferent excitatory neurotransmitter in the auditory system, and excessive Glu may play an important role in cochlear dysfunction. It is unclear how excessive Glu plays roles in cochlear dysfunction in cochlear organotypic cultures. In this study neonatal rat cochlear organotypic cultures were prepared, and then the cochlear tissues were incubated with a new medium containing specific concentrations of Glu (0.1, 0.5, 1, 10 or 20 mmol/L) for 24 h, or incubated with the medium containing a concentration of 20 mmol/L Glu for 6, 12, 24 or 72 h, respectively. It was found that when the cochlear tissues were cultured for 24 h, the inner hair cells (IHCs) were damaged at the concentration of 0.5 mmol/L Glu, and with the increases of the concentrations, the injury was gradually aggravated, and 20 mmol/L Glu resulted in the significant loss of IHCs. In the 20 mmol/L Glu groups, the stereocilia bundles were missing or disarrayed on a few IHCs after culture for 6 h and the damage effect was time-dependent. The missing of IHCs was more significant in the basal turn of the cochlea than in the middle turn of the cochlea under the same concentration of Glu exposure. These results suggest that excessive exogenous Glu affects the morphology of IHCs, but not affects the outer hair cells (OHCs) in cochlear organotypic cultures, and the excitotoxic effects are different on IHCs of different parts of the cochlea under the same concentration of Glu exposure.
Collapse
Affiliation(s)
- Yao Hu
- Department of Otolaryngology-Head and Neck Surgery, Wuhan Central Hospital, Wuhan, 430014, China
| | - Liu-Qing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hai-Tao Lu
- Department of Otorhinolaryngology, Jingzhou Central Hospital, Jingzhou, 434020, China
| | - Kun Yuan
- Department of Otolaryngology-Head and Neck Surgery, Wuhan Central Hospital, Wuhan, 430014, China.
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Beijing Tongren Hospital of Capital Medical University and Beijing Institute of Otolaryngology, Beijing, 100069, China.
| |
Collapse
|
23
|
Protective effect of metformin on gentamicin-induced vestibulotoxicity in rat primary cell culture. Clin Exp Otorhinolaryngol 2014; 7:286-94. [PMID: 25436048 PMCID: PMC4240486 DOI: 10.3342/ceo.2014.7.4.286] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/18/2014] [Accepted: 03/29/2014] [Indexed: 11/24/2022] Open
Abstract
Objectives One of the antidiabetic drugs, metformin, have shown that it prevented oxidative stress-induced death in several cell types through a mechanism involving the opening of the permeability transition pore and cytochrome c release. Thus, it is possible that the antioxidative effect of metformin can also serve as protection against gentamicin-induced cytotoxicity related to reactive oxygen species (ROS). The aim of this study was to examine the protective effect of metformin on gentamicin-induced vestibulotoxicity in primary cell culture derived from rat utricle. Methods For vestibular primary cell culture, rat utricles were dissected and incubated. Gentamicin-induced cytotoxicity was measured in both the auditory and vestibular cells. To examine the effects of metformin on gentamicin-induced cytotoxicity in the primary cell culture, the cells were pretreated with metformin at a concentration of 1 mM for 24 hours, and then exposed to 2.5 mM gentamicin for 48 hours. The intracellular ROS level was measured using a fluorescent dye, and also measured using a FACScan flow cytometer. Intracellular calcium levels in the vestibular cells were measured with calcium imaging using Fura-2 AM. Results Vestibular cells were more sensitive to gentamicin-induced cytotoxicity than auditory hair cells. Metformin protects against gentamicin-induced cytotoxicity in vestibular cells. Metformin significantly reduced a gentamicin-induced increase in ROS, and also reduced an increase in intracellular calcium concentrations in gentamicin-induced cytotoxicity. Conclusion Metformin significantly reduced a gentamicin-induced increase in ROS, stabilized the intracellular calcium concentration, and inhibited gentamicin-induced apoptosis. Thus, Metformin showed protective effect on gentamicin-induced cytotoxicity in vestibular primary cell culture.
Collapse
|
24
|
Spontaneous and Partial Repair of Ribbon Synapse in Cochlear Inner Hair Cells After Ototoxic Withdrawal. Mol Neurobiol 2014; 52:1680-1689. [PMID: 25377793 DOI: 10.1007/s12035-014-8951-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
Ototoxicity is one of the major causes of sensorineural deafness. However, it remains unclear whether sensorineural deafness is reversible after ototoxic withdrawal. Here, we report that the ribbon synapses between the inner hair cells (IHCs) and spiral ganglion nerve (SGN) fibers can be restored after ototoxic trauma. This corresponds with hearing restoration after ototoxic withdrawal. In this study, adult mice were injected daily with a low dose of gentamicin for 14 consecutive days. Immunostaining for RIBEYE/CtBP2 was used to estimate the number and size of synaptic ribbons in the cochlea. Hearing thresholds were assessed using auditory brainstem responses. Auditory temporal processing between IHCs and SGNs was evaluated by compound action potentials. We found automatic hearing restoration after ototoxicity withdrawal, which corresponded to the number and size recovery of synaptic ribbons, although both hearing and synaptic recovery were not complete. Thus, our study indicates that sensorineural deafness in mice can be reversible after ototoxic withdrawal due to an intrinsic repair of ribbon synapse in the cochlea.
Collapse
|
25
|
Effect of intratympanic dimethyl sulphoxide (DMSO) in an in vivo model of cisplatin-related ototoxicity. Eur Arch Otorhinolaryngol 2014; 271:3121-6. [DOI: 10.1007/s00405-014-2957-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/17/2014] [Indexed: 12/14/2022]
|
26
|
Cadmium-Induced Ototoxicity in Rat Cochlear Organotypic Cultures. Neurotox Res 2014; 26:179-89. [DOI: 10.1007/s12640-014-9461-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|
27
|
Coffin AB, Williamson KL, Mamiya A, Raible DW, Rubel EW. Profiling drug-induced cell death pathways in the zebrafish lateral line. Apoptosis 2014; 18:393-408. [PMID: 23413197 DOI: 10.1007/s10495-013-0816-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Programmed cell death (PCD) is an important process in development and disease, as it allows the body to rid itself of unwanted or damaged cells. However, PCD pathways can also be activated in otherwise healthy cells. One such case occurs in sensory hair cells of the inner ear following exposure to ototoxic drugs, resulting in hearing loss and/or balance disorders. The intracellular pathways that determine if hair cells die or survive following this or other ototoxic challenges are incompletely understood. We use the larval zebrafish lateral line, an external hair cell-bearing sensory system, as a platform for profiling cell death pathways activated in response to ototoxic stimuli. In this report the importance of each pathway was assessed by screening a custom cell death inhibitor library for instances when pathway inhibition protected hair cells from the aminoglycosides neomycin or gentamicin, or the chemotherapy agent cisplatin. This screen revealed that each ototoxin likely activated a distinct subset of possible cell death pathways. For example, the proteasome inhibitor Z-LLF-CHO protected hair cells from either aminoglycoside or from cisplatin, while D-methionine, an antioxidant, protected hair cells from gentamicin or cisplatin but not from neomycin toxicity. The calpain inhibitor leupeptin primarily protected hair cells from neomycin, as did a Bax channel blocker. Neither caspase inhibition nor protein synthesis inhibition altered the progression of hair cell death. Taken together, these results suggest that ototoxin-treated hair cells die via multiple processes that form an interactive network of cell death signaling cascades.
Collapse
Affiliation(s)
- Allison B Coffin
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Box 357923, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
28
|
Wang L, Ding D, Salvi R, Roth JA. Nicotinamide adenine dinucleotide prevents neuroaxonal degeneration induced by manganese in cochlear organotypic cultures. Neurotoxicology 2013; 40:65-74. [PMID: 24308914 DOI: 10.1016/j.neuro.2013.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 01/17/2023]
Abstract
Manganese (Mn) is an essential trace mineral for normal growth and development. Persistent exposures to high atmospheric levels of Mn have deleterious effects on CNS and peripheral nerves including those associated with the auditory system. Nicotinamide adenine dinucleotide (NAD) is a coenzyme which functions in the electron transfer system within the mitochondria. One of the most notable protective functions of NAD is to delay axonal degenerations caused by various neurodegenerative injuries. We hypothesized that NAD might also protect auditory nerve fibers (ANF) and SGN from Mn injury. To test this hypothesis, cochlear organotypic cultures were treated with different doses of Mn (0.5-3.0 mM) alone or combined with 20 mM NAD. Results demonstrate that the percentage of hair cells, ANF and SGN decreased with increasing Mn concentration. The addition of 20 mM NAD did not significantly reduce hair cells loss in the presence of Mn, whereas the density of ANF and SGN increased significantly in the presence of NAD. NAD suppressed Mn-induced TUNEL staining and caspase activation suggesting it prevents apoptotic cell death. These results suggest that excess Mn has ototoxic and neurotoxic effects on the auditory system and that NAD may prevent Mn-induced axonal degeneration and avoid or delay hearing loss caused by excess Mn exposure.
Collapse
Affiliation(s)
- Lu Wang
- Department of Otolaryngology, Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, United States
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, United States; Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, United States
| | - Jerome A Roth
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, United States.
| |
Collapse
|
29
|
Ding D, Qi W, Yu D, Jiang H, Han C, Kim MJ, Katsuno K, Hsieh YH, Miyakawa T, Salvi R, Tanokura M, Someya S. Addition of exogenous NAD+ prevents mefloquine-induced neuroaxonal and hair cell degeneration through reduction of caspase-3-mediated apoptosis in cochlear organotypic cultures. PLoS One 2013; 8:e79817. [PMID: 24223197 PMCID: PMC3819247 DOI: 10.1371/journal.pone.0079817] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mefloquine is widely used for the treatment of malaria. However, this drug is known to induce neurological side effects including depression, anxiety, balance disorder, and sensorineural hearing loss. Yet, there is currently no treatment for these side effects. PRINCIPAL FINDINGS In this study, we show that the coenzyme NAD(+), known to play a critical role in maintaining the appropriate cellular redox environment, protects cochlear axons and sensory hair cells from mefloquine-induced degeneration in cultured rat cochleae. Mefloquine alone destroyed hair cells and nerve fiber axons in rat cochlear organotypics cultures in a dose-dependent manner, while treatment with NAD(+) protected axons and hair cells from mefloquine-induced degeneration. Furthermore, cochlear organs treated with mefloquine showed increased oxidative stress marker levels, including superoxide and protein carbonyl, and increased apoptosis marker levels, including TUNEL-positive nuclei and caspases-3. Treatment with NAD(+) reduced the levels of these oxidative stress and apoptosis markers. CONCLUSIONS/SIGNIFICANCE Taken together, our findings suggest that that mefloquine disrupts the cellular redox environment and induces oxidative stress in cochlear hair cells and nerve fibers leading to caspases-3-mediated apoptosis of these structures. Exogenous NAD(+) suppresses mefloquine-induced oxidative stress and prevents the degeneration of cochlear axons and sensory hair cells caused by mefloquine treatment.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
- Sixth People’s Hospital, Shanghai Oriental Otolaryngology Institute, Shanghai Jiao Tong University, Shanghai, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Weidong Qi
- Department of Otolaryngology-Head and Neck Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Dongzhen Yu
- Sixth People’s Hospital, Shanghai Oriental Otolaryngology Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Jiang
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Chul Han
- Departments of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, Florida, United States of America
| | - Mi-Jung Kim
- Departments of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, Florida, United States of America
| | - Kana Katsuno
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Yun Hua Hsieh
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
- * E-mail: (MT); (SS)
| | - Shinichi Someya
- Departments of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MT); (SS)
| |
Collapse
|
30
|
Ouabain-induced apoptosis in cochlear hair cells and spiral ganglion neurons in vitro. BIOMED RESEARCH INTERNATIONAL 2013; 2013:628064. [PMID: 24228256 PMCID: PMC3818842 DOI: 10.1155/2013/628064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/16/2013] [Indexed: 11/20/2022]
Abstract
Ouabain is a common tool to explore the pathophysiological changes in adult mammalian cochlea in vivo. In prior studies, locally administering ouabain via round window membrane demonstrated that the ototoxic effects of ouabain in vivo varied among mammalian species. Little is known about the ototoxic effects in vitro. Thus, we prepared cochlear organotypic cultures from postnatal day-3 rats and treated these cultures with ouabain at 50, 500, and 1000 μM for different time to elucidate the ototoxic effects of ouabain in vitro and to provide insights that could explain the comparative ototoxic effects of ouabain in vivo. Degeneration of cochlear hair cells and spiral ganglion neurons was evaluated by hair-cell staining and neurofilament labeling, respectively. Annexin V staining was used to detect apoptotic cells. A quantitative RT-PCR apoptosis-focused gene array determined changes in apoptosis-related genes. The results showed that ouabain-induced damage in vitro was dose and time dependent. 500 μM ouabain and 1000 μM ouabain were destructively traumatic to both spiral ganglion neurons and cochlear hair cells in an apoptotic signal-dependent pathway. The major apoptotic pathways in ouabain-induced spiral ganglion neuron apoptosis culminated in the stimulation of the p53 pathway and triggering of apoptosis by a network of proapoptotic signaling pathways.
Collapse
|
31
|
Chang L, Wang A. Calpain mediated cisplatin-induced ototoxicity in mice. Neural Regen Res 2013; 8:1995-2002. [PMID: 25206508 PMCID: PMC4145908 DOI: 10.3969/j.issn.1673-5374.2013.21.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/06/2013] [Indexed: 11/18/2022] Open
Abstract
Ototoxic drug-induced apoptosis of inner ear cells has been shown to be associated with calpain expression. Cisplatin has severe ototoxicity, and can induce cochlear cell apoptosis. This study assumed that cisplatin activated calpain expression in apoptotic cochlear cells. A mouse model of cisplatin-induced ototoxicity was established by intraperitoneal injection with cisplatin (2.5, 3.5, 4.5, 5.5 mg/kg). Immunofluorescence staining, image analysis and western blotting were used to detect the expression of calpain 1 and calpain 2 in the mouse cochlea. At the same time, the auditory brainstem response was measured to observe the change in hearing. Results revealed that after intraperitoneal injection with cisplatin for 5 days, the auditory brainstem response threshold shifts increased in mice. Calpain 1 and calpain 2 expression significantly increased in outer hair cells, the spiral ganglion and stria vascularis. Calpain 2 protein expression markedly increased with an increased dose of cisplatin. Results suggested that calpain 1 and calpain 2 mediated cisplatin-induced ototoxicity in BALB/c mice. During this process, calpain 2 plays a leading role.
Collapse
Affiliation(s)
- Liang Chang
- Party and Government Affairs Office, Jinzhou Central Hospital, Jinzhou 121001, Liaoning Province, China
| | - Aimei Wang
- Department of Physiology, Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
32
|
Wang P, Zhang P, Huang J, Li M, Chen X. Trichostatin A protects against cisplatin-induced ototoxicity by regulating expression of genes related to apoptosis and synaptic function. Neurotoxicology 2013; 37:51-62. [DOI: 10.1016/j.neuro.2013.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/10/2013] [Accepted: 03/18/2013] [Indexed: 11/25/2022]
|
33
|
Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death. J Neurosci 2013; 33:7513-25. [PMID: 23616556 DOI: 10.1523/jneurosci.4559-12.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intracellular Ca(2+) is a key regulator of life or death decisions in cultured neurons and sensory cells. The role of Ca(2+) in these processes is less clear in vivo, as the location of these cells often impedes visualization of intracellular Ca(2+) dynamics. We generated transgenic zebrafish lines that express the genetically encoded Ca(2+) indicator GCaMP in mechanosensory hair cells of the lateral line. These lines allow us to monitor intracellular Ca(2+) dynamics in real time during aminoglycoside-induced hair cell death. After exposure of live larvae to aminoglycosides, dying hair cells undergo a transient increase in intracellular Ca(2+) that occurs shortly after mitochondrial membrane potential collapse. Inhibition of intracellular Ca(2+) elevation through either caged chelators or pharmacological inhibitors of Ca(2+) effectors mitigates toxic effects of aminoglycoside exposure. Conversely, artificial elevation of intracellular Ca(2+) by caged Ca(2+) release agents sensitizes hair cells to the toxic effects of aminoglycosides. These data suggest that alterations in intracellular Ca(2+) homeostasis play an essential role in aminoglycoside-induced hair cell death, and indicate several potential therapeutic targets to stem ototoxicity.
Collapse
|
34
|
Dalian D, Haiyan J, Yong F, Yongqi L, Salvi R, Someya S, Tanokura M. Ototoxic Model of Oxaliplatin and Protection from Nicotinamide Adenine Dinucleotide. J Otol 2013; 8:63-71. [PMID: 25419212 DOI: 10.1016/s1672-2930(13)50009-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oxaliplatin, an anticancer drug commonly used to treat colorectal cancer and other tumors, has a number of serious side effects, most notably neuropathy and ototoxicity. To gain insights into its ototoxic profile, oxaliplatin was applied to rat cochlear organ cultures. Consistent with it neurotoxic propensity, oxaliplatin selectively damaged nerve fibers at a very low dose 1 μM. In contrast, the dose required to damage hair cells and spiral ganglion neurons was 50 fold higher (50 μM). Oxailiplatin-induced cochlear lesions initially increased with dose, but unexpectedly decreased at very high doses. This non-linear dose response could be related to depressed oxaliplatin uptake via active transport mechanisms. Previous studies have demonstrated that axonal degeneration involves biologically active processes which can be greatly attenuated by nicotinamide adenine dinucleotide (NAD+). To determine if NAD+ would protect spiral ganglion axons and the hair cells from oxaliplatin damage, cochlear cultures were treated with oxaliplatin alone at doses of 10 μM or 50 μM respectively as controls or combined with 20 mM NAD+. Treatment with 10 μM oxaliplatin for 48 hours resulted in minor damage to auditory nerve fibers, but spared cochlear hair cells. However, when cochlear cultures were treated with 10 μM oxaliplatin plus 20 mM NAD+, most auditory nerve fibers were intact. 50 μM oxaliplatin destroyed most of spiral ganglion neurons and cochlear hair cells with apoptotic characteristics of cell fragmentations. However, 50 μM oxaliplatin plus 20 mM NAD+ treatment greatly reduced neuronal degenerations and hair cell missing. The results suggested that NAD+ provides significant protection against oxaliplatin-induced neurotoxicity and ototoxicity, which may be due to its actions of antioxidant, antiapoptosis, and energy supply.
Collapse
Affiliation(s)
- Ding Dalian
- Center for Hearing and Deafness, State University of New York at Buffalo, USA ; Sixth People's Hospital, Shanghai Oriental Otolaryngology Institute, Shanghai Jiao Tong University, China ; Xiangya Hospital, Central South University, China ; Department of Applied Biological Chemistry, University of Tokyo, Japan
| | - Jiang Haiyan
- Center for Hearing and Deafness, State University of New York at Buffalo, USA
| | - Fu Yong
- The First Officiated Hospital, College of Medicine, Zhejiang University
| | - Li Yongqi
- The Third Affiliated Hospital of Sun Yat-Sen University
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, USA
| | | | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Japan
| |
Collapse
|
35
|
Salicylate Selectively Kills Cochlear Spiral Ganglion Neurons by Paradoxically Up-regulating Superoxide. Neurotox Res 2013; 24:307-19. [DOI: 10.1007/s12640-013-9384-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 12/12/2022]
|
36
|
Patel M, Cai Q, Ding D, Salvi R, Hu Z, Hu BH. The miR-183/Taok1 target pair is implicated in cochlear responses to acoustic trauma. PLoS One 2013; 8:e58471. [PMID: 23472202 PMCID: PMC3589350 DOI: 10.1371/journal.pone.0058471] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/05/2013] [Indexed: 12/31/2022] Open
Abstract
Acoustic trauma, one of the leading causes of sensorineural hearing loss, induces sensory hair cell damage in the cochlea. Identifying the molecular mechanisms involved in regulating sensory hair cell death is critical towards developing effective treatments for preventing hair cell damage. Recently, microRNAs (miRNAs) have been shown to participate in the regulatory mechanisms of inner ear development and homeostasis. However, their involvement in cochlear sensory cell degeneration following acoustic trauma is unknown. Here, we profiled the expression pattern of miRNAs in the cochlear sensory epithelium, defined miRNA responses to acoustic overstimulation, and explored potential mRNA targets of miRNAs that may be responsible for the stress responses of the cochlea. Expression analysis of miRNAs in the cochlear sensory epithelium revealed constitutive expression of 176 miRNAs, many of which have not been previously reported in cochlear tissue. Exposure to intense noise caused significant threshold shift and apoptotic activity in the cochleae. Gene expression analysis of noise-traumatized cochleae revealed time-dependent transcriptional changes in the expression of miRNAs. Target prediction analysis revealed potential target genes of the significantly downregulated miRNAs, many of which had cell death- and apoptosis-related functions. Verification of the predicted targets revealed a significant upregulation of Taok1, a target of miRNA-183. Moreover, inhibition of miR-183 with morpholino antisense oligos in cochlear organotypic cultures revealed a negative correlation between the expression levels of miR-183 and Taok1, suggesting the presence of a miR-183/Taok1 target pair. Together, miRNA profiling as well as the target analysis and validation suggest the involvement of miRNAs in the regulation of the degenerative process of the cochlea following acoustic overstimulation. The miR-183/Taok1 target pair is likely to play a role in this regulatory process.
Collapse
Affiliation(s)
- Minal Patel
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Qunfeng Cai
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Zihua Hu
- Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, Department of Ophthalmology, Department of Biostatistics, Department of Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Bo Hua Hu
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Dalian D, Haiyan J, Yong F, Salvi R, Someya S, Tanokura M. OTOTOXIC EFFECTS OF CARBOPLATIN IN ORGANOTYPIC CULTURES IN CHINCHILLAS AND RATS. J Otol 2012; 7:92-101. [PMID: 25593588 DOI: 10.1016/s1672-2930(12)50023-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Carboplatin, a second-generation platinum chemotherapeutic drug, is considerably less ototoxic than cisplatin. While common laboratory species such as mice, guinea pigs and rats are highly resistant to carboplatin ototoxicity, the chinchilla stands out as highly susceptible. Moreover, carboplatin causes an unusual gradient of cell death in chinchillas. Moderate doses selectively damage type I spiral ganglion neurons (SGN) and inner hair cells (IHC) and the lesion tends to be relatively uniform along the length of the cochlea. Higher doses eventually damage outer hair cells (OHC), but the lesion follows the traditional gradient in which damage is more severe in the base than the apex. While carboplatin ototoxicity has been well documented in adult animals in vivo, little is known about its in vitro toxicity. To elucidate the ototoxic effects of carboplatin in vitro, we prepared cochlear and vestibular organotypic cultures from postnatal day 3 rats and adult chinchillas. Chinchilla cochlear and vestibular cultures were treated with carboplatin concentrations ranging from 50 µM to 10 mM for 48 h. Consistent with in vivo data, carboplatin selectively damaged IHC at low concentrations (50-100 µM). Surprisingly, IHC loss decreased at higher doses and IHC were intact at doses exceeding 500 µM. The mechanisms underlying this nonlinear response are unclear but could be related to a decrease in carboplatin uptake via active transport mechanisms (e.g., copper). Unlike the cochlea, the carboplatin dose-response function increased with dose with the highest dose destroying all chinchilla vestibular hair cells. Cochlear hair cells and auditory nerve fibers in rat cochlear organotypic cultures were unaffected by carboplatin concentrations <10 µM; however, the damage in OHC were more severe than IHC once the dose reached 100 µM. A dose at 500 µM destroyed all the cochlear hair cells, but hair cell loss decreased at high concentrations and nearly all the cochlear hair cells were present at the highest dose, 5 mM. Unlike the nonlinear dose-response seen with cochlear hair cells, rat auditory nerve fiber and spiral ganglion losses increased with doses above 50 µM with the highest dose destroying virtually all SGN. The remarkable species differences seen in vitro suggest that chinchilla IHC and type I SGN posse some unique biological mechanism that makes them especially vulnerable to carboplatin toxicity.
Collapse
Affiliation(s)
- Ding Dalian
- Center for Hearing and Deafness, State University of New York at Buffalo ; Graduate School of Agricultural and Life Sciences, University of Tokyo
| | - Jiang Haiyan
- Center for Hearing and Deafness, State University of New York at Buffalo
| | - Fu Yong
- Center for Hearing and Deafness, State University of New York at Buffalo
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo
| | - Shinichi Someya
- Departments of Aging and Geriatric Research, Division of Biology of Aging, University of Florida
| | - Masaru Tanokura
- Graduate School of Agricultural and Life Sciences, University of Tokyo
| |
Collapse
|
38
|
Schacht J, Talaska AE, Rybak LP. Cisplatin and aminoglycoside antibiotics: hearing loss and its prevention. Anat Rec (Hoboken) 2012; 295:1837-50. [PMID: 23045231 DOI: 10.1002/ar.22578] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 07/24/2012] [Indexed: 12/19/2022]
Abstract
This review introduces the pathology of aminoglycoside antibiotic and the cisplatin chemotherapy classes of drugs, discusses oxidative stress in the inner ear as a primary trigger for cell damage, and delineates the ensuing cell death pathways. Among potentially ototoxic (damaging the inner ear) therapeutics, the platinum-based anticancer drugs and the aminoglycoside antibiotics are of critical clinical importance. Both drugs cause sensorineural hearing loss in patients, a side effect that can be reproduced in experimental animals. Hearing loss is reflected primarily in damage to outer hair cells, beginning in the basal turn of the cochlea. In addition, aminoglycosides might affect the vestibular system while cisplatin seems to have a much lower likelihood to do so. Finally, based on an understanding the mechanisms of ototoxicity pharmaceutical ways of protection of the cochlea are presented.
Collapse
Affiliation(s)
- Jochen Schacht
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109-5616, USA.
| | | | | |
Collapse
|
39
|
Fu Y, Ding D, Jiang H, Salvi R. Ouabain-induced cochlear degeneration in rat. Neurotox Res 2012; 22:158-69. [PMID: 22476946 DOI: 10.1007/s12640-012-9320-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 03/14/2012] [Accepted: 03/21/2012] [Indexed: 12/25/2022]
Abstract
Ouabain, a potent inhibitor of the Na+/K+-ATPase pump, selectively destroys spiral ganglion neurons (SGNs) in gerbils and mice, whereas in guinea pigs it preferentially damages cochlear hair cells. To elucidate the effects of ouabain on the rat inner ear, a species widely used in research, 5 μl of 1 or 10 mM ouabain was applied to the round window membrane. Distortion product otoacoustic emissions (DPOAE) and auditory brainstem responses (ABR) were used to identify functional deficits in hair cells and neurons, respectively, and histological techniques were used to characterize cochlear pathologies. High-frequency ABR thresholds were elevated after treatment with 1 mM ouabain, whereas DPOAEs remained normal. In contrast, 10 mM ouabain increased ABR thresholds and reduced DPOAE amplitudes. Consistent with the physiological changes, 1 mM ouabain only damaged the SGNs and auditory nerve fibers in the basal turn of the cochlea whereas 10 mM ouabain destroyed both SGNs and cochlear hair cells; damage was greatest near the base and decreased toward the apex. The nuclei of degenerating SGNs and hair cells were condensed and fragmented and many cells were TUNEL-positive, morphological features of apoptotic cell death. Thus, ouabain-induced cochlear degeneration in rats is apoptotic and concentration dependent; low concentrations preferentially damage SGNs in the base of the cochlea, producing an animal model of partial auditory neuropathy, whereas high concentrations damage both hair cells and SGNs with damage decreasing from the base toward the apex.
Collapse
Affiliation(s)
- Yong Fu
- Department of Otorhinolaryngology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | | | | | | |
Collapse
|
40
|
Gavriel H, Shulman A, Stracher A, Sohmer H. Leupeptin reduces impulse noise induced hearing loss. J Occup Med Toxicol 2011; 6:38. [PMID: 22206578 PMCID: PMC3286414 DOI: 10.1186/1745-6673-6-38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 12/29/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Exposure to continuous and impulse noise can induce a hearing loss. Leupeptin is an inhibitor of the calpains, a family of calcium-activated proteases which promote cell death. The objective of this study is to assess whether Leupeptin could reduce the hearing loss resulting from rifle impulse noise. METHODS A polyethelene tube was implanted into middle ear cavities of eight fat sand rats (16 ears). Following determination of auditory nerve brainstem evoked response (ABR) threshold in each ear, the animals were exposed to the noise of 10 M16 rifle shots. Immediately after the exposure, saline was then applied to one (control) ear and non-toxic concentrations of leupeptin determined in the first phase of the study were applied to the other ear, for four consecutive days. RESULTS Eight days after the exposure, the threshold shift (ABR) in the control ears was significantly greater (44 dB) than in the leupeptin ears (27 dB). CONCLUSION Leupeptin applied to the middle ear cavity can reduce the hearing loss resulting from exposure to impulse noise.
Collapse
Affiliation(s)
- Haim Gavriel
- Department of Otolaryngology Head and Neck Surgery Assaf Harofeh Medical Center, Zerifin, Israel.
| | | | | | | |
Collapse
|
41
|
Yorgason JG, Luxford W, Kalinec F. In vitro and in vivo models of drug ototoxicity: studying the mechanisms of a clinical problem. Expert Opin Drug Metab Toxicol 2011; 7:1521-34. [PMID: 21999330 DOI: 10.1517/17425255.2011.614231] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Drug ototoxicity represents one of the main preventable causes of deafness. Ototoxicity is a trait shared by aminoglycoside and macrolide antibiotics, antimalarial medications, loop diuretics, platinum-based chemotherapeutic agents, some NSAIDs and most recently described, acetaminophen when abused with narcotic medication. These medications are prescribed despite their side effects, which includes inner ear toxicity, because they are life-saving drugs or there is a lack of better treatment. AREAS COVERED This review will discuss in vitro and in vivo models of ototoxicity highlighting recently published ototoxicity research. The reader will learn the strengths and limitations of different ototoxicity models and what molecular insights have been gained from their application. A better understanding of the cellular mechanisms of these ototoxins will help in the discovery of ways to prevent and treat hearing loss associated with ototoxic medications. EXPERT OPINION There are benefits to both in vitro and in vivo models of ototoxicity. Research of a particular medication and its ototoxic mechanisms should draw from several models, enabling a better answer to the clinical question of prevention and treatment of inner ear drug toxicity.
Collapse
Affiliation(s)
- Joshua G Yorgason
- University of Utah, Adjunct Research Faculty, Division of Otolaryngology-Head and Neck Surgery, 50 N. Medical Drive, Salt Lake City, 84132, USA.
| | | | | |
Collapse
|
42
|
Chang J, Jung HH, Yang JY, Choi J, Im GJ, Chae SW. Protective role of antidiabetic drug metformin against gentamicin induced apoptosis in auditory cell line. Hear Res 2011; 282:92-6. [PMID: 21979311 DOI: 10.1016/j.heares.2011.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/25/2011] [Accepted: 09/20/2011] [Indexed: 11/30/2022]
Abstract
Besides their prominent function in cellular energy metabolism, the central role of mitochondria has been focused on control of cellular death in last decades. The mitochondrial permeability transition pore (PTP) is involved in the intrinsic pathway of apoptosis via the release of cytochrome c into cytosol. Metformin, a drug widely used in the treatment of type II diabetes, has recently received attention owing to new findings regarding its effect on apoptosis through mitochondrial permeability transition and cytochrome c release. The modulation of PTP is still unknown, but calcium is certainly the most important known inducer. In the present study, the preventive effects of metformin on gentamicin ototoxicity were investigated through the changes of intracellular calcium concentrations using calcium imaging in HEI-OC1 cells. Calcium imaging traced the changes of intracellular calcium concentration after the application of 50 mM of gentamicin in both 100 uM of metformin pretreated group and non-pretreated group. These calcium reactions were compared and analyzed with the results of cell viability test, Hoechst staining, intracellular reactive oxygen species level and expression of caspase-3, and poly-ADP-ribose polymerase (PARP). Continuous increase of intracellular calcium concentration (increase of 380/340 ratio) occurred after application of 50 mM of gentamicin. However, there was no change of intracellular calcium concentration in 100 uM metformin pretreated group. Cell viability was significantly higher in 100 uM metformin pretreated group and also, metformin pretreated HEI-OC1 cells produced less ROS that gentamicin alone treated group. Gentamicin increased cleaved PARP and caspase-3, but metformin inhibited the expression of caspase-3 and cleavage of PARP. This study demonstrated that metformin prevented gentamicin induced apoptosis through the calcium modulating and ROS reducing anti-apoptotic effects.
Collapse
Affiliation(s)
- Jiwon Chang
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Anam-Dong 5-Ga 126-1, Sungbuk-Gu, Seoul 136-705, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The modern era of evidence-based ototoxicity emerged in the 1940s following the discovery of aminoglycosides and their ototoxic side effects. New classes of ototoxins have been identified in subsequent decades, notably loop diuretics, antineoplastic drugs, and metal chelators. Ototoxic drugs are frequently nephrotoxic, as both organs regulate fluid and ion composition. The mechanisms of ototoxicity are as diverse as the pharmacological properties of each ototoxin, though the generation of toxic levels of reactive oxygen species appears to be a common denominator. As mechanisms of cytotoxicity for each ototoxin continue to be elucidated, a new frontier in ototoxicity is emerging: How do ototoxins cross the blood-labyrinth barrier that tightly regulates the composition of the inner ear fluids? Increased knowledge of the mechanisms by which systemic ototoxins are trafficked across the blood-labyrinth barrier into the inner ear is critical to developing new pharmacotherapeutic agents that target the blood-labyrinth barrier to prevent trafficking of ototoxic drugs and their cytotoxic sequelae.
Collapse
Affiliation(s)
- Peter S Steyger
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
44
|
Ding D, He J, Allman BL, Yu D, Jiang H, Seigel GM, Salvi RJ. Cisplatin ototoxicity in rat cochlear organotypic cultures. Hear Res 2011; 282:196-203. [PMID: 21854840 DOI: 10.1016/j.heares.2011.08.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 01/17/2023]
Abstract
Ototoxicity is a dose-limiting side effect of chemotherapeutic treatment with cisplatin. In a series of experiments on neonatal rat cochlear organotypic cultures, the extent of damage induced by a broad range of cisplatin treatment concentrations was examined. Paradoxically, it was found that hair cell loss was greater following 48 h exposure to low (10, 50 and 100 μM) versus high (400 and 1000 μM) concentrations of cisplatin; these findings indicate that hair cells possess intrinsic resistance to high levels of extracellular cisplatin. Using cisplatin conjugated to Alexa Fluor 488, it was found that cisplatin is readily taken up by hair cells at low concentrations, but is largely excluded at high concentrations. Recent studies indicate that the major influx of cisplatin into hair cells occurs via the copper transporter, Ctr1, whereas ATP7A and ATP7B are copper pumps responsible for cisplatin sequestration and efflux. Using immunolabeling procedures for these copper trafficking proteins, it was found that Ctr1 and ATP7B were localized in the hair cells, whereas ATP7A showed extensive labeling in the pillar cells in the organ of Corti. Additional experiments confirmed the protective effect of copper sulfate and cimetidine in attenuating cisplatin-induced hair cell loss. However, because neither copper sulfate nor cimetidine provided complete protection against cisplatin, and high levels of copper sulfate itself were found to be ototoxic, it is suggested that future therapeutic efforts may benefit from a combination of pharmacological treatments which seek to not only limit the uptake of cisplatin into cochlear cells but also increase its efflux.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Karasawa T, Steyger PS. Intracellular mechanisms of aminoglycoside-induced cytotoxicity. Integr Biol (Camb) 2011; 3:879-86. [PMID: 21799993 DOI: 10.1039/c1ib00034a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since introduction into clinical practice over 60 years ago, aminoglycoside antibiotics remain important drugs in the treatment of bacterial infections, cystic fibrosis and tuberculosis. However, the ototoxic and nephrotoxic properties of these drugs are still a major clinical problem. Recent advances in molecular biology and biochemistry have begun to uncover the intracellular actions of aminoglycosides that lead to cytotoxicity. In this review, we discuss intracellular binding targets of aminoglycosides, highlighting specific aminoglycoside-binding proteins (HSP73, calreticulin and CLIMP-63) and their potential for triggering caspases and Bcl-2 signalling cascades that are involved in aminoglycoside-induced cytotoxicity. We also discuss potential strategies to reduce aminoglycoside cytotoxicity, which are necessary for greater bactericidal efficacy during aminoglycoside pharmacotherapy.
Collapse
Affiliation(s)
- Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| | | |
Collapse
|
46
|
Transient ischemia/hypoxia enhances gentamicin ototoxicity via caspase-dependent cell death pathway. J Transl Med 2011; 91:1092-106. [PMID: 21519324 DOI: 10.1038/labinvest.2011.69] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aminoglycoside ototoxicity is a common cause of drug-induced hearing loss. Toxicity is dose related, but some patients may still develop hearing loss even under safe dosage. Apart for genetic idiosyncrasy, indirect evidences imply that ischemia may increase the aminoglycoside ototoxic sensitivity because common clinical situations associated with cochlear ischemia such as noise, sepsis, and shock are known to augment the development of aminoglycoside ototoxicity. At present, a direct interaction of cochlear ischemia and aminoglycoside ototoxicity is still lacking. This study demonstrated a direct evidence of increased gentamicin (GM) ototoxic sensitivity in chronic guinea pig models of transient cochlear ischemia. No permanent auditory changes were observed after a single dose of GM (125 mg/kg) or after transient cochlear ischemia for 30 min. Persistent and significant auditory threshold shift was detected when GM was given after transient cochlear ischemia. Cochlear hair cells and spiral ganglion neurons are the major regions affected. Apoptosis contributes to hair cell death during acute interaction of ischemia and GM ototoxicity. Increased apoptotic cell death was also depicted when GM crossreacted with hypoxia in vitro, using cochlear cell lines. Generation of reactive oxygen species, loss of mitochondrial membrane potential, calcium release, and caspase-dependent apoptotic cell death were shown during the interaction of hypoxia and GM ototoxicity in vitro. This synergistic ototoxicity may be critical to aminoglycoside-induced hearing loss in clinical scenarios. The results should improve our understanding of the interacting mechanism and potential preventive strategy to aminoglycoside ototoxicity.
Collapse
|
47
|
Li Y, Ding D, Jiang H, Fu Y, Salvi R. Co-administration of cisplatin and furosemide causes rapid and massive loss of cochlear hair cells in mice. Neurotox Res 2011; 20:307-19. [PMID: 21455790 DOI: 10.1007/s12640-011-9244-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/10/2011] [Accepted: 03/21/2011] [Indexed: 12/24/2022]
Abstract
The expanding arsenal of transgenic mice has created a powerful tool for investigating the biological mechanisms involved in ototoxicity. However, cisplatin ototoxicity is difficult to investigate in mice because of their small size and vulnerability to death by nephrotoxicity. To overcome this problem, we developed a strategy for promoting cisplatin-induced ototoxicity by coadministration of furosemide a loop diuretic. A dose-response study identified 200 mg/kg of furosemide as the optimal dose for disrupting the stria vascularis and opening the blood-ear barrier. Our analysis of stria pathology indicated that the optimal period for administering cisplatin was 1 h after furosemide treatment. Combined treatment with 0.5 mg/kg of cisplatin and 200 mg/kg furosemide resulted in only moderate loss of outer hair cells in the basal 20% of the cochlea, only mild threshold shifts and minimal loss of distortion product otoacoustic emission (DPOAE). In contrast, 1 mg/kg of cisplatin plus 200 mg/kg of furosemide resulted in a permanent 40-50 dB elevation of auditory brainstem response thresholds, almost complete elimination of DPOAE, and nearly total loss of outer hair cells. The widespread outer hair cell lesions that develop in mice treated with cisplatin plus furosemide could serve as extremely useful murine model for investigating techniques for regenerating outer hair cells, studying the mechanisms of cisplatin and furosemide ototoxicity and assessing the perceptual and electrophysiological consequences of outer hair cell loss on central auditory plasticity.
Collapse
Affiliation(s)
- Yongqi Li
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
48
|
Ding D, Roth J, Salvi R. Manganese is toxic to spiral ganglion neurons and hair cells in vitro. Neurotoxicology 2010; 32:233-41. [PMID: 21182863 DOI: 10.1016/j.neuro.2010.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 11/24/2022]
Abstract
Occupational exposure to high atmospheric levels of Mn produces a severe and debilitating disorder known as manganism characterized by extrapyramidal disturbances similar to that seen in Parkinson's disease. Epidemiological and case studies suggest that persistent exposures to Mn may have deleterious effects on other organs including the auditory system and hearing. Mn accumulates in the inner ear following acute exposure raising the possibility that it can damage the sensory hair cells that convert sound into neural activity or spiral ganglion neurons (SGN) that transmit acoustic information from the hair cells to the brain via the auditory nerve. In this paper we demonstrate for first time that Mn causes significant damage to the sensory hair cells, peripheral auditory nerve fibers (ANF) and SGN in cochlear organotypic cultures isolated from postnatal day three rats. The peripheral ANF that make synaptic contact with the sensory hair cells were particularly vulnerable to Mn toxicity; damage occurred at concentrations as low 0.01 mM and increased with dose and duration of Mn exposure. Sensory hair cells, in contrast, were slightly more resistant to Mn toxicity than the ANF. Mn induced an atypical pattern of sensory cell damage; Mn was more toxic to inner hair cells (IHC) than outer hair cells (OHC) and in addition, IHC loss was relatively uniform along the length of the cochlea. Mn also caused significant loss and shrinkage of SGN soma. These findings are the first to demonstrate that Mn can produce severe lesions to both neurons and hair cells in the postnatal inner ear.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
49
|
Thaler M, Roy S, Fornara A, Bitsche M, Qin J, Muhammed M, Salvenmoser W, Rieger G, Fischer AS, Glueckert R. Visualization and analysis of superparamagnetic iron oxide nanoparticles in the inner ear by light microscopy and energy filtered TEM. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 7:360-9. [PMID: 21146633 DOI: 10.1016/j.nano.2010.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/25/2010] [Accepted: 11/22/2010] [Indexed: 12/16/2022]
Abstract
UNLABELLED Nanoparticles as potential carriers for local drug transfer are an alternative to systemic drug delivery into the inner ear. We report on the first in vitro tests of a new ferrogel consisting of superparamagnetic iron oxide nanoparticles (SPIONs) and a Pluronic(®) F127 (PF127) copolymer. Pluronic copolymers possess a unique viscosity-adjustable property that makes PF127 gels easy to handle compared to conventional cross-linked hydrogels. This ferrogel was successfully tested in cadaver human temporal bones as well as in organotypic explant cultures of mouse inner ears. SPIONs were identified by light microscopy and localized with different imaging modes in energy-filtered transmission electron microscopy. Our approach shows a promising possibility to use iron oxide nanoparticles, which are suitable for visualization and characterization at both the light- and electron-microscopic levels. FROM THE CLINICAL EDITOR The authors report the first in vitro tests of a new ferrogel consisting of superparamagnetic iron oxide nanoparticles (SPIONs) and a Pluronic® F127 (PF127) copolymer for drug delivery in the inner ear, demonstrasting a promising possibility to use iron oxide nanoparticles, which are suitable for visualization and characterization at both the light- and electron-microscopic levels.
Collapse
|
50
|
Yu D, Ding D, Jiang H, Stolzberg D, Salvi R. Mefloquine damage vestibular hair cells in organotypic cultures. Neurotox Res 2010; 20:51-8. [PMID: 20859773 DOI: 10.1007/s12640-010-9221-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
Mefloquine is an effective and widely used anti-malarial drug; however, some clinical reports suggest that it can cause dizziness, balance, and vestibular disturbances. To determine if mefloquine might be toxic to the vestibular system, we applied mefloquine to organotypic cultures of the macula of the utricle from postnatal day 3 rats. The macula of the utricle was micro-dissected out as a flat surface preparation and cultured with 10, 50, 100, or 200 μM mefloquine for 24 h. Specimens were stained with TRITC-conjugated phalloidin to label the actin in hair cell stereocilia and TO-PRO-3 to visualize cell nuclei. Some utricles were also labeled with fluorogenic caspase-3, -8, or -9 indicators to evaluate the mechanism of programmed cell death. Mefloquine treatment caused a dose-dependent loss of utricular hair cells. Treatment with 10 μM caused a slight reduction, 50 μM caused a significant reduction, and 200 μM destroyed nearly all the hair cells. Hair cell nuclei in mefloquine-treated utricles were condensed and fragmented, morphological features of apoptosis. Mefloquine-treated utricles were positive for the extrinsic initiator caspase-8 and intrinsic initiator caspase-9 and downstream executioner caspase-3. These results indicate that mefloquine can induce significant hair cell degeneration in the postnatal rat utricle and that mefloquine-induced hair cell death is initiated by both caspase-8 and caspase-9.
Collapse
Affiliation(s)
- Dongzhen Yu
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|