1
|
Na D, Zhang J, Beaulac HJ, Piekna-Przybylska D, Nicklas PR, Kiernan AE, White PM. Increased central auditory gain in 5xFAD Alzheimer's disease mice as an early biomarker candidate for Alzheimer's disease diagnosis. Front Neurosci 2023; 17:1106570. [PMID: 37304021 PMCID: PMC10250613 DOI: 10.3389/fnins.2023.1106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/13/2023] [Indexed: 06/13/2023] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative illness without a cure. All current therapies require an accurate diagnosis and staging of AD to ensure appropriate care. Central auditory processing disorders (CAPDs) and hearing loss have been associated with AD, and may precede the onset of Alzheimer's dementia. Therefore, CAPD is a possible biomarker candidate for AD diagnosis. However, little is known about how CAPD and AD pathological changes are correlated. In the present study, we investigated auditory changes in AD using transgenic amyloidosis mouse models. AD mouse models were bred to a mouse strain commonly used for auditory experiments, to compensate for the recessive accelerated hearing loss on the parent background. Auditory brainstem response (ABR) recordings revealed significant hearing loss, a reduced ABR wave I amplitude, and increased central gain in 5xFAD mice. In comparison, these effects were milder or reversed in APP/PS1 mice. Longitudinal analyses revealed that in 5xFAD mice, central gain increase preceded ABR wave I amplitude reduction and hearing loss, suggesting that it may originate from lesions in the central nervous system rather than the peripheral loss. Pharmacologically facilitating cholinergic signaling with donepezil reversed the central gain in 5xFAD mice. After the central gain increased, aging 5xFAD mice developed deficits for hearing sound pips in the presence of noise, consistent with CAPD-like symptoms of AD patients. Histological analysis revealed that amyloid plaques were deposited in the auditory cortex of both mouse strains. However, in 5xFAD but not APP/PS1 mice, plaque was observed in the upper auditory brainstem, specifically the inferior colliculus (IC) and the medial geniculate body (MGB). This plaque distribution parallels histological findings from human subjects with AD and correlates in age with central gain increase. Overall, we conclude that auditory alterations in amyloidosis mouse models correlate with amyloid deposits in the auditory brainstem and may be reversed initially through enhanced cholinergic signaling. The alteration of ABR recording related to the increase in central gain prior to AD-related hearing disorders suggests that it could potentially be used as an early biomarker of AD diagnosis.
Collapse
Affiliation(s)
- Daxiang Na
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Jingyuan Zhang
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Holly J. Beaulac
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Dorota Piekna-Przybylska
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Paige R. Nicklas
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Amy E. Kiernan
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Department of Ophthalmology, University of Rochester, Rochester, NY, United States
| | - Patricia M. White
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| |
Collapse
|
2
|
Burghard AL, Lee CM, Fabrizio-Stover EM, Oliver DL. Long-Duration Sound-Induced Facilitation Changes Population Activity in the Inferior Colliculus. Front Syst Neurosci 2022; 16:920642. [PMID: 35873097 PMCID: PMC9301083 DOI: 10.3389/fnsys.2022.920642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The inferior colliculus (IC) is at the midpoint of the auditory system and integrates virtually all information ascending from the auditory brainstem, organizes it, and transmits the results to the auditory forebrain. Its abundant, excitatory local connections are crucial for this task. This study describes a long duration sound (LDS)-induced potentiation in the IC that changes both subsequent tone-evoked responses and spontaneous activity. Afterdischarges, changes of spontaneous spiking following an LDS, were seen previously in single neurons. Here, we used multi-channel probes to record activity before and after a single, tetanic sound and describe the changes in a population of IC neurons. Following a 60 s narrowband-noise stimulation, a subset of recording channels (∼16%) showed afterdischarges. A facilitated response spike rate to tone pips following an LDS was also observed in ∼16% of channels. Both channels with an afterdischarge and channels with facilitated tone responses had higher firing rates in response to LDS, and the magnitude of the afterdischarges increased with increased responses to the LDS. This is the first study examining the effect of LDS stimulation on tone-evoked responses. This observed facilitation in vivo has similarities to post-tetanic potentiation in vitro as both manner of induction (strong stimulation for several seconds) as well as time-course of the facilitation (second to minute range) are comparable. Channels with and without facilitation appear to be intermixed and distributed widely in the central nucleus of IC, and this suggests a heretofore unknown property of some IC neurons or their circuits. Consequently, this sound-evoked facilitation may enhance the sound-evoked output of these neurons, while, simultaneously, most other IC neurons have reduced or unchanged output in response to the same stimulus.
Collapse
|
3
|
Koops EA, Eggermont JJ. The thalamus and tinnitus: Bridging the gap between animal data and findings in humans. Hear Res 2021; 407:108280. [PMID: 34175683 DOI: 10.1016/j.heares.2021.108280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
The neuronal mechanisms underlying tinnitus are yet to be revealed. Tinnitus, an auditory phantom sensation, used to be approached as a purely auditory domain symptom. More recently, the modulatory impact of non-auditory brain regions on the percept and burden of tinnitus are explored. The thalamus is uniquely situated to facilitate the communication between auditory and non-auditory subcortical and cortical structures. Traditionally, animal models of tinnitus have focussed on subcortical auditory structures, and research with human participants has been concerned with cortical activity in auditory and non-auditory areas. Recently, both research fields have investigated the connectivity between subcortical and cortical regions and between auditory and non-auditory areas. We show that even though the different fields employ different methods to investigate the activity and connectivity of brain areas, there is consistency in the results on tinnitus between these different approaches. This consistency between human and animals research is observed for tinnitus with peripherally instigated hearing damage, and for results obtained with salicylate and noise-induced tinnitus. The thalamus integrates input from limbic and prefrontal areas and modulates auditory activity via its connections to both subcortical and cortical auditory areas. Reported altered activity and connectivity of the auditory, prefrontal, and limbic regions suggest a more systemic approach is necessary to understand the origins and impact of tinnitus.
Collapse
Affiliation(s)
- Elouise A Koops
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Jos J Eggermont
- Departments of Physiology and Pharmacology, and Psychology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Li W, Li D, Chen N, Liu P, Han S, Wang L, Gong S, Huang W, Ding D. Recording of electrocochleography from the facial nerve canal in mice. J Neurosci Methods 2021; 360:109256. [PMID: 34126140 DOI: 10.1016/j.jneumeth.2021.109256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The ever-expanding arsenal of genetically modified mice has created experimental models for studying various mechanisms of deafness. Electrocochleography (ECochG) is a recording technique of cochlear potentials evoked by sound stimulation, which was widely used to evaluate the cochlear hearing function. However, there is currently a lack of information on long-term recording technology of ECochG in mice. NEW METHOD We describe in detail the surgical procedure of implanting electrode into the facial nerve canal in C57BL/6J mice for ECochG recording. The results of ECochG recorded by electrode in the facial nerve canal were compared with ECochG guided by electrode on the round window niche. RESULTS The surgical method of inserting the electrode into the facial nerve canal is relatively simple and can be completed within 15 min. The electrode inserted into the elongated facial nerve canal is stable and close to the auditory nerve trunk, so it is conducive to long-term auditory function monitoring. Hence, the ECochG guided by the electrode from the facial nerve canal can maintain a stable response for more than two weeks. In contrast, the ECochG guided by the electrode in the round window niche can only be maintained for a maximum of 20 min. COMPARISON WITH EXISTING METHODS In mice, existing recording techniques of ECochG from round window niche is limited by conductive hearing loss due to middle ear effusion or surgical damage. CONCLUSIONS ECochG recording from the facial nerve canal is suitable for long-term recording in mice. This electrode approach provides a repeatable and reliable measurement of ECochG.
Collapse
Affiliation(s)
- Wenjuan Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Otolaryngology, Children's Hospital of Shanxi, Women health of Shanxi, Taiyuan, China
| | - Dong Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Nina Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pan Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuguang Han
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Line Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | | | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, New York, United States of America
| |
Collapse
|
5
|
Developmental PCB Exposure Disrupts Synaptic Transmission and Connectivity in the Rat Auditory Cortex, Independent of Its Effects on Peripheral Hearing Threshold. eNeuro 2021; 8:ENEURO.0321-20.2021. [PMID: 33483323 PMCID: PMC7901149 DOI: 10.1523/eneuro.0321-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/01/2021] [Accepted: 01/06/2021] [Indexed: 12/03/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are enduring environmental toxicants and exposure is associated with neurodevelopmental deficits. The auditory system appears particularly sensitive, as previous work has shown that developmental PCB exposure causes both hearing loss and gross disruptions in the organization of the rat auditory cortex. However, the mechanisms underlying PCB-induced changes are not known, nor is it known whether the central effects of PCBs are a consequence of peripheral hearing loss. Here, we study changes in both peripheral and central auditory function in rats with developmental PCB exposure using a combination of optical and electrophysiological approaches. Female rats were exposed to an environmental PCB mixture in utero and until weaning. At adulthood, auditory brainstem responses (ABRs) were measured, and synaptic currents were recorded in slices from auditory cortex layer 2/3 neurons. Spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSCs) were more frequent in PCB-exposed rats compared with controls and the normal relationship between IPSC parameters and peripheral hearing was eliminated in PCB-exposed rats. No changes in spontaneous EPSCs were found. Conversely, when synaptic currents were evoked by laser photostimulation of caged-glutamate, PCB exposure did not affect evoked inhibitory transmission, but increased the total excitatory charge, the number and distance of sites that evoke a significant response. Together, these findings indicate that early developmental exposure to PCBs causes long-lasting changes in both inhibitory and excitatory neurotransmission in the auditory cortex that are independent of peripheral hearing changes, suggesting the effects are because of the direct impact of PCBs on the developing auditory cortex.
Collapse
|
6
|
Ding D, Zhang J, Li W, Li D, Yu J, Wu X, Qi W, Liu F, Jiang H, Shi H, Sun H, Li P, Huang W, Salvi R. Can auditory brain stem response accurately reflect the cochlear function? J Neurophysiol 2020; 124:1667-1675. [PMID: 33026904 DOI: 10.1152/jn.00233.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Auditory brain stem response (ABR) and compound action potential (CAP) recordings have been used in animal research to determine hearing sensitivity. Because of the relative ease of testing, the ABR test has been more commonly used in assessing cochlear lesions than the CAP test. The purpose of this experiment is to examine the difference between these two methods in monitoring the dynamic changes in auditory function after cochlear damage and in detecting asymmetric hearing loss due to unilateral cochlear damage. ABR and CAP were measured in two models of cochlear damage: acoustic trauma induced by exposure to a narrowband noise centered at 4 kHz (2,800-5,600 Hz) at 105 dB sound pressure level for 5 h in chinchillas and unilateral cochlear damage induced by surgical destruction of one cochlea in guinea pigs. Cochlear hair cells were quantified after completing the evoked potential testing. In the noise-damaged model, we found different recovery patterns between ABR and CAP. At 1 day after noise exposure, the ABR and CAP assessment revealed a similar level of threshold shifts. However, at 30 days after noise exposure, ABR thresholds displayed an average of 20-dB recovery, whereas CAP thresholds showed no recovery. Notably, the CAP threshold signifies the actual condition of sensory cell pathogenesis in the cochlea because sensory cell death is known to be irreversible in mammals. After unilateral cochlear damage, we found that both CAP and ABR were affected by cross-hearing when testing the damaged ear with the testing stimuli delivered directly into the canal of the damaged ear. When cross-hearing occurred, ABR testing was not able to reveal the presence of cross-hearing because the ABR waveform generated by cross-stimulation was indistinguishable from that generated by the test ear (damaged ear), should the test ear be intact. However, CAP testing can provide a warning sign, since the typical CAP waveform became an ABR-like waveform when cross-hearing occurred. Our study demonstrates two advantages of the CAP test over the ABR test in assessing cochlear lesions: contributing evidence for the occurrence of cross-hearing when subjects have asymmetric hearing loss and providing a better assessment of the progression of cochlear pathogenesis.NEW & NOTEWORTHY Auditory brain stem response (ABR) is more commonly used to evaluate cochlear lesions than cochlear compound action potential (CAP). In a noise-induced cochlear damage model, we found that the reduced CAP and enhanced ABR caused the threshold difference. In a unilateral cochlear destruction model, a shadow curve of the ABR from the contralateral healthy ear masked the hearing loss in the destroyed ear.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York.,The Third People's Hospital of Chengdu, Chengdu, China.,Shanghai Six People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhui Zhang
- The Third People's Hospital of Chengdu, Chengdu, China
| | - Wenjuan Li
- Department of Otolaryngology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dong Li
- Department of Otolaryngology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jintao Yu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuewen Wu
- Xiangya Hospital, Central South University, Changsha, China
| | - Weidong Qi
- Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Liu
- Beijing Hospital and National Center of Gerontology, Department of Otolaryngology, Beijing, China
| | - Haiyan Jiang
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York
| | - Haibo Shi
- Shanghai Six People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Sun
- Xiangya Hospital, Central South University, Changsha, China
| | - Peng Li
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
7
|
Kamerer AM, Kopun JG, Fultz SE, Neely ST, Rasetshwane DM. Reliability of Measures Intended to Assess Threshold-Independent Hearing Disorders. Ear Hear 2020; 40:1267-1279. [PMID: 30882533 PMCID: PMC6745005 DOI: 10.1097/aud.0000000000000711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Recent animal studies have shown that noise exposure can cause cochlear synaptopathy without permanent threshold shift. Because the noise exposure preferentially damaged auditory nerve fibers that processed suprathreshold sounds (low-spontaneous rate fibers), it has been suggested that synaptopathy may underlie suprathreshold hearing deficits in humans. Recently, several researchers have suggested measures to identify the pathology or pathologies underlying suprathreshold hearing deficits in humans based on results from animal studies; however, the reliability of some of these measures have not been assessed. The purpose of this study was to assess the test-retest reliability of measures that may have the potential to relate suprathreshold hearing deficits to site(s)-of-lesion along the peripheral auditory system in humans. DESIGN Adults with audiometric normal hearing were tested on a battery of behavioral and physiologic measures that included (1) thresholds in quiet (TIQ), (2) thresholds in noise (TIN), (3) frequency-modulation detection threshold (FMDT), (4) word recognition in four listening conditions, (5) distortion-product otoacoustic emissions (DPOAE), (6) middle ear muscle reflex (MEMR), (7) tone burst-elicited auditory brainstem response (tbABR), and (8) speech-evoked ABR (sABR). Data collection for each measure was repeated over two visits separated by at least one week. The residuals of the correlation between the suprathreshold measures and TIQ serve as functional and quantitative proxies for threshold-independent hearing disorders because they represent the portion of the raw measures that is not dependent on TIQ. Reliability of the residual measures was assessed using intraclass correlation (ICC). RESULTS Reliability for the residual measures was good (ICC ≥ 0.75) for FMDT, DPOAEs, and MEMR. Residual measures showing moderate reliability (0.5 ≤ ICC < 0.75) were tbABR wave I amplitude, TIN, and word recognition in quiet, noise, and time-compressed speech with reverberation. Wave V of the tbABR, waves of the sABR, and recognition of time-compressed words had poor test-retest reliability (ICC < 0.5). CONCLUSIONS Reliability of residual measures was mixed, suggesting that care should be taken when selecting measures for diagnostic tests of threshold-independent hearing disorders. Quantifying hidden hearing loss as the variance in suprathreshold measures of auditory function that is not due to TIQ may provide a reliable estimate of threshold-independent hearing disorders in humans.
Collapse
Affiliation(s)
| | - Judy G. Kopun
- Boys Town National Research Hospital, Omaha, NE 68131
| | - Sara E. Fultz
- Boys Town National Research Hospital, Omaha, NE 68131
| | | | | |
Collapse
|
8
|
Eggermont JJ. Separate auditory pathways for the induction and maintenance of tinnitus and hyperacusis? PROGRESS IN BRAIN RESEARCH 2020; 260:101-127. [PMID: 33637214 DOI: 10.1016/bs.pbr.2020.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tinnitus and hyperacusis often occur together, however tinnitus may occur without hyperacusis or hyperacusis without tinnitus. Based on animal research one could argue that hyperacusis results from noise exposures that increase central gain in the lemniscal, tonotopically organized, pathways, whereas tinnitus requires increased burst firing and neural synchrony in the extra-lemniscal pathway. However, these substrates are not sufficient and require involvement of the central nervous system. The dominant factors in changing cortical networks in tinnitus patients are foremost the degree and type of hearing loss, and comorbidities such as distress and mood. So far, no definite changes have been established for tinnitus proper, albeit that changes in connectivity between the dorsal attention network and the parahippocampal area, as well as the default-mode network-precuneus decoupling, appear to be strong candidates. I conclude that there is still a strong need for further integrating animal and human research into tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Jos J Eggermont
- Department of Psychology, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Kunelskaya NL, Levina YV, Baibakova EV, Shurpo VI. [Tinnitus - current trends and prospects]. Vestn Otorinolaringol 2020; 84:54-60. [PMID: 32027324 DOI: 10.17116/otorino20198406154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tinnitus is described as the perception of any sound or noise in the absence of real acoustic stimulation. Numerous investigations have been tried for this potentially debilitating, heterogeneous symptom. The authors overview the current concepts of the management of the suffering tinnitus patients. The review contains modern views on the mechanisms of generation, etiology and pathogenesis of tinnitus. Classifications for practical management of patients are presented. The review of medical and physical methods of therapy and rehabilitation of a tinnitus patients given. The review includes the most clinically reliable and common methods of treatment and rehabilitation.
Collapse
Affiliation(s)
- N L Kunelskaya
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow Health Department, Moscow, Russia, 117152; Department of Otorhinolaryngology N.I.Pirogov Russian National Research Medical University, Moscow, Russia,117997
| | - Yu V Levina
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow Health Department, Moscow, Russia, 117152; Department of Otorhinolaryngology N.I.Pirogov Russian National Research Medical University, Moscow, Russia,117997
| | - E V Baibakova
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow Health Department, Moscow, Russia, 117152
| | - V I Shurpo
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow Health Department, Moscow, Russia, 117152
| |
Collapse
|
10
|
Trevino M, Lobarinas E, Maulden AC, Heinz MG. The chinchilla animal model for hearing science and noise-induced hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3710. [PMID: 31795699 PMCID: PMC6881193 DOI: 10.1121/1.5132950] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 05/07/2023]
Abstract
The chinchilla animal model for noise-induced hearing loss has an extensive history spanning more than 50 years. Many behavioral, anatomical, and physiological characteristics of the chinchilla make it a valuable animal model for hearing science. These include similarities with human hearing frequency and intensity sensitivity, the ability to be trained behaviorally with acoustic stimuli relevant to human hearing, a docile nature that allows many physiological measures to be made in an awake state, physiological robustness that allows for data to be collected from all levels of the auditory system, and the ability to model various types of conductive and sensorineural hearing losses that mimic pathologies observed in humans. Given these attributes, chinchillas have been used repeatedly to study anatomical, physiological, and behavioral effects of continuous and impulse noise exposures that produce either temporary or permanent threshold shifts. Based on the mechanistic insights from noise-exposure studies, chinchillas have also been used in pre-clinical drug studies for the prevention and rescue of noise-induced hearing loss. This review paper highlights the role of the chinchilla model in hearing science, its important contributions, and its advantages and limitations.
Collapse
Affiliation(s)
- Monica Trevino
- School of Behavioral and Brain Sciences, Callier Center, The University of Texas at Dallas, 1966 Inwood Road, Dallas, Texas 75235, USA
| | - Edward Lobarinas
- School of Behavioral and Brain Sciences, Callier Center, The University of Texas at Dallas, 1966 Inwood Road, Dallas, Texas 75235, USA
| | - Amanda C Maulden
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, Indiana 47907, USA
| | - Michael G Heinz
- Weldon School of Biomedical Engineering, Purdue University, 715 Clinic Drive, West Lafayette, Indiana 47907, USA
| |
Collapse
|
11
|
Banakis Hartl RM, Greene NT, Benichoux V, Dondzillo A, Brown AD, Tollin DJ. Establishing an Animal Model of Single-Sided Deafness in Chinchilla lanigera. Otolaryngol Head Neck Surg 2019; 161:1004-1011. [PMID: 31570054 DOI: 10.1177/0194599819877649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES (1) To characterize changes in brainstem neural activity following unilateral deafening in an animal model. (2) To compare brainstem neural activity from unilaterally deafened animals with that of normal-hearing controls. STUDY DESIGN Prospective controlled animal study. SETTING Vivarium and animal research facilities. SUBJECTS AND METHODS The effect of single-sided deafness on brainstem activity was studied in Chinchilla lanigera. Animals were unilaterally deafened via gentamycin injection into the middle ear, which was verified by loss of auditory brainstem responses (ABRs). Animals underwent measurement of ABR and local field potential in the inferior colliculus. RESULTS Four animals underwent chemical deafening, with 2 normal-hearing animals as controls. ABRs confirmed unilateral loss of auditory function. Deafened animals demonstrated symmetric local field potential responses that were distinctly different than the contralaterally dominated responses of the inferior colliculus seen in normal-hearing animals. CONCLUSION We successfully developed a model for unilateral deafness to investigate effects of single-sided deafness on brainstem plasticity. This preliminary investigation serves as a foundation for more comprehensive studies that will include cochlear implantation and manipulation of binaural cues, as well as functional behavioral tests.
Collapse
Affiliation(s)
- Renee M Banakis Hartl
- Department of Otolaryngology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Nathaniel T Greene
- Department of Otolaryngology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | | | - Anna Dondzillo
- Department of Otolaryngology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Andrew D Brown
- Department of Physiology and Biophysics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Daniel J Tollin
- Department of Otolaryngology, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Physiology and Biophysics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
12
|
Heusinger J, Hildebrandt H, Illing RB. Sensory deafferentation modulates and redistributes neurocan in the rat auditory brainstem. Brain Behav 2019; 9:e01353. [PMID: 31271523 PMCID: PMC6710208 DOI: 10.1002/brb3.1353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/09/2019] [Accepted: 06/08/2019] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Cochlear ablation causing sensory deafferentation (SD) of the cochlear nucleus triggers complex re-arrangements in the cellular and molecular communication networks of the adult mammalian central auditory system. Participation of the extracellular matrix (ECM) in these processes is not well understood. METHODS We investigated consequences of unilateral SD for the expression and distribution of the chondroitin sulfate proteoglycans, neurocan (Ncan) and aggrecan (Agg), alongside various plasticity markers in the auditory brainstem of the adult rat using immunohistochemical techniques. RESULTS In the deafferented ventral cochlear nucleus (VCN), Ncan expression increased massively within 3 postoperative days (POD), but rapidly decreased thereafter. Agg showed a similar but less pronounced progression. Decrease in Ncan was spatially and temporally related to the re-innervation of VCN documented by the emergence of growth-associated protein Gap43 contained in nerve fibers and presynaptic boutons. Concurrently, astrocytes grew and expressed matrix metalloproteinase-2 (MMP2), an enzyme known to emerge only under re-innervation of VCN. MMP2 is capable of cleaving both Ncan and Agg when released. A transient modulation of the ECM in the central inferior colliculus on the side opposite to SD occurred by POD1. Modulations of glutamatergic synapses and Gap43 expression were detected, reflecting state changes of the surrounding tissue induced by transsynaptic effects of SD. CONCLUSIONS The ECM variously participates in adaptive responses to sudden deafness by SD on several levels along the central auditory pathway, with a striking spatial and temporal relationship of Ncan modulation to astrocytic activation and to synaptogenesis.
Collapse
Affiliation(s)
- Josef Heusinger
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University Medical Center, Freiburg, Germany
| | - Heika Hildebrandt
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University Medical Center, Freiburg, Germany
| | - Robert-Benjamin Illing
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University Medical Center, Freiburg, Germany
| |
Collapse
|
13
|
Chen C, Read HL, Escabí MA. A temporal integration mechanism enhances frequency selectivity of broadband inputs to inferior colliculus. PLoS Biol 2019; 17:e2005861. [PMID: 31233489 PMCID: PMC6611646 DOI: 10.1371/journal.pbio.2005861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/05/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022] Open
Abstract
Accurately resolving frequency components in sounds is essential for sound recognition, yet there is little direct evidence for how frequency selectivity is preserved or newly created across auditory structures. We demonstrate that prepotentials (PPs) with physiological properties resembling presynaptic potentials from broadly tuned brainstem inputs can be recorded concurrently with postsynaptic action potentials in inferior colliculus (IC). These putative brainstem inputs (PBIs) are broadly tuned and exhibit delayed and spectrally interleaved excitation and inhibition not present in the simultaneously recorded IC neurons (ICNs). A sharpening of tuning is accomplished locally at the expense of spike-timing precision through nonlinear temporal integration of broadband inputs. A neuron model replicates the finding and demonstrates that temporal integration alone can degrade timing precision while enhancing frequency tuning through interference of spectrally in- and out-of-phase inputs. These findings suggest that, in contrast to current models that require local inhibition, frequency selectivity can be sharpened through temporal integration, thus supporting an alternative computational strategy to quickly refine frequency selectivity.
Collapse
Affiliation(s)
- Chen Chen
- Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Heather L. Read
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Monty A. Escabí
- Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
14
|
Hatano M, Kelly JB, Zhang H. Area-dependent change of response in the rat's inferior colliculus to intracochlear electrical stimulation following neonatal cochlear damage. Sci Rep 2019; 9:5643. [PMID: 30948747 PMCID: PMC6449351 DOI: 10.1038/s41598-019-41955-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/19/2019] [Indexed: 12/04/2022] Open
Abstract
To understand brain changes caused by auditory sensory deprivation, we recorded local-field potentials in the inferior colliculus of young adult rats with neonatal cochlear damage produced by systemic injections of amikacin. The responses were elicited by electrical stimulation of the entire cochlea and recorded at various locations along a dorsolateral-ventromedial axis of the inferior colliculus. We found that hair cells were completely destroyed and spiral ganglion neurons were severely damaged in the basal cochleae of amikacin-treated animals. Hair cells as well as spiral ganglion neurons were damaged also in the middle and apical areas of the cochlea, with the damage being greater in the middle than the apical area. Amplitudes of local-field potentials were reduced in the ventromedial inferior colliculus, but enhanced in the dorsolateral inferior colliculus. Latencies of responses were increased over the entire structure. The enhancement of responses in the dorsolateral inferior colliculus was in contrast with the damage of hair cells and spiral ganglion cells in the apical part of the cochlea. This contrast along with the overall increase of latencies suggests that early cochlear damage can alter neural mechanisms within the inferior colliculus and/or the inputs to this midbrain structure.
Collapse
Affiliation(s)
- Miyako Hatano
- Department of Otolaryngology-Head and Neck Surgery, Kanazawa University, Kanazawa, 920-8640, Ishikawa, Japan.
| | - Jack B Kelly
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Huiming Zhang
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
15
|
Ridley CL, Kopun JG, Neely ST, Gorga MP, Rasetshwane DM. Using Thresholds in Noise to Identify Hidden Hearing Loss in Humans. Ear Hear 2019; 39:829-844. [PMID: 29337760 PMCID: PMC6046280 DOI: 10.1097/aud.0000000000000543] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Recent animal studies suggest that noise-induced synaptopathy may underlie a phenomenon that has been labeled hidden hearing loss (HHL). Noise exposure preferentially damages low spontaneous-rate auditory nerve fibers, which are involved in the processing of moderate- to high-level sounds and are more resistant to masking by background noise. Therefore, the effect of synaptopathy may be more evident in suprathreshold measures of auditory function, especially in the presence of background noise. The purpose of this study was to develop a statistical model for estimating HHL in humans using thresholds in noise as the outcome variable and measures that reflect the integrity of sites along the auditory pathway as explanatory variables. Our working hypothesis is that HHL is evident in the portion of the variance observed in thresholds in noise that is not dependent on thresholds in quiet, because this residual variance retains statistical dependence on other measures of suprathreshold function. DESIGN Study participants included 13 adults with normal hearing (≤15 dB HL) and 20 adults with normal hearing at 1 kHz and sensorineural hearing loss at 4 kHz (>15 dB HL). Thresholds in noise were measured, and the residual of the correlation between thresholds in noise and thresholds in quiet, which we refer to as thresholds-in-noise residual, was used as the outcome measure for the model. Explanatory measures were as follows: (1) auditory brainstem response (ABR) waves I and V amplitudes; (2) electrocochleographic action potential and summating potential amplitudes; (3) distortion product otoacoustic emissions level; and (4) categorical loudness scaling. All measurements were made at two frequencies (1 and 4 kHz). ABR and electrocochleographic measurements were made at 80 and 100 dB peak equivalent sound pressure level, while wider ranges of levels were tested during distortion product otoacoustic emission and categorical loudness scaling measurements. A model relating the thresholds-in-noise residual and the explanatory measures was created using multiple linear regression analysis. RESULTS Predictions of thresholds-in-noise residual using the model accounted for 61% (p < 0.01) and 48% (p < 0.01) of the variance in the measured thresholds-in-noise residual at 1 and 4 kHz, respectively. CONCLUSIONS Measures of thresholds in noise, the summating potential to action potential ratio, and ABR waves I and V amplitudes may be useful for the prediction of HHL in humans. With further development, our approach of quantifying HHL by the variance that remains in suprathreshold measures of auditory function after removing the variance due to thresholds in quiet, together with our statistical modeling, may provide a quantifiable and verifiable estimate of HHL in humans with normal hearing and with hearing loss. The current results are consistent with the view that inner hair cell and auditory nerve pathology may underlie suprathreshold auditory performance.
Collapse
Affiliation(s)
- Courtney L. Ridley
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30 St, Omaha, Nebraska 68131, USA
- Department of Speech, Language, and Hearing Sciences, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA
| | - Judy G. Kopun
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30 St, Omaha, Nebraska 68131, USA
| | - Stephen T. Neely
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30 St, Omaha, Nebraska 68131, USA
| | - Michael P. Gorga
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30 St, Omaha, Nebraska 68131, USA
| | - Daniel M. Rasetshwane
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30 St, Omaha, Nebraska 68131, USA
| |
Collapse
|
16
|
Bayoumy AB, van der Veen EL, van Ooij PJAM, Besseling-Hansen FS, Koch DAA, Stegeman I, de Ru JA. Effect of hyperbaric oxygen therapy and corticosteroid therapy in military personnel with acute acoustic trauma. J ROY ARMY MED CORPS 2019; 166:243-248. [DOI: 10.1136/jramc-2018-001117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 11/03/2022]
Abstract
IntroductionAcute acoustic trauma (AAT) is a sensorineural hearing impairment due to exposure to an intense impulse noise which causes cochlear hypoxia. Hyperbaric oxygen therapy (HBO) could provide an adequate oxygen supply. The aim was to investigate the effectiveness of early treatment with combined HBO and corticosteroid therapy in patients with AAT compared with corticosteroid monotherapy.MethodsA retrospective study was performed on military personnel diagnosed with AAT between November 2012 and December 2017. Inclusion criteria for HBO therapy were hearing loss of 30 dB or greater on at least one, 25 dB or more on at least two, or 20 dB or more on three or more frequencies as compared with the contralateral ear.ResultsAbsolute hearing improvements showed significant differences (independent t-test) between patients receiving HBO and the control group at 500 Hz (p=0.014), 3000 Hz (p=0.023), 4000 Hz (p=0.001) and 6000 Hz (p=0.01) and at the mean of all frequencies (p=0.002). Relative hearing improvements were significantly different (independent t-test) at 4000 Hz (p=0.046) and 6000 Hz (p=0.013) and at all frequencies combined (p=0.005). Furthermore, the percentage of patients with recovery to the functional level required by the Dutch Armed Forces (clinical outcome score) was higher in the HBO group.ConclusionsEarly-stage combination therapy for patients with AAT was associated with better audiometric results at higher frequencies and better clinical outcome score.
Collapse
|
17
|
Bhandiwad AA, Raible DW, Rubel EW, Sisneros JA. Noise-Induced Hypersensitization of the Acoustic Startle Response in Larval Zebrafish. J Assoc Res Otolaryngol 2018; 19:741-752. [PMID: 30191425 PMCID: PMC6249159 DOI: 10.1007/s10162-018-00685-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 01/21/2018] [Indexed: 01/28/2023] Open
Abstract
Overexposure to loud noise is known to lead to deficits in auditory sensitivity and perception. We studied the effects of noise exposure on sensorimotor behaviors of larval (5-7 days post-fertilization) zebrafish (Danio rerio), particularly the auditory-evoked startle response and hearing sensitivity to acoustic startle stimuli. We observed a temporary 10-15 dB decrease in startle response threshold after 18 h of flat-spectrum noise exposure at 20 dB re·1 ms-2. Larval zebrafish also exhibited decreased habituation to startle-inducing stimuli following noise exposure. The noise-induced sensitization was not due to changes in absolute hearing thresholds, but was specific to the auditory-evoked escape responses. The observed noise-induced sensitization was disrupted by AMPA receptor blockade using DNQX, but not NMDA receptor blockade. Together, these experiments suggest a complex effect of noise exposure on the neural circuits mediating auditory-evoked behaviors in larval zebrafish.
Collapse
Affiliation(s)
| | - David W. Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195 USA
- Department of Biology, University of Washington, Seattle, WA 98195 USA
- Virginia M. Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195 USA
| | - Edwin W. Rubel
- Department of Psychology, University of Washington, Seattle, WA 98195 USA
- Virginia M. Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195 USA
| | - Joseph A. Sisneros
- Department of Psychology, University of Washington, Seattle, WA 98195 USA
- Department of Biology, University of Washington, Seattle, WA 98195 USA
- Virginia M. Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
18
|
Balaram P, Hackett TA, Polley DB. Synergistic Transcriptional Changes in AMPA and GABA A Receptor Genes Support Compensatory Plasticity Following Unilateral Hearing Loss. Neuroscience 2018; 407:108-119. [PMID: 30176318 DOI: 10.1016/j.neuroscience.2018.08.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 01/11/2023]
Abstract
Debilitating perceptual disorders including tinnitus, hyperacusis, phantom limb pain and visual release hallucinations may reflect aberrant patterns of neural activity in central sensory pathways following a loss of peripheral sensory input. Here, we explore short- and long-term changes in gene expression that may contribute to hyperexcitability following a sudden, profound loss of auditory input from one ear. We used fluorescence in situ hybridization to quantify mRNA levels for genes encoding AMPA and GABAA receptor subunits (Gria2 and Gabra1, respectively) in single neurons from the inferior colliculus (IC) and auditory cortex (ACtx). Thirty days after unilateral hearing loss, Gria2 levels were significantly increased while Gabra1 levels were significantly decreased. Transcriptional rebalancing was more pronounced in ACtx than IC and bore no obvious relationship to the degree of hearing loss. By contrast to the opposing, synergistic shifts in Gria2 and Gabra1 observed 30 days after hearing loss, we found that transcription levels for both genes were equivalently reduced after 5 days of hearing loss, producing no net change in the excitatory/inhibitory transcriptional balance. Opposing transcriptional shifts in AMPA and GABA receptor genes that emerge several weeks after a peripheral insult could promote both sensitization and disinhibition to support a homeostatic recovery of neural activity following auditory deprivation. Imprecise transcriptional changes could also drive the system toward perceptual hypersensitivity, degraded temporal processing and the irrepressible perception of non-existent environmental stimuli, a trio of perceptual impairments that often accompany chronic sensory deprivation.
Collapse
Affiliation(s)
- P Balaram
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114, USA; Dept. of Otolaryngology, Harvard Medical School, Boston MA 02114, USA
| | - T A Hackett
- Dept. of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center for Otolaryngology and Communication Sciences, Vanderbilt University Medical Center, Nashville TN 37232 USA
| | - D B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114, USA; Dept. of Otolaryngology, Harvard Medical School, Boston MA 02114, USA.
| |
Collapse
|
19
|
Baizer JS, Wong KM, Salvi RJ, Manohar S, Sherwood CC, Hof PR, Baker JF, Witelson SF. Species Differences in the Organization of the Ventral Cochlear Nucleus. Anat Rec (Hoboken) 2018; 301:862-886. [PMID: 29236365 PMCID: PMC5902649 DOI: 10.1002/ar.23751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/18/2017] [Accepted: 09/17/2017] [Indexed: 01/18/2023]
Abstract
The mammalian cochlear nuclei (CN) consist of two major subdivisions, the dorsal (DCN) and ventral (VCN) nuclei. We previously reported differences in the structural and neurochemical organization of the human DCN from that in several other species. Here we extend this analysis to the VCN, considering both the organization of subdivisions and the types and distributions of neurons. Classically, the VCN in mammals is composed of two subdivisions, the anteroventral (VCA) and posteroventral cochlear nuclei (VCP). Anatomical and electrophysiological data in several species have defined distinct neuronal types with different distributions in the VCA and VCP. We asked if VCN subdivisions and anatomically defined neuronal types might be distinguished by patterns of protein expression in humans. We also asked if the neurochemical characteristics of the VCN are the same in humans as in other mammalian species, analyzing data from chimpanzees, macaque monkeys, cats, rats and chinchillas. We examined Nissl- and immunostained sections, using antibodies that had labeled neurons in other brainstem nuclei in humans. Nissl-stained sections supported the presence of both VCP and VCA in humans and chimpanzees. However, patterns of protein expression did not differentiate classes of neurons in humans; neurons of different soma shapes and dendritic configurations all expressed the same proteins. The patterns of immunostaining in macaque monkey, cat, rat, and chinchilla were different from those in humans and chimpanzees and from each other. The results may correlate with species differences in auditory function and plasticity. Anat Rec, 301:862-886, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | - Keit Men Wong
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | - Richard J Salvi
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, Buffalo, New York
| | - Senthilvelan Manohar
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, Buffalo, New York
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James F Baker
- Department of Physiology, Northwestern University Medical School, Chicago, Illinois
| | - Sandra F Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
20
|
Functional Change in the Caudal Pontine Reticular Nucleus Induced by Age-Related Hearing Loss. Neural Plast 2018; 2018:8169847. [PMID: 29853848 PMCID: PMC5944284 DOI: 10.1155/2018/8169847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/22/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022] Open
Abstract
Increased acoustic startle responses (ASR), which represent reduced uncomfortable loudness level in humans, have been reported in middle-aged C57BL/6J mice with sensorineural hearing loss. Although neural plasticity changes in the central auditory system after the peripheral lesions were suggested to underlie this phenomenon, the neurological cause of exaggerated ASR is still not clear. In this study, the local field potentials and firing rates of the caudal pontine reticular nucleus (PnC), which plays a major role in the ASR pathway, were recorded in 2-month- and 6-month-old C57BL/6 J mice. Consistent with our previous studies, the amplitude of ASR increased, and the threshold of ASR decreased in the 6-month-old mice after developing 20–40 dB hearing loss. The PnC response induced by high-frequency stimuli (>20 kHz) decreased in the 6-month group, whereas the PnC response induced by low-frequency stimuli (<12 kHz) showed a significant increase in the 6-month group compared to the 2-month group. The enhancement of PnC response is similar to the ASR increase found in the 6-month-old C57 mice. Our results suggest that the high-frequency hearing loss caused an increase in PnC sensitivity in the C57 mice which may enhance ASRs.
Collapse
|
21
|
Hauser SN, Burton JA, Mercer ET, Ramachandran R. Effects of noise overexposure on tone detection in noise in nonhuman primates. Hear Res 2018; 357:33-45. [PMID: 29175767 PMCID: PMC5743633 DOI: 10.1016/j.heares.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
This report explores the consequences of acoustic overexposures on hearing in noisy environments for two macaque monkeys trained to perform a reaction time detection task using a Go/No-Go lever release paradigm. Behavioral and non-invasive physiological assessments were obtained before and after narrowband noise exposure. Physiological measurements showed elevated auditory brainstem response (ABR) thresholds and absent distortion product otoacoustic emissions (DPOAEs) post-exposure relative to pre-exposure. Audiograms revealed frequency specific increases in tone detection thresholds, with the greatest increases at the exposure band frequency and higher. Masked detection was affected in a similar frequency specific manner: threshold shift rates (change of masked threshold per dB increase in noise level) were lower than pre-exposure values at frequencies higher than the exposure band. Detection thresholds in sinusoidally amplitude modulated (SAM) noise post-exposure showed no difference from those in unmodulated noise, whereas pre-exposure masked detection thresholds were lower in the presence of SAM noise compared to unmodulated noise. These frequency-dependent results were correlated with cochlear histopathological changes in monkeys that underwent similar noise exposure. These results reveal that behavioral and physiological effects of noise exposure in macaques are similar to those seen in humans and provide preliminary information on the relationship between noise exposure, cochlear pathology and perceptual changes in hearing within individual subjects.
Collapse
Affiliation(s)
- Samantha N Hauser
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Jane A Burton
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Evan T Mercer
- Vanderbilt University Interdisciplinary Program in Neuroscience for Undergraduates, Vanderbilt University, Nashville, TN 37212, USA.
| | - Ramnarayan Ramachandran
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
22
|
Tonotopic organisation of the auditory cortex in sloping sensorineural hearing loss. Hear Res 2017; 355:81-96. [DOI: 10.1016/j.heares.2017.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/28/2017] [Accepted: 09/23/2017] [Indexed: 01/09/2023]
|
23
|
Smit JV, Jahanshahi A, Janssen ML, Stokroos RJ, Temel Y. Hearing assessment during deep brain stimulation of the central nucleus of the inferior colliculus and dentate cerebellar nucleus in rat. PeerJ 2017; 5:e3892. [PMID: 29018625 PMCID: PMC5633028 DOI: 10.7717/peerj.3892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/15/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Recently it has been shown in animal studies that deep brain stimulation (DBS) of auditory structures was able to reduce tinnitus-like behavior. However, the question arises whether hearing might be impaired when interfering in auditory-related network loops with DBS. METHODS The auditory brainstem response (ABR) was measured in rats during high frequency stimulation (HFS) and low frequency stimulation (LFS) in the central nucleus of the inferior colliculus (CIC, n = 5) or dentate cerebellar nucleus (DCBN, n = 5). Besides hearing thresholds using ABR, relative measures of latency and amplitude can be extracted from the ABR. In this study ABR thresholds, interpeak latencies (I-III, III-V, I-V) and V/I amplitude ratio were measured during off-stimulation state and during LFS and HFS. RESULTS In both the CIC and the CNBN groups, no significant differences were observed for all outcome measures. DISCUSSION DBS in both the CIC and the CNBN did not have adverse effects on hearing measurements. These findings suggest that DBS does not hamper physiological processing in the auditory circuitry.
Collapse
Affiliation(s)
- Jasper V. Smit
- Department of Ear Nose and Throat/Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ali Jahanshahi
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marcus L.F. Janssen
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Robert J. Stokroos
- Department of Ear Nose and Throat/Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
24
|
Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss. J Neurosci 2017; 37:323-332. [PMID: 28077712 DOI: 10.1523/jneurosci.0523-16.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 11/10/2016] [Accepted: 11/19/2016] [Indexed: 02/08/2023] Open
Abstract
Auditory activity plays an important role in the development of the auditory system. Decreased activity can result from conductive hearing loss (CHL) associated with otitis media, which may lead to long-term perceptual deficits. The effects of CHL have been mainly studied at later stages of the auditory pathway, but early stages remain less examined. However, changes in early stages could be important because they would affect how information about sounds is conveyed to higher-order areas for further processing and localization. We examined the effects of CHL at auditory nerve synapses onto bushy cells in the mouse anteroventral cochlear nucleus following occlusion of the ear canal. These synapses, called endbulbs of Held, normally show strong depression in voltage-clamp recordings in brain slices. After 1 week of CHL, endbulbs showed even greater depression, reflecting higher release probability. We observed no differences in quantal size between control and occluded mice. We confirmed these observations using mean-variance analysis and the integration method, which also revealed that the number of release sites decreased after occlusion. Consistent with this, synaptic puncta immunopositive for VGLUT1 decreased in area after occlusion. The level of depression and number of release sites both showed recovery after returning to normal conditions. Finally, bushy cells fired fewer action potentials in response to evoked synaptic activity after occlusion, likely because of increased depression and decreased input resistance. These effects appear to reflect a homeostatic, adaptive response of auditory nerve synapses to reduced activity. These effects may have important implications for perceptual changes following CHL. SIGNIFICANCE STATEMENT Normal hearing is important to everyday life, but abnormal auditory experience during development can lead to processing disorders. For example, otitis media reduces sound to the ear, which can cause long-lasting deficits in language skills and verbal production, but the location of the problem is unknown. Here, we show that occluding the ear causes synapses at the very first stage of the auditory pathway to modify their properties, by decreasing in size and increasing the likelihood of releasing neurotransmitter. This causes synapses to deplete faster, which reduces fidelity at central targets of the auditory nerve, which could affect perception. Temporary hearing loss could cause similar changes at later stages of the auditory pathway, which could contribute to disorders in behavior.
Collapse
|
25
|
Mulders WHAM, Vooys V, Makowiecki K, Tang AD, Rodger J. The effects of repetitive transcranial magnetic stimulation in an animal model of tinnitus. Sci Rep 2016; 6:38234. [PMID: 27905540 PMCID: PMC5131273 DOI: 10.1038/srep38234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/07/2016] [Indexed: 02/04/2023] Open
Abstract
Tinnitus (phantom auditory perception associated with hearing loss) can seriously affect wellbeing. Its neural substrate is unknown however it has been linked with abnormal activity in auditory pathways. Though no cure currently exists, repetitive transcranial magnetic stimulation (rTMS) has been shown to reduce tinnitus in some patients, possibly via induction of cortical plasticity involving brain derived neurotrophic factor (BDNF). We examined whether low intensity rTMS (LI-rTMS) alleviates signs of tinnitus in a guinea pig model and whether this involves changes in BDNF expression and hyperactivity in inferior colliculus. Acoustic trauma was used to evoke hearing loss, central hyperactivity and tinnitus. When animals developed tinnitus, treatment commenced (10 sessions of 10 minutes 1 Hz LI-rTMS or sham over auditory cortex over 14 days). After treatment ceased animals were tested for tinnitus, underwent single-neuron recordings in inferior colliculus to assess hyperactivity and samples from cortex and inferior colliculus were taken for BDNF ELISA. Analysis revealed a significant reduction of tinnitus after LI-rTMS compared to sham, without a statistical significant effect on BDNF levels or hyperactivity. This suggests that LI-rTMS alleviates behavioural signs of tinnitus by a mechanism independent of inferior colliculus hyperactivity and BDNF levels and opens novel therapeutic avenues for tinnitus treatment.
Collapse
Affiliation(s)
- Wilhelmina H A M Mulders
- The Auditory Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Vanessa Vooys
- The Auditory Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Kalina Makowiecki
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Alex D Tang
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Jennifer Rodger
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| |
Collapse
|
26
|
von Trapp G, Aloni I, Young S, Semple MN, Sanes DH. Developmental hearing loss impedes auditory task learning and performance in gerbils. Hear Res 2016; 347:3-10. [PMID: 27746215 DOI: 10.1016/j.heares.2016.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/11/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022]
Abstract
The consequences of developmental hearing loss have been reported to include both sensory and cognitive deficits. To investigate these issues in a non-human model, auditory learning and asymptotic psychometric performance were compared between normal hearing (NH) adult gerbils and those reared with conductive hearing loss (CHL). At postnatal day 10, before ear canal opening, gerbil pups underwent bilateral malleus removal to induce a permanent CHL. Both CHL and control animals were trained to approach a water spout upon presentation of a target (Go stimuli), and withhold for foils (Nogo stimuli). To assess the rate of task acquisition and asymptotic performance, animals were tested on an amplitude modulation (AM) rate discrimination task. Behavioral performance was calculated using a signal detection theory framework. Animals reared with developmental CHL displayed a slower rate of task acquisition for AM discrimination task. Slower acquisition was explained by an impaired ability to generalize to newly introduced stimuli, as compared to controls. Measurement of discrimination thresholds across consecutive testing blocks revealed that CHL animals required a greater number of testing sessions to reach asymptotic threshold values, as compared to controls. However, with sufficient training, CHL animals approached control performance. These results indicate that a sensory impediment can delay auditory learning, and increase the risk of poor performance on a temporal task.
Collapse
Affiliation(s)
- Gardiner von Trapp
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Ishita Aloni
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Stephen Young
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Malcolm N Semple
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Psychology, New York University, New York, NY 10003, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Psychology, New York University, New York, NY 10003, USA; Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
27
|
Deep brain stimulation of the inferior colliculus in the rodent suppresses tinnitus. Brain Res 2016; 1650:118-124. [PMID: 27592136 DOI: 10.1016/j.brainres.2016.08.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 11/24/2022]
Abstract
In animal models of tinnitus pathological neuronal activity has been demonstrated. Deep brain stimulation disrupts pathological neuronal activity and might therefore be a potential treatment for patients who suffer severely from tinnitus. In this study, the effect of DBS in the inferior colliculi is investigated in an animal model of tinnitus. The external cortex of the inferior colliculus was targeted because of the key position of the inferior colliculus within the auditory network and the relation of the external cortex with the limbic system. In this study we show the effect of DBS in the inferior colliculus on tinnitus using a within-subject experimental design. After noise trauma, rats showed a significant increase in gap:no gap ratio of the gap-induced prepulse inhibition at 16 and 20kHz (p<0.05), indicating the presence of tinnitus in these frequency bands. During DBS the gap:no gap ratio returned back to baseline (p<0.05). Hearing thresholds before and during DBS did not differ, indicating that hearing function is probably not impaired by electrical stimulation. In summary, this study shows that DBS of the inferior colliculi is effective in reducing behavioral signs of tinnitus in an animal model. Impaired hearing function could not be objectified as a side effect of stimulation.
Collapse
|
28
|
Dickinson A, Jones M, Milne E. Measuring neural excitation and inhibition in autism: Different approaches, different findings and different interpretations. Brain Res 2016; 1648:277-289. [PMID: 27421181 DOI: 10.1016/j.brainres.2016.07.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/23/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022]
Abstract
The balance of neural excitation and inhibition (E/I balance) is often hypothesised to be altered in autism spectrum disorder (ASD). One widely held view is that excitation levels are elevated relative to inhibition in ASD. Understanding whether, and how, E/I balance may be altered in ASD is important given the recent interest in trialling pharmacological interventions for ASD which target inhibitory neurotransmitter function. Here we provide a critical review of evidence for E/I balance in ASD. We conclude that data from a number of domains provides support for alteration in excitation and inhibitory neurotransmission in ASD, but when considered collectively, the available literature provide little evidence to support claims for either a net increase in excitation or a net increase in inhibition. Strengths and limitations of available techniques are considered, and directions for future research discussed.
Collapse
Affiliation(s)
- Abigail Dickinson
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| | - Myles Jones
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK
| | - Elizabeth Milne
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| |
Collapse
|
29
|
Park JS, Cederroth CR, Basinou V, Meltser I, Lundkvist G, Canlon B. Identification of a Circadian Clock in the Inferior Colliculus and Its Dysregulation by Noise Exposure. J Neurosci 2016; 36:5509-19. [PMID: 27194331 PMCID: PMC4871986 DOI: 10.1523/jneurosci.3616-15.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/24/2016] [Accepted: 04/13/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Circadian rhythms regulate bodily functions within 24 h and long-term disruptions in these rhythms can cause various diseases. Recently, the peripheral auditory organ, the cochlea, has been shown to contain a self-sustained circadian clock that regulates differential sensitivity to noise exposure throughout the day. Animals exposed to noise during the night are more vulnerable than when exposed during the day. However, whether other structures throughout the auditory pathway also possess a circadian clock remains unknown. Here, we focus on the inferior colliculus (IC), which plays an important role in noise-induced pathologies such as tinnitus, hyperacusis, and audiogenic seizures. Using PER2::LUC transgenic mice and real-time bioluminescence recordings, we revealed circadian oscillations of Period 2 protein in IC explants for up to 1 week. Clock genes (Cry1, Bmal1, Per1, Per2, Rev-erbα, and Dbp) displayed circadian molecular oscillations in the IC. Averaged expression levels of early-induced genes and clock genes during 24 h revealed differential responses to day or night noise exposure. Rev-erbα and Dbp genes were affected only by day noise exposure, whereas Per1 and Per2 were affected only by night noise exposure. However, the expression of Bdnf was affected by both day and night noise exposure, suggesting that plastic changes are unlikely to be involved in the differences in day or night noise sensitivity in the IC. These novel findings highlight the importance of circadian responses in the IC and emphasize the importance of circadian mechanisms for understanding central auditory function and disorders. SIGNIFICANCE STATEMENT Recent findings identified the presence of a circadian clock in the inner ear. Here, we present novel findings that neurons in the inferior colliculus (IC), a central auditory relay structure involved in sound processing, express a circadian clock as evidenced at both the mRNA and protein levels. Using a reporter mouse that expresses a luciferase protein coupled to the core clock protein PERIOD2 (PER2::LUC), we could observe spontaneous circadian oscillations in culture. Furthermore, we reveal that the mRNA profile of clock-related genes in the IC is altered differentially by day or night noise exposure. The identification of a clock in the IC is relevant for understanding the mechanisms underlying dysfunctions of the IC such as tinnitus, hyperacusis, or audiogenic seizures.
Collapse
Affiliation(s)
- Jung-Sub Park
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, and Department of Otolaryngology, Ajou University School of Medicine, Yeongtong-gu, Suwon 16499, Korea
| | | | - Vasiliki Basinou
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, and
| | - Inna Meltser
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, and
| | - Gabriella Lundkvist
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, and Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden, and
| | - Barbara Canlon
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, and
| |
Collapse
|
30
|
McMahon CM, Ibrahim RK, Mathur A. Cortical Reorganisation during a 30-Week Tinnitus Treatment Program. PLoS One 2016; 11:e0148828. [PMID: 26901425 PMCID: PMC4762663 DOI: 10.1371/journal.pone.0148828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/21/2016] [Indexed: 11/19/2022] Open
Abstract
Subjective tinnitus is characterised by the conscious perception of a phantom sound. Previous studies have shown that individuals with chronic tinnitus have disrupted sound-evoked cortical tonotopic maps, time-shifted evoked auditory responses, and altered oscillatory cortical activity. The main objectives of this study were to: (i) compare sound-evoked brain responses and cortical tonotopic maps in individuals with bilateral tinnitus and those without tinnitus; and (ii) investigate whether changes in these sound-evoked responses occur with amelioration of the tinnitus percept during a 30-week tinnitus treatment program. Magnetoencephalography (MEG) recordings of 12 bilateral tinnitus participants and 10 control normal-hearing subjects reporting no tinnitus were recorded at baseline, using 500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz tones presented monaurally at 70 dBSPL through insert tube phones. For the tinnitus participants, MEG recordings were obtained at 5-, 10-, 20- and 30- week time points during tinnitus treatment. Results for the 500 Hz and 1000 Hz sources (where hearing thresholds were within normal limits for all participants) showed that the tinnitus participants had a significantly larger and more anteriorly located source strengths when compared to the non-tinnitus participants. During the 30-week tinnitus treatment, the participants’ 500 Hz and 1000 Hz source strengths remained higher than the non-tinnitus participants; however, the source locations shifted towards the direction recorded from the non-tinnitus control group. Further, in the left hemisphere, there was a time-shifted association between the trajectory of change of the individual’s objective (source strength and anterior-posterior source location) and subjective measures (using tinnitus reaction questionnaire, TRQ). The differences in source strength between the two groups suggest that individuals with tinnitus have enhanced central gain which is not significantly influenced by the tinnitus treatment, and may result from the hearing loss per se. On the other hand, the shifts in the tonotopic map towards the non-tinnitus participants’ source location suggests that the tinnitus treatment might reduce the disruptions in the map, presumably produced by the tinnitus percept directly or indirectly. Further, the similarity in the trajectory of change across the objective and subjective parameters after time-shifting the perceptual changes by 5 weeks suggests that during or following treatment, perceptual changes in the tinnitus percept may precede neurophysiological changes. Subgroup analyses conducted by magnitude of hearing loss suggest that there were no differences in the 500 Hz and 1000 Hz source strength amplitudes for the mild-moderate compared with the mild-severe hearing loss subgroup, although the mean source strength was consistently higher for the mild-severe subgroup. Further, the mild-severe subgroup had 500 Hz and 1000 Hz source locations located more anteriorly (i.e., more disrupted compared to the control group) compared to the mild-moderate group, although this was trending towards significance only for the 500Hz left hemisphere source. While the small numbers of participants within the subgroup analyses reduce the statistical power, this study suggests that those with greater magnitudes of hearing loss show greater cortical disruptions with tinnitus and that tinnitus treatment appears to reduce the tonotopic map disruptions but not the source strength (or central gain).
Collapse
Affiliation(s)
- Catherine M. McMahon
- Department of Linguistics, Faculty of Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- The HEARing Cooperative Research Centre, Carlton, Victoria, Australia
- * E-mail:
| | - Ronny K. Ibrahim
- Department of Linguistics, Faculty of Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- The HEARing Cooperative Research Centre, Carlton, Victoria, Australia
| | - Ankit Mathur
- Department of Linguistics, Faculty of Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- The HEARing Cooperative Research Centre, Carlton, Victoria, Australia
| |
Collapse
|
31
|
Neural Hyperactivity of the Central Auditory System in Response to Peripheral Damage. Neural Plast 2016; 2016:2162105. [PMID: 26881094 PMCID: PMC4736999 DOI: 10.1155/2016/2162105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 11/19/2022] Open
Abstract
It is increasingly appreciated that cochlear pathology is accompanied by adaptive responses in the central auditory system. The cause of cochlear pathology varies widely, and it seems that few commonalities can be drawn. In fact, despite intricate internal neuroplasticity and diverse external symptoms, several classical injury models provide a feasible path to locate responses to different peripheral cochlear lesions. In these cases, hair cell damage may lead to considerable hyperactivity in the central auditory pathways, mediated by a reduction in inhibition, which may underlie some clinical symptoms associated with hearing loss, such as tinnitus. Homeostatic plasticity, the most discussed and acknowledged mechanism in recent years, is most likely responsible for excited central activity following cochlear damage.
Collapse
|
32
|
Selective Inner Hair Cell Dysfunction in Chinchillas Impairs Hearing-in-Noise in the Absence of Outer Hair Cell Loss. J Assoc Res Otolaryngol 2015; 17:89-101. [PMID: 26691159 DOI: 10.1007/s10162-015-0550-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022] Open
Abstract
Poorer hearing in the presence of background noise is a significant problem for the hearing impaired. Ototoxic drugs, ageing, and noise exposure can damage the sensory hair cells of the inner ear that are essential for normal hearing sensitivity. The relationship between outer hair cell (OHC) loss and progressively poorer hearing sensitivity in quiet or in competing background noise is supported by a number of human and animal studies. In contrast, the effect of moderate inner hair cell (IHC) loss or dysfunction shows almost no impact on behavioral measures of hearing sensitivity in quiet, when OHCs remain intact, but the relationship between selective IHC loss and hearing in noise remains relatively unknown. Here, a moderately high dose of carboplatin (75 mg/kg) that produced IHC loss in chinchillas ranging from 40 to 80 % had little effect on thresholds in quiet. However, when tested in the presence of competing broadband (BBN) or narrowband noise (NBN), thresholds increased significantly. IHC loss >60 % increased signal-to-noise ratios (SNRs) for tones (500-11,300 Hz) in competing BBN by 5-10 dB and broadened the masking function under NBN. These data suggest that IHC loss or dysfunction may play a significant role in listening in noise independent of OHC integrity and that these deficits may be present even when thresholds in quiet are within normal limits.
Collapse
|
33
|
Chen GD, Sheppard A, Salvi R. Noise trauma induced plastic changes in brain regions outside the classical auditory pathway. Neuroscience 2015; 315:228-45. [PMID: 26701290 DOI: 10.1016/j.neuroscience.2015.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/19/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
The effects of intense noise exposure on the classical auditory pathway have been extensively investigated; however, little is known about the effects of noise-induced hearing loss on non-classical auditory areas in the brain such as the lateral amygdala (LA) and striatum (Str). To address this issue, we compared the noise-induced changes in spontaneous and tone-evoked responses from multiunit clusters (MUC) in the LA and Str with those seen in auditory cortex (AC) in rats. High-frequency octave band noise (10-20 kHz) and narrow band noise (16-20 kHz) induced permanent threshold shifts at high-frequencies within and above the noise band but not at low frequencies. While the noise trauma significantly elevated spontaneous discharge rate (SR) in the AC, SRs in the LA and Str were only slightly increased across all frequencies. The high-frequency noise trauma affected tone-evoked firing rates in frequency and time-dependent manner and the changes appeared to be related to the severity of noise trauma. In the LA, tone-evoked firing rates were reduced at the high-frequencies (trauma area) whereas firing rates were enhanced at the low-frequencies or at the edge-frequency dependent on severity of hearing loss at the high frequencies. The firing rate temporal profile changed from a broad plateau to one sharp, delayed peak. In the AC, tone-evoked firing rates were depressed at high frequencies and enhanced at the low frequencies while the firing rate temporal profiles became substantially broader. In contrast, firing rates in the Str were generally decreased and firing rate temporal profiles become more phasic and less prolonged. The altered firing rate and pattern at low frequencies induced by high-frequency hearing loss could have perceptual consequences. The tone-evoked hyperactivity in low-frequency MUC could manifest as hyperacusis whereas the discharge pattern changes could affect temporal resolution and integration.
Collapse
Affiliation(s)
- G-D Chen
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA.
| | - A Sheppard
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| | - R Salvi
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
34
|
Kiefer L, Schauen A, Abendroth S, Gaese B, Nowotny M. Variation in acoustic overstimulation changes tinnitus characteristics. Neuroscience 2015; 310:176-87. [DOI: 10.1016/j.neuroscience.2015.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 08/12/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
|
35
|
Heeringa AN, van Dijk P. The immediate effects of acoustic trauma on excitation and inhibition in the inferior colliculus: A Wiener-kernel analysis. Hear Res 2015; 331:47-56. [PMID: 26523371 DOI: 10.1016/j.heares.2015.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/27/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022]
Abstract
Noise-induced tinnitus and hyperacusis are thought to correspond to a disrupted balance between excitation and inhibition in the central auditory system. Excitation and inhibition are often studied using pure tones; however, these responses do not reveal inhibition within the excitatory pass band. Therefore, we used a Wiener-kernel analysis, complemented with singular value decomposition (SVD), to investigate the immediate effects of acoustic trauma on excitation and inhibition in the inferior colliculus (IC). Neural responses were recorded from the IC of three anesthetized albino guinea pigs before and immediately after a one-hour bilateral exposure to an 11-kHz tone of 124 dB SPL. Neural activity was recorded during the presentation of a 1-h continuous 70 dB SPL Gaussian-noise stimulus. Spike trains were subjected to Wiener-kernel analysis in which the second-order kernel was decomposed into excitatory and inhibitory components using SVD. Hearing thresholds between 3 and 22 kHz were elevated (13-47 dB) immediately after acoustic trauma. The presence and frequency tuning of excitation and inhibition in units with a low characteristic frequency (CF; < 3 kHz) was not affected, inhibition disappeared whereas excitation was not affected in mid-CF units (3 < CF < 11 kHz), and both excitation and inhibition disappeared in high-CF units (CF > 11 kHz). This specific differentiation could not be identified by tone-evoked receptive-field analysis, in which inhibitory responses disappeared in all units, along with excitatory responses in high-CF units. This study is the first to apply Wiener-kernel analysis, complemented with SVD, to study the effects of acoustic trauma on spike trains derived from the IC. With this analysis, a reduction of inhibition and preservation of good response thresholds was shown in mid-CF units immediately after acoustic trauma. These neurons may mediate noise-induced tinnitus and/or hyperacusis. Moreover, an immediate profound high-frequency hearing loss was reflected by reduced evoked firing rates and loss of both excitation and inhibition in high-CF units.
Collapse
Affiliation(s)
- Amarins Nieske Heeringa
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology - Head and Neck Surgery, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; University of Groningen, Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), P.O. Box 72, 9700 AB Groningen, The Netherlands.
| | - Pim van Dijk
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology - Head and Neck Surgery, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; University of Groningen, Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), P.O. Box 72, 9700 AB Groningen, The Netherlands.
| |
Collapse
|
36
|
Berger JI, Coomber B. Tinnitus-related changes in the inferior colliculus. Front Neurol 2015; 6:61. [PMID: 25870582 PMCID: PMC4378364 DOI: 10.3389/fneur.2015.00061] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/09/2015] [Indexed: 12/21/2022] Open
Abstract
Tinnitus is highly complex, diverse, and difficult to treat, in part due to the fact that the underlying causes and mechanisms remain elusive. Tinnitus is generated within the auditory brain; however, consolidating our understanding of tinnitus pathophysiology is difficult due to the diversity of reported effects and the variety of implicated brain nuclei. Here, we focus on the inferior colliculus (IC), a midbrain structure that integrates the vast majority of ascending auditory information and projects via the thalamus to the auditory cortex. The IC is also a point of convergence for corticofugal input and input originating outside the auditory pathway. We review the evidence, from both studies with human subjects and from animal models, for the contribution the IC makes to tinnitus. Changes in the IC, caused by either noise exposure or drug administration, involve fundamental, heterogeneous alterations in the balance of excitation and inhibition. However, differences between hearing loss-induced pathology and tinnitus-related pathology are not well understood. Moreover, variability in tinnitus induction methodology has a significant impact on subsequent neural and behavioral changes, which could explain some of the seemingly contradictory data. Nonetheless, the IC is likely involved in the generation and persistence of tinnitus perception.
Collapse
Affiliation(s)
- Joel I Berger
- Medical Research Council Institute of Hearing Research, University of Nottingham , Nottingham , UK
| | - Ben Coomber
- Medical Research Council Institute of Hearing Research, University of Nottingham , Nottingham , UK
| |
Collapse
|
37
|
Deep brain stimulation in tinnitus: current and future perspectives. Brain Res 2015; 1608:51-65. [PMID: 25758066 DOI: 10.1016/j.brainres.2015.02.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 11/22/2022]
Abstract
Chronic tinnitus, also known as ringing in the ears, affects up to 15% of the adults and causes a serious socio-economic burden. At present, there is no treatment available which substantially reduces the perception of this phantom sound. In the past few years, preclinical and clinical studies have unraveled central mechanisms involved in the pathophysiology of tinnitus, replacing the classical periphery-based hypothesis. In subcortical auditory and non-auditory regions, increased spontaneous activity, neuronal bursting and synchrony were found. When reaching the auditory cortex, these neuronal alterations become perceptually relevant and consequently are perceived as phantom sound. A therapy with a potential to counteract deeply located pathological activity is deep brain stimulation, which has already been demonstrated to be effective in neurological diseases such as Parkinson's disease. In this review, several brain targets are discussed as possible targets for deep brain stimulation in tinnitus. The potential applicability of this treatment in tinnitus is discussed with examples from the preclinical field and clinical case studies.
Collapse
|
38
|
Sturm JJ, Weisz CJC. Hyperactivity in the medial olivocochlear efferent system is a common feature of tinnitus and hyperacusis in humans. J Neurophysiol 2015; 114:2551-4. [PMID: 25695650 DOI: 10.1152/jn.00948.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/16/2015] [Indexed: 11/22/2022] Open
Abstract
Tinnitus and hyperacusis are common, burdensome sources of morbidity with a high rate of co-occurrence. Knudson et al. (J Neurophysiol 112: 3197-3208, 2014) demonstrated that efferent suppression of cochlear activity by the medial olivocochlear system is enhanced in individuals with tinnitus and/or hyperacusis. Their findings stress that atypical activity in the efferent auditory pathway may represent a shared substrate, as well as a potential therapeutic target, in tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Joshua J Sturm
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Catherine J C Weisz
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| |
Collapse
|
39
|
Development of intrinsic connectivity in the central nucleus of the mouse inferior colliculus. J Neurosci 2015; 34:15032-46. [PMID: 25378168 DOI: 10.1523/jneurosci.2276-14.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The inferior colliculus (IC) in the mammalian midbrain is the major subcortical auditory integration center receiving ascending inputs from almost all auditory brainstem nuclei as well as descending inputs from the thalamus and cortex. In addition to these extrinsic inputs, the IC also contains a dense network of local, intracollicular connections, which are thought to provide gain control and contribute to the selectivity for complex acoustic features. However, in contrast to the organization of extrinsic IC afferents, the development and functional organization of intrinsic connections in the IC has remained poorly understood. Here we used laser-scanning photostimulation with caged glutamate to characterize the spatial distribution and strength of local synaptic connections in the central nucleus of the inferior colliculus of newborn mice until after hearing onset (P2-P22). We demonstrate the presence of an extensive excitatory and inhibitory intracollicular network already at P2. Excitatory and inhibitory synaptic maps to individual IC neurons formed continuous maps that largely overlapped with each other and that were aligned with the presumed isofrequency axis of the central nucleus of the IC. Although this characteristic organization was present throughout the first three postnatal weeks, the size of input maps was developmentally regulated as input maps underwent an expansion during the first week that was followed by a dramatic refinement after hearing onset. These changes occurred in parallel for excitatory and inhibitory input maps. However, the functional elimination of intrinsic connections was greater for excitatory than for inhibitory connections, resulting in a predominance of intrinsic inhibition after hearing onset.
Collapse
|
40
|
Auerbach BD, Rodrigues PV, Salvi RJ. Central gain control in tinnitus and hyperacusis. Front Neurol 2014; 5:206. [PMID: 25386157 PMCID: PMC4208401 DOI: 10.3389/fneur.2014.00206] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/30/2014] [Indexed: 12/02/2022] Open
Abstract
Sensorineural hearing loss induced by noise or ototoxic drug exposure reduces the neural activity transmitted from the cochlea to the central auditory system. Despite a reduced cochlear output, neural activity from more central auditory structures is paradoxically enhanced at suprathreshold intensities. This compensatory increase in the central auditory activity in response to the loss of sensory input is referred to as central gain enhancement. Enhanced central gain is hypothesized to be a potential mechanism that gives rise to hyperacusis and tinnitus, two debilitating auditory perceptual disorders that afflict millions of individuals. This review will examine the evidence for gain enhancement in the central auditory system in response to cochlear damage. Further, it will address the potential cellular and molecular mechanisms underlying this enhancement and discuss the contribution of central gain enhancement to tinnitus and hyperacusis. Current evidence suggests that multiple mechanisms with distinct temporal and spectral profiles are likely to contribute to central gain enhancement. Dissecting the contributions of these different mechanisms at different levels of the central auditory system is essential for elucidating the role of central gain enhancement in tinnitus and hyperacusis and, most importantly, the development of novel treatments for these disorders.
Collapse
Affiliation(s)
- Benjamin D Auerbach
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Paulo V Rodrigues
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Richard J Salvi
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| |
Collapse
|
41
|
Gourévitch B, Edeline JM, Occelli F, Eggermont JJ. Is the din really harmless? Long-term effects of non-traumatic noise on the adult auditory system. Nat Rev Neurosci 2014; 15:483-91. [DOI: 10.1038/nrn3744] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Huetz C, Guedin M, Edeline JM. Neural correlates of moderate hearing loss: time course of response changes in the primary auditory cortex of awake guinea-pigs. Front Syst Neurosci 2014; 8:65. [PMID: 24808831 PMCID: PMC4009414 DOI: 10.3389/fnsys.2014.00065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/07/2014] [Indexed: 11/21/2022] Open
Abstract
Over the last decade, the consequences of acoustic trauma on the functional properties of auditory cortex neurons have received growing attention. Changes in spontaneous and evoked activity, shifts of characteristic frequency (CF), and map reorganizations have extensively been described in anesthetized animals (e.g., Noreña and Eggermont, 2003, 2005). Here, we examined how the functional properties of cortical cells are modified after partial hearing loss in awake guinea pigs. Single unit activity was chronically recorded in awake, restrained, guinea pigs from 3 days before up to 15 days after an acoustic trauma induced by a 5 kHz 110 dB tone delivered for 1 h. Auditory brainstem responses (ABRs) audiograms indicated that these parameters produced a mean ABR threshold shift of 20 dB SPL at, and one octave above, the trauma frequency. When tested with pure tones, cortical cells showed on average a 25 dB increase in threshold at CF the day following the trauma. Over days, this increase progressively stabilized at only 10 dB above control value indicating a progressive recovery of cortical thresholds, probably reflecting a progressive shift from temporary threshold shift (TTS) to permanent threshold shift (PTS). There was an increase in response latency and in response variability the day following the trauma but these parameters returned to control values within 3 days. When tested with conspecific vocalizations, cortical neurons also displayed an increase in response latency and in response duration the day after the acoustic trauma, but there was no effect on the average firing rate elicited by the vocalization. These findings suggest that, in cases of moderate hearing loss, the temporal precision of neuronal responses to natural stimuli is impaired despite the fact the firing rate showed little or no changes.
Collapse
Affiliation(s)
- Chloé Huetz
- Centre de Neurosciences Paris-Sud, CNRS, UMR 8195, Université Paris-Sud Orsay, France
| | - Maud Guedin
- Centre de Neurosciences Paris-Sud, CNRS, UMR 8195, Université Paris-Sud Orsay, France
| | - Jean-Marc Edeline
- Centre de Neurosciences Paris-Sud, CNRS, UMR 8195, Université Paris-Sud Orsay, France
| |
Collapse
|
43
|
Vogler D, Robertson D, Mulders W. Hyperactivity following unilateral hearing loss in characterized cells in the inferior colliculus. Neuroscience 2014; 265:28-36. [DOI: 10.1016/j.neuroscience.2014.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 11/16/2022]
|
44
|
Knipper M, Van Dijk P, Nunes I, Rüttiger L, Zimmermann U. Advances in the neurobiology of hearing disorders: Recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 2013; 111:17-33. [DOI: 10.1016/j.pneurobio.2013.08.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
45
|
Gilels F, Paquette ST, Zhang J, Rahman I, White PM. Mutation of Foxo3 causes adult onset auditory neuropathy and alters cochlear synapse architecture in mice. J Neurosci 2013; 33:18409-24. [PMID: 24259566 PMCID: PMC6618809 DOI: 10.1523/jneurosci.2529-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/26/2013] [Accepted: 10/12/2013] [Indexed: 11/21/2022] Open
Abstract
Auditory neuropathy is a form of hearing loss in which cochlear inner hair cells fail to correctly encode or transmit acoustic information to the brain. Few genes have been implicated in the adult-onset form of this disease. Here we show that mice lacking the transcription factor Foxo3 have adult onset hearing loss with the hallmark characteristics of auditory neuropathy, namely, elevated auditory thresholds combined with normal outer hair cell function. Using histological techniques, we demonstrate that Foxo3-dependent hearing loss is not due to a loss of cochlear hair cells or spiral ganglion neurons, both of which normally express Foxo3. Moreover, Foxo3-knock-out (KO) inner hair cells do not display reductions in numbers of synapses. Instead, we find that there are subtle structural changes in and surrounding inner hair cells. Confocal microscopy in conjunction with 3D modeling and quantitative analysis show that synaptic localization is altered in Foxo3-KO mice and Myo7a immunoreactivity is reduced. TEM demonstrates apparent afferent degeneration. Strikingly, acoustic stimulation promotes Foxo3 nuclear localization in vivo, implying a connection between cochlear activity and synaptic function maintenance. Together, these findings support a new role for the canonical damage response factor Foxo3 in contributing to the maintenance of auditory synaptic transmission.
Collapse
MESH Headings
- Acoustic Stimulation
- Age Factors
- Alcohol Oxidoreductases
- Animals
- Animals, Newborn
- Calcium-Binding Proteins/metabolism
- Co-Repressor Proteins
- Cochlea/growth & development
- Cochlea/metabolism
- Cochlea/pathology
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/genetics
- Forkhead Box Protein O3
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Developmental/genetics
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Inner/ultrastructure
- Hearing Loss, Central/genetics
- Hearing Loss, Central/pathology
- Hearing Loss, Central/physiopathology
- Imaging, Three-Dimensional
- Mice
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Mutation/genetics
- Myosin VIIa
- Myosins/metabolism
- Phosphoproteins/metabolism
- Receptors, AMPA/metabolism
- Synapses/genetics
- Synapses/pathology
- Synapses/ultrastructure
Collapse
Affiliation(s)
| | | | | | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | | |
Collapse
|
46
|
Husain FT. Effect of tinnitus on distortion product otoacoustic emissions varies with hearing loss. Am J Audiol 2013; 22:125-34. [PMID: 23800808 DOI: 10.1044/1059-0889(2012/12-0059)] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The aim of this study was to measure the effect of tinnitus, while accounting for the effect of hearing loss and aging, on distortion product otoacoustic emissions (DPOAEs). METHOD DPOAEs were measured twice in both ears in 5 groups of participants: young adults with normal hearing, middle-age adults with normal hearing, adults with high-frequency sensorineural hearing loss, age-matched adults with similar hearing loss and tinnitus, and adults with normal hearing and chronic tinnitus. RESULTS Multivariate analysis revealed a main effect of hearing loss and age, but no effect of tinnitus, across all 5 groups. Separate tests revealed significant effects of age and tinnitus in the normal-hearing groups and hearing loss in adults with or without tinnitus, but no effect of tinnitus in those with hearing loss. CONCLUSION DPOAE levels in the group of adults with hearing loss and tinnitus were diminished, but those in the group with normal hearing and tinnitus were enhanced, relative to DPOAE levels in the controls. Outer hair cell function, as indexed by DPOAEs, exhibits a complex association with tinnitus, and this has implications in the use of DPOAEs as a tool both for testing for tinnitus presence and for creating a model of neural mechanisms underlying tinnitus.
Collapse
|
47
|
Yang S, Su W, Bao S. Long-term, but not transient, threshold shifts alter the morphology and increase the excitability of cortical pyramidal neurons. J Neurophysiol 2012; 108:1567-74. [PMID: 22723674 DOI: 10.1152/jn.00371.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Partial hearing loss often results in enlarged representations of the remaining hearing frequency range in primary auditory cortex (AI). Recent studies have implicated certain types of synaptic plasticity in AI map reorganization in response to transient and long-term hearing loss. How changes in neuronal excitability and morphology contribute to cortical map reorganization is less clear. In the present study, we exposed adult rats to a 4-kHz tone at 123 dB, which resulted in increased thresholds over their entire hearing range. The threshold shift gradually recovered in the lower-frequency, but not the higher-frequency, range. As reported previously, two distinct zones were observed 10 days after the noise exposure, an enlarged lower-characteristic frequency (CF) zone displaying normal threshold and enhanced cortical responses and a higher-CF zone showing higher threshold and a disorganized tonotopic map. Membrane excitability of layer II/III pyramidal neurons increased only in the higher-CF, but not the lower-CF, zone. In addition, dendritic morphology and spine density of the pyramidal neurons were altered in the higher-CF zone only. These results indicate that membrane excitability and neuronal morphology are altered by long-term, but not transient, threshold shift. They also suggest that these changes may contribute to tinnitus but are unlikely to be involved in map expansion in the lower-CF zone.
Collapse
Affiliation(s)
- Sungchil Yang
- Helen Wills Neuroscience Inst., Univ. of California, Berkeley, CA 94720-3190, USA
| | | | | |
Collapse
|
48
|
Baizer JS, Manohar S, Paolone NA, Weinstock N, Salvi RJ. Understanding tinnitus: the dorsal cochlear nucleus, organization and plasticity. Brain Res 2012; 1485:40-53. [PMID: 22513100 DOI: 10.1016/j.brainres.2012.03.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 02/07/2023]
Abstract
Tinnitus, the perception of a phantom sound, is a common consequence of damage to the auditory periphery. A major goal of tinnitus research is to find the loci of the neural changes that underlie the disorder. Crucial to this endeavor has been the development of an animal behavioral model of tinnitus, so that neural changes can be correlated with behavioral evidence of tinnitus. Three major lines of evidence implicate the dorsal cochlear nucleus (DCN) in tinnitus. First, elevated spontaneous activity in the DCN is correlated with peripheral damage and tinnitus. Second, there are somatosensory inputs to the DCN that can modulate spontaneous activity and might mediate the somatic-auditory interactions seen in tinnitus patients. Third, we have found a subpopulation of DCN neurons in the adult rat that express doublecortin, a plasticity-related protein. The expression of this protein may reflect a role of these neurons in the neural reorganization causing tinnitus. However, there is a problem in extending the findings in the rodent DCN to humans. Classic studies state that the structure of the primate DCN is quite different from that of rodents, with primates lacking granule cells, the recipients of somatosensory input. To address the possibility of major species differences in DCN organization, we compared Nissl-stained sections of the DCN in five different species. In contrast to earlier reports, our data suggest that the organization of the primate DCN is not dramatically different from that of the rodents, and validate the use of animal data in the study of tinnitus. This article is part of a Special Issue entitled: Tinnitus Neuroscience.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, 123 Sherman Hall, University at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Feng J, Bendiske J, Morest DK. Degeneration in the ventral cochlear nucleus after severe noise damage in mice. J Neurosci Res 2011; 90:831-41. [PMID: 22109094 DOI: 10.1002/jnr.22793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 11/06/2022]
Abstract
To study the mechanisms of noise-induced hearing loss and the phantom noise, or tinnitus, often associated with it, we used a mouse model of noise damage designed for reproducible and quantitative structural analyses. We selected the posteroventral cochlear nucleus, which has shown considerable plasticity in past studies, and correlated its changes with the distribution of neurotrophin 3 (NT3). We used volume change, optical density analysis, and microscopic cluster analysis to measure the degeneration after noise exposure. There was a fluctuation pattern in the reorganization of nerve terminals. The data suggest that the source and size of the nerve terminals affect their capacity for regeneration. We hypothesize that the deafferentation of ventral cochlear nucleus is the structural basis of noise-induced tinnitus. In addition, the immunofluorescent data show a possible connection between NT3 and astrocytes. There appears to be a compensatory process in the supporting glial cells during this degeneration. Glia may play a role in the mechanisms of noise-induced hearing loss.
Collapse
Affiliation(s)
- J Feng
- Southern Connecticut State University, New Haven, Connecticut
| | | | | |
Collapse
|