1
|
Liu Y, Yang L, Singh S, Beyer LA, Prieskorn DM, Swiderski DL, Groves AK, Raphael Y. Combinatorial Atoh1, Gfi1, Pou4f3, and Six1 gene transfer induces hair cell regeneration in the flat epithelium of mature guinea pigs. Hear Res 2024; 441:108916. [PMID: 38103445 PMCID: PMC11223172 DOI: 10.1016/j.heares.2023.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Flat epithelium (FE) is a condition characterized by the loss of both hair cells (HCs) and supporting cells and the transformation of the organ of Corti into a simple flat or cuboidal epithelium, which can occur after severe cochlear insults. The transcription factors Gfi1, Atoh1, Pou4f3, and Six1 (GAPS) play key roles in HC differentiation and survival in normal ears. Previous work using a single transcription factor, Atoh1, to induce HC regeneration in mature ears in vivo usually produced very few cells and failed to produce HCs in severely damaged organs of Corti, especially those with FE. Studies in vitro suggested combinations of transcription factors may be more effective than any single factor, thus the current study aims to examine the effect of co-overexpressing GAPS genes in deafened mature guinea pig cochleae with FE. Deafening was achieved through the infusion of neomycin into the perilymph, leading to the formation of FE and substantial degeneration of nerve fibers. Seven days post neomycin treatment, adenovirus vectors carrying GAPS were injected into the scala media and successfully expressed in the FE. One or two months following GAPS inoculation, cells expressing Myosin VIIa were observed in regions under the FE (located at the scala tympani side of the basilar membrane), rather than within the FE. The number of cells, which we define as induced HCs (iHCs), was not significantly different between one and two months, but the larger N at two months made it more apparent that there were significantly more iHCs in GAPS treated animals than in controls. Additionally, qualitative observations indicated that ears with GAPS gene expression in the FE had more nerve fibers than FE without the treatment. In summary, our results showed that co-overexpression of GAPS enhances the potential for HC regeneration in a severe lesion model of FE.
Collapse
Affiliation(s)
- Yujie Liu
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Ministry of Education Key Laboratory of Otolaryngology-Head and Neck Surgery, Beijing 100730, China
| | - Lin Yang
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Otolaryngology-Head and Neck Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Diane M Prieskorn
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Tarabichi O, Correa T, Kul E, Phillips S, Darkazanly B, Young SM, Hansen MR. Development and evaluation of helper dependent adenoviral vectors for inner ear gene delivery. Hear Res 2023; 435:108819. [PMID: 37276687 PMCID: PMC10427999 DOI: 10.1016/j.heares.2023.108819] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
Viral vector gene therapy is an attractive strategy to treat hearing loss. Since hearing loss is due to a variety of pathogenic signaling cascades in distinct cells, viral vectors that can express large or multiple genes in a cell-type specific manner are needed. Helper-dependent adenoviral vectors (HdAd) are safe viral vectors with a large packaging capacity (-36 kb). Despite the potential of HdAd, its use in the inner ear is largely unexplored. Therefore, to evaluate the utility of HdAd for inner ear gene therapy, we created two HdAd vectors that use distinct cellular receptors for transduction: HdAd Serotype Type 5 (HdAd5), the Coxsackie-Adenovirus Receptor (CAR) and a chimeric HdAd 5/35, the human CD46+ receptor (hCD46). We delivered these vectors through the round window (RW) or scala media in CBA/J, C57Bl6/J and hCD46 transgenic mice. Immunostaining in conjunction with confocal microscopy of cochlear sections revealed that multiple cell types were transduced using HdAd5 and HdAd 5/35 in all mouse models. Delivery of HdAd5 via RW in the C57Bl/6 J or CBA/J cochlea resulted in transduced mesenchymal cells of the peri‑lymphatic lining and modiolar region while scala media delivery resulted in transduction of supporting cells and inner hair cells. Hd5/35 transduction was CD46 dependent and RW delivery of HdAd5/35 in the hCD46 mouse model resulted in a similar transduction pattern as HdAd5 in the peri‑lymphatic lining and modiolar region in the cochlea. Our data indicate that HdAd vectors are promising vectors for use in inner ear gene therapy to treat some causes of hearing loss.
Collapse
Affiliation(s)
- Osama Tarabichi
- Departments of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Tatiana Correa
- Departments of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Emre Kul
- Departments of Anatomy and Cell Biology, University of Iowa, PBDB 5322, 169 Newton Road, Iowa City, IA 52242, USA
| | - Stacia Phillips
- Departments of Anatomy and Cell Biology, University of Iowa, PBDB 5322, 169 Newton Road, Iowa City, IA 52242, USA
| | - Bahaa Darkazanly
- Departments of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel M Young
- Departments of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Departments of Anatomy and Cell Biology, University of Iowa, PBDB 5322, 169 Newton Road, Iowa City, IA 52242, USA; Departments of Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| | - Marlan R Hansen
- Departments of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Departments of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Departments of Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Pisani A, Paciello F, Del Vecchio V, Malesci R, De Corso E, Cantone E, Fetoni AR. The Role of BDNF as a Biomarker in Cognitive and Sensory Neurodegeneration. J Pers Med 2023; 13:jpm13040652. [PMID: 37109038 PMCID: PMC10140880 DOI: 10.3390/jpm13040652] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a crucial function in the central nervous system and in sensory structures including olfactory and auditory systems. Many studies have highlighted the protective effects of BDNF in the brain, showing how it can promote neuronal growth and survival and modulate synaptic plasticity. On the other hand, conflicting data about BDNF expression and functions in the cochlear and in olfactory structures have been reported. Several clinical and experimental research studies showed alterations in BDNF levels in neurodegenerative diseases affecting the central and peripheral nervous system, suggesting that BDNF can be a promising biomarker in most neurodegenerative conditions, including Alzheimer's disease, shearing loss, or olfactory impairment. Here, we summarize current research concerning BDNF functions in brain and in sensory domains (olfaction and hearing), focusing on the effects of the BDNF/TrkB signalling pathway activation in both physiological and pathological conditions. Finally, we review significant studies highlighting the possibility to target BDNF as a biomarker in early diagnosis of sensory and cognitive neurodegeneration, opening new opportunities to develop effective therapeutic strategies aimed to counteract neurodegeneration.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Del Vecchio
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Rita Malesci
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Eugenio De Corso
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elena Cantone
- Department of Neuroscience, Reproductive Sciences and Dentistry-ENT Section, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
4
|
Liu SS, Yang R. Inner Ear Drug Delivery for Sensorineural Hearing Loss: Current Challenges and Opportunities. Front Neurosci 2022; 16:867453. [PMID: 35685768 PMCID: PMC9170894 DOI: 10.3389/fnins.2022.867453] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
Most therapies for treating sensorineural hearing loss are challenged by the delivery across multiple tissue barriers to the hard-to-access anatomical location of the inner ear. In this review, we will provide a recent update on various pharmacotherapy, gene therapy, and cell therapy approaches used in clinical and preclinical studies for the treatment of sensorineural hearing loss and approaches taken to overcome the drug delivery barriers in the ear. Small-molecule drugs for pharmacotherapy can be delivered via systemic or local delivery, where the blood-labyrinth barrier hinders the former and tissue barriers including the tympanic membrane, the round window membrane, and/or the oval window hinder the latter. Meanwhile, gene and cell therapies often require targeted delivery to the cochlea, which is currently achieved via intra-cochlear or intra-labyrinthine injection. To improve the stability of the biomacromolecules during treatment, e.g., RNAs, DNAs, proteins, additional packing vehicles are often required. To address the diverse range of biological barriers involved in inner ear drug delivery, each class of therapy and the intended therapeutic cargoes will be discussed in this review, in the context of delivery routes commonly used, delivery vehicles if required (e.g., viral and non-viral nanocarriers), and other strategies to improve drug permeation and sustained release (e.g., hydrogel, nanocarriers, permeation enhancers, and microfluidic systems). Overall, this review aims to capture the important advancements and key steps in the development of inner ear therapies and delivery strategies over the past two decades for the treatment and prophylaxis of sensorineural hearing loss.
Collapse
Affiliation(s)
- Sophie S. Liu
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Rong Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
5
|
Abstract
INTRODUCTION More than 5% of the world's population have a disabling hearing loss which can be managed by hearing aids or implanted electrical devices. However, outcomes are highly variable, and the sound perceived by recipients is far from perfect. Sparked by the discovery of progenitor cells in the cochlea and rapid progress in drug delivery to the cochlea, biological and pharmaceutical therapies are currently in development to improve the function of the cochlear implant or eliminate the need for it altogether. AREAS COVERED This review highlights progress in emerging regenerative strategies to restore hearing and adjunct therapies to augment the cochlear implant. Novel approaches include the reprogramming of progenitor cells to restore the sensory hair cell population in the cochlea, gene therapy and gene editing to treat hereditary and acquired hearing loss. A detailed review of optogenetics is also presented as a technique that could enable optical stimulation of the spiral ganglion neurons, replacing or complementing electrical stimulation. EXPERT OPINION Increasing evidence of substantial reversal of hearing loss in animal models, alongside rapid advances in delivery strategies to the cochlea and learnings from clinical trials will amalgamate into a biological or pharmaceutical therapy to replace or complement the cochlear implant.
Collapse
Affiliation(s)
- Elise Ajay
- Bionics Institute, East Melbourne, Victoria, Australia.,University of Melbourne, Department of Engineering
| | | | - Rachael Richardson
- Bionics Institute, East Melbourne, Victoria, Australia.,University of Melbourne, Medical Bionics Department, Parkville, Victoria, Australia.,University of Melbourne, Department of Surgery (Otolaryngology), East Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Bankoti K, Generotti C, Hwa T, Wang L, O'Malley BW, Li D. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:209-236. [PMID: 33850952 PMCID: PMC8010215 DOI: 10.1016/j.omtm.2021.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing attention and effort focused on treating the root cause of sensorineural hearing loss rather than managing associated secondary characteristic features. With recent substantial advances in understanding sensorineural hearing-loss mechanisms, gene delivery has emerged as a promising strategy for the biological treatment of hearing loss associated with genetic dysfunction. There are several successful and promising proof-of-principle examples of transgene deliveries in animal models; however, there remains substantial further progress to be made in these avenues before realizing their clinical application in humans. Herein, we review different aspects of development, ongoing preclinical studies, and challenges to the clinical transition of transgene delivery of the inner ear toward the restoration of lost auditory and vestibular function.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Generotti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Hwa
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Wang
- Department of Medicine, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bert W O'Malley
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daqing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Lee S, Song JJ, Beyer LA, Swiderski DL, Prieskorn DM, Acar M, Jen HI, Groves AK, Raphael Y. Combinatorial Atoh1 and Gfi1 induction enhances hair cell regeneration in the adult cochlea. Sci Rep 2020; 10:21397. [PMID: 33293609 PMCID: PMC7722738 DOI: 10.1038/s41598-020-78167-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Mature mammalian cochlear hair cells (HCs) do not spontaneously regenerate once lost, leading to life-long hearing deficits. Attempts to induce HC regeneration in adult mammals have used over-expression of the HC-specific transcription factor Atoh1, but to date this approach has yielded low and variable efficiency of HC production. Gfi1 is a transcription factor important for HC development and survival. We evaluated the combinatorial effects of Atoh1 and Gfi1 over-expression on HC regeneration using gene transfer methods in neonatal cochlear explants, and in vivo in adult mice. Adenoviral over-expression of Atoh1 and Gfi1 in cultured neonatal cochlear explants resulted in numerous ectopic HC-like cells (HCLCs), with significantly more cells in Atoh1 + Gfi1 cultures than Atoh1 alone. In vitro, ectopic HCLCs emerged in regions medial to inner HCs as well as in the stria vascularis. In vivo experiments were performed in mature Pou4f3DTR mice in which HCs were completely and specifically ablated by administration of diphtheria toxin. Adenoviral expression of Atoh1 or Atoh1 + Gfi1 in cochlear supporting cells induced appearance of HCLCs, with Atoh1 + Gfi1 expression leading to 6.2-fold increase of new HCLCs after 4 weeks compared to Atoh1 alone. New HCLCs were detected throughout the cochlea, exhibited immature stereocilia and survived for at least 8 weeks. Combinatorial Atoh1 and Gfi1 induction is thus a promising strategy to promote HC regeneration in the mature mammalian cochlea.
Collapse
Affiliation(s)
- Sungsu Lee
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
- Department of Otolaryngology - Head and Neck Surgery, Chonnam National University Hospital, Gwangju, South Korea
| | - Jae-Jun Song
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Diane M Prieskorn
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Melih Acar
- Department of Medical Biology, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Hsin-I Jen
- Department of Neuroscience, Baylor College of Medicine, Houston, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Reisinger E. Dual-AAV delivery of large gene sequences to the inner ear. Hear Res 2020; 394:107857. [DOI: 10.1016/j.heares.2019.107857] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/22/2019] [Indexed: 01/06/2023]
|
9
|
Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T. Emerging approaches for restoration of hearing and vision. Physiol Rev 2020; 100:1467-1525. [DOI: 10.1152/physrev.00035.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Impairments of vision and hearing are highly prevalent conditions limiting the quality of life and presenting a major socioeconomic burden. For long, retinal and cochlear disorders have remained intractable for causal therapies, with sensory rehabilitation limited to glasses, hearing aids, and electrical cochlear or retinal implants. Recently, the application of gene therapy and optogenetics to eye and ear has generated hope for a fundamental improvement of vision and hearing restoration. To date, one gene therapy for the restoration of vision has been approved and undergoing clinical trials will broaden its application including gene replacement, genome editing, and regenerative approaches. Moreover, optogenetics, i.e. controlling the activity of cells by light, offers a more general alternative strategy. Over little more than a decade, optogenetic approaches have been developed and applied to better understand the function of biological systems, while protein engineers have identified and designed new opsin variants with desired physiological features. Considering potential clinical applications of optogenetics, the spotlight is on the sensory systems. Multiple efforts have been undertaken to restore lost or hampered function in eye and ear. Optogenetic stimulation promises to overcome fundamental shortcomings of electrical stimulation, namely poor spatial resolution and cellular specificity, and accordingly to deliver more detailed sensory information. This review aims at providing a comprehensive reference on current gene therapeutic and optogenetic research relevant to the restoration of hearing and vision. We will introduce gene-therapeutic approaches and discuss the biotechnological and optoelectronic aspects of optogenetic hearing and vision restoration.
Collapse
Affiliation(s)
| | | | | | | | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Goettingen, Germany
| |
Collapse
|
10
|
Jiang W, Peng A, Chen Y, Pang B, Zhang Z. Long non‑coding RNA EBLN3P promotes the recovery of the function of impaired spiral ganglion neurons by competitively binding to miR‑204‑5p and regulating TMPRSS3 expression. Int J Mol Med 2020; 45:1851-1863. [PMID: 32186779 PMCID: PMC7169660 DOI: 10.3892/ijmm.2020.4545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the major leading causes of hearing impairment, and is typically characterized by the degeneration of spiral ganglion neurons (SGNs). In previous studies by the authors, it was demonstrated that microRNA (miRNA or miR)-204-5p decreased the viability of SGNs by inhibiting the expression of transmembrane protease, serine 3 (TMPRSS3), which was closely associated with the development of SGNs. However, the upstream regulatory mechanism of miR-204-5p was not fully elucidated. The present study found that an important upstream regulatory factor of miR-204-5p, long non-coding RNA (lncRNA) EBLN3P, was expressed at low levels in impaired SGNs, whereas it was expressed at high levels in normal SGNs. Mechanistic analyses demonstrated that lncRNA EBLN3P functioned as a competing endogenous RNA (ceRNA) when regulating miR-204-5p in normal SGNs. In addition, lncRNA EBLN3P regulated TMPRSS3 expression via the regulation of miR-204-5p in normal SGNs. In vitro functional analysis revealed that lncRNA EBLN3P promoted the recovery of the viability of normal SGNs and inhibited the apoptosis of normal SGNs. Finally, the results revealed a recovery-promoting effect of lncRNA EBLN3P on the structure and function of impaired SGNs in models of deafness. On the whole, the findings of the present study demonstrate that lncRNA EBLN3P promotes the recovery of the function of impaired SGNs by competitively binding to miR-204-5p and regulating TMPRSS3 expression. This suggests that lncRNA EBLN3P may be a potential therapeutic target for diseases involving SNHL.
Collapse
Affiliation(s)
- Wenqi Jiang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Anquan Peng
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yichao Chen
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Bo Pang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhiwen Zhang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
11
|
Lee S, Dondzillo A, Gubbels SP, Raphael Y. Practical aspects of inner ear gene delivery for research and clinical applications. Hear Res 2020; 394:107934. [PMID: 32204962 DOI: 10.1016/j.heares.2020.107934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
The application of gene therapy is widely expanding in research and continuously improving in preparation for clinical applications. The inner ear is an attractive target for gene therapy for treating environmental and genetic diseases in both the auditory and vestibular systems. With the lack of spontaneous cochlear hair cell replacement, hair cell regeneration in adult mammals is among the most important goals of gene therapy. In addition, correcting gene defects can open up a new era for treating inner ear diseases. The relative isolation and small size of the inner ear dictate local administration routes and carefully calculated small volumes of reagents. In the current review, we will cover effective timing, injection routes and types of vectors for successful gene delivery to specific target cells within the inner ear. Differences between research purposes and clinical applications are also discussed.
Collapse
Affiliation(s)
- Sungsu Lee
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, USA
| | - Anna Dondzillo
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Samuel P Gubbels
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Maguire CA, Corey DP. Viral vectors for gene delivery to the inner ear. Hear Res 2020; 394:107927. [PMID: 32199720 DOI: 10.1016/j.heares.2020.107927] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/04/2023]
Abstract
Gene therapy using virus vectors to treat hereditary diseases has made remarkable progress in the past decade. There are FDA-approved products for ex-vivo gene therapy for diseases such as immunodeficiencies (e.g., SCID), and in vivo gene therapy for a rare blindness and neuro-muscular disease. Gene therapy for hereditary hearing loss has picked up pace in the past five years due to progress in understanding disease gene function as well as the development of better technologies such as adeno-associated virus (AAV) vectors, to deliver nucleic acid to target cells in the inner ear. This review has two major goals. One is to review the state of the art for investigators already working in preclinical cochlear gene therapy. The other is to present the language of vectorology and important considerations for designing and using AAV vectors to inner ear neurobiologists who might use AAV vectors in the cochlea for either therapeutic or basic biological applications.
Collapse
Affiliation(s)
- Casey A Maguire
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, 149 13th Street, Charlestown, MA, 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA.
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Pfannenstiel SC, Praetorius M, Brough DE, Staecker H. Hearing Preservation Following Repeated Adenovector Delivery. Anat Rec (Hoboken) 2020; 303:600-607. [DOI: 10.1002/ar.24347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Susanna C. Pfannenstiel
- Department of Otolaryngology Head and Neck SurgeryUniversity of Kansas School of Medicine Kansas City Kansas
| | - Mark Praetorius
- Department of Otolaryngology Head and Neck SurgeryUniversity of Kansas School of Medicine Kansas City Kansas
- Department of OtolaryngologyUniversity of Heidelberg Heidelberg Germany
| | | | - Hinrich Staecker
- Department of Otolaryngology Head and Neck SurgeryUniversity of Kansas School of Medicine Kansas City Kansas
| |
Collapse
|
14
|
Omichi R, Shibata SB, Morton CC, Smith RJH. Gene therapy for hearing loss. Hum Mol Genet 2019; 28:R65-R79. [PMID: 31227837 PMCID: PMC6796998 DOI: 10.1093/hmg/ddz129] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory disorder. Its underlying etiologies include a broad spectrum of genetic and environmental factors that can lead to hearing loss that is congenital or late onset, stable or progressive, drug related, noise induced, age related, traumatic or post-infectious. Habilitation options typically focus on amplification using wearable or implantable devices; however exciting new gene-therapy-based strategies to restore and prevent SNHL are actively under investigation. Recent proof-of-principle studies demonstrate the potential therapeutic potential of molecular agents delivered to the inner ear to ameliorate different types of SNHL. Correcting or preventing underlying genetic forms of hearing loss is poised to become a reality. Herein, we review molecular therapies for hearing loss such as gene replacement, antisense oligonucleotides, RNA interference and CRISPR-based gene editing. We discuss delivery methods, techniques and viral vectors employed for inner ear gene therapy and the advancements in this field that are paving the way for basic science research discoveries to transition to clinical trials.
Collapse
Affiliation(s)
- Ryotaro Omichi
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Seiji B Shibata
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester M139NT, UK
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
15
|
Kanzaki S. Gene Delivery into the Inner Ear and Its Clinical Implications for Hearing and Balance. Molecules 2018; 23:molecules23102507. [PMID: 30274337 PMCID: PMC6222543 DOI: 10.3390/molecules23102507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 11/16/2022] Open
Abstract
The inner ear contains many types of cell, including sensory hair cells and neurons. If these cells are damaged, they do not regenerate. Inner ear disorders have various etiologies. Some are related to aging or are idiopathic, as in sudden deafness. Others occur due to acoustic trauma, exposure to ototoxic drugs, viral infections, immune responses, or endolymphatic hydrops (Meniere's disease). For these disorders, inner ear regeneration therapy is expected to be a feasible alternative to cochlear implants for hearing recovery. Recently, the mechanisms underlying inner ear regeneration have been gradually clarified. Inner ear cell progenitors or stem cells have been identified. Factors necessary for regeneration have also been elucidated from the mechanism of hair cell generation. Inducing differentiation of endogenous stem cells or inner ear stem cell transplantation is expected. In this paper, we discuss recent approaches to hair cell proliferation and differentiation for inner ear regeneration. We discuss the future road map for clinical application. The therapies mentioned above require topical administration of transgenes or drug onto progenitors of sensory cells. Developing efficient and safe modes of administration is clinically important. In this regard, we also discuss our development of an inner ear endoscope to facilitate topical administration.
Collapse
Affiliation(s)
- Sho Kanzaki
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, KEIO University, Tokyo 160-8582, Japan.
| |
Collapse
|
16
|
Youm I, Li W. Cochlear hair cell regeneration: an emerging opportunity to cure noise-induced sensorineural hearing loss. Drug Discov Today 2018; 23:1564-1569. [DOI: 10.1016/j.drudis.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/16/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
|
17
|
Guo JY, He L, Qu TF, Liu YY, Liu K, Wang GP, Gong SS. Canalostomy As a Surgical Approach to Local Drug Delivery into the Inner Ears of Adult and Neonatal Mice. J Vis Exp 2018. [PMID: 29889202 DOI: 10.3791/57351] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Local delivery of therapeutic drugs into the inner ear is a promising therapy for inner ear diseases. Injection through semicircular canals (canalostomy) has been shown to be a useful approach to local drug delivery into the inner ear. The goal of this article is to describe, in detail, the surgical techniques involved in canalostomy in both adult and neonatal mice. As indicated by fast-green dye and adeno-associated virus serotype 8 with the green fluorescent protein gene, the canalostomy facilitated broad distribution of injected reagents in the cochlea and vestibular end-organs with minimal damage to hearing and vestibular function. The surgery was successfully implemented in both adult and neonatal mice; indeed, multiple surgeries could be performed if required. In conclusion, canalostomy is an effective and safe approach to drug delivery into the inner ears of adult and neonatal mice and may be used to treat human inner ear diseases in the future.
Collapse
Affiliation(s)
- Jing-Ying Guo
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University
| | - Lu He
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University
| | - Teng-Fei Qu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University
| | - Yu-Ying Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University
| | - Ke Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University
| | - Guo-Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University;
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University;
| |
Collapse
|
18
|
Abstract
Drug delivery to the inner ear is an ideal method to treat a wide variety of otologic conditions. A broad range of potential applications is just beginning to be explored. New approaches combine principles of inner ear pharmacokinetics with emerging technologies of drug delivery including novel delivery systems, drug-device combinations, and new categories of drugs. Strategies include cell-specific targeting, manipulation of gene expression, local activation following systemic delivery, and use of stem cells, viral vectors, and gene editing systems. Translation of these therapies to the clinic remains challenging given the potential risks of intracochlear and intralabyrinthine trauma, our limited understanding of the etiologies of particular inner ear disorders, and paucity of accurate diagnostic tools at the cellular level. This review provides an overview of future methods, delivery systems, disease targets, and clinical considerations required for translation to clinical medicine.
Collapse
|
19
|
Choo DI, Tawfik KO, Martin DM, Raphael Y. Inner ear manifestations in CHARGE: Abnormalities, treatments, animal models, and progress toward treatments in auditory and vestibular structures. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:439-449. [PMID: 29082607 DOI: 10.1002/ajmg.c.31587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022]
Abstract
The inner ear contains the sensory organs for hearing and balance. Both hearing and balance are commonly affected in individuals with CHARGE syndrome (CS), an autosomal dominant condition caused by heterozygous pathogenic variants in the CHD7 gene. Semicircular canal dysplasia or aplasia is the single most prevalent feature in individuals with CHARGE leading to deficient gross motor skills and ambulation. Identification of CHD7 as the major gene affected in CHARGE has enabled acceleration of research in this field. Great progress has been made in understanding the role of CHD7 in the development and function of the inner ear, as well as in related organs such as the middle ear and auditory and vestibular neural pathways. The goals of current research on CHD7 and CS are to (a) improve our understanding of the pathology caused by CHD7 pathogenic variants and (b) to provide better tools for prognosis and treatment. Current studies utilize cells and whole animals, from flies to mammals. The mouse is an excellent model for exploring mechanisms of Chd7 function in the ear, given the evolutionary conservation of ear structure, function, Chd7 expression, and similarity of mutant phenotypes between mice and humans. Newly recognized developmental functions for mouse Chd7 are shedding light on how abnormalities in CHD7 might lead to CS symptoms in humans. Here we review known human inner ear phenotypes associated with CHD7 pathogenic variants and CS, summarize progress toward diagnosis and treatment of inner ear-related pathologies, and explore new avenues for treatment based on basic science discoveries.
Collapse
Affiliation(s)
- Daniel I Choo
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kareem O Tawfik
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Donna M Martin
- Departments of Pediatrics, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Human Genetics, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
20
|
Shibata SB, Yoshimura H, Ranum PT, Goodwin AT, Smith RJH. Intravenous rAAV2/9 injection for murine cochlear gene delivery. Sci Rep 2017; 7:9609. [PMID: 28852025 PMCID: PMC5575199 DOI: 10.1038/s41598-017-09805-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023] Open
Abstract
Gene therapy for genetic deafness is a promising approach by which to prevent hearing loss or to restore hearing after loss has occurred. Although a variety of direct approaches to introduce viral particles into the inner ear have been described, presumed physiological barriers have heretofore precluded investigation of systemic gene delivery to the cochlea. In this study, we sought to characterize systemic delivery of a rAAV2/9 vector as a non-invasive means of cochlear transduction. In wild-type neonatal mice (postnatal day 0-1), we show that intravenous injection of rAAV2/9 carrying an eGFP-reporter gene results in binaural transduction of inner hair cells, spiral ganglion neurons and vestibular hair cells. Transduction efficiency increases in a dose-dependent manner. Inner hair cells are transduced in an apex-to-base gradient, with transduction reaching 96% in the apical turn. Hearing acuity in treated animals is unaltered at postnatal day 30. Transduction is influenced by viral serotype and age at injection, with less efficient cochlear transduction observed with systemic delivery of rAAV2/1 and in juvenile mice with rAAV2/9. Collectively, these data validate intravenous delivery of rAAV2/9 as a novel and atraumatic technique for inner ear transgene delivery in early postnatal mice.
Collapse
Affiliation(s)
- Seiji B Shibata
- Department of Otolaryngology - Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Hidekane Yoshimura
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Nagano, 390-8621, Japan
| | - Paul T Ranum
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Interdisciplinary Graduate Program in Molecular & Cellular Biology, The University of Iowa Graduate College, University of Iowa, Iowa City, IA, 52242, USA
| | - Alexander T Goodwin
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Richard J H Smith
- Department of Otolaryngology - Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA. .,Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA. .,Interdisciplinary Graduate Program in Molecular & Cellular Biology, The University of Iowa Graduate College, University of Iowa, Iowa City, IA, 52242, USA. .,Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
21
|
Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear In Vivo. Neural Plast 2016; 2016:9409846. [PMID: 28116172 PMCID: PMC5225386 DOI: 10.1155/2016/9409846] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/08/2016] [Indexed: 01/24/2023] Open
Abstract
Mammalian inner ear harbors diverse cell types that are essential for hearing and balance. Adenovirus is one of the major vectors to deliver genes into the inner ear for functional studies and hair cell regeneration. To identify adenovirus vectors that target specific cell subtypes in the inner ear, we studied three adenovirus vectors, carrying a reporter gene encoding green fluorescent protein (GFP) from two vendors or with a genome editing gene Cre recombinase (Cre), by injection into postnatal days 0 (P0) and 4 (P4) mouse cochlea through scala media by cochleostomy in vivo. We found three adenovirus vectors transduced mouse inner ear cells with different specificities and expression levels, depending on the type of adenoviral vectors and the age of mice. The most frequently targeted region was the cochlear sensory epithelium, including auditory hair cells and supporting cells. Adenovirus with GFP transduced utricular supporting cells as well. This study shows that adenovirus vectors are capable of efficiently and specifically transducing different cell types in the mammalian inner ear and provides useful tools to study inner ear gene function and to evaluate gene therapy to treat hearing loss and vestibular dysfunction.
Collapse
|
22
|
Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened guinea pig cochleae. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16052. [PMID: 27525291 PMCID: PMC4972090 DOI: 10.1038/mtm.2016.52] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/13/2016] [Accepted: 06/11/2016] [Indexed: 01/21/2023]
Abstract
Synaptopathy in the cochlea occurs when the connection between inner hair cells and the auditory nerve is disrupted, leading to impaired hearing and nerve degeneration. Experiments using transgenic mice have shown that overexpression of NT3 by supporting cells repairs synaptopathy caused by overstimulation. To accomplish such therapy in the clinical setting, it would be necessary to activate the neurotrophin receptor on auditory neurons by other means. Here we test the outcome of NT3 overexpression using viral-mediated gene transfer into the perilymph versus the endolymph of the normal guinea pig cochlea. We inoculated two different Ntf3 viral vectors, adenovirus (Adv) or adeno-associated virus (AAV) into the perilymph, to facilitate transgene expression in the mesothelial cells and cochlear duct epithelium, respectively. We assessed outcomes by comparing Auditory brainstem response (ABR) thresholds prior to that at baseline to thresholds at 1 and 3 weeks after inoculation, and then performed histologic evaluation of hair cells, nerve endings, and synaptic ribbons. We observed hearing threshold shifts as well as disorganization of peripheral nerve endings and disruption of synaptic connections between inner hair cells and peripheral nerve endings with both vectors. The data suggest that elevation of NT3 levels in the cochlear fluids can disrupt innervation and degrade hearing.
Collapse
|
23
|
Establishment of a model of cochlear lesions in rats to study potential gene therapy for sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2015; 79:2147-54. [PMID: 26574172 DOI: 10.1016/j.ijporl.2015.09.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Sensorineural hearing loss seriously influences a patient's daily life, and no effective treatments exist to date. Gene therapy is a potential treatment for regenerating hair cells to restore hearing. METHODS In this study, we established a cochlear lesions model to study hair cell regeneration by co-administration of kanamycin and furosemide. After the injections, we assessed the survival of outer hair cells (OHC), inner hair cells (IHC), supporting cells (SC), spiral ganglion neurons (SGN) and peripheral axons. Moreover, we used two viral vectors to detect the transgene distribution. RESULTS Our results showed at 12h post-treatment, numerous OHC were missing in the basal turn. At 24h post-treatment, all OHCs in basal half of the cochlea were lost, and by 48h, OHC loss had spread to the apical coil. Four days after the injections, all OHCs were absent. At 1mo post-treatment, the organ of Corti had collapsed. In contrast, most of the SC remained 4d after the injections. The loss of SGN and peripheral axons was consistent with this time course post-treatment. The results of transgene distribution suggested the correlative gene can be transferred into the organ of Corti using adenoviruses (AdV) vectors and lentiviruses (LV) vectors in our cochlear lesion model. COMPARISON WITH EXISTING METHOD(S) We assessed the details of HC death at more time point and chosen the time point for gene transfer in this model. CONCLUSIONS We conclude that this cochlear lesion model would be suitable for the study of hair cell regeneration.
Collapse
|
24
|
Park YH. Stem Cell Therapy for Sensorineural Hearing Loss, Still Alive? J Audiol Otol 2015; 19:63-7. [PMID: 26413570 PMCID: PMC4582452 DOI: 10.7874/jao.2015.19.2.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 12/24/2022] Open
Abstract
In mammals, the auditory system, which includes the cochlea, has a very complex structure harboring many types of cells performing different functions. Among these cells are the auditory hair cells (HCs), which are terminally and well differentiated unique cells which have lost their regenerative potential after development. The auditory HCs are easily damaged by aging as well as during episodes of ototoxicity and acoustic trauma. HCs damages typically occur in the early stage of injury and can result a permanent hearing loss. Recently, there have been tremendous developments from stem cells (SCs) research involving sensorineural hearing loss, but several limitations and obstacles persist in allowing these developments from continuing onto clinical applications. This review discusses the recent advances in SC research in sensorineural hearing loss with the subsequent sections discussing the possible hurdles and limitations that currently preclude their clinical application.
Collapse
Affiliation(s)
- Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
25
|
Ototoxicity-induced loss of hearing and inner hair cells is attenuated by HSP70 gene transfer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15019. [PMID: 26029729 PMCID: PMC4445521 DOI: 10.1038/mtm.2015.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/30/2015] [Accepted: 03/30/2015] [Indexed: 11/08/2022]
Abstract
The most common reason for sensorineural deafness is death of hair cells (HCs). Heat shock proteins (HSPs) are molecular chaperones that participate in folding, targeting, and degrading proteins. HSP expression is increased in response to various environmental stresses to protect cells from damage. Here, we tested whether viral-mediated overexpression of HSP70 can protect HCs and hearing from severe ototoxicity (kanamycin and furosemide) in guinea pigs. Adenovirus-HSP70 mCherry (Ad.HSP70-mCherry) was injected to experimental animals and adenovirus-mCherry to controls, 4 days before the ototoxic insult. Hearing thresholds were measured by auditory brainstem response before the insult and again before sacrificing the animals, 14 days after the insult. Epi-fluorescence immunocytochemistry showed that injection of Ad.HSP70-mCherry resulted in mCherry fluorescence in nonsensory cells of the organ of Corti. The ototoxic insult eliminated both outer HCs and inner HCs throughout most of the cochlea of control (adenovirus-mCherry-injected) ears and contralateral (uninjected) ears. Ad.HSP70-mCherry-injected ears exhibited a significant preservation of inner HCs compared to control and contralateral ears, but outer HCs were not protected. Auditory brainstem response thresholds were significantly better in Ad.HSP70-mCherry-injected ears than in control and contralateral ears. Our data show that HSP70 augmentation may represent a potential therapy attenuating ototoxic inner HC loss.
Collapse
|
26
|
Richardson RT, Atkinson PJ. Atoh1 gene therapy in the cochlea for hair cell regeneration. Expert Opin Biol Ther 2015; 15:417-30. [DOI: 10.1517/14712598.2015.1009889] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Kanzaki S. Gene and drug delivery system and potential treatment into inner ear for protection and regeneration. Front Pharmacol 2014; 5:222. [PMID: 25339903 PMCID: PMC4189539 DOI: 10.3389/fphar.2014.00222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/16/2014] [Indexed: 11/13/2022] Open
Abstract
The most common type of hearing loss results from damage to the cochlea including lost hair cells (HCs) and spiral ganglion neurons (SGNs). In mammals, cochlear HC loss causes irreversible hearing impairment because this type of sensory cell cannot regenerate. The protection from SGN from degeneration has implications for cochlear implant to patients with severe deafness. This review summarizes the several treatments for HC regeneration based on experiments. We discuss how transgene expression of the neurotrophic factor can protect SGN from degeneration and describe potential new therapeutic interventions to reduce hearing loss. We also summarized viral vectors and introduced the gene and drug delivery system for regeneration and protection of cochlear HCs. Finally, we introduce the novel endoscopy we developed for local injection into cochlea.
Collapse
Affiliation(s)
- Sho Kanzaki
- Department of Otorhinolaryngology, Keio University Tokyo, Japan
| |
Collapse
|
28
|
Electroacoustic stimulation: now and into the future. BIOMED RESEARCH INTERNATIONAL 2014; 2014:350504. [PMID: 25276779 PMCID: PMC4168031 DOI: 10.1155/2014/350504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/04/2014] [Indexed: 12/22/2022]
Abstract
Cochlear implants have provided hearing to hundreds of thousands of profoundly deaf people around the world. Recently, the eligibility criteria for cochlear implantation have been relaxed to include individuals who have some useful residual hearing. These recipients receive inputs from both electric and acoustic stimulation (EAS). Implant recipients who can combine these hearing modalities demonstrate pronounced benefit in speech perception, listening in background noise, and music appreciation over implant recipients that rely on electrical stimulation alone. The mechanisms bestowing this benefit are unknown, but it is likely that interaction of the electric and acoustic signals in the auditory pathway plays a role. Protection of residual hearing both during and following cochlear implantation is critical for EAS. A number of surgical refinements have been implemented to protect residual hearing, and the development of hearing-protective drug and gene therapies is promising for EAS recipients. This review outlines the current field of EAS, with a focus on interactions that are observed between these modalities in animal models. It also outlines current trends in EAS surgery and gives an overview of the drug and gene therapies that are clinically translatable and may one day provide protection of residual hearing for cochlear implant recipients.
Collapse
|
29
|
Adeno-associated virus-mediated gene transfer targeting normal and traumatized mouse utricle. Gene Ther 2014; 21:958-66. [PMID: 25119376 DOI: 10.1038/gt.2014.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 11/08/2022]
Abstract
Balance dysfunction is closely associated with loss of vestibular hair cells (HCs). Gene therapy shows promise when used to protect or regenerate vestibular HCs to preserve or restore adequate vestibular function. Adeno-associated virus (AAV) vectors allow long-term gene expression in the absence of toxicity. To noninvasively define an AAV serotype exhibiting favorable tropism toward the vestibular sensory epithelium, we characterized the transgene expression potential of AAV vectors (serotypes 1, 2, 5, 6 and 8) inoculated into adult mouse utricle via canalostomy. We found that AAV8 was the most effective AAV vector in utricular gene transfer. Swim tests and measurements of auditory brainstem response revealed minimal loss of vestibular function and hearing after canalostomy. In the normal utricle after AAV8 infusion, transduction efficiency peaked at 7 days, and was maintained thereafter, in vestibular HCs, and at 3 days in supporting cells (SCs). In the streptomycin-lesioned utricle, the SC transduction efficiency peaked at 7 days and decreased at 30 days. In conclusion, AAV8-mediated gene transfer via canalostomy facilitates efficient and safe transduction in mouse vestibular sensory epithelium, and may in the future become clinically relevant for human vestibular gene therapy.
Collapse
|
30
|
Borkholder DA, Zhu X, Frisina RD. Round window membrane intracochlear drug delivery enhanced by induced advection. J Control Release 2013; 174:171-6. [PMID: 24291333 DOI: 10.1016/j.jconrel.2013.11.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/22/2013] [Indexed: 11/24/2022]
Abstract
Delivery of therapeutic compounds to the inner ear via absorption through the round window membrane (RWM) has advantages over direct intracochlear infusions; specifically, minimizing impact upon functional hearing measures. However, previous reports show that significant basal-to-apical concentration gradients occur, with the potential to impact treatment efficacy. Here we present a new approach to inner ear drug delivery with induced advection aiding distribution of compounds throughout the inner ear in the murine cochlea. Polyimide microtubing was placed near the RWM niche through a bullaostomy into the middle ear cavity allowing directed delivery of compounds to the RWM. We hypothesized that a posterior semicircular canalostomy would induce apical flow from the patent cochlear aqueduct to the canalostomy due to influx of cerebral spinal fluid. To test this hypothesis, young adult CBA/CaJ mice were divided into two groups: bullaostomy approach only (BA) and bullaostomy+canalostomy (B+C). Cochlear function was evaluated by distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) thresholds during and after middle ear infusion of salicylate in artificial perilymph (AP), applied near the RWM. The mice recovered for 1week, and were re-tested. The results demonstrate there was no significant impact on auditory function utilizing the RWM surgical procedure with or without the canalostomy, and DPOAE thresholds were elevated reversibly during the salicylate infusion. Comparing the threshold shifts for both methods, the B+C approach had more of a physiological effect than the BA approach, including at lower frequencies representing more apical cochlear locations. Unlike mouse cochleostomies, there was no deleterious auditory functional impact after 1week recovery from surgery. The B+C approach had more drug efficacy at lower frequencies, underscoring potential benefits for more precise control of delivery of inner ear therapeutic compounds.
Collapse
Affiliation(s)
- David A Borkholder
- Department of Electrical and Microelectronic Engineering, Rochester Institute of Technology, Rochester 14623, USA; Department of Microsystems Engineering, Rochester Institute of Technology, Rochester 14623, USA; Department of Otolaryngology, University of Rochester Medical School, Rochester 14642, USA; Department of Biomedical Engineering, University of Rochester Medical School, Rochester 14642, USA.
| | - Xiaoxia Zhu
- Department of Otolaryngology, University of Rochester Medical School, Rochester 14642, USA; International Center for Hearing & Speech Research, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester 14623, USA.
| | - Robert D Frisina
- Department of Otolaryngology, University of Rochester Medical School, Rochester 14642, USA; Department of Biomedical Engineering, University of Rochester Medical School, Rochester 14642, USA; Department of Neurobiology & Anatomy, University of Rochester Medical School, Rochester 14642, USA; International Center for Hearing & Speech Research, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester 14623, USA.
| |
Collapse
|
31
|
Yu Q, Wang Y, Chang Q, Wang J, Gong S, Li H, Lin X. Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice. Gene Ther 2013; 21:71-80. [PMID: 24225640 PMCID: PMC3881370 DOI: 10.1038/gt.2013.59] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/09/2013] [Accepted: 09/23/2013] [Indexed: 02/03/2023]
Abstract
Mutations in GJB2, which codes for the gap junction protein connexin26, are the most common causes of human nonsyndromic hereditary deafness. We inoculated modified adeno-associated viral vectors into the scala media of early postnatal conditional Gjb2 knockout mice to drive exogenous connexin26 expression. We found extensive virally-expressed connexin26 in cells lining the scala media, and intercellular gap junction network was re-established in the organ of Corti of mutant mouse cochlea. Widespread ectopic connexin26 expression neither formed ectopic gap junctions nor affected normal hearing thresholds in wild type mice, suggesting that autonomous cellular mechanisms regulate proper membrane trafficking of exogenously-expressed connexin26 and govern the functional manifestation of them. Functional recovery of gap-junction-mediated coupling among the supporting cells was observed. We found that both cell death in the organ of Corti and degeneration of spiral ganglion neurons in the cochlea of mutant mice were substantially reduced, although auditory brainstem responses did not show significant hearing improvement. This is the first report demonstrating that virally-mediated gene therapy restored extensive gap junction intercellular network among cochlear non-sensory cells in vivo. Such a treatment performed at early postnatal stages resulted in a partial rescue of disease phenotypes in the cochlea of the mutant mice.
Collapse
Affiliation(s)
- Q Yu
- 1] Department of Otolaryngology Head & Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China [2] Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - Y Wang
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Q Chang
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - J Wang
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - S Gong
- Department of Otolaryngology Head & Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - H Li
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - X Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
32
|
Wang Y, Sun Y, Chang Q, Ahmad S, Zhou B, Kim Y, Li H, Lin X. Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds. J Gene Med 2013; 15:123-33. [PMID: 23413036 DOI: 10.1002/jgm.2701] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gene transfer into the inner ear is a promising approach for treating sensorineural hearing loss. The special electrochemical environment of the scala media raises a formidable challenge for effective gene delivery at the same time as keeping normal cochlear function intact. The present study aimed to define a suitable strategy for preserving hearing after viral inoculation directly into the scala media performed at various postnatal developmental stages. METHODS We assessed transgene expression of green fluorescent protein (GFP) mediated by various types of adeno-associated virus (AAV) and lentivirus (LV) in the mouse cochlea. Auditory brainstem responses were measured 30 days after inoculation to assess effects on hearing. RESULTS Patterns of GFP expression confirmed extensive exogenous gene expression in various types of cells lining the endolymphatic space. The use of different viral vectors and promoters resulted in specific cellular GFP expression patterns. AAV2/1 with cytomegalovirus promoter apparently gave the best results for GFP expression in the supporting cells. Histological examination showed normal cochlear morphology and no hair cell loss after either AAV or LV injections. We found that hearing thresholds were not significantly changed when the injections were performed in mice younger than postnatal day 5, regardless of the type of virus tested. CONCLUSIONS Viral inoculation and expression in the inner ear for the restoration of hearing must not damage cochlear function. Using normal hearing mice as a model, we have achieved this necessary step, which is required for the treatment of many types of congenital deafness that require early intervention.
Collapse
Affiliation(s)
- Yunfeng Wang
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wei Y, Fu Y, Liu S, Xia G, Pan S. Effect of lentiviruses carrying enhanced green fluorescent protein injected into the scala media through a cochleostomy in rats. Am J Otolaryngol 2013; 34:301-7. [PMID: 23465349 DOI: 10.1016/j.amjoto.2012.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/24/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE The purposes of the current study were to assess the feasibility of post-auricular microinjection of lentiviruses carrying enhanced green fluorescent protein (EGFP) into the scala media through cochleostomies in rats, determine the expression of viral gene in the cochlea, and record the post-operative changes in the number and auditory function of cochlear hair cells (HCs). METHODS Healthy rats were randomly divided into two groups. The left ears of the animals in group I were injected with lentivirus carrying EGFP (n=10) via scala media lateral wall cochleostomies, and the left ears of the animals in group II were similarly injected with artificial endolymph (n=10). Prior to and 30 days post-injection, auditory function was assessed with click-auditory brainstem response (ABR) testing, EGFP expression was determined with cochlear frozen sections under fluorescence microscopy, and survival of HCs was estimated based on whole mount preparations. RESULTS Thirty days after surgery, click-ABR testing revealed that there were significant differences in the auditory function, EGFP expression, and survival of HCs in the left ears before and after surgery in the same rats from each group. In group I, EGFP was noted in the strial marginal cells of the scala media, the organ of Corti, spiral nerves, and spiral ganglion cells. CONCLUSION Lentiviruses were successfully introduced into the scala media through cochleostomies in rats, and the EGFP reporter gene was efficiently expressed in the organ of Corti, spiral nerves, and spiral ganglion cells.
Collapse
|
34
|
XIA LI, YIN SHANKAI. Local gene transfection in the cochlea (Review). Mol Med Rep 2013; 8:3-10. [DOI: 10.3892/mmr.2013.1496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/13/2012] [Indexed: 11/06/2022] Open
|
35
|
Maass JC, Berndt FA, Cánovas J, Kukuljan M. p27Kip1 knockdown induces proliferation in the organ of Corti in culture after efficient shRNA lentiviral transduction. J Assoc Res Otolaryngol 2013; 14:495-508. [PMID: 23612739 DOI: 10.1007/s10162-013-0383-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 02/25/2013] [Indexed: 12/15/2022] Open
Abstract
The cells in the organ of Corti do not exhibit spontaneous cell regeneration; hair cells that die after damage are not replaced. Supporting cells can be induced to transdifferentiate into hair cells, but that would deplete their numbers, therefore impairing epithelium physiology. The loss of p27Kip1 function induces proliferation in the organ of Corti, which raises the possibility to integrate it to the strategies to achieve regeneration. Nevertheless, it is not known if the extent of this proliferative potential, as well as its maintenance in postnatal stages, is compatible with providing a basis for eventual therapeutic manipulation. This is due in part to the limited success of approaches to deliver tools to modify gene expression in the auditory epithelium. We tested the hypothesis that the organ of Corti can undergo significant proliferation when efficient manipulation of the expression of regulators of the cell cycle is achieved. Lentiviral vectors were used to transduce all cochlear cell types, with efficiencies around 4 % for hair cells, 43 % in the overall supporting cell population, and 74 % within lesser epithelial ridge (LER) cells. Expression of short hairpin RNA targeting p27Kip1 encoded by the lentiviral vectors led to measurable proliferation in the organ of Corti and increase in LER cells number but not hair cell regeneration. Our results revalidate the use of lentiviral vectors in the study and in the potential therapeutic approaches for inner ear diseases, as well as demonstrate that efficient manipulation of p27Kip1 is sufficient to induce significant proliferation in the postnatal cochlea.
Collapse
Affiliation(s)
- Juan C Maass
- Program in Physiology and Biophysics, Institute for Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago, Chile.
| | | | | | | |
Collapse
|
36
|
Kanzaki S. [Feasibility of drug and gene therapy for sensorineural hearing loss]. Nihon Yakurigaku Zasshi 2013; 141:188-90. [PMID: 23575422 DOI: 10.1254/fpj.141.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Staecker H, Rodgers B. Developments in delivery of medications for inner ear disease. Expert Opin Drug Deliv 2013; 10:639-50. [PMID: 23560526 DOI: 10.1517/17425247.2013.766167] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hearing loss, tinnitus and balance disturbance represent common diseases that have tremendous impact on quality of life. Despite the high incidence of inner ear disease in the general population, there are currently no dedicated pharmacologic interventions available to treat these problems. AREAS COVERED This review will focus on how treatment of inner ear disease is moving toward local delivery at the end organ level. The authors will discuss current practice, ongoing clinical trials and potential areas of development such as hair cell regeneration and neurotrophin therapy. EXPERT OPINION The inner ear is accessible through the middle ear via the oval and round windows allowing diffusion of drugs into the perilymph. With a better understanding of the physiology of the inner ear and the underlying molecular causes of inner ear disease there is great potential for the development of novel therapeutics that can be locally administered. At present, there is a rapid development of drugs to target diverse inner ear diseases that cause sensorineural hearing loss and balance dysfunction.
Collapse
Affiliation(s)
- Hinrich Staecker
- University of Kansas School of Medicine, Department of Otolaryngology Head and Neck Surgery, MS 3010, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | | |
Collapse
|
38
|
|
39
|
Abstract
Therapies aimed at the protection and/or regeneration of inner ear hair cells are of great interest, given the significant monetary and quality of life impact of balance disorders. Different viral vectors have been shown to transfect various cell types in the inner ear. The past decade has provided tremendous advances in the use of adenoviral vectors to achieve targeted treatment delivery. Several routes of delivery have been identified to introduce vectors into the inner ear while minimizing injury to surrounding structures. Recently, the transcription factor Atoh1 was determined to play a critical role in hair cell differentiation. Adenoviral-mediated overexpression of Atoh1 in culture and in vivo has demonstrated the ability to regenerate vestibular hair cells by causing transdifferentiation of neighbouring epithelial-supporting cells. Functional recovery of the vestibular system has also been documented following adenoviral-induced Atoh1 overexpression. Experiments demonstrating gene transfer in human vestibular epithelial cells reveal that the human inner ear is a suitable target for gene therapy.
Collapse
Affiliation(s)
- Silviu Albu
- Second Department of Otolaryngology, University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania.
| | | |
Collapse
|
40
|
Abstract
Animal studies on inner ear development, repair and regeneration provide understanding of molecular pathways that can be harnessed for treating inner ear disease. Use of transgenic mouse technology, in particular, has contributed knowledge of genes that regulate development of hair cells and innervation, and of molecular players that can induce regeneration, but this technology is not applicable for human treatment, for practical and ethical reasons. Therefore other means for influencing gene expression in the inner ear are needed. We describe several gene vectors useful for inner ear gene therapy and the practical aspects of introducing these vectors into the ear. We then review the progress toward using gene transfer for therapies in both auditory and balance systems, and discuss the technological milestones needed to advance to clinical application of these methods.
Collapse
Affiliation(s)
- Hideto Fukui
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | | |
Collapse
|
41
|
Abstract
Transient transfection of hair cells has proven challenging. Here we describe modifications to the Bio-Rad Helios Gene Gun that, along with an optimized protocol, improve transfection of bullfrog, chick, and mouse hair cells. The increased penetrating power afforded by our method allowed us to transfect mouse hair cells from the basal side, through the basilar membrane; this configuration protects hair bundles from damage during the procedure. We characterized the efficiency of transfection of mouse hair cells with fluorescently-tagged actin fusion protein using both the optimized procedure and a published procedure; while the efficiency of the two methods was similar, the morphology of transfected hair cells was improved with the new procedure. In addition, using the improved method, we were able to transfect hair cells in the bullfrog sacculus and chick cochlea for the first time. We used fluorescent-protein fusions of harmonin b (USH1C) and PMCA2 (ATP2B2; plasma-membrane Ca2+-ATPase isoform 2) to examine protein distribution in hair cells. While PMCA2-EGFP localization was similar to endogenous PMCA2 detected with antibodies, high levels of harmonin-EGFP were found at stereocilia tapers in bullfrog and chick, but not mouse; by contrast, harmonin-EGFP was concentrated in stereocilia tips in mouse hair cells.
Collapse
|
42
|
Sacheli R, Delacroix L, Vandenackerveken P, Nguyen L, Malgrange B. Gene transfer in inner ear cells: a challenging race. Gene Ther 2012; 20:237-47. [PMID: 22739386 DOI: 10.1038/gt.2012.51] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in human genomics led to the identification of numerous defective genes causing deafness, which represent novel putative therapeutic targets. Future gene-based treatment of deafness resulting from genetic or acquired sensorineural hearing loss may include strategies ranging from gene therapy to antisense delivery. For successful development of gene therapies, a minimal requirement involves the engineering of appropriate gene carrier systems. Transfer of exogenous genetic material into the mammalian inner ear using viral or non-viral vectors has been characterized over the last decade. The nature of inner ear cells targeted, as well as the transgene expression level and duration, are highly dependent on the vector type, the route of administration and the strength of the promoter driving expression. This review summarizes and discusses recent advances in inner ear gene-transfer technologies aimed at examining gene function or identifying new treatment for inner ear disorders.
Collapse
Affiliation(s)
- R Sacheli
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
43
|
Warnecke A, Sasse S, Wenzel GI, Hoffmann A, Gross G, Paasche G, Scheper V, Reich U, Esser KH, Lenarz T, Stöver T, Wissel K. Stable release of BDNF from the fibroblast cell line NIH3T3 grown on silicone elastomers enhances survival of spiral ganglion cells in vitro and in vivo. Hear Res 2012; 289:86-97. [PMID: 22564255 DOI: 10.1016/j.heares.2012.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 04/04/2012] [Accepted: 04/09/2012] [Indexed: 12/23/2022]
Abstract
The treatment of choice for profound sensorineural hearing loss (SNHL) is direct electrical stimulation of spiral ganglion cells (SGC) via a cochlear implant (CI). The number and excitability of SGC seem to be critical for the success that can be achieved via CI treatment. However, SNHL is associated with degeneration of SGC. Long-term drug delivery to the inner ear for improving SGC survival may be achieved by functionalisation of CI electrodes with cells providing growth factors. Therefore, the capacity of brain-derived neurotrophic factor (BDNF)-secreting NIH3T3 cells grown on cylindrically shaped silicone elastomers (SE) to exert local and sustained neuroprotective effects was assessed in vitro and in vivo. An in vitro model to investigate adhesion and cell growth of lentivirally modified NIH3T3 cells synthesising BDNF on SE was established. The bioactivity of BDNF was characterised by co-cultivation of SGC with cell-coated SE. In addition, cell-coated SE were implanted into deafened guinea pigs. The recombinant NIH3T3 cells proliferated on silicone surfaces during 14 days of cultivation and expressed significantly increasing BDNF levels. Enhanced survival rates and neurite outgrowth of SGC demonstrated the bioactivity of BDNF in vitro. Implantation of SE with adhering BDNF-secreting NIH3T3 cells into the cochleae of systemically deafened guinea pigs induced a significant increase in SGC survival in comparison to SE without cell coating. Our data demonstrate a novel approach of cell-based long-term drug delivery to support SGC survival in vitro and in vivo. This therapeutic strategy--once transferred to cells suitable for clinical application--may improve CI performance.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shibata SB, Cortez SR, Wiler JA, Swiderski DL, Raphael Y. Hyaluronic acid enhances gene delivery into the cochlea. Hum Gene Ther 2012; 23:302-10. [PMID: 22074321 DOI: 10.1089/hum.2011.086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cochlear gene therapy can be a new avenue for the treatment of severe hearing loss by inducing regeneration or phenotypic rescue. One necessary step to establish this therapy is the development of a safe and feasible inoculation surgery, ideally without drilling the bony cochlear wall. The round window membrane (RWM) is accessible in the middle-ear space, but viral vectors placed on this membrane do not readily cross the membrane to the cochlear tissues. In an attempt to enhance permeability of the RWM, we applied hyaluronic acid (HA), a nontoxic and biodegradable reagent, onto the RWM of guinea pigs, prior to delivering an adenovirus carrying enhanced green fluorescent protein (eGFP) reporter gene (Ad-eGFP) at the same site. We examined distribution of eGFP in the cochlea 1 week after treatment, comparing delivery of the vector via the RWM, with or without HA, to delivery by a cochleostomy into the perilymph. We found that cochlear tissue treated with HA-assisted delivery of Ad-eGFP demonstrated wider expression of transgenes in cochlear cells than did tissue treated by cochleostomy injection. HA-assisted vector delivery facilitated expression in cells lining the scala media, which are less accessible and not transduced after perilymphatic injection. We assessed auditory function by measuring auditory brainstem responses and determined that thresholds were significantly better in the ears treated with HA-assisted Ad-eGFP placement on the RWM as compared with cochleostomy. Together, these data demonstrate that HA-assisted delivery of viral vectors provides an atraumatic and clinically feasible method to introduce transgenes into cochlear cells, thereby enhancing both research methods and future clinical application.
Collapse
Affiliation(s)
- Seiji B Shibata
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI 48109-5648, USA
| | | | | | | | | |
Collapse
|
45
|
Sheffield AM, Gubbels SP, Hildebrand MS, Newton SS, Chiorini JA, Di Pasquale G, Smith RJH. Viral vector tropism for supporting cells in the developing murine cochlea. Hear Res 2011; 277:28-36. [PMID: 21530627 PMCID: PMC3137760 DOI: 10.1016/j.heares.2011.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/24/2011] [Accepted: 03/30/2011] [Indexed: 12/01/2022]
Abstract
Gene-based therapeutics are being developed as novel treatments for genetic hearing loss. One roadblock to effective gene therapy is the identification of vectors which will safely deliver therapeutics to targeted cells. The cellular heterogeneity that exists within the cochlea makes viral tropism a vital consideration for effective inner ear gene therapy. There are compelling reasons to identify a viral vector with tropism for organ of Corti supporting cells. Supporting cells are the primary expression site of connexin 26 gap junction proteins that are mutated in the most common form of congenital genetic deafness (DFNB1). Supporting cells are also primary targets for inducing hair cell regeneration. Since many genetic forms of deafness are congenital it is necessary to administer gene transfer-based therapeutics prior to the onset of significant hearing loss. We have used transuterine microinjection of the fetal murine otocyst to investigate viral tropism in the developing inner ear. For the first time we have characterized viral tropism for supporting cells following in utero delivery to their progenitors. We report the inner ear tropism and potential ototoxicity of three previously untested vectors: early-generation adenovirus (Ad5.CMV.GFP), advanced-generation adenovirus (Adf.11D) and bovine adeno-associated virus (BAAV.CMV.GFP). Adenovirus showed robust tropism for organ of Corti supporting cells throughout the cochlea but induced increased ABR thresholds indicating ototoxicity. BAAV also showed tropism for organ of Corti supporting cells, with preferential transduction toward the cochlear apex. Additionally, BAAV readily transduced spiral ganglion neurons. Importantly, the BAAV-injected ears exhibited normal hearing at 5 weeks of age when compared to non-injected ears. Our results support the use of BAAV for safe and efficient targeting of supporting cell progenitors in the developing murine inner ear.
Collapse
|
46
|
Staecker H, Praetorius M, Brough DE. Development of gene therapy for inner ear disease: Using bilateral vestibular hypofunction as a vehicle for translational research. Hear Res 2011; 276:44-51. [PMID: 21251965 DOI: 10.1016/j.heares.2011.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 12/16/2022]
Abstract
Despite the significant impact of hearing and balance disorders on the general population there are currently no dedicated pharmaceuticals that target the inner ear. Advances in molecular biology and neuroscience have improved our understanding of the inner ear allowing the development of a range of molecular targets that have the potential to treat both hearing and balance disorders. One of the principal advantages of the inner ear is that it is accessible through a variety of approaches that would allow a potential to be delivered locally rather than systemically. This significantly broadens the potential medications that can be developed and opens the possibility of local gene delivery as a therapeutic intervention. Several potential clinical targets have been identified including delivery of neurotrophin expressing genes as an adjunct to cochlear implantation, delivery of protective genes to prevent trauma and the development of strategies for regenerating inner ear sensory cells. In order to translate these potential therapeutics into humans we will want to optimize the gene delivery methodology, dosing and activity of the drug for therapeutic value. To this end we have developed a series of adenovectors that efficiently transduce the inner ear. The use of these gene delivery approaches are attractive for the potential of hair cell regeneration after loss induced by trauma or ototoxins. This approach is particularly suited for the development of molecular therapies targeted at the vestibular system given that no device based therapeutic such a cochlear implant available for vestibular loss.
Collapse
Affiliation(s)
- Hinrich Staecker
- Dept. Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, MS 3010, 3901 Rainbow Blvd, Kansas City, KS 66209, USA.
| | | | | |
Collapse
|
47
|
Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear. Gene Ther 2011; 18:569-78. [PMID: 21209625 PMCID: PMC3085601 DOI: 10.1038/gt.2010.175] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Murine models are ideal for studying cochlear gene transfer, as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, because of the small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for the delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAVs) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear, and allows for near-complete preservation of low and middle frequency hearing. In this study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6 and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness.
Collapse
|
48
|
Survival and fate of transplanted embryonic neural stem cells by Atoh1 gene transfer in guinea pigs cochlea. Neuroreport 2010; 21:490-6. [DOI: 10.1097/wnr.0b013e3283383410] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Wise AK, Hume CR, Flynn BO, Jeelall YS, Suhr CL, Sgro BE, O'Leary SJ, Shepherd RK, Richardson RT. Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea. Mol Ther 2010; 18:1111-22. [PMID: 20216530 DOI: 10.1038/mt.2010.28] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A cochlear implant may be used to electrically stimulate spiral ganglion neurons (SGNs) in people with severe sensorineural hearing loss (SNHL). However, these neurons progressively degenerate after SNHL due to loss of neurotrophins normally supplied by sensory hair cells (HCs). Experimentally, exogenous neurotrophin administration prevents SGN degeneration but can also result in abnormal resprouting of their peripheral fibers. This study aimed to create a target-derived neurotrophin source to increase neuron survival and redirect fiber resprouting following SNHL. Adenoviral (Ad) vectors expressing green fluorescent protein (GFP) alone or in combination with brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT3) were injected into the cochlear scala tympani or scala media of guinea-pigs (GPs) deafened via aminoglycosides for 1 week. After 3 weeks, cochleae were examined for gene expression, neuron survival, and the projection of peripheral fibers in response to gene expression. Injection of vectors into the scala media resulted in more localized gene expression than scala tympani injection with gene expression consistently observed within the partially degenerated organ of Corti. There was also greater neuron survival and evidence of localized fiber responses to neurotrophin-expressing cells within the organ of Corti from scala media injections (P < 0.05), a first step in promoting organized resprouting of auditory peripheral fibers via gene therapy.
Collapse
Affiliation(s)
- Andrew K Wise
- Bionic Ear Institute, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shibata SB, Cortez SR, Beyer LA, Wiler JA, Di Polo A, Pfingst BE, Raphael Y. Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol 2010; 223:464-72. [PMID: 20109446 DOI: 10.1016/j.expneurol.2010.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 12/26/2022]
Abstract
Sensory organs typically use receptor cells and afferent neurons to transduce environmental signals and transmit them to the CNS. When sensory cells are lost, nerves often regress from the sensory area. Therapeutic and regenerative approaches would benefit from the presence of nerve fibers in the tissue. In the hearing system, retraction of afferent innervation may accompany the degeneration of auditory hair cells that is associated with permanent hearing loss. The only therapy currently available for cases with severe or complete loss of hair cells is the cochlear implant auditory prosthesis. To enhance the therapeutic benefits of a cochlear implant, it is necessary to attract nerve fibers back into the cochlear epithelium. Here we show that forced expression of the neurotrophin gene BDNF in epithelial or mesothelial cells that remain in the deaf ear induces robust regrowth of nerve fibers towards the cells that secrete the neurotrophin, and results in re-innervation of the sensory area. The process of neurotrophin-induced neuronal regeneration is accompanied by significant preservation of the spiral ganglion cells. The ability to regrow nerve fibers into the basilar membrane area and protect the auditory nerve will enhance performance of cochlear implants and augment future cell replacement therapies such as stem cell implantation or induced transdifferentiation. This model also provides a general experimental stage for drawing nerve fibers into a tissue devoid of neurons, and studying the interaction between the nerve fibers and the tissue.
Collapse
Affiliation(s)
- Seiji B Shibata
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, 1150 W. Med. Cntr. Dr., Ann Arbor, MI 48109-5648, USA
| | | | | | | | | | | | | |
Collapse
|