1
|
Mondul JA, Burke K, Morley B, Lauer AM. Alpha9alpha10 knockout mice show altered physiological and behavioral responses to signals in masking noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:3183-3194. [PMID: 38738939 PMCID: PMC11093617 DOI: 10.1121/10.0025985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Medial olivocochlear (MOC) efferents modulate outer hair cell motility through specialized nicotinic acetylcholine receptors to support encoding of signals in noise. Transgenic mice lacking the alpha9 subunits of these receptors (α9KOs) have normal hearing in quiet and noise, but lack classic cochlear suppression effects and show abnormal temporal, spectral, and spatial processing. Mice deficient for both the alpha9 and alpha10 receptor subunits (α9α10KOs) may exhibit more severe MOC-related phenotypes. Like α9KOs, α9α10KOs have normal auditory brainstem response (ABR) thresholds and weak MOC reflexes. Here, we further characterized auditory function in α9α10KO mice. Wild-type (WT) and α9α10KO mice had similar ABR thresholds and acoustic startle response amplitudes in quiet and noise, and similar frequency and intensity difference sensitivity. α9α10KO mice had larger ABR Wave I amplitudes than WTs in quiet and noise. Other ABR metrics of hearing-in-noise function yielded conflicting findings regarding α9α10KO susceptibility to masking effects. α9α10KO mice also had larger startle amplitudes in tone backgrounds than WTs. Overall, α9α10KO mice had grossly normal auditory function in quiet and noise, although their larger ABR amplitudes and hyperreactive startles suggest some auditory processing abnormalities. These findings contribute to the growing literature showing mixed effects of MOC dysfunction on hearing.
Collapse
Affiliation(s)
- Jane A Mondul
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kali Burke
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Barbara Morley
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
2
|
Mondul JA, Burke K, Morley B, Lauer AM. Alpha9alpha10 knockout mice show altered physiological and behavioral responses to signals in masking noise. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.567909. [PMID: 38045351 PMCID: PMC10690178 DOI: 10.1101/2023.11.21.567909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Medial olivocochlear (MOC) efferents modulate outer hair cell motility through specialized nicotinic acetylcholine receptors to support encoding of signals in noise. Transgenic mice lacking the alpha9 subunits of these receptors (α9KOs) have normal hearing in quiet and noise, but lack classic cochlear suppression effects and show abnormal temporal, spectral, and spatial processing. Mice deficient for both the alpha9 and alpha10 receptor subunits (α9α10KOs) may exhibit more severe MOC-related phenotypes. Like α9KOs, α9α10KOs have normal auditory brainstem response (ABR) thresholds and weak MOC reflexes. Here, we further characterized auditory function in α9α10KO mice. Wildtype and α9α10KO mice had similar ABR thresholds and acoustic startle response (ASR) amplitudes in quiet and noise, and similar frequency and intensity difference sensitivity. α9α10KO mice had larger ABR Wave I amplitudes than wildtypes in quiet and noise, but the noise:quiet amplitude ratio suggested α9α10KOs were more susceptible to masking effects for some stimuli. α9α10KO mice also had larger startle amplitudes in tone backgrounds than wildtypes. Overall, α9α10KO mice had grossly normal auditory function in quiet and noise, though their larger ABR amplitudes and hyperreactive startles suggest some auditory processing abnormalities. These findings contribute to the growing literature showing mixed effects of MOC dysfunction on hearing.
Collapse
|
3
|
Frank MM, Sitko AA, Suthakar K, Torres Cadenas L, Hunt M, Yuk MC, Weisz CJC, Goodrich LV. Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system. eLife 2023; 12:e83855. [PMID: 36876911 PMCID: PMC10147377 DOI: 10.7554/elife.83855] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development. In addition, we discovered a neuropeptide-enriched LOC subtype that produces Neuropeptide Y along with other neurotransmitters. Throughout the cochlea, both LOC subtypes extend arborizations over wide frequency domains. Moreover, LOC neuropeptide expression is strongly upregulated days after acoustic trauma, potentially providing a sustained protective signal to the cochlea. OCNs are therefore poised to have diffuse, dynamic effects on early auditory processing over timescales ranging from milliseconds to days.
Collapse
Affiliation(s)
- Michelle M Frank
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Austen A Sitko
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Kirupa Suthakar
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Mackenzie Hunt
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mary Caroline Yuk
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Catherine JC Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
4
|
Grierson KE, Hickman TT, Liberman MC. Dopaminergic and cholinergic innervation in the mouse cochlea after noise-induced or age-related synaptopathy. Hear Res 2022; 422:108533. [PMID: 35671600 PMCID: PMC11195664 DOI: 10.1016/j.heares.2022.108533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Cochlear synaptopathy, the loss of or damage to connections between auditory-nerve fibers (ANFs) and inner hair cells (IHCs), is a prominent pathology in noise-induced and age-related hearing loss. Here, we investigated if degeneration of the olivocochlear (OC) efferent innervation is also a major aspect of the synaptopathic ear, by quantifying the volume and spatial organization of its cholinergic and dopaminergic components, using antibodies to vesicular acetylcholine transporter (VAT) and tyrosine hydroxylase (TH), respectively. CBA/CaJ male mice were examined 1 day to 8 months after a synaptopathic noise exposure, and compared to unexposed age-matched controls and unexposed aged mice at 24-28 months. In normal ears, cholinergic lateral (L)OC terminals were denser in the apical half of the cochlea and on the modiolar side of the inner hair cells (IHCs), where ANFs of low-spontaneous rate are typically found, while dopaminergic terminals were more common in the basal third of the cochlea and, re the IHC axes, were offset towards the habenula with respect to cholinergic terminals. The noise had only small and transient effects on the density of LOC innervation, its spatial organization around the IHC axes, or the extent to which TH and VAT signal were colocalized. The synaptopathic noise also had relatively small and transient effects on cholinergic innervation density in the outer hair cell (OHC) area, which normally peaks in the 16 kHz region and falls monotonically towards higher and lower frequencies. In contrast, in the aged ears, there was massive degeneration of OHC efferents, especially in the apical half of the cochlea, where there was also significant loss of OHCs. In the IHC area, there was significant loss of cholinergic terminals in both apical and basal regions and of dopaminergic innervation in the basal half. Furthermore, the cholinergic terminals in the aged ears spread from their normal clustering near the IHC basolateral pole, where the ANF synapses are found, to positions up and down the IHC somata and regions of the neuropil closer to the habenula. This apparent migration was most striking in the apex, where the hair cell pathology was greatest, and may be a harbinger of impending hair cell death.
Collapse
Affiliation(s)
- Kiera E Grierson
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA; Hearing Research Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, AUS
| | - Tyler T Hickman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA.
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA
| |
Collapse
|
5
|
Romero GE, Trussell LO. Central circuitry and function of the cochlear efferent systems. Hear Res 2022; 425:108516. [DOI: 10.1016/j.heares.2022.108516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
|
6
|
Parra-Munevar J, Morse CE, Plummer MR, Davis RL. Dynamic Heterogeneity Shapes Patterns of Spiral Ganglion Activity. J Neurosci 2021; 41:8859-8875. [PMID: 34551939 PMCID: PMC8549539 DOI: 10.1523/jneurosci.0924-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Neural response properties that typify primary sensory afferents are critical to fully appreciate because they establish and, ultimately represent, the fundamental coding design used for higher-level processing. Studies illuminating the center-surround receptive fields of retinal ganglion cells, for example, were ground-breaking because they determined the foundation of visual form detection. For the auditory system, a basic organizing principle of the spiral ganglion afferents is their extensive electrophysiological heterogeneity establishing diverse intrinsic firing properties in neurons throughout the spiral ganglion. Moreover, these neurons display an impressively large array of neurotransmitter receptor types that are responsive to efferent feedback. Thus, electrophysiological diversity and its neuromodulation are a fundamental encoding mechanism contributed by the primary afferents in the auditory system. To place these features into context, we evaluated the effects of hyperpolarization and cAMP on threshold level as indicators of overall afferent responsiveness in CBA/CaJ mice of either sex. Hyperpolarization modified threshold gradients such that distinct voltage protocols could shift the relationship between sensitivity and stimulus input to reshape resolution. This resulted in an "accordion effect" that appeared to stretch, compress, or maintain responsivity across the gradient of afferent thresholds. cAMP targeted threshold and kinetic shifts to rapidly adapting neurons, thus revealing multiple cochleotopic properties that could potentially be independently regulated. These examples of dynamic heterogeneity in primary auditory afferents not only have the capacity to shift the range, sensitivity, and resolution, but to do so in a coordinated manner that appears to orchestrate changes with a seemingly unlimited repertoire.SIGNIFICANCE STATEMENT How do we discriminate the more nuanced qualities of the sound around us? Beyond the basics of pitch and loudness, aspects, such as pattern, distance, velocity, and location, are all attributes that must be used to encode acoustic sensations effectively. While higher-level processing is required for perception, it would not be unexpected if the primary auditory afferents optimized receptor input to expedite neural encoding. The findings reported herein are consistent with this design. Neuromodulation compressed, expanded, shifted, or realigned intrinsic electrophysiological heterogeneity to alter neuronal responses selectively and dynamically. This suggests that diverse spiral ganglion phenotypes provide a rich substrate to support an almost limitless array of coding strategies within the first neural element of the auditory pathway.
Collapse
Affiliation(s)
- Jeffrey Parra-Munevar
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Charles E Morse
- Department of Neurosurgery, Jefferson Hospital for Neuroscience, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania 19107
| | - Mark R Plummer
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
7
|
Kitcher SR, Pederson AM, Weisz CJC. Diverse identities and sites of action of cochlear neurotransmitters. Hear Res 2021; 419:108278. [PMID: 34108087 DOI: 10.1016/j.heares.2021.108278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022]
Abstract
Accurate encoding of acoustic stimuli requires temporally precise responses to sound integrated with cellular mechanisms that encode the complexity of stimuli over varying timescales and orders of magnitude of intensity. Sound in mammals is initially encoded in the cochlea, the peripheral hearing organ, which contains functionally specialized cells (including hair cells, afferent and efferent neurons, and a multitude of supporting cells) to allow faithful acoustic perception. To accomplish the demanding physiological requirements of hearing, the cochlea has developed synaptic arrangements that operate over different timescales, with varied strengths, and with the ability to adjust function in dynamic hearing conditions. Multiple neurotransmitters interact to support the precision and complexity of hearing. Here, we review the location of release, action, and function of neurotransmitters in the mammalian cochlea with an emphasis on recent work describing the complexity of signaling.
Collapse
Affiliation(s)
- Siân R Kitcher
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Alia M Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
8
|
Hsp70/Bmi1-FoxO1-SOD Signaling Pathway Contributes to the Protective Effect of Sound Conditioning against Acute Acoustic Trauma in a Rat Model. Neural Plast 2020; 2020:8823785. [PMID: 33082778 PMCID: PMC7556106 DOI: 10.1155/2020/8823785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Sound conditioning (SC) is defined as “toughening” to lower levels of sound over time, which reduces a subsequent noise-induced threshold shift. Although the protective effect of SC in mammals is generally understood, the exact mechanisms involved have not yet been elucidated. To confirm the protective effect of SC against noise exposure (NE) and the stress-related signaling pathway of its rescue, we observed target molecule changes caused by SC of low frequency prior to NE as well as histology analysis in vivo and verified the suggested mechanisms in SGNs in vitro. Further, we investigated the potential role of Hsp70 and Bmi1 in SC by targeting SOD1 and SOD2 which are regulated by the FoxO1 signaling pathway based on mitochondrial function and reactive oxygen species (ROS) levels. Finally, we sought to identify the possible molecular mechanisms associated with the beneficial effects of SC against noise-induced trauma. Data from the rat model were evaluated by western blot, immunofluorescence, and RT-PCR. The results revealed that SC upregulated Hsp70, Bmi1, FoxO1, SOD1, and SOD2 expression in spiral ganglion neurons (SGNs). Moreover, the auditory brainstem responses (ABRs) and electron microscopy revealed that SC could protect against acute acoustic trauma (AAT) based on a significant reduction of hearing impairment and visible reduction in outer hair cell loss as well as ultrastructural changes in OHCs and SGNs. Collectively, these results suggested that the contribution of Bmi1 toward decreased sensitivity to noise-induced trauma following SC was triggered by Hsp70 induction and associated with enhancement of the antioxidant system and decreased mitochondrial superoxide accumulation. This contribution of Bmi1 was achieved by direct targeting of SOD1 and SOD2, which was regulated by FoxO1. Therefore, the Hsp70/Bmi1-FoxO1-SOD signaling pathway might contribute to the protective effect of SC against AAT in a rat model.
Collapse
|
9
|
Kastelein RA, Helder-Hoek L, Cornelisse SA, von Benda-Beckmann AM, Lam FPA, de Jong CAF, Ketten DR. Lack of reproducibility of temporary hearing threshold shifts in a harbor porpoise after exposure to repeated airgun sounds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:556. [PMID: 32872990 DOI: 10.1121/10.0001668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Noise-induced temporary hearing threshold shift (TTS) was studied in a harbor porpoise exposed to impulsive sounds of scaled-down airguns while both stationary and free-swimming for up to 90 min. In a previous study, ∼4 dB TTS was elicited in this porpoise, but despite 8 dB higher single-shot and cumulative exposure levels (up to 199 dB re 1 μPa2s) in the present study, the porpoise showed no significant TTS at hearing frequencies 2, 4, or 8 kHz. There were no changes in the study animal's audiogram between the studies or significant differences in the fatiguing sound that could explain the difference, but audible and visual cues in the present study may have allowed the porpoise to predict when the fatiguing sounds would be produced. The discrepancy between the studies may have resulted from self-mitigation by the porpoise. Self-mitigation, resulting in reduced hearing sensitivity, can be achieved via changes in the orientation of the head, or via alteration of the hearing threshold by processes in the ear or central nervous system.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Suzanne A Cornelisse
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | | | - Frans-Peter A Lam
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Christ A F de Jong
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Darlene R Ketten
- The Hearing Research Center, Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02155, USA
| |
Collapse
|
10
|
Fan L, Zhang Z, Wang H, Li C, Xing Y, Yin S, Chen Z, Wang J. Pre-exposure to Lower-Level Noise Mitigates Cochlear Synaptic Loss Induced by High-Level Noise. Front Syst Neurosci 2020; 14:25. [PMID: 32477075 PMCID: PMC7235317 DOI: 10.3389/fnsys.2020.00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
The auditory sensory organs appear to be less damaged by exposure to high-level noise that is presented after exposure to non-traumatizing low-level noise. This phenomenon is known as the toughening or conditioning effect. Functionally, it is manifested by a reduced threshold shift, and morphologically by a reduced hair cell loss. However, it remains unclear whether prior exposure to toughening noise can mitigate the synaptic loss induced by exposure to damaging noise. Since the cochlear afferent synapse between the inner hair cells and primary auditory neurons has been identified as a novel site involved in noise-induced cochlear damage, we were interested in assessing whether this synapse can be toughened. In the present study, the synaptic loss was induced by a damaging noise exposure (106 dB SPL) and compared across Guinea pigs who had and had not been previously exposed to a toughening noise (85 dB SPL). Results revealed that the toughening noise heavily reduced the synaptic loss observed 1 day after exposure to the damaging noise. Although it was significant, the protective effect of the toughening noise on permanent synaptic loss was much smaller. Compared with cases in the control group without noise exposure, coding deficits were seen in both toughened groups, as reflected in the compound action potential (CAP) by signals with amplitude modulation. In general, the pre-exposure to the toughening noise resulted in a significantly reduced synaptic loss by the high-level noise. However, this morphological protection was not accompanied by a robust functional benefit.
Collapse
Affiliation(s)
- Liqiang Fan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hui Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Chunyan Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yazhi Xing
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhengnong Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jian Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,School of Communication Sciences and Disorders, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
11
|
Wu JS, Yi E, Manca M, Javaid H, Lauer AM, Glowatzki E. Sound exposure dynamically induces dopamine synthesis in cholinergic LOC efferents for feedback to auditory nerve fibers. eLife 2020; 9:52419. [PMID: 31975688 PMCID: PMC7043886 DOI: 10.7554/elife.52419] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/23/2020] [Indexed: 11/13/2022] Open
Abstract
Lateral olivocochlear (LOC) efferent neurons modulate auditory nerve fiber (ANF) activity using a large repertoire of neurotransmitters, including dopamine (DA) and acetylcholine (ACh). Little is known about how individual neurotransmitter systems are differentially utilized in response to the ever-changing acoustic environment. Here we present quantitative evidence in rodents that the dopaminergic LOC input to ANFs is dynamically regulated according to the animal's recent acoustic experience. Sound exposure upregulates tyrosine hydroxylase, an enzyme responsible for dopamine synthesis, in cholinergic LOC intrinsic neurons, suggesting that individual LOC neurons might at times co-release ACh and DA. We further demonstrate that dopamine down-regulates ANF firing rates by reducing both the hair cell release rate and the size of synaptic events. Collectively, our results suggest that LOC intrinsic neurons can undergo on-demand neurotransmitter re-specification to re-calibrate ANF activity, adjust the gain at hair cell/ANF synapses, and possibly to protect these synapses from noise damage.
Collapse
Affiliation(s)
- Jingjing Sherry Wu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Eunyoung Yi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Republic of Korea
| | - Marco Manca
- The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hamad Javaid
- The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Amanda M Lauer
- The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Elisabeth Glowatzki
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
12
|
Frank MM, Goodrich LV. Talking back: Development of the olivocochlear efferent system. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e324. [PMID: 29944783 PMCID: PMC6185769 DOI: 10.1002/wdev.324] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development.
Collapse
|
13
|
Fyk-Kolodziej BE, Shimano T, Gafoor D, Mirza N, Griffith RD, Gong TW, Holt AG. Dopamine in the auditory brainstem and midbrain: co-localization with amino acid neurotransmitters and gene expression following cochlear trauma. Front Neuroanat 2015; 9:88. [PMID: 26257610 PMCID: PMC4510424 DOI: 10.3389/fnana.2015.00088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 06/19/2015] [Indexed: 11/13/2022] Open
Abstract
Dopamine (DA) modulates the effects of amino acid neurotransmitters (AANs), including GABA and glutamate, in motor, visual, olfactory, and reward systems (Hnasko et al., 2010; Stuber et al., 2010; Hnasko and Edwards, 2012). The results suggest that DA may play a similar modulatory role in the auditory pathways. Previous studies have shown that deafness results in decreased GABA release, changes in excitatory neurotransmitter levels, and increased spontaneous neuronal activity within brainstem regions related to auditory function. Modulation of the expression and localization of tyrosine hydroxylase (TH; the rate limiting enzyme in the production of DA) in the IC following cochlear trauma has been previously reported (Tong et al., 2005). In the current study the possibility of co-localization of TH with AANs was examined. Changes in the gene expression of TH were compared with changes in the gene expression of markers for AANs in the cochlear nucleus (CN) and inferior colliculus (IC) to determine whether those deafness related changes occur concurrently. The results indicate that bilateral cochlear ablation significantly reduced TH gene expression in the CN after 2 months while in the IC the reduction in TH was observed at both 3 days and 2 months following ablation. Furthermore, in the CN, glycine transporter 2 (GLYT2) and the GABA transporter (GABAtp) were also significantly reduced only after 2 months. However, in the IC, DA receptor 1 (DRDA1), vesicular glutamate transporters 2 and 3 (VGLUT2, VGLUT3), GABAtp and GAD67 were reduced in expression both at the 3 days and 2 months time points. A close relationship between the distribution of TH and several of the AANs was determined in both the CN and the IC. In addition, GLYT2 and VGLUT3 each co-localized with TH within IC somata and dendrites. Therefore, the results of the current study suggest that DA is spatially well positioned to influence the effects of AANs on auditory neurons.
Collapse
Affiliation(s)
- Bozena E Fyk-Kolodziej
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| | - Takashi Shimano
- Department of Otolaryngology, Kansai Medical University Osaka, Japan
| | - Dana Gafoor
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| | - Najab Mirza
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| | - Ronald D Griffith
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| | - Tzy-Wen Gong
- Kresge Hearing Research Institute, University of Michigan School of Medicine, Ann Arbor MI, USA
| | - Avril Genene Holt
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| |
Collapse
|
14
|
Luebke AE, Stagner BB, Martin GK, Lonsbury-Martin BL. Influence of sound-conditioning on noise-induced susceptibility of distortion-product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:58-64. [PMID: 26233006 PMCID: PMC4491012 DOI: 10.1121/1.4922223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Cochlear damage caused by loud sounds can be attenuated by "sound-conditioning" methods. The amount of adaptation for distortion product otoacoustic emissions (DPOAEs) measured in alert rabbits previously predicted an ear's susceptibility to a subsequent noise exposure. The present study investigated if sound-conditioning influenced the robustness of such DPOAE adaptation, and if such conditioning elicited more protection by increasing the amount of DPOAE adaptation. Toward this end, rabbits were divided into two study groups: (1) experimental animals exposed to a sound-conditioning protocol, and (2) unconditioned control animals. After base-line measures, all rabbits were exposed to an overstimulation paradigm consisting of an octave band noise, and then re-assessed 3 weeks post-exposure to determine permanent changes in DPOAEs. A major result was that prior sound-conditioning protected reductions in DPOAE levels by an average of 10-15 dB. However, DPOAE adaptation decreased with sound-conditioning, so that such conditioning was no longer related to noise-induced reductions in DPOAEs. Together, these findings suggest that sound-conditioning affected neural pathways other than those that likely mediate DPOAE adaptation (e.g., medial olivocochlear efferent and/or middle-ear muscle reflexes).
Collapse
Affiliation(s)
- Anne E Luebke
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Barden B Stagner
- Research Service, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California 92357, USA
| | - Glen K Martin
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, California 92354, USA
| | - Brenda L Lonsbury-Martin
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, California 92354, USA
| |
Collapse
|
15
|
Forlano PM, Kim SD, Krzyminska ZM, Sisneros JA. Catecholaminergic connectivity to the inner ear, central auditory, and vocal motor circuitry in the plainfin midshipman fish porichthys notatus. J Comp Neurol 2014; 522:2887-927. [PMID: 24715479 PMCID: PMC4107124 DOI: 10.1002/cne.23596] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 01/25/2023]
Abstract
Although the neuroanatomical distribution of catecholaminergic (CA) neurons has been well documented across all vertebrate classes, few studies have examined CA connectivity to physiologically and anatomically identified neural circuitry that controls behavior. The goal of this study was to characterize CA distribution in the brain and inner ear of the plainfin midshipman fish (Porichthys notatus) with particular emphasis on their relationship with anatomically labeled circuitry that both produces and encodes social acoustic signals in this species. Neurobiotin labeling of the main auditory end organ, the saccule, combined with tyrosine hydroxylase immunofluorescence (TH-ir) revealed a strong CA innervation of both the peripheral and central auditory system. Diencephalic TH-ir neurons in the periventricular posterior tuberculum, known to be dopaminergic, send ascending projections to the ventral telencephalon and prominent descending projections to vocal-acoustic integration sites, notably the hindbrain octavolateralis efferent nucleus, as well as onto the base of hair cells in the saccule via nerve VIII. Neurobiotin backfills of the vocal nerve in combination with TH-ir revealed CA terminals on all components of the vocal pattern generator, which appears to largely originate from local TH-ir neurons but may include input from diencephalic projections as well. This study provides strong neuroanatomical evidence that catecholamines are important modulators of both auditory and vocal circuitry and acoustic-driven social behavior in midshipman fish. This demonstration of TH-ir terminals in the main end organ of hearing in a nonmammalian vertebrate suggests a conserved and important anatomical and functional role for dopamine in normal audition.
Collapse
Affiliation(s)
- Paul M. Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
- Programs in Neuroscience, Ecology, Evolutionary Biology and Behavior, and Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, Brooklyn, NY 11210
- Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - Spencer D. Kim
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Zuzanna M. Krzyminska
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Joseph A. Sisneros
- Departments of Psychology and Biology, University of Washington, Seattle, WA, 98195
- Virginia Merrill Bloedel Hearing Research Center, Seattle
- Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
16
|
Le Prell CG, Dolan DF, Hughes LF, Altschuler RA, Shore SE, Bledsoe SC. Disruption of lateral olivocochlear neurons with a dopaminergic neurotoxin depresses spontaneous auditory nerve activity. Neurosci Lett 2014; 582:54-8. [PMID: 25175420 DOI: 10.1016/j.neulet.2014.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/09/2014] [Accepted: 08/22/2014] [Indexed: 11/28/2022]
Abstract
Neurons of the lateral olivocochlear (LOC) system project from the auditory brainstem to the cochlea, where they synapse on radial dendrites of auditory nerve fibers. Selective LOC disruption depresses sound-evoked auditory nerve activity in the guinea pig, but enhances it in the mouse. Here, LOC disruption depressed spontaneous auditory nerve activity in the guinea pig. Recordings from single auditory nerve fibers revealed a significantly reduced proportion of fibers with the highest spontaneous firing rates (SRs) and an increased proportion of neurons with lower SRs. Ensemble activity, estimated using round window noise, also decreased after LOC disruption. Decreased spontaneous activity after LOC disruption may be a consequence of reduced tonic release of excitatory transmitters from the LOC terminals in guinea pigs.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL 32610 USA.
| | - David F Dolan
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Larry F Hughes
- Department of Surgery, Southern Illinois University Medical School, Springfield, IL 62794 USA
| | - Richard A Altschuler
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Susan E Shore
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Sanford C Bledsoe
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
17
|
Social signals increase monoamine levels in the tegmentum of juvenile Mexican spadefoot toads (Spea multiplicata). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:681-91. [PMID: 23681220 DOI: 10.1007/s00359-013-0826-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
Monoamines are important neuromodulators that respond to social cues and that can, in turn, modify social responses. Yet we know very little about the ontogeny of monoaminergic systems and whether they contribute to the development of social behavior. Anurans are an excellent model for studying the development of social behavior because one of its primary components, phonotaxis, is expressed early in life. To examine the effect of social signals on monoamines early in ontogeny, we presented juvenile Mexican spadefoot toads (Spea multiplicata) with a male mating call or no sound and measured norepinephrine, epinephrine, dopamine, serotonin, and a serotonin metabolite, across the brain using high-pressure liquid chromatography. Our results demonstrate that adult-like monoaminergic systems are in place shortly after metamorphosis. Perhaps more interestingly, we found that mating calls increased the level of monoamines in the juvenile tegmentum, a midbrain region involved in sensory-motor integration and that contributes to brain arousal and attention. We saw no such increase in the auditory midbrain or in forebrain regions. We suggest that changes in monoamine levels in the juvenile tegmentum may reflect the effects of social signals on arousal state and could contribute to context-dependent modulation of social behavior.
Collapse
|
18
|
Rapid effects of hearing song on catecholaminergic activity in the songbird auditory pathway. PLoS One 2012; 7:e39388. [PMID: 22724011 PMCID: PMC3378548 DOI: 10.1371/journal.pone.0039388] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022] Open
Abstract
Catecholaminergic (CA) neurons innervate sensory areas and affect the processing of sensory signals. For example, in birds, CA fibers innervate the auditory pathway at each level, including the midbrain, thalamus, and forebrain. We have shown previously that in female European starlings, CA activity in the auditory forebrain can be enhanced by exposure to attractive male song for one week. It is not known, however, whether hearing song can initiate that activity more rapidly. Here, we exposed estrogen-primed, female white-throated sparrows to conspecific male song and looked for evidence of rapid synthesis of catecholamines in auditory areas. In one hemisphere of the brain, we used immunohistochemistry to detect the phosphorylation of tyrosine hydroxylase (TH), a rate-limiting enzyme in the CA synthetic pathway. We found that immunoreactivity for TH phosphorylated at serine 40 increased dramatically in the auditory forebrain, but not the auditory thalamus and midbrain, after 15 min of song exposure. In the other hemisphere, we used high pressure liquid chromatography to measure catecholamines and their metabolites. We found that two dopamine metabolites, dihydroxyphenylacetic acid and homovanillic acid, increased in the auditory forebrain but not the auditory midbrain after 30 min of exposure to conspecific song. Our results are consistent with the hypothesis that exposure to a behaviorally relevant auditory stimulus rapidly induces CA activity, which may play a role in auditory responses.
Collapse
|
19
|
Dopaminergic signaling in the cochlea: receptor expression patterns and deletion phenotypes. J Neurosci 2012; 32:344-55. [PMID: 22219295 DOI: 10.1523/jneurosci.4720-11.2012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pharmacological studies suggest that dopamine release from lateral olivocochlear efferent neurons suppresses spontaneous and sound-evoked activity in cochlear nerve fibers and helps control noise-induced excitotoxicity; however, the literature on cochlear expression and localization of dopamine receptors is contradictory. To better characterize cochlear dopaminergic signaling, we studied receptor localization using immunohistochemistry or reverse transcriptase PCR and assessed histopathology, cochlear responses and olivocochlear function in mice with targeted deletion of each of the five receptor subtypes. In normal ears, D1, D2, and D5 receptors were detected in microdissected immature (postnatal days 10-13) spiral ganglion cells and outer hair cells but not inner hair cells. D4 was detected in spiral ganglion cells only. In whole cochlea samples from adults, transcripts for D1, D2, D4, and D5 were present, whereas D3 mRNA was never detected. D1 and D2 immunolabeling was localized to cochlear nerve fibers, near the first nodes of Ranvier (D2) and in the inner spiral bundle region (D1 and D2) where presynaptic olivocochlear terminals are found. No other receptor labeling was consistent. Cochlear function was normal in D3, D4, and D5 knock-outs. D1 and D2 knock-outs showed slight, but significant enhancement and suppression, respectively, of cochlear responses, both in the neural output [auditory brainstem response (ABR) wave 1] and in outer hair cell function [distortion product otoacoustic emissions (DPOAEs)]. Vulnerability to acoustic injury was significantly increased in D2, D4 and D5 lines: D1 could not be tested, and no differences were seen in D3 mutants, consistent with a lack of receptor expression. The increased vulnerability in D2 knock-outs was seen in DPOAEs, suggesting a role for dopamine in the outer hair cell area. In D4 and D5 knock-outs, the increased noise vulnerability was seen only in ABRs, consistent with a role for dopaminergic signaling in minimizing neural damage.
Collapse
|
20
|
Le Prell CG. Noise-Induced Hearing Loss: From Animal Models to Human Trials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 730:191-5. [DOI: 10.1007/978-1-4419-7311-5_43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
|
22
|
Niu X, Tahera Y, Canlon B. Environmental enrichment to sound activates dopaminergic pathways in the auditory system. Physiol Behav 2007; 92:34-9. [PMID: 17631367 DOI: 10.1016/j.physbeh.2007.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Environmental enrichment to sound stimulation, in the adult, can promote physiological changes and protection against trauma in the auditory peripheral and central nervous system. Sound enrichment, or sound conditioning is a method that utilizes a low-level, non-damaging acoustic stimulus as a protective agent. Pre-treating subjects to a moderate or low-level acoustic stimulus reduces the damaging effects of a subsequent traumatic stimulus. The intention of this review is to describe how environmental enrichment to sound affords protection against a subsequent trauma, and the role that the dopaminergic pathways in the cochlea and the auditory brainstem play in this protection. Dopamine is released from the lateral efferents and exerts a tonic inhibition of auditory nerve activity thus preserving auditory sensitivity and protecting against excitotoxicity. Sound conditioning up-regulated tyrosine hydroxylase in the lateral efferents under the inner hair cells and acoustic trauma reduced these levels. Thus, sound conditioning triggers an up-regulation of tyrosine hydroxylase both in the lateral efferent of cochlea and in the lateral superior olivary complex. These findings expand our understanding of the neurochemical balance and regulation between the lateral olivocochlear neurons and the lateral efferent terminals in the cochlea during sound stimulation.
Collapse
Affiliation(s)
- Xianzhi Niu
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | | | | |
Collapse
|
23
|
Darrow KN, Simons EJ, Dodds L, Liberman MC. Dopaminergic innervation of the mouse inner ear: evidence for a separate cytochemical group of cochlear efferent fibers. J Comp Neurol 2006; 498:403-14. [PMID: 16871528 PMCID: PMC1805779 DOI: 10.1002/cne.21050] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunostaining mouse cochleas for tyrosine hydroxylase (TH) and dopamine beta-hydroxylase suggests that there is a rich adrenergic innervation throughout the auditory nerve trunk and a small dopaminergic innervation of the sensory cell areas. Surgical cuts in the brainstem confirm these dopaminergic fibers as part of the olivocochlear efferent bundle. Within the sensory epithelium, TH-positive terminals are seen only in the inner hair cell area, where they intermingle with other olivocochlear terminals expressing cholinergic markers (vesicular acetylcholine transporter; VAT). Double immunostaining suggests little colocalization of TH and VAT; quantification of terminal volumes suggests that TH-positive fibers constitute only 10-20% of the efferent innervation of the inner hair cell area. Immunostaining of mouse brainstem revealed a small population of TH-positive cells in and around the lateral superior olive. Consistent with cochlear projections, double staining for the cholinergic marker acetylcholinesterase suggested that TH-positive somata are not cholinergic and vice versa. All observations are consistent with the view that a small dopaminergic subgroup of lateral olivocochlear neurons 1) projects to the inner hair cell area, 2) is distinct from the larger cholinergic group projecting there, and 3) may correspond to lateral olivocochlear "shell" neurons described by others (Warr et al. [1997] Hear. Res 108:89-111).
Collapse
Affiliation(s)
- Keith N Darrow
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
| | | | | | | |
Collapse
|
24
|
Niu X, Canlon B. The signal transduction pathway for the dopamine D1 receptor in the guinea-pig cochlea. Neuroscience 2006; 137:981-90. [PMID: 16330149 DOI: 10.1016/j.neuroscience.2005.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 09/28/2005] [Accepted: 10/07/2005] [Indexed: 11/24/2022]
Abstract
Dopamine released from lateral efferent fibers modulates the activity of the auditory nerve, but the signaling mechanism by which this is mediated is not known. The present study investigated the signal transduction pathway for the dopamine D1 receptor in the guinea-pig cochlea. D1 receptor immunolabeling was localized to the spiral ganglia neurons and at the base of the inner hair cells. Western immunoblotting on whole cochlear preparations revealed positive bands for the D1 receptor and for dopamine and the cyclic AMP-regulated phosphoprotein. The amplitude of the compound action potential was enhanced in the presence of the D1 receptor agonist, SKF 38393, an effect that was abolished by H89, a protein kinase A inhibitor. Conversely, SKF 83566, a D1 receptor antagonist decreased the amplitude of compound action potential, while forskolin, a protein kinase A activator prevented this effect. Furthermore, it was found that the level of glutamate receptor 1 phosphorylation at the protein kinase A site (Ser845) was increased by the D1 agonist, but decreased by D1 antagonist. Our results provide evidence that the D1 receptor is localized in the spiral ganglion neurons as well as the nerve endings under the inner hair cells and they can modulate auditory nerve function. One signal transduction pathway of D1 receptor in the auditory nerve is via protein kinase A-mediated glutamate receptor 1 phosphorylation.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Blotting, Western
- Cochlea/physiology
- Cochlear Nerve/physiology
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dopamine Agonists/pharmacology
- Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism
- Female
- Guinea Pigs
- Immunohistochemistry
- Isoquinolines/pharmacology
- Male
- Oxidopamine
- Perfusion
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/physiology
- Signal Transduction/physiology
- Sulfonamides/pharmacology
- Sympathectomy, Chemical
- Sympatholytics
Collapse
Affiliation(s)
- X Niu
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | |
Collapse
|
25
|
Tong L, Altschuler RA, Holt AG. Tyrosine hydroxylase in rat auditory midbrain: distribution and changes following deafness. Hear Res 2005; 206:28-41. [PMID: 16080996 DOI: 10.1016/j.heares.2005.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 03/07/2005] [Indexed: 11/22/2022]
Abstract
Tyrosine hydroxylase (TH), a key enzyme in the catecholaminergic pathway, allows for the differentiation of dopaminergic neurons. We previously showed decreases in TH gene expression in the rat inferior colliculus (IC) 3 and 21 days following deafness. In the present study, we characterized the normal distribution of TH as well as changes following deafness (bilateral cochlear ablation) in the IC and nuclei of the lateral lemniscus. Immunostaining was compared in three groups of rats: normal hearing (n=8), 21 day deaf (n=5) and 90 days following deafening (n=5). Many TH immunoreactive fibers and puncta were identified in the IC and nuclei of the lateral lemniscus of normal hearing animals and labeling was most dense in the external cortex of the IC. We also identified immunolabeling for fibers and puncta for another catecholaminergic enzyme, dopamine beta hydroxylase (DBH), but not phenylethanolamine-N-methyltranferase (PNMT). Neurons immunopositive for TH but not DBH or PNMT were observed in the dorsal cortex and dorsal horn of the central nucleus of the IC and ventral and intermediate lemniscus. In the central nucleus of the IC and dorsal lateral lemniscus many lightly labeled TH neurons were also DBH positive. Although the number of immunopositive cells in the IC and lemniscus declined 3 weeks and 3 months after deafening, the decline was not significant at three weeks in the VNLL nor after three months in the dorsal cortex. Immunolabeling for TH decreased significantly in IC and lemniscus 3 weeks and 3 months following deafening. These results suggest a role for dopaminergic neurons and fibers in deafness-related plasticity.
Collapse
Affiliation(s)
- Ling Tong
- Department of Otolaryngology/Head Neck Surgery, Kresge Hearing Research Institute, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
26
|
Le Prell CG, Halsey K, Hughes LF, Dolan DF, Bledsoe SC. Disruption of lateral olivocochlear neurons via a dopaminergic neurotoxin depresses sound-evoked auditory nerve activity. J Assoc Res Otolaryngol 2005; 6:48-62. [PMID: 15735934 PMCID: PMC2504639 DOI: 10.1007/s10162-004-5009-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 10/29/2004] [Indexed: 11/30/2022] Open
Abstract
We applied the dopaminergic (DA) neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the guinea pig cochlear perilymph. Immunolabeling of lateral olivocochlear (LOC) neurons using antibodies against synaptophysin was reduced after the MPTP treatment. In contrast, labeling of the medial olivocochlear innervation remained intact. As after brainstem lesions of the lateral superior olive (LSO), the site of origin of the LOC neurons, the main effect of disrupting LOC innervation of the cochlea via MPTP was a depression of the amplitude of the compound action potential (CAP). CAP amplitude depression was similar to that produced by LSO lesions. Latency of the N1 component of the CAP, and distortion product otoacoustic emission amplitude and adaptation were unchanged by the MPTP treatment. This technique for selectively lesioning descending LOC efferents provides a new opportunity for examining LOC modulation of afferent activity and behavioral measures of perception.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Action Potentials
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/physiology
- Animals
- Cochlear Nerve/physiology
- Cochlear Nucleus/pathology
- Cochlear Nucleus/physiology
- Denervation
- Dopamine/physiology
- Dopamine Agents/pharmacology
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Female
- Guinea Pigs
- Immunohistochemistry
- Male
- Neurotoxins/pharmacology
- Olivary Nucleus/pathology
- Olivary Nucleus/physiology
- Otoacoustic Emissions, Spontaneous/drug effects
- Otoacoustic Emissions, Spontaneous/physiology
Collapse
Affiliation(s)
- Colleen G Le Prell
- Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, MI 48109-0506, USA.
| | | | | | | | | |
Collapse
|
27
|
Niu X, Tahera Y, Canlon B. Protection against Acoustic Trauma by Forward and Backward Sound Conditioning. Audiol Neurootol 2004; 9:265-73. [PMID: 15316199 DOI: 10.1159/000080226] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Accepted: 01/12/2004] [Indexed: 11/19/2022] Open
Abstract
The purpose of the present study was to determine if short-term sound conditioning provides protection when delivered either before (forward sound conditioning) or after (backward sound conditioning) a traumatic exposure in the guinea pig. Two different sound conditioning paradigms were studied (1 kHz, 81 dB SPL, 24 h; 6.3 kHz, 78 dB SPL, 24 h). The 1-kHz forward sound conditioning paradigm (81 dB SPL, 24 h) protected distortion product otoacoustic emissions (DPOAEs) against a short-duration acoustic trauma (2.7 kHz, 103 dB SPL, 5 min) compared to the group exposed to the acoustic trauma alone. The 1-kHz forward sound conditioning paradigm (81 dB SPL, 24 h) also protected both the auditory brainstem response (ABR) thresholds and DPOAEs against a longer-duration acoustic trauma (2.7 kHz, 103 dB SPL, 30 min). The group exposed to the acoustic trauma alone showed ABR threshold shifts between 15 and 24 dB, and DPOAE amplitude shifts between 11 and 24 dB, while the group with 1-kHz forward sound conditioning showed statistically significant protection at all ABR frequencies and at all DPOAE frequencies. The 1-kHz backward sound conditioning paradigm protected against acoustic trauma (2.7 kHz, 103 dB SPL, 30 min). The ABR thresholds were protected at 1, 2 and 4 kHz, and DPOAEs at all frequencies (except 8 kHz) when compared to the group exposed only to the acoustic trauma. The 6.3-kHz forward sound conditioning paradigm protected against acoustic trauma (5.5 kHz, 109 dB SPL, 30 min) at 6.3, 8 and 10 kHz. The 6.3-kHz backward sound conditioning paradigm showed no protection against acoustic trauma at any DPOAE frequency. Taken together, these findings are important for understanding how the auditory system can be modulated by acoustic stimulation and highlights the importance of the acoustic environment during the recovery process of the auditory system.
Collapse
Affiliation(s)
- Xianzhi Niu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
28
|
Niu X, Bogdanovic N, Canlon B. The distribution and the modulation of tyrosine hydroxylase immunoreactivity in the lateral olivocochlear system of the guinea-pig. Neuroscience 2004; 125:725-33. [PMID: 15099686 DOI: 10.1016/j.neuroscience.2004.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 10/26/2022]
Abstract
It was previously shown that tyrosine hydroxylase (TH) immunoreactivity in the terminals of the lateral efferents of the cochlea is decreased by acoustic trauma and that sound preconditioning counteracted this decrease [Hear Res 174 (2002) 124]. Here we identify those neurons in the lateral olivocochlear system (LOC) in the brainstem that regulates the peripheral expression of TH in the cochlea. By employing retrograde tracing techniques, dextran-labeled neurons were found predominantly in the ipsilateral LOC system including lateral superior olive (LSO), and the surrounding periolivary regions (dorsal periolivary nucleus [DPO], dorsolateral periolivary nucleus [DLPO], lateral nucleus of trapezoid body [LNTB]). Employing immunocytochemistry, it was found that a control group had 35% of the ipsilateral LOC neurons positively stained with TH. Of the total population of TH neurons, 77% were double-stained (TH and dextran) in the LOC system. Acoustic trauma decreased the number of TH positive neurons in the LSO and the surrounding DLPO, and caused a reduction of TH fiber immunolabeling in these regions. Changes were not found in the DPO or the LNTB after acoustic trauma. Sound conditioning protected against the decrease of TH immunolabeling by acoustic trauma and increased the fiber staining for TH in the LSO and DLPO, but not in the DPO or the LNTB. These results provide evidence that TH positive neurons are present in the LOC system in the guinea-pig. It is now demonstrated that protection against acoustic trauma by sound conditioning has a central component that is governed by TH in the LSO and the surrounding periolivary DLPO region.
Collapse
Affiliation(s)
- X Niu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|