1
|
Maraslioglu-Sperber A, Blanc F, Heller S. Murine cochlear damage models in the context of hair cell regeneration research. Hear Res 2024; 447:109021. [PMID: 38703432 DOI: 10.1016/j.heares.2024.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Understanding the complex pathologies associated with hearing loss is a significant motivation for conducting inner ear research. Lifelong exposure to loud noise, ototoxic drugs, genetic diversity, sex, and aging collectively contribute to human hearing loss. Replicating this pathology in research animals is challenging because hearing impairment has varied causes and different manifestations. A central aspect, however, is the loss of sensory hair cells and the inability of the mammalian cochlea to replace them. Researching therapeutic strategies to rekindle regenerative cochlear capacity, therefore, requires the generation of animal models in which cochlear hair cells are eliminated. This review discusses different approaches to ablate cochlear hair cells in adult mice. We inventoried the cochlear cyto- and histo-pathology caused by acoustic overstimulation, systemic and locally applied drugs, and various genetic tools. The focus is not to prescribe a perfect damage model but to highlight the limitations and advantages of existing approaches and identify areas for further refinement of damage models for use in regenerative studies.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fabian Blanc
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Otolaryngology - Head & Neck Surgery, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
3
|
Wong HTC, Lukasz D, Drerup CM, Kindt KS. In vivo investigation of mitochondria in lateral line afferent neurons and hair cells. Hear Res 2023; 431:108740. [PMID: 36948126 PMCID: PMC10079644 DOI: 10.1016/j.heares.2023.108740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
To process sensory stimuli, intense energy demands are placed on hair cells and primary afferents. Hair cells must both mechanotransduce and maintain pools of synaptic vesicles for neurotransmission. Furthermore, both hair cells and afferent neurons must continually maintain a polarized membrane to propagate sensory information. These processes are energy demanding and therefore both cell types are critically reliant on mitochondrial health and function for their activity and maintenance. Based on these demands, it is not surprising that deficits in mitochondrial health can negatively impact the auditory and vestibular systems. In this review, we reflect on how mitochondrial function and dysfunction are implicated in hair cell-mediated sensory system biology. Specifically, we focus on live imaging approaches that have been applied to study mitochondria using the zebrafish lateral-line system. We highlight the fluorescent dyes and genetically encoded biosensors that have been used to study mitochondria in lateral-line hair cells and afferent neurons. We then describe the impact this in vivo work has had on the field of mitochondrial biology as well as the relationship between mitochondria and sensory system development, function, and survival. Finally, we delineate the areas in need of further exploration. This includes in vivo analyses of mitochondrial dynamics and biogenesis, which will round out our understanding of mitochondrial biology in this sensitive sensory system.
Collapse
Affiliation(s)
- Hiu-Tung C Wong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daria Lukasz
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
O'Sullivan JDB, Bullen A, Mann ZF. Mitochondrial form and function in hair cells. Hear Res 2023; 428:108660. [PMID: 36525891 DOI: 10.1016/j.heares.2022.108660] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hair cells (HCs) are specialised sensory receptors residing in the neurosensory epithelia of inner ear sense organs. The precise morphological and physiological properties of HCs allow us to perceive sound and interact with the world around us. Mitochondria play a significant role in normal HC function and are also intricately involved in HC death. They generate ATP essential for sustaining the activity of ion pumps, Ca2+ transporters and the integrity of the stereociliary bundle during transduction as well as regulating cytosolic calcium homoeostasis during synaptic transmission. Advances in imaging techniques have allowed us to study mitochondrial populations throughout the HC, and how they interact with other organelles. These analyses have identified distinct mitochondrial populations between the apical and basolateral portions of the HC, in which mitochondrial morphology appears determined by the physiological processes in the different cellular compartments. Studies in HCs across species show that ototoxic agents, ageing and noise damage directly impact mitochondrial structure and function resulting in HC death. Deciphering the molecular mechanisms underlying this mitochondrial sensitivity, and how their morphology relates to their function during HC death, requires that we first understand this relationship in the context of normal HC function.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K
| | - Anwen Bullen
- UCL Ear Institute, University College London, London WC1×8EE, U.K.
| | - Zoë F Mann
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K.
| |
Collapse
|
5
|
Sun Y, Zou S, He Z, Chen X. The role of autophagy and ferroptosis in sensorineural hearing loss. Front Neurosci 2022; 16:1068611. [PMID: 36578828 PMCID: PMC9791179 DOI: 10.3389/fnins.2022.1068611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Hearing loss has become a common sensory defect in humans. Because of the limited regenerative ability of mammalian cochlear hair cells (HCs), HC damage (caused by ototoxic drugs, aging, and noise) is the main risk factor of hearing loss. However, how HCs can be protected from these risk factors remains to be investigated. Autophagy is a process by which damaged cytoplasmic components are sequestered into lysosomes for degradation. Ferroptosis is a novel form of non-apoptotic regulated cell death involving intracellular iron overloading and iron-dependent lipid peroxide accumulation. Recent studies have confirmed that autophagy is associated with ferroptosis, and their crosstalk may be the potential therapeutic target for hearing loss. In this review, we provide an overview of the mechanisms of ferroptosis and autophagy as well as their relationship with HC damage, which may provide insights for a new future in the protection of HCs.
Collapse
|
6
|
Tao L, Segil N. CDK2 regulates aminoglycoside-induced hair cell death through modulating c-Jun activity: Inhibiting CDK2 to preserve hearing. Front Mol Neurosci 2022; 15:1013383. [PMID: 36311033 PMCID: PMC9606710 DOI: 10.3389/fnmol.2022.1013383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Sensory hair cell death caused by the ototoxic side effects of many clinically used drugs leads to permanent sensorineural hearing loss in patients. Aminoglycoside antibiotics are widely used and well-known for their ototoxicity, but the molecular mechanisms of aminoglycoside-induced hair cell death are not well understood. This creates challenges in our attempts to alleviate or prevent such adverse side effects. Here, we report a regulatory role of CDK2 in aminoglycoside-induced hair cell death. Utilizing organotypic cultures of cochleae from neonatal mice, we show that blocking CDK2 activity by either pharmaceutical inhibition or by Cdk2 gene knockout protects hair cells against the ototoxicity of gentamicin—one of the most commonly used aminoglycoside antibiotics—by interfering with intrinsic programmed cell death processes. Specifically, we show that CDK2 inhibition delays the collapse of mitochondria and the activation of a caspase cascade. Furthermore, at the molecular level, inhibition of CDK2 activity influences proapoptotic JNK signaling by reducing the protein level of c-Jun and suppressing the gentamicin-induced upregulation of c-Jun target genes Jun and Bim. Our in vivo studies reveal that Cdk2 gene knockout animals are significantly less sensitive to gentamicin ototoxicity compared to wild-type littermates. Altogether, our work ascertains the non-cell cycle role of CDK2 in regulating aminoglycoside-induced hair cell apoptosis and sheds lights on new potential strategies for hearing protection against ototoxicity.
Collapse
Affiliation(s)
- Litao Tao
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Litao Tao,
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Li J, Liu C, Müller U, Zhao B. RIPOR2-mediated autophagy dysfunction is critical for aminoglycoside-induced hearing loss. Dev Cell 2022; 57:2204-2220.e6. [PMID: 36113482 PMCID: PMC9529990 DOI: 10.1016/j.devcel.2022.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Aminoglycosides (AGs) are potent antibiotics that are capable of treating a wide variety of life-threatening infections; however, they are ototoxic and cause irreversible damage to cochlear hair cells. Despite substantial progress, little is known about the molecular pathways critical for hair cell function and survival that are affected by AG exposure. We demonstrate here that gentamicin, a representative AG antibiotic, binds to and within minutes triggers translocation of RIPOR2 in murine hair cells from stereocilia to the pericuticular area. Then, by interacting with a central autophagy component, GABARAP, RIPOR2 affects autophagy activation. Reducing the expression of RIPOR2 or GABARAP completely prevents AG-induced hair cell death and subsequent hearing loss in mice. Additionally, abolishing the expression of PINK1 or Parkin, two key mitochondrial autophagy proteins, prevents hair cell death and subsequent hearing loss caused by AG. In summary, our study demonstrates that RIPOR2-mediated autophagic dysfunction is essential for AG-induced hearing loss.
Collapse
Affiliation(s)
- Jinan Li
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chang Liu
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Zhao
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
8
|
Gibaja A, Alvarado JC, Scheper V, Carles L, Juiz JM. Kanamycin and Cisplatin Ototoxicity: Differences in Patterns of Oxidative Stress, Antioxidant Enzyme Expression and Hair Cell Loss in the Cochlea. Antioxidants (Basel) 2022; 11:antiox11091759. [PMID: 36139833 PMCID: PMC9495324 DOI: 10.3390/antiox11091759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Kanamycin and cisplatin are ototoxic drugs. The mechanisms are incompletely known. With subcutaneous kanamycin (400 mg/kg, 15 days), auditory threshold shifts were detected at days 12–13 at 16 and 32 kHz, extending to 8 and 4 kHz at days 14–15. The outer hair cell (OHC) loss was concentrated past day 12. The maximum cochlear length showing apoptotic cells, tested with TUNEL, was at day 13. At day 15, 1/5 of the apical cochlea contained preserved OHCs. 3-nitrotyrosine (3-NT) immunolabeling, showing oxidative stress, was found in surviving OHCs and in basal and middle portions of the stria vascularis (SV). The antioxidant Gpx1 gene expression was decreased. The immunocytochemistry showed diminished Gpx1 in OHCs. With intraperitoneal cisplatin (16 mg/kg, single injection), no evoked auditory activity was recorded at the end of treatment, at 72 h. The basal third of the cochlea lacked OHCs. Apoptosis occupied the adjacent 1/3, and the apical third contained preserved OHCs. 3-NT immunolabeling was extensive in OHCs and the SV. Gpx1 and Sod1 gene expression was downregulated. Gpx1 immunostaining diminished in middle and basal SV. More OHCs survived cisplatin than kanamycin towards the apex, despite undetectable evoked activity. Differential regulation of antioxidant enzyme levels suggests differences in the antioxidant response for both drugs.
Collapse
Affiliation(s)
- Alejandro Gibaja
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain
| | - Juan C. Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain
| | - Verena Scheper
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, MHH, 30625 Hannover, Germany
| | - Liliana Carles
- Department of Otolaryngology, University Hospital “Doce de Octubre”, 28041 Madrid, Spain
| | - José M. Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, MHH, 30625 Hannover, Germany
- IDINE/Med School, UCLM-Campus in Albacete, C/Almansa 14, 02008 Albacete, Spain
- Correspondence:
| |
Collapse
|
9
|
Bellairs JA, Redila VA, Wu P, Tong L, Webster A, Simon JA, Rubel EW, Raible DW. An in vivo Biomarker to Characterize Ototoxic Compounds and Novel Protective Therapeutics. Front Mol Neurosci 2022; 15:944846. [PMID: 35923755 PMCID: PMC9342690 DOI: 10.3389/fnmol.2022.944846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
There are no approved therapeutics for the prevention of hearing loss and vestibular dysfunction from drugs like aminoglycoside antibiotics. While the mechanisms underlying aminoglycoside ototoxicity remain unresolved, there is considerable evidence that aminoglycosides enter inner ear mechanosensory hair cells through the mechanoelectrical transduction (MET) channel. Inhibition of MET-dependent uptake with small molecules or modified aminoglycosides is a promising otoprotective strategy. To better characterize mammalian ototoxicity and aid in the translation of emerging therapeutics, a biomarker is needed. In the present study we propose that neonatal mice systemically injected with the aminoglycosides G418 conjugated to Texas Red (G418-TR) can be used as a histologic biomarker to characterize in vivo aminoglycoside toxicity. We demonstrate that postnatal day 5 mice, like older mice with functional hearing, show uptake and retention of G418-TR in cochlear hair cells following systemic injection. When we compare G418-TR uptake in other tissues, we find that kidney proximal tubule cells show similar retention. Using ORC-13661, an investigational hearing protection drug, we demonstrate in vivo inhibition of aminoglycoside uptake in mammalian hair cells. This work establishes how systemically administered fluorescently labeled ototoxins in the neonatal mouse can reveal important details about ototoxic drugs and protective therapeutics.
Collapse
Affiliation(s)
- Joseph A. Bellairs
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
| | - Van A. Redila
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Patricia Wu
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Ling Tong
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Alyssa Webster
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Julian A. Simon
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Edwin W. Rubel
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - David W. Raible
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Kim J, Hemachandran S, Cheng AG, Ricci AJ. Identifying targets to prevent aminoglycoside ototoxicity. Mol Cell Neurosci 2022; 120:103722. [PMID: 35341941 PMCID: PMC9177639 DOI: 10.1016/j.mcn.2022.103722] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022] Open
Abstract
Aminoglycosides are potent antibiotics that are commonly prescribed worldwide. Their use carries significant risks of ototoxicity by directly causing inner ear hair cell degeneration. Despite their ototoxic side effects, there are currently no approved antidotes. Here we review recent advances in our understanding of aminoglycoside ototoxicity, mechanisms of drug transport, and promising sites for intervention to prevent ototoxicity.
Collapse
Affiliation(s)
- Jinkyung Kim
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sriram Hemachandran
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
ASK1 is a novel molecular target for preventing aminoglycoside-induced hair cell death. J Mol Med (Berl) 2022; 100:797-813. [PMID: 35471608 PMCID: PMC9110505 DOI: 10.1007/s00109-022-02188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 10/31/2022]
Abstract
Aminoglycoside antibiotics are lifesaving medicines, crucial for the treatment of chronic or drug resistant infections. However, aminoglycosides are toxic to the sensory hair cells in the inner ear. As a result, aminoglycoside-treated individuals can develop permanent hearing loss and vestibular impairment. There is considerable evidence that reactive oxygen species (ROS) production and the subsequent phosphorylation of c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (P38) drives apoptosis in aminoglycoside-treated hair cells. However, treatment strategies that directly inhibit ROS, JNK, or P38 are limited by the importance of these molecules for normal cellular function. Alternatively, the upstream regulator apoptosis signal-regulating kinase 1 (ASK1/MAP3K5) is a key mediator of ROS-induced JNK and P38 activation under pathologic but not homeostatic conditions. We investigated ASK1 as a mediator of drug-induced hair cell death using cochlear explants from Ask1 knockout mice, demonstrating that Ask1 deficiency attenuates neomycin-induced hair cell death. We then evaluated pharmacological inhibition of ASK1 with GS-444217 as a potential otoprotective therapy. GS-444217 significantly attenuated hair cell death in neomycin-treated explants but did not impact aminoglycoside efficacy against P. aeruginosa in the broth dilution test. Overall, we provide significant pre-clinical evidence that ASK1 inhibition represents a novel strategy for preventing aminoglycoside ototoxicity. KEY MESSAGES: • ASK1 is an upstream, redox-sensitive regulator of P38 and JNK, which are known mediators of hair cell death. • Ask1 knockout does not affect hair cell development in vivo, but significantly reduces aminoglycoside-induced hair cell death in vitro. • A small-molecule inhibitor of ASK1 attenuates neomycin-induced hair cell death, and does not impact antibiotic efficacy in vitro. • ASK1 may be a novel molecular target for preventing aminoglycoside-induced hearing loss.
Collapse
|
12
|
Evaluating the Death and Recovery of Lateral Line Hair Cells Following Repeated Neomycin Treatments. Life (Basel) 2021; 11:life11111180. [PMID: 34833056 PMCID: PMC8625531 DOI: 10.3390/life11111180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Acute chemical ablation of lateral line hair cells is an important tool to understand lateral line-mediated behaviors in free-swimming fish larvae and adults. However, lateral line-mediated behaviors have not been described in fish larvae prior to swim bladder inflation, possibly because single doses of ototoxin do not effectively silence lateral line function at early developmental stages. To determine whether ototoxins can disrupt lateral line hair cells during early development, we repeatedly exposed zebrafish larvae to the ototoxin neomycin during a 36 h period from 3 to 4 days post-fertilization (dpf). We use simultaneous transgenic and vital dye labeling of hair cells to compare 6-h and 12-h repeated treatment timelines and neomycin concentrations between 0 and 400 µM in terms of larval survival, hair cell death, regeneration, and functional recovery. Following exposure to neomycin, we find that the emergence of newly functional hair cells outpaces cellular regeneration, likely due to the maturation of ototoxin-resistant hair cells that survive treatment. Furthermore, hair cells of 4 dpf larvae exhibit faster recovery compared to 3 dpf larvae. Our data suggest that the rapid functional maturation of ototoxin-resistant hair cells limits the effectiveness of chemical-based methods to disrupt lateral line function. Furthermore, we show that repeated neomycin treatments can continually ablate functional lateral line hair cells between 3 and 4 dpf in larval zebrafish.
Collapse
|
13
|
Ahmed M, Moon R, Prajapati RS, James E, Basson MA, Streit A. The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration. Commun Biol 2021; 4:1260. [PMID: 34732824 PMCID: PMC8566505 DOI: 10.1038/s42003-021-02788-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022] Open
Abstract
Neurons and sensory cells are particularly vulnerable to oxidative stress due to their high oxygen demand during stimulus perception and transmission. The mechanisms that protect them from stress-induced death and degeneration remain elusive. Here we show that embryonic deletion of the chromodomain helicase DNA-binding protein 7 (CHD7) in auditory neurons or hair cells leads to sensorineural hearing loss due to postnatal degeneration of both cell types. Mechanistically, we demonstrate that CHD7 controls the expression of major stress pathway components. In its absence, hair cells are hypersensitive, dying rapidly after brief exposure to stress inducers, suggesting that sound at the onset of hearing triggers their degeneration. In humans, CHD7 haploinsufficiency causes CHARGE syndrome, a disorder affecting multiple organs including the ear. Our findings suggest that CHD7 mutations cause developmentally silent phenotypes that predispose cells to postnatal degeneration due to a failure of protective mechanisms.
Collapse
Affiliation(s)
- Mohi Ahmed
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy's Hospital, King's College London, London, SE1 9RT, UK.
| | - Ruth Moon
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Ravindra Singh Prajapati
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE5 9NU, UK
| | - Elysia James
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK
| | - M Albert Basson
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy's Hospital, King's College London, London, SE1 9RT, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy's Hospital, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
14
|
(-)-Epigallocatechin-3-gallate (EGCG) prevents aminoglycosides-induced ototoxicity via anti-oxidative and anti-apoptotic pathways. Int J Pediatr Otorhinolaryngol 2021; 150:110920. [PMID: 34500358 DOI: 10.1016/j.ijporl.2021.110920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Aminoglycoside-induced cochlear ototoxicity causes inner ear hair cells (HCs) loss and leads to hearing impairment in patients, but no treatment completely eliminates the ototoxic effect. This study aims to determine the effectiveness of (-)-Epigallocatechin-3-gallate (EGCG) as a protective agent against aminoglycoside-induced ototoxicity. METHODS Zebrafish were exposed to EGCG for 24 h and then co-treated with EGCG and ototoxic agent (amikacin and gentamicin) for 5 h to explore the protective effect of EGCG on zebrafish HCs. Network pharmacology analysis and molecular docking simulation were conducted to explore its potential mechanism, and in vitro cell experiments were used to validate the outcome of the result. RESULT EGCG against ototoxicity of aminoglycosides in zebrafish HCs. Network pharmacology analysis and molecular docking showing that molecules related to cellular response regulation to oxidative stress, including AKT1, DHFR, and MET, may be the target proteins of EGCG, which were verified in vitro experiments. Further experiments demonstrated thatEGCG can antagonize the death of HCs caused by amikacin and gentamicin by reducing intracellular reactive oxygen species (ROS) accumulation and anti-apoptosis. CONCLUSION EGCG can be an otoprotective drug against aminoglycosides-induced ototoxicity, prevent cellular apoptosis and significantly reduce oxidative stress.
Collapse
|
15
|
Sex Associated Effects of Noise Pollution in Stone Sculpin ( Paracottus knerii) as a Model Object in the Context of Human-Induced Rapid Environmental Change. BIOLOGY 2021; 10:biology10101063. [PMID: 34681163 PMCID: PMC8533501 DOI: 10.3390/biology10101063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary In this comprehensive multidisciplinary study, we applied a novel multilevel approach to stone sculpins Paracottus knerii Dybowski, 1874, as model organisms and test for the first time the hypothesis of sex-dependent differences in response to long-term noise exposure in fish. The results testify that the stone sculpin females appeared to experience excessive stress, while the males showed adaptive recalibrations. These effects may be explained by a unique adaptive strategy of offspring care in the stone sculpin males and their biological role in reproductive behavior within the species. The findings obtained may help to elucidate the links between noise exposure in the context of human-induced rapid environmental change (HIREC), long-term sex-related changes in fishes, and the possible further evolutionary success of a species. Such HIREC modeling not only provides information about the potential consequences under anthropogenic pressure but also can help identify the natural mechanisms of stress resistance in different species, including those related to sex, and also contribute to the development of effective environmental management practices. Abstract This work simulates the consequences of HIREC using stone sculpins as model organisms. Sex-dependent effects of long-term noise exposure at mean sound pressure levels of 160–179 dB re 1 μPa (SPLpk–pk) were measured. We applied a multilevel approach to testing the stress response: a comparative analysis of the macula sacculi and an assessment of hematological and molecular stress responses. Noise exposure resulted in hair cell loss, changes in some cytometric parameters in blood, and an increase in the number of functionally active mitochondria in the red blood cells of males and its decrease in females, demonstrating a mitochondrial allostatic load and depletion of functional reserve. Finally, a statistically significant decrease in the telomerase activity of the auditory epithelium and a shortening of telomere length in the brain as molecular markers of stress were observed after noise exposure only in females. No significant decrease in telomerase activity and shortening of telomere length in nerve target tissues were observed in stressed males. However, we recorded an increase in the telomerase activity in male gonads. This sex-dependent difference in load may be associated with accelerated cellular aging in females and lower stress-related long-term risk in males. In this article, we discuss possible reasons for these noise-induced stress effects.
Collapse
|
16
|
Abstract
Vestibular hair cells are mechanosensory receptors that are capable of detecting changes in head position and thereby allow animals to maintain their posture and coordinate their movement. Vestibular hair cells are susceptible to ototoxic drugs, aging, and genetic factors that can lead to permanent vestibular dysfunction. Vestibular dysfunction mainly results from the injury of hair cells, which are located in the vestibular sensory epithelium. This review summarizes the mechanisms of different factors causing vestibular hair cell damage and therapeutic strategies to protect vestibular hair cells.
Collapse
Affiliation(s)
- Luoying Jiang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Zhiwei Zheng
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
17
|
Tengeler AC, Emmerzaal TL, Geenen B, Verweij V, van Bodegom M, Morava E, Kiliaan AJ, Kozicz T. Early-adolescent antibiotic exposure results in mitochondrial and behavioral deficits in adult male mice. Sci Rep 2021; 11:12875. [PMID: 34145328 PMCID: PMC8213690 DOI: 10.1038/s41598-021-92203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
Exposure to antibiotic treatment has been associated with increased vulnerability to various psychiatric disorders. However, a research gap exists in understanding how adolescent antibiotic therapy affects behavior and cognition. Many antibiotics that target bacterial translation may also affect mitochondrial translation resulting in impaired mitochondrial function. The brain is one of the most metabolically active organs, and hence is the most vulnerable to impaired mitochondrial function. We hypothesized that exposure to antibiotics during early adolescence would directly affect brain mitochondrial function, and result in altered behavior and cognition. We administered amoxicillin, chloramphenicol, or gentamicin in the drinking water to young adolescent male wild-type mice. Next, we assayed mitochondrial oxidative phosphorylation complex activities in the cerebral cortex, performed behavioral screening and targeted mass spectrometry-based acylcarnitine profiling in the cerebral cortex. We found that mice exposed to chloramphenicol showed increased repetitive and compulsive-like behavior in the marble burying test, an accurate and sensitive assay of anxiety, concomitant with decreased mitochondrial complex IV activity. Our results suggest that only adolescent chloramphenicol exposure leads to impaired brain mitochondrial complex IV function, and could therefore be a candidate driver event for increased anxiety-like and repetitive, compulsive-like behaviors.
Collapse
Affiliation(s)
- Anouk C Tengeler
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Centre for Medical Neuroscience, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Tim L Emmerzaal
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Centre for Medical Neuroscience, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands.,Department of Clinical Genomics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
| | - Bram Geenen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Centre for Medical Neuroscience, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Vivienne Verweij
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Centre for Medical Neuroscience, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Miranda van Bodegom
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Centre for Medical Neuroscience, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
| | - Amanda J Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Centre for Medical Neuroscience, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Tamas Kozicz
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Centre for Medical Neuroscience, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands. .,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Hong H, Dowdy DW, Dooley KE, Francis HW, Budhathoki C, Han HR, Farley JE. Risk of hearing loss among multidrug-resistant tuberculosis patients according to cumulative aminoglycoside dose. Int J Tuberc Lung Dis 2021; 24:65-72. [PMID: 32005308 DOI: 10.5588/ijtld.19.0062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
SETTING: The ototoxic effects of aminoglycosides (AGs) lead to permanent hearing loss, which is one of the devastating consequences of multidrug-resistant tuberculosis (MDR-TB) treatment. As AG ototoxicity is dose-dependent, the impact of a surrogate measure of AG exposure on AG-induced hearing loss warrants close attention for settings with limited therapeutic drug monitoring.OBJECTIVE: To explore the prognostic impact of cumulative AG dose on AG ototoxicity in patients following initiation of AG-containing treatment for MDR-TB.DESIGN: This prospective cohort study was nested within an ongoing cluster-randomized trial of nurse case management intervention across 10 MDR-TB hospitals in South Africa.RESULTS: The adjusted hazard of AG regimen modification due to ototoxicity in the high-dose group (≥75 mg/kg/week) was 1.33 times higher than in the low-dose group (<75 mg/kg/week, 95%CI 1.09-1.64). The adjusted hazard of developing audiometric hearing loss was 1.34 times higher than in the low-dose group (95%CI 1.01-1.77). Pre-existing hearing loss (adjusted hazard ratio [aHR] 1.71, 95%CI 1.29-2.26) and age (aHR 1.16 per 10 years of age, 95%CI 1.01-1.33) were also associated with an increased risk of hearing loss.CONCLUSION: MDR-TB patients with high AG dose, advanced age and pre-existing hearing loss have a significantly higher risk of AG-induced hearing loss. Those at high risk may be candidates for more frequent monitoring or AG-sparing regimens.
Collapse
Affiliation(s)
- H Hong
- Johns Hopkins University School of Nursing, Baltimore, MD, The REACH Initiative, Johns Hopkins University School of Nursing, Baltimore, MD
| | - D W Dowdy
- Departments of Epidemiology and International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - K E Dooley
- Divisions of Clinical Pharmacology and Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD
| | - H W Francis
- Division of Head and Neck Surgery and Communication Sciences, Duke University School of Medicine, Durham, NC
| | - C Budhathoki
- Johns Hopkins University School of Nursing, Baltimore, MD
| | - H-R Han
- Johns Hopkins University School of Nursing, Baltimore, MD, Center for Cardiovascular and Chronic Care, Johns Hopkins University, Baltimore, MD, USA
| | - J E Farley
- Johns Hopkins University School of Nursing, Baltimore, MD, The REACH Initiative, Johns Hopkins University School of Nursing, Baltimore, MD
| |
Collapse
|
19
|
Theophylline alleviates gentamicin-induced cytotoxicity to sensory hair cells by maintaining HDAC2 expression. Acta Histochem 2021; 123:151696. [PMID: 33652374 DOI: 10.1016/j.acthis.2021.151696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 11/22/2022]
Abstract
Sensorineural hearing loss is a health problem with global prevalence. Aminoglycoside antibiotics, for instance gentamicin, may cause ototoxicity in mammals as a result of apoptosis and elevated oxidative stress in cochlear hair cells. Our study aimed to examine the potential effects of theophylline, an HDAC2 agonist, on gentamicin-induced cytotoxicity to sensory hair cells. Mouse cochlear explants and HEI-OC1 cells were in vitro cultured and challenged by gentamicin to induce ototoxicity, with or without theophylline. Cochlear hair cells were evaluated by fluorescent microscopy, and their mechanotransduction was assessed by electrophysiology. Expression levels of HDAC2 and apoptosis pathway factors were also evaluated following gentamicin and theophylline treatments. The functional role of HDAC2 in this setting was investigated by siRNA targeted silencing. Theophylline protected cochlear hair cells from ototoxicity induced by gentamicin, in terms of preserving cochlear structure and mechanotransduction ability, and preventing the activation of the intrinsic apoptosis pathway dose-dependently. HDAC2 expression was downregulated by gentamicin, which could be restored by theophylline. HDAC2 silencing in HEI-OC1 cells negated the beneficial effect of theophylline against gentamicin-induced growth defect and apoptosis activation. Theophylline protects sensory hair cells from gentamicin ototoxicity by maintaining HDAC2 expression. Our study thereby discovers a critical role of HDAC2 in gentamicin-induced ototoxicity, which could shine light on potential therapeutic options for treatment against sensorineural hearing loss.
Collapse
|
20
|
Qian X, He Z, Wang Y, Chen B, Hetrick A, Dai C, Chi F, Li H, Ren D. Hair cell uptake of gentamicin in the developing mouse utricle. J Cell Physiol 2020; 236:5235-5252. [PMID: 33368220 DOI: 10.1002/jcp.30228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Intratympanic injection of gentamicin has proven to be an effective therapy for intractable vestibular dysfunction. However, most studies to date have focused on the cochlea, so little is known about the distribution and uptake of gentamicin by the counterpart of the auditory system, specifically vestibular hair cells (HCs). Here, with a combination of in vivo and in vitro approaches, we used a gentamicin-Texas Red (GTTR) conjugate to investigate the mechanisms of gentamicin vestibulotoxicity in the developing mammalian utricular HCs. In vivo, GTTR fluorescence was concentrated in the apical cytoplasm and the cellular membrane of neonatal utricular HCs, but scarce in the nucleus of HCs and supporting cells. Quantitative analysis showed the GTTR uptake by striolar HCs was significantly higher than that in the extrastriola. In addition, the GTTR fluorescence intensity in the striola was increased gradually from 1 to 8 days, peaking at 8-9 days postnatally. In vitro, utricle explants were incubated with GTTR and candidate uptake conduits, including mechanotransduction (MET) channels and endocytosis in the HC, were inhibited separately. GTTR uptake by HCs could be inhibited by quinine, a blocker of MET channels, under both normal and stressed conditions. Meanwhile, endocytic inhibition only reduced GTTR uptake in the CoCl2 hypoxia model. In sum, the maturation of MET channels mediated uptake of GTTR into vestibular HCs. Under stressed conditions, MET channels play a pronounced role, manifested by channel-dependent stress enhanced GTTR permeation, while endocytosis participates in GTTR entry in a more selective manner.
Collapse
Affiliation(s)
- Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Ziyu He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Yanmei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Binjun Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Alisa Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, USA
| | - Chunfu Dai
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, USA.,Department of Otolaryngology-Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| |
Collapse
|
21
|
Qian F, Wang X, Yin Z, Xie G, Yuan H, Liu D, Chai R. The slc4a2b gene is required for hair cell development in zebrafish. Aging (Albany NY) 2020; 12:18804-18821. [PMID: 33044947 PMCID: PMC7732325 DOI: 10.18632/aging.103840] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
Hair cells (HCs) function as important sensory receptors that can detect movement in their immediate environment. HCs in the inner ear can sense acoustic signals, while in aquatic vertebrates HCs can also detect movements, vibrations, and pressure gradients in the surrounding water. Many genes are responsible for the development of HCs, and developmental defects in HCs can lead to hearing loss and other sensory dysfunctions. Here, we found that the solute carrier family 4, member 2b (slc4a2b) gene, which is a member of the anion-exchange family, is expressed in the otic vesicles and lateral line neuromasts in developing zebrafish embryos. An in silico analysis showed that the slc4a2b is evolutionarily conserved, and we found that loss of function of slc4a2b resulted in a decreased number of HCs in zebrafish neuromasts due to increased HC apoptosis. Taken together, we conclude that slc4a2b plays a critical role in the development of HCs in zebrafish.
Collapse
Affiliation(s)
- Fuping Qian
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xin Wang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Zhenhua Yin
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Gangcai Xie
- Medical School, Nantong University, Nantong 226019, China
| | - Huijun Yuan
- Medical Genetics Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Dong Liu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China,School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| |
Collapse
|
22
|
Wu F, Xiong H, Sha S. Noise-induced loss of sensory hair cells is mediated by ROS/AMPKα pathway. Redox Biol 2019; 29:101406. [PMID: 31926629 PMCID: PMC6933152 DOI: 10.1016/j.redox.2019.101406] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022] Open
Abstract
The formation of reactive oxygen species (ROS) is a well-documented process in noise-induced hearing loss (NIHL). We have also previously shown that activation of 5' adenosine monophosphate (AMP)-activated protein kinase (AMPKα) at its catalytic residue T172 is one of the key reactions triggering noise-induced outer hair cell (OHC) death. In this study, we are addressing the link between ROS formation and activation of AMPKα in OHCs after noise exposure. In-vivo treatment of CBA/J mice with the antioxidant N-acetyl cysteine (NAC) reduced noise-induced ROS formation (as assessed by the relative levels of 4-hydroxynonenal and 3-nitrotyrosine) and activation of AMPKα in OHCs. Forskolin, an activator of adenylyl cyclase (AC) and an antioxidant, significantly increased cyclic adenosine monophosphate (cAMP) and decreased ROS formation and noise-induced activation of AMPKα. Consequently, treatment with forskolin attenuated noise-induced losses of OHCs and NIHL. In HEI-OC1 cells, H2O2-induced activation of AMPKα and cell death were inhibited by the application of forskolin. The sum of our data indicates that noise activates AMPKα in OHCs through formation of ROS and that noise-exposure-induced OHC death is mediated by a ROS/AMPKα-dependent pathway. Forskolin may serve as a potential compound for prevention of NIHL.
Collapse
Affiliation(s)
- Fan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Suhua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
23
|
O’Reilly M, Young L, Kirkwood NK, Richardson GP, Kros CJ, Moore AL. Gentamicin Affects the Bioenergetics of Isolated Mitochondria and Collapses the Mitochondrial Membrane Potential in Cochlear Sensory Hair Cells. Front Cell Neurosci 2019; 13:416. [PMID: 31572129 PMCID: PMC6753894 DOI: 10.3389/fncel.2019.00416] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/29/2019] [Indexed: 01/11/2023] Open
Abstract
Aminoglycoside antibiotics are widely prescribed to treat a variety of serious bacterial infections. They are extremely useful clinical tools, but have adverse side effects such as oto- and nephrotoxicity. Once inside a cell they are thought to cause mitochondrial dysfunction, subsequently leading to apoptotic cell death due to an increase in reactive oxygen species (ROS) production. Here we present evidence of a direct effect of gentamicin (the most commonly prescribed aminoglycoside) on the respiratory activities of isolated rat liver and kidney mitochondria. We show that gentamicin stimulates state 4 and inhibits state 3u respiratory rates, thereby reducing the respiratory control ratio (RCR) whilst simultaneously causing a collapse of the mitochondrial membrane potential (MtMP). We propose that gentamicin behaves as an uncoupler of the electron transport chain (ETC) - a hypothesis supported by our evidence that it reduces the production of mitochondrial ROS (MtROS). We also show that gentamicin collapses the MtMP in the sensory hair cells (HCs) of organotypic mouse cochlear cultures.
Collapse
Affiliation(s)
- Molly O’Reilly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Luke Young
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Nerissa K. Kirkwood
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Guy P. Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Corné J. Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Anthony L. Moore
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
24
|
Hong H, Budhathoki C, Farley JE. Increased risk of aminoglycoside-induced hearing loss in MDR-TB patients with HIV coinfection. Int J Tuberc Lung Dis 2019; 22:667-674. [PMID: 29862952 DOI: 10.5588/ijtld.17.0830] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
SETTING A high proportion of individuals with multidrug-resistant tuberculosis (MDR-TB) develop permanent hearing loss due to ototoxicity caused by injectable aminoglycosides (AGs). The prevalence of AG-induced hearing loss is greatest in tuberculosis (TB) and human immunodeficiency virus (HIV) endemic countries in sub-Saharan Africa. However, whether HIV coinfection is associated with a higher incidence of AG-induced hearing loss during MDR-TB treatment is controversial. OBJECTIVE To evaluate the impact of HIV coinfection on AG-induced hearing loss among individuals with MDR-TB in sub-Saharan Africa. DESIGN This was a meta-analysis of articles published in PubMed, Embase, Scopus, Cumulative Index to Nursing and Allied Health Literature, Web of Science, Cochrane Review, and reference lists using search terms 'hearing loss', 'aminoglycoside', and 'sub-Saharan Africa'. RESULTS Eight studies conducted in South Africa, Botswana and Namibia and published between 2012 and 2016 were included. As the included studies were homogeneous (χ2 = 8.84, df = 7), a fixed-effects model was used. Individuals with MDR-TB and HIV coinfection had a 22% higher risk of developing AG-induced hearing loss than non-HIV-infected individuals (pooled relative risk 1.22, 95%CI 1.10-1.36) during MDR-TB treatment. CONCLUSION This finding is critical for TB programs with regard to the expansion of injectable-sparing regimens. Our findings lend credibility to using injectable-sparing regimens and more frequent hearing monitoring, particularly in resource-limited settings for HIV-coinfected individuals.
Collapse
Affiliation(s)
- H Hong
- Department of Community-Public Health
| | | | - J E Farley
- Department of Community-Public Health, REACH Initiative, Johns Hopkins University School of Nursing, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Applications of photobiomodulation in hearing research: from bench to clinic. Biomed Eng Lett 2019; 9:351-358. [PMID: 31456894 DOI: 10.1007/s13534-019-00114-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/28/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is very common and economically burdensome. No accepted therapeutic modality for sensorineural hearing loss is yet available; most clinicians emphasize rehabilitation, placing hearing aids and cochlear implants. Photobiomodulation (PBM) employs light energy to enhance or modulate the activities of specific organs, and is a popular non-invasive therapy used to treat skin lesions and neurodegenerative disorders. Efforts to use PBM to improve hearing have been ongoing for several decades. Initial in vitro studies using cell lines and ex vivo culture techniques have now been supplanted by in vivo studies in animals; PBM protects the sensory epithelium and triggers neural regeneration. Many reports have used PBM to treat tinnitus. In this brief review, we introduce PBM applications in hearing research, helpful protocols, and relevant background literature.
Collapse
|
26
|
Hong H, Dooley KE, Starbird LE, Francis HW, Farley JE. Adverse outcome pathway for aminoglycoside ototoxicity in drug-resistant tuberculosis treatment. Arch Toxicol 2019; 93:1385-1399. [PMID: 30963202 DOI: 10.1007/s00204-019-02407-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
Individuals treated for multidrug-resistant tuberculosis (MDR-TB) with aminoglycosides (AGs) in resource-limited settings often experience permanent hearing loss. However, AG ototoxicity has never been conceptually integrated or causally linked to MDR-TB patients' pre-treatment health condition. We sought to develop a framework that examines the relationships between pre-treatment conditions and AG-induced hearing loss among MDR-TB-infected individuals in sub-Saharan Africa. The adverse outcome pathway (AOP) approach was used to develop a framework linking key events (KEs) within a biological pathway that results in adverse outcomes (AO), which are associated with chemical perturbation of a molecular initiating event (MIE). This AOP describes pathways initiating from AG accumulation in hair cells, sound transducers of the inner ear immediately after AG administration. After administration, the drug catalyzes cellular oxidative stress due to overproduction of reactive oxygen species. Since oxidative stress inhibits mitochondrial protein synthesis, hair cells undergo apoptotic cell death, resulting in irreversible hearing loss (AO). We identified the following pre-treatment conditions that worsen the causal linkage between MIE and AO: HIV, malnutrition, aging, noise, smoking, and alcohol use. The KEs are: (1) nephrotoxicity, pre-existing hearing loss, and hypoalbuminemia that catalyzes AG accumulation; (2) immunodeficiency and antioxidant deficiency that trigger oxidative stress pathways; and (3) co-administration of mitochondrial toxic drugs that hinder mitochondrial protein synthesis, causing apoptosis. This AOP clearly warrants the development of personalized interventions for patients undergoing MDR-TB treatment. Such interventions (i.e., choosing less ototoxic drugs, scheduling frequent monitoring, modifying nutritional status, avoiding poly-pharmacy) will be required to limit the burden of AG ototoxicity.
Collapse
Affiliation(s)
- Hyejeong Hong
- Johns Hopkins University School of Nursing, 525 North Wolfe Street, Baltimore, MD, 21205, USA. .,Johns Hopkins University School of Nursing, The REACH Initiative, 855 N. Wolfe Street, 21205, Baltimore, MD, USA.
| | - Kelly E Dooley
- Divisions of Clinical Pharmacology and Infectious Disease, Johns Hopkins University School of Medicine, 600 North Wolfe Street, 21205, Baltimore, MD, USA
| | - Laura E Starbird
- Center for Health Policy, Columbia University School of Nursing, 560 W 168 St, 10032, New York, NY, USA
| | - Howard W Francis
- Division of Head and Neck Surgery and Communication Sciences, Duke University School of Medicine, 40 Duke Medicine Circle, 27710, Durham, NC, USA
| | - Jason E Farley
- Johns Hopkins University School of Nursing, 525 North Wolfe Street, Baltimore, MD, 21205, USA.,Johns Hopkins University School of Nursing, The REACH Initiative, 855 N. Wolfe Street, 21205, Baltimore, MD, USA
| |
Collapse
|
27
|
Necroptosis and Apoptosis Contribute to Cisplatin and Aminoglycoside Ototoxicity. J Neurosci 2019; 39:2951-2964. [PMID: 30733218 DOI: 10.1523/jneurosci.1384-18.2019] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 11/21/2022] Open
Abstract
Ototoxic side effects of cisplatin and aminoglycosides have been extensively studied, but no therapy is available to date. Sensory hair cells, upon exposure to cisplatin or aminoglycosides, undergo apoptotic and necrotic cell death. Blocking these cell death pathways has therapeutic potential in theory, but incomplete protection and lack of therapeutic targets in the case of necrosis, has hampered the development of clinically applicable drugs. Over the past decade, a novel form of necrosis, termed necroptosis, was established as an alternative cell death pathway. Necroptosis is distinguished from passive necrotic cell death, in that it follows a cellular program, involving the receptor-interacting protein kinase (RIPK) 1 and RIPK3. In this study, we used pharmacological and genetic interventions in the mouse to test the relative contributions of necroptosis and caspase-8-mediated apoptosis toward cisplatin and aminoglycoside ototoxicity. We find that ex vivo, only apoptosis contributes to cisplatin and aminoglycoside ototoxicity, while in vivo, necroptosis as well as apoptosis are involved in both sexes. Inhibition of necroptosis and apoptosis using pharmacological compounds is thus a viable strategy to ameliorate aminoglycoside and cisplatin ototoxicity.SIGNIFICANCE STATEMENT The clinical application of cisplatin and aminoglycosides is limited due to ototoxic side effects. Here, using pharmaceutical and genetic intervention, we present evidence that two types of programmed cell death, apoptosis and necroptosis, contribute to aminoglycoside and cisplatin ototoxicity. Key molecular factors mediating necroptosis are well characterized and druggable, presenting new avenues for pharmaceutical intervention.
Collapse
|
28
|
Wrześniok D, Rok J, Beberok A, Rzepka Z, Respondek M, Pilawa B, Zdybel M, Delijewski M, Buszman E. Kanamycin induces free radicals formation in melanocytes: An important factor for aminoglycosides ototoxicity. J Cell Biochem 2019; 120:1165-1173. [PMID: 30461043 DOI: 10.1002/jcb.26817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 02/28/2018] [Indexed: 01/24/2023]
Abstract
Ototoxicity is well-documented but not fully understood undesirable side effect of aminoglycoside antibiotic, kanamycin. Kanamycin is capable of binding to melanin biopolymers-natural pigments of the skin, hair, and eyes. Melanin-producing cells, melanocytes, are also present in the inner ear and are known to be necessary for normal hearing. It was considered that melanin content in the inner ear may influence aminoglycoside-induced ototoxic effect. The impact of kanamycin on melanocytes homeostasis may thus play role in the antibiotic-induced ototoxic effect. Previously, we demonstrated that kanamycin disturbs homeostasis in light-pigmented melanocytes. To investigate if/how melanization contributes to this phenomenon, the study using in vitro model of dark-pigmented melanocytes is required. Spectrophotometric measurements and electron paramagnetic resonance (EPR) spectroscopy analysis were performed. Kanamycin induced a concentration-dependent loss in HEMn-DP melanocytes viability. The value of IC 50 was estimated to be 5.0 mM. Modulation of the activity of analyzed antioxidant enzymes and increased production of free radicals as well as the decrease of the melanin content were observed. Our results confirmed that kanamycin generates oxidative stress in melanocytes. The increased level of free radicals caused by kanamycin may be responsible for the imbalance of antioxidant defense and the reduction of melanin content in melanocytes. The role of melanin in the mechanism of kanamycin-induced hearing impairment was discussed and the obtained results were compared with the previously demonstrated data concerning light-pigmented melanocytes.
Collapse
Affiliation(s)
- Dorota Wrześniok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Michalina Respondek
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Barbara Pilawa
- Department of Biophysics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Magdalena Zdybel
- Department of Biophysics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Marcin Delijewski
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Ewa Buszman
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
29
|
Desa DE, Nichols MG, Smith HJ. Aminoglycosides rapidly inhibit NAD(P)H metabolism increasing reactive oxygen species and cochlear cell demise. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-14. [PMID: 30411553 PMCID: PMC6225535 DOI: 10.1117/1.jbo.24.5.051403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/21/2018] [Indexed: 06/04/2023]
Abstract
Despite causing permanent hearing loss by damaging inner ear sensory cells, aminoglycosides (AGs) remain one of the most widely used classes of antibiotics in the world. Although the mechanisms of cochlear sensory cell damage are not fully known, reactive oxygen species (ROS) are clearly implicated. Mitochondrial-specific ROS formation was evaluated in acutely cultured murine cochlear explants exposed to gentamicin (GM), a representative ototoxic AG antibiotic. Superoxide (O2·-) and hydrogen peroxide (H2O2) were measured using MitoSOX Red and Dihydrorhodamine 123, respectively, in sensory and supporting cells. A 1-h GM exposure significantly increased O2·- formation in IHCs and increased H2O2 formation in all cell types. At the same time point, GM significantly increased manganese superoxide dismutase (MnSOD) levels while significantly decreasing copper/zinc superoxide dismutase (CuZnSOD) in cochlear sensory cells. This suggests (1) a rapid conversion of highly reactive O2·- to H2O2 during the acute stage of ototoxic antibiotic exposure and (2) that the endogenous antioxidant system is significantly altered by AGs. Fluorescence intensity-based measurements of reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and mitochondrial membrane potential were measured to determine if increases in GM-induced ROS production were correlated with changes in mitochondrial metabolism. This project provides a basis for understanding the mechanisms of mitochondrial ROS production in cochlear cells exposed to ototoxic antibiotics. Understanding the nature of ototoxic antibiotic-induced changes in mitochondrial metabolism is critical for developing hearing loss treatment and prevention strategies.
Collapse
Affiliation(s)
- Danielle E. Desa
- University of Rochester, Department of Biomedical Engineering, Rochester, New York, United States
| | - Michael G. Nichols
- Creighton University, Department of Physics, Omaha, Nebraska, United States
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska, United States
| | - Heather Jensen Smith
- University of Nebraska Medical Center, The Eppley Institute for Cancer and Allied Diseases, Omaha, Nebraska, United States
| |
Collapse
|
30
|
Stepien KM, Abidin Z, Lee G, Cullen R, Logan P, Pastores GM. Metallosis mimicking a metabolic disorder: a case report. Mol Genet Metab Rep 2018; 17:38-41. [PMID: 30271721 PMCID: PMC6159344 DOI: 10.1016/j.ymgmr.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 11/05/2022] Open
Abstract
Metalic prosthesis or occupational exposure are potential sources of systemic cobalt and chromium ion toxicity. The resultant multisystemic clinical presentation can lead to unnecessary investigations before a final etiologic diagnosis is made; with an average delay of a year or more commonly noted. A 58-year old man presented with cardiomyopathy, pericardial effusion, polycytaemia, polyneuropathy, visual impairment, sudden hearing loss and hypothyroidism over a 2-year period post a metal-on-polyethylene hip replacement surgery. Biochemistry test results showed serum lactate of 3.8 mmol/L (0.5–2.2 mmol/L). Urine organic acid screen showed mild increases in excretion of tricarboxylic acid cycle intermediates and 2-ethylhydracryllate; suggestive of primary or secondary mitochondrial dysfunction. There were also slight increases in excretion of 4-hydroxyphenyllactate and 4-hydroxyphenylpyruvate suggestive of liver dysfunction. Acylcarnitine profile showed slight increase in hydroxybutyrylcarnitine and tetradeceneoylcarnitine that may reflect ketosis. In view of his clinical presentation and abnormal metabolic investigations, the initial working diagnosis was mitochondrial disease. Subsequently, patient presented with hip pain, and radiologic and imaging studies revealed high density collections lateral to the right proximal part of the femur, and medial to the right ilium with signal changes suggestive of metallic content. This prompted toxicology screen which revealed elevated plasma cobalt concentration (903.32 μg/L; reference range: 0.1–0.4) and chromium (71.32 μg/L; <0.5). Six months post right hip prosthesis removal the concentrations have declined and was 61.72 μg/L and chromium 23.97 μg/L. Patient felt some improvement symptomatically, without evident deterioration in his vision or hearing. This case emphasises careful consideration of past medical history, in patients presenting with multisystemic disease suggestive of mitochondrial dysfunction, and potential causality related to exposure to toxic agents. In retrospect, the absence of a family history could be viewed as a pertinent negative finding. Not uncommonly, specialist focus on their favored system and may not search for a unifying diagnosis. It is likely further delays in diagnosis would have occurred had the patient not developed hip pains, and ultimately referred to the orthopedic surgeons more familiar with similar cases.
Collapse
Affiliation(s)
- Karolina M Stepien
- Adult Inherited Metabolic Diseases Department, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Zaza Abidin
- National Centre for Inherited Metabolic Diseases, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Graham Lee
- Clinical Biochemistry and Diagnostic Endocrinology, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Rachel Cullen
- Clinical Biochemistry and Diagnostic Endocrinology, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Patricia Logan
- Ophthalmology Department, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Gregory M Pastores
- National Centre for Inherited Metabolic Diseases, The Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
31
|
Dabrowski M, Bukowy-Bieryllo Z, Zietkiewicz E. Advances in therapeutic use of a drug-stimulated translational readthrough of premature termination codons. Mol Med 2018; 24:25. [PMID: 30134808 PMCID: PMC6016875 DOI: 10.1186/s10020-018-0024-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/01/2018] [Indexed: 12/31/2022] Open
Abstract
Premature termination codons (PTCs) in the coding regions of mRNA lead to the incorrect termination of translation and generation of non-functional, truncated proteins. Translational readthrough of PTCs induced by pharmaceutical compounds is a promising way of restoring functional protein expression and reducing disease symptoms, without affecting the genome or transcriptome of the patient. While in some cases proven effective, the clinical use of readthrough-inducing compounds is still associated with many risks and difficulties. This review focuses on problems directly associated with compounds used to stimulate PTC readthrough, such as their interactions with the cell and organism, their toxicity and bioavailability (cell permeability; tissue deposition etc.). Various strategies designed to overcome these problems are presented.
Collapse
Affiliation(s)
- Maciej Dabrowski
- Institute of Human Genetics; Polish Academy of Sciences, Poznan, Poland
| | | | - Ewa Zietkiewicz
- Institute of Human Genetics; Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
32
|
Gao K, Ding D, Sun H, Roth J, Salvi R. Kanamycin Damages Early Postnatal, but Not Adult Spiral Ganglion Neurons. Neurotox Res 2017; 32:603-613. [PMID: 28656549 PMCID: PMC5711550 DOI: 10.1007/s12640-017-9773-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 01/13/2023]
Abstract
Although aminoglycoside antibiotics such as kanamycin are widely used clinically to treat life-threatening bacterial infections, ototoxicity remains a significant dose-limiting side effect. The prevailing view is that the hair cells are the primary ototoxic target of aminoglycosides and that spiral ganglion neurons begin to degenerate weeks or months after the hair cells have died due to lack of neurotrophic support. To test the early developmental aspects of this issue, we compared kanamycin-induced hair cell and spiral ganglion pathology in rat postnatal day 3 cochlear organotypic cultures with adult whole cochlear explants. In both adult and postnatal day 3 cultures, hair cell damage began at the base of the cochleae and progressed toward the apex in a dose-dependent manner. In postnatal day 3 cultures, spiral ganglion neurons were rapidly destroyed by kanamycin prior to hair cell loss. In contrast, adult spiral ganglion neurons were resistant to kanamycin damage even at the highest concentration, consistent with in vivo models of delayed SGN degeneration. In postnatal day 3 cultures, kanamycin preferentially damaged type I spiral ganglion neurons, whereas type II neurons were resistant. Spiral ganglion degeneration of postnatal day 3 neurons was associated with upregulation of the superoxide radical and caspase-3-mediated cell death. These results show for the first time that kanamycin is toxic to postnatal day 3 spiral ganglion neurons, but not adult neurons.
Collapse
Affiliation(s)
- Kelei Gao
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Hong Sun
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Jerome Roth
- Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan
| | - Richard Salvi
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China.
- Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan.
| |
Collapse
|
33
|
Nicholas BD, Francis S, Wagner EL, Zhang S, Shin JB. Protein Synthesis Inhibition and Activation of the c-Jun N-Terminal Kinase Are Potential Contributors to Cisplatin Ototoxicity. Front Cell Neurosci 2017; 11:303. [PMID: 29033791 PMCID: PMC5627031 DOI: 10.3389/fncel.2017.00303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/12/2017] [Indexed: 11/29/2022] Open
Abstract
Cisplatin has been regarded as an effective and versatile chemotherapeutic agent for nearly 40 years. Though the associated dose-dependent ototoxicity is known, the cellular mechanisms by which cochleovestibular hair cell death occur are not well understood. We have previously shown that aminoglycoside ototoxicity is mediated in part by cytosolic protein synthesis inhibition. Despite a lack of molecular similarity, aminoglycosides were shown to elicit similar stress pathways to cisplatin. We therefore reasoned that there may be some role of protein synthesis inhibition in cisplatin ototoxicity. Employing a modification of the bioorthogonal noncanonical amino acid tagging (BONCAT) method, we evaluated the effects of cisplatin on cellular protein synthesis. We show that cisplatin inhibits cellular protein synthesis in organ of Corti explant cultures. Similar to what was found after gentamicin exposure, cisplatin activates both the c-Jun N-terminal kinase (JNK) and mammalian target of rapamycin (mTOR) pathways. In contrast to aminoglycosides, cisplatin also inhibits protein synthesis in all cochlear cell types. We further demonstrate that the multikinase inhibitor sorafenib completely prevents JNK activation, while providing only moderate hair cell protection. Simultaneous stimulation of cellular protein synthesis by insulin, however, significantly improved hair cell survival in culture. The presented data provides evidence for a potential role of protein synthesis inhibition in cisplatin-mediated ototoxicity.
Collapse
Affiliation(s)
- Brian D Nicholas
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Shimon Francis
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Elizabeth L Wagner
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Sibo Zhang
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
34
|
Liu JC, Parks RJ, Liu J, Stares J, Rovira II, Murphy E, Finkel T. The In Vivo Biology of the Mitochondrial Calcium Uniporter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:49-63. [PMID: 28551781 DOI: 10.1007/978-3-319-55330-6_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of the molecular composition of the mitochondrial calcium uniporter has allowed for the genetic manipulation of its components and the creation of various in vivo genetic models. Here, we review the initial attempts to modulate the expression of components of the calcium uniporter in a range of organisms from plants to mammals. This analysis has confirmed the strict requirement for the uniporter for in vivo mitochondrial calcium uptake and for maintaining mitochondrial calcium homeostasis. We further discuss the physiological effects following genetic manipulation of the uniporter on tissue bioenergetics and the threshold for cell death. Finally, we analyze the limited information regarding the role of various uniporter components in human disease.
Collapse
Affiliation(s)
- Julia C Liu
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Randi J Parks
- Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Jie Liu
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Justin Stares
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Ilsa I Rovira
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Toren Finkel
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA. .,NIH, Bldg 10/CRC 5-3330, Bethesda, MD, 20892, USA.
| |
Collapse
|
35
|
Evaluation of the possible protective role of naringenin on gentamicin-induced ototoxicity: A preliminary study. Int J Pediatr Otorhinolaryngol 2017; 100:247-253. [PMID: 28802382 DOI: 10.1016/j.ijporl.2017.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/16/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The purpose of this study is to evaluate the possible protective role of naringenin in gentamicin-induced ototoxicity through an audiological, biochemical and histopathological evaluation. METHODS This study was conducted on 32 adult male rats that were randomized into 4 groups(control, gentamicin, naringenin + gentamicin, and naringenin). Naringenin was given to the rats via oral gavage in a dose of 50 mg/kg/day during the 14 day study period. Gentamicin was given by the intraperitoneal route in a dose of 120 mg/kg/day. Audiological assessment was performed by the distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) measurements, applied to all rats at the beginning of the study, and also on day 14. Biochemical parameters were calculated on day 14 to evaluate the oxidative and antioxidative status. Their cochleae were removed and examined histopathologically, also on day 14. The cochlea of animals were evaluated with the terminal deoxynucleotidyl transferase-mediated dUTPbiotin nick end labeling (TUNEL) method for apoptosis. RESULTS On days 14, DPOAE values and ABR thresholds were preserved in group 3(naringenin + gentamicin) when compared with group 2(gentamicin)(p < 0.008). The total oxidant status values and oxidative stress index values were significantly higher in group 2(gentamicin) than in other groups (p < 0.008). The total antioxidant status value was significantly higher in group 3(naringenin + gentamicin) and group 4(naringenin) than in group 2(gentamicin)(p < 0.008). The number of TUNEL positive cells in both the organ of Corti and the stria vascularis were found to be statistically lower in group 3(naringenin + gentamicin) than in group 2(gentamicin)(p < 0.05). CONCLUSION Our study has demonstrated that the ototoxic effect generated by gentamicin could be ameliorated with the concurrent use of naringenin.
Collapse
|
36
|
Bodmer D. An update on drug design strategies to prevent acquired sensorineural hearing loss. Expert Opin Drug Discov 2017; 12:1161-1167. [PMID: 28838250 DOI: 10.1080/17460441.2017.1372744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acute sensorineural hearing loss is a dramatic event for the patient. Different pathologies might result in acute sensorineural hearing loss, such as sudden hearing loss, exposure to medications/drugs or loud sound. Current therapeutic approaches include steroids and hyperbaric oxygen in addition to other methods. Research activities of the past have shed light on the molecular mechanisms involved in damage to hair cells, the synapses at the hair cell spiral ganglion junction and the stria vascularis. Molecular events and signaling pathways which underlie damage to these structures have been discovered. Areas covered: This paper summarizes current research efforts involved in investigating the molecular mechanisms involved in acute sensorineural hearing loss. Expert opinion: While progress has been made in unraveling basic mechanisms involved in acute sensorineural hearing loss, it is difficult to translate basic concepts to the clinic. There are often conflicting data in animal and human studies on the effect of a given intervention. There is also a lack of high quality clinical trials (double blind, placebo controlled and high powered). However, this author is confident that research efforts will pay out and that some of these efforts will translate into new therapeutic options for patients with acute hearing loss.
Collapse
Affiliation(s)
- Daniel Bodmer
- a Department of Biomedicine, Head and Neck Surgery , University of Basel Hospital , Basel , Switzerland.,b Department of Otolaryngology, Head and Neck Surgery , University of Basel Hospital , Basel , Switzerland
| |
Collapse
|
37
|
Francis SP, Cunningham LL. Non-autonomous Cellular Responses to Ototoxic Drug-Induced Stress and Death. Front Cell Neurosci 2017; 11:252. [PMID: 28878625 PMCID: PMC5572385 DOI: 10.3389/fncel.2017.00252] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/08/2017] [Indexed: 12/20/2022] Open
Abstract
The first major recognition of drug-induced hearing loss can be traced back more than seven decades to the development of streptomycin as an antimicrobial agent. Since then at least 130 therapeutic drugs have been recognized as having ototoxic side-effects. Two important classes of ototoxic drugs are the aminoglycoside antibiotics and the platinum-based antineoplastic agents. These drugs save the lives of millions of people worldwide, but they also cause irreparable hearing loss. In the inner ear, sensory hair cells (HCs) and spiral ganglion neurons (SGNs) are important cellular targets of these drugs, and most mechanistic studies have focused on the cell-autonomous responses of these cell types in response to ototoxic stress. Despite several decades of studies on ototoxicity, important unanswered questions remain, including the cellular and molecular mechanisms that determine whether HCs and SGNs will live or die when confronted with ototoxic challenge. Emerging evidence indicates that other cell types in the inner ear can act as mediators of survival or death of sensory cells and SGNs. For example, glia-like supporting cells (SCs) can promote survival of both HCs and SGNs. Alternatively, SCs can act to promote HC death and inhibit neural fiber expansion. Similarly, tissue resident macrophages activate either pro-survival or pro-death signaling that can influence HC survival after exposure to ototoxic agents. Together these data indicate that autonomous responses that occur within a stressed HC or SGN are not the only (and possibly not the primary) determinants of whether the stressed cell ultimately lives or dies. Instead non-cell-autonomous responses are emerging as significant determinants of HC and SGN survival vs. death in the face of ototoxic stress. The goal of this review is to summarize the current evidence on non-cell-autonomous responses to ototoxic stress and to discuss ways in which this knowledge may advance the development of therapies to reduce hearing loss caused by these drugs.
Collapse
Affiliation(s)
- Shimon P Francis
- National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesda, MD, United States
| | - Lisa L Cunningham
- National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesda, MD, United States
| |
Collapse
|
38
|
Ebnoether E, Ramseier A, Cortada M, Bodmer D, Levano-Huaman S. Sesn2 gene ablation enhances susceptibility to gentamicin-induced hair cell death via modulation of AMPK/mTOR signaling. Cell Death Discov 2017; 3:17024. [PMID: 28580173 PMCID: PMC5447131 DOI: 10.1038/cddiscovery.2017.24] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022] Open
Abstract
The process of gentamicin-induced hair cell damage includes the activation of oxidative stress processes. Sestrins, as stress-responsive proteins, protect cells against oxidative stress. Sestrins, particularly Sestrin-2, suppress excessive reactive oxygen species (ROS) accumulation and inhibit mammalian target of rapamycin complex 1 (mTORC1). Thus, we addressed the role of Sestrin-2 in the regulation of sensory hair cell survival after gentamicin exposure. Here, we show that Sestrins were expressed in the inner ear tissues, and Sestrin-2 immunolocalized in sensory hair cells and spiral ganglion (SG). The expression of Sestrin-2 was unchanged, and later downregulated, in gentamicin-treated explants from wild-type mice in vitro. Compared with wild-type mice, Sestrin-2 knockout mice exhibited significantly greater hair cell loss in gentamicin-treated cochlear explants. Significant downregulation of phosphorylation of AMP-activated protein kinase alpha (AMPKα) and upregulation of the 70-kDa ribosomal protein S6 kinase (p70S6K) were measured in wild-type cochlear explants exposed to gentamicin compared with their untreated controls. Such regulatory effect was not observed between explants from untreated and gentamicin-treated knockout mice. The gentamicin effect on mTOR signaling was rapamycin-sensitive. Thus, our data provide evidence that Sestrin-2 plays an important role in the protection of hair cells against gentamicin, and the mTOR signaling pathway appears to be modulated by gentamicin during hair cell death.
Collapse
Affiliation(s)
- Eliane Ebnoether
- Department of Biomedicine, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| | - Alessia Ramseier
- Department of Biomedicine, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| | - Maurizio Cortada
- Department of Biomedicine, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland.,Department of Otolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| | - Soledad Levano-Huaman
- Department of Biomedicine, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| |
Collapse
|
39
|
Park C, Ji HM, Kim SJ, Kil SH, Lee JN, Kwak S, Choe SK, Park R. Fenofibrate exerts protective effects against gentamicin-induced toxicity in cochlear hair cells by activating antioxidant enzymes. Int J Mol Med 2017; 39:960-968. [PMID: 28290603 PMCID: PMC5360428 DOI: 10.3892/ijmm.2017.2916] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 02/24/2017] [Indexed: 12/19/2022] Open
Abstract
Fenofibrate, an activator of peroxisome proliferator-activated receptors (PPARs), has been shown to protect the kidneys and brain cells from oxidative stress; however, its role in preventing hearing loss has not been reported to date, at least to the best of our knowledge. In this study, we demonstrated the protective effects of fenofibrate against gentamicin (GM)-induced ototoxicity. We found that the auditory brainstem response threshold which was increased by GM was significantly reduced by pre-treatment with fenofibrate in rats. In cochlear explants, the disruption of hair cell layers by GM was also markedly attenuated by pre-treatment with fenofibrate. In addition, fenofibrate almost completely abolished GM-induced reactive oxygen species generation, which seemed to be mediated at least in part by the restoration of the expression of PPAR-α-dependent antioxidant enzymes, including catalase and superoxide dismutase (SOD)-1. Of note, fenofibrate markedly increased the expression of heme oxygenase-1 (HO-1) which was also induced to a certain degree by GM alone. The induced expression of HO-1 by fenofibrate appeared to be essential for mediating the protective effects of fenofibrate, as the inhibition of HO-1 activity significantly diminished the protective effects of fenofibrate against the GM-mediated death of sensory hair cells in cochlea explant culture, as well as in zebrafish neuromasts. These results suggest that fenofibrate protects sensory hair cells from GM-induced toxicity by upregulating PPAR-α-dependent antioxidant enzymes, including HO-1. Our results provide insight into the preventive therapy for hearing loss caused by aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Channy Park
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hye-Min Ji
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Se-Jin Kim
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Hee Kil
- Division of Cell Biology and Genetics, House Research Institute, Los Angeles, CA 90057, USA
| | - Joon No Lee
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seongae Kwak
- Zoonosis Research Center, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
40
|
Takemoto Y, Hirose Y, Sugahara K, Hashimoto M, Hara H, Yamashita H. Protective effect of an astaxanthin nanoemulsion against neomycin-induced hair-cell damage in zebrafish. Auris Nasus Larynx 2017; 45:20-25. [PMID: 28274503 DOI: 10.1016/j.anl.2017.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/25/2016] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
Abstract
Objective The cause of those hair cells disorder is oxidative stress due to free radicals. In particular, hair cells are very susceptible to aminoglycosides. Antioxidant is known to reduce the generation of oxygen-derived free radicals. Various antioxidant is marketed, and different dosage form is developed with the same drug. Using a zebra fish lateral line, we report hair cell protection effect of astaxanthin from neomycin-induced trauma. Methods Zebrafish larvae were exposed to the astaxanthin nanoemulsion or to the suspension for 1 h, or were left unexposed. Subsequently, the larvae were exposed to neomycin for 1 h by adding the neomycin solution. Results were calculated as the mean hair-cell survival as a percentage of the control. Results Hair cells were not protected in the group treated with astaxanthin suspension and neomycin. On the other hand, there was dose-dependent protection against neomycin-induced hair-cell death in the zebrafish lateral-line hair cells in the group treated with nano astaxanthin. Conclusion The results of the current study performed using a zebra fish lateral-line, nano astaxanthin protected sensory hair cells against neomycin-induced death. This suggests that nano-astaxanthin is more efficiently absorbed in the body than astaxanthin, and may be useful as a protective drug for the inner ear.
Collapse
Affiliation(s)
- Yosuke Takemoto
- Department of Otolaryngology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Yoshinobu Hirose
- Department of Otolaryngology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Kazuma Sugahara
- Department of Otolaryngology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Makoto Hashimoto
- Department of Otolaryngology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Hirotaka Hara
- Department of Otolaryngology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Hiroshi Yamashita
- Department of Otolaryngology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan.
| |
Collapse
|
41
|
Kim YJ, Tian C, Kim J, Shin B, Choo OS, Kim YS, Choung YH. Autophagic flux, a possible mechanism for delayed gentamicin-induced ototoxicity. Sci Rep 2017; 7:41356. [PMID: 28145495 PMCID: PMC5286410 DOI: 10.1038/srep41356] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics including gentamicin (GM) induce delayed ototoxic effects such as hearing loss after long-term use, unlike the early-onset ototoxicity caused by cisplatin. The purpose of the study was to identify the mechanism of the delayed GM-induced ototoxicity by exploring the role of autophagy in vitro and in vivo. Treating HEI-OC1 auditory cells with GM led to a time-dependent increase of the autophagosome marker LC3-II, which was accompanied by cell death. In contrast, cisplatin and penicillin caused a rapid increase and had no effect on LC3-II levels, respectively. LC3-II-expressing autophagosomes co-localized with the labeled GM. GM-treated autophagosomes expressed reduced levels of Rab7, which is necessary for the fusion of autophagosomes with lysosomes. When the autophagic flux enhancer rapamycin was applied to GM-treated cells, Rab7 and the lysosomal enzyme cathepsin D were upregulated, and increased cell survival was observed. In animal studies, the intraperitoneal injection of GM worsened hearing thresholds and induced the accumulation of LC3 in the organ of Corti. This hearing impairment was attenuated by rapamycin. These findings suggest that the delayed onset-ototoxicity of GM may be closely related to the accumulation of autophagosomes via impaired autophagy. This GM-induced auditory cell death could be inhibited by enhancing autophagic flux.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Chunjie Tian
- Department of Otolaryngology, Dali Bai Autonomous Prefecture People's Hospital, Renminnan road 35, Dali, Yunnan 671000, China
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Beomyong Shin
- Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Oak-Sung Choo
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea.,Department of Medical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - You-Sun Kim
- Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea.,Department of Medical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
42
|
Kurabi A, Keithley EM, Housley GD, Ryan AF, Wong ACY. Cellular mechanisms of noise-induced hearing loss. Hear Res 2016; 349:129-137. [PMID: 27916698 PMCID: PMC6750278 DOI: 10.1016/j.heares.2016.11.013] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Exposure to intense sound or noise can result in purely temporary threshold shift (TTS), or leave a residual permanent threshold shift (PTS) along with alterations in growth functions of auditory nerve output. Recent research has revealed a number of mechanisms that contribute to noise-induced hearing loss (NIHL). The principle cause of NIHL is damage to cochlear hair cells and associated synaptopathy. Contributions to TTS include reversible damage to hair cell (HC) stereocilia or synapses, while moderate TTS reflects protective purinergic hearing adaptation. PTS represents permanent damage to or loss of HCs and synapses. While the substrates of HC damage are complex, they include the accumulation of reactive oxygen species and the active stimulation of intracellular stress pathways, leading to programmed and/or necrotic cell death. Permanent damage to cochlear neurons can also contribute to the effects of NIHL, in addition to HC damage. These mechanisms have translational potential for pharmacological intervention and provide multiple opportunities to prevent HC damage or to rescue HCs and spiral ganglion neurons that have suffered injury. This paper reviews advances in our understanding of cellular mechanisms that contribute to NIHL and their potential for therapeutic manipulation.
Collapse
Affiliation(s)
- Arwa Kurabi
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Elizabeth M Keithley
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Gary D Housley
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Allen F Ryan
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States.
| | - Ann C-Y Wong
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| |
Collapse
|
43
|
He Q, Jia Z, Zhang Y, Ren X. Morin hydrate promotes inner ear neural stem cell survival and differentiation and protects cochlea against neuronal hearing loss. J Cell Mol Med 2016; 21:600-608. [PMID: 27709784 PMCID: PMC5323642 DOI: 10.1111/jcmm.13005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/12/2016] [Indexed: 12/21/2022] Open
Abstract
We aimed to investigate the effect of morin hydrate on neural stem cells (NSCs) isolated from mouse inner ear and its potential in protecting neuronal hearing loss. 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide (MTT) and bromodeoxyuridine incorporation assays were employed to assess the effect of morin hydrate on the viability and proliferation of in vitro NSC culture. The NSCs were then differentiated into neurons, in which neurosphere formation and differentiation were evaluated, followed by neurite outgrowth and neural excitability measurements in the subsequent in vitro neuronal network. Mechanotransduction of cochlea ex vivo culture and auditory brainstem responses threshold and distortion product optoacoustic emissions amplitude in mouse ototoxicity model were also measured following gentamicin treatment to investigate the protective role of morin hydrate against neuronal hearing loss. Morin hydrate improved viability and proliferation, neurosphere formation and neuronal differentiation of inner ear NSCs, and promoted in vitro neuronal network functions. In both ex vivo and in vivo ototoxicity models, morin hydrate prevented gentamicin‐induced neuronal hearing loss. Morin hydrate exhibited potent properties in promoting growth and differentiation of inner ear NSCs into functional neurons and protecting from gentamicin ototoxicity. Our study supports its clinical potential in treating neuronal hearing loss.
Collapse
Affiliation(s)
- Qiang He
- E.N.T Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhanwei Jia
- E.N.T Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Zhang
- E.N.T Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiumin Ren
- E.N.T Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
44
|
Esterberg R, Linbo T, Pickett SB, Wu P, Ou HC, Rubel EW, Raible DW. Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death. J Clin Invest 2016; 126:3556-66. [PMID: 27500493 DOI: 10.1172/jci84939] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
Exposure to aminoglycoside antibiotics can lead to the generation of toxic levels of reactive oxygen species (ROS) within mechanosensory hair cells of the inner ear that have been implicated in hearing and balance disorders. Better understanding of the origin of aminoglycoside-induced ROS could focus the development of therapies aimed at preventing this event. In this work, we used the zebrafish lateral line system to monitor the dynamic behavior of mitochondrial and cytoplasmic oxidation occurring within the same dying hair cell following exposure to aminoglycosides. The increased oxidation observed in both mitochondria and cytoplasm of dying hair cells was highly correlated with mitochondrial calcium uptake. Application of the mitochondrial uniporter inhibitor Ru360 reduced mitochondrial and cytoplasmic oxidation, suggesting that mitochondrial calcium drives ROS generation during aminoglycoside-induced hair cell death. Furthermore, targeting mitochondria with free radical scavengers conferred superior protection against aminoglycoside exposure compared with identical, untargeted scavengers. Our findings suggest that targeted therapies aimed at preventing mitochondrial oxidation have therapeutic potential to ameliorate the toxic effects of aminoglycoside exposure.
Collapse
|
45
|
Jadali A, Kwan KY. Activation of PI3K signaling prevents aminoglycoside-induced hair cell death in the murine cochlea. Biol Open 2016; 5:698-708. [PMID: 27142333 PMCID: PMC4920183 DOI: 10.1242/bio.016758] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/17/2016] [Indexed: 12/28/2022] Open
Abstract
Loss of sensory hair cells of the inner ear due to aminoglycoside exposure is a major cause of hearing loss. Using an immortalized multipotent otic progenitor (iMOP) cell line, specific signaling pathways that promote otic cell survival were identified. Of the signaling pathways identified, the PI3K pathway emerged as a strong candidate for promoting hair cell survival. In aging animals, components for active PI3K signaling are present but decrease in hair cells. In this study, we determined whether activated PI3K signaling in hair cells promotes survival. To activate PI3K signaling in hair cells, we used a small molecule inhibitor of PTEN or genetically ablated PTEN using a conditional knockout animal. Hair cell survival was challenged by addition of gentamicin to cochlear cultures. Hair cells with activated PI3K signaling were more resistant to aminoglycoside-induced hair cell death. These results indicate that increased PI3K signaling in hair cells promote survival and the PI3K signaling pathway is a target for preventing aminoglycoside-induced hearing loss.
Collapse
Affiliation(s)
- Azadeh Jadali
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Kelvin Y Kwan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
46
|
Protective effects of the seaweed phlorotannin polyphenolic compound dieckol on gentamicin-induced damage in auditory hair cells. Int J Pediatr Otorhinolaryngol 2016; 83:31-6. [PMID: 26968049 DOI: 10.1016/j.ijporl.2016.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/06/2016] [Accepted: 01/15/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Drug-induced ototoxicity from compounds such as aminoglycosides and platinum can damage the inner ear resulting in hearing loss, tinnitus or balance problems and may be caused by the formation of reactive oxygen species (ROS). Dieckol is a phlorotannin polyphenolic compound with strong antioxidant effects found in edible brown algae. This study investigated the protective effects of dieckol on drug-induced ototoxicity in cochlear cultures obtained from neonatal mice. METHODS Cochlear explants were pretreated with dieckol and exposed to gentamicin for 48h. The explants were then fixed and stained with fluorescein isothiocyanate-phalloidin and the intact hair cells counted. The free radical scavenging activity of dieckol was assessed using a 1,1-diphenyl-2-picrylhydrazyl assay. E. coli (Escherichia coli) cultures were used to evaluate the effect of dieckol on the antibiotic activity of gentamicin. RESULTS Gentamicin treatment resulted in dose-dependent hair cell loss that was partially protected by dieckol. Moreover, at concentrations >67μM dieckol had significant radical scavenging activity. Dieckol did not compromise the antibiotic effect of gentamicin. CONCLUSIONS These findings suggest that dieckol can be used as a therapeutic agent that reduces the damage caused by drug-induced ototoxicity.
Collapse
|
47
|
Huang YC, Li RY, Chen JY, Chen JK. Biphasic release of gentamicin from chitosan/fucoidan nanoparticles for pulmonary delivery. Carbohydr Polym 2016; 138:114-22. [DOI: 10.1016/j.carbpol.2015.11.072] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/08/2015] [Accepted: 11/27/2015] [Indexed: 12/22/2022]
|
48
|
Dong Y, Liu D, Hu Y, Ma X. NaHS Protects Cochlear Hair Cells from Gentamicin-Induced Ototoxicity by Inhibiting the Mitochondrial Apoptosis Pathway. PLoS One 2015; 10:e0136051. [PMID: 26295804 PMCID: PMC4546415 DOI: 10.1371/journal.pone.0136051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/30/2015] [Indexed: 11/14/2022] Open
Abstract
Aminoglycoside antibiotics such as gentamicin could cause ototoxicity in mammalians, by inducing oxidative stress and apoptosis in sensory hair cells of the cochlea. Sodium hydrosulfide (NaHS) is reported to alleviate oxidative stress and apoptosis, but its role in protecting aminoglycoside-induced hearing loss is unclear. In this study, we investigated the anti-oxidant and anti-apoptosis effect of NaHS in in vitro cultured House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and isolated mouse cochlea. Results from cultured HEI-OC1 cells and cochlea consistently indicated that NaHS exhibited protective effects from gentamicin-induced ototoxicity, evident by maintained cell viability, hair cell number and cochlear morphology, reduced reactive oxygen species production and mitochondrial depolarization, as well as apoptosis activation of the intrinsic pathway. Moreover, in the isolated cochlear culture, NaHS was also demonstrated to protect the explant from gentamicin-induced mechanotransduction loss. Our study using multiple in vitro models revealed for the first time, the potential of NaHS as a therapeutic agent in protecting against aminoglycoside-induced hearing loss.
Collapse
Affiliation(s)
- Yaodong Dong
- Department of Otology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China
| | - Dongliang Liu
- Department of Otology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China
| | - Yue Hu
- Department of Otology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China
| | - Xiulan Ma
- Department of Otology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
49
|
Fox DJ, Cooper MD, Speil CA, Roberts MH, Yanik SC, Meech RP, Hargrove TL, Verhulst SJ, Rybak LP, Campbell KCM. d-Methionine reduces tobramycin-induced ototoxicity without antimicrobial interference in animal models. J Cyst Fibros 2015; 15:518-30. [PMID: 26166286 DOI: 10.1016/j.jcf.2015.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Tobramycin is a critical cystic fibrosis treatment however it causes ototoxicity. This study tested d-methionine protection from tobramycin-induced ototoxicity and potential antimicrobial interference. METHODS Auditory brainstem responses (ABRs) and outer hair cell (OHC) quantifications measured protection in guinea pigs treated with tobramycin and a range of d-methionine doses. In vitro antimicrobial interference studies tested inhibition and post antibiotic effect assays. In vivo antimicrobial interference studies tested normal and neutropenic Escherichia coli murine survival and intraperitoneal lavage bacterial counts. RESULTS d-Methionine conferred significant ABR threshold shift reductions. OHC protection was less robust but significant at 20kHz in the 420mg/kg/day group. In vitro studies did not detect d-methionine-induced antimicrobial interference. In vivo studies did not detect d-methionine-induced interference in normal or neutropenic mice. CONCLUSIONS d-Methionine protects from tobramycin-induced ototoxicity without antimicrobial interference. The study results suggest d-met as a potential otoprotectant from clinical tobramycin use in cystic fibrosis patients.
Collapse
Affiliation(s)
- Daniel J Fox
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Morris D Cooper
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Cristian A Speil
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Melissa H Roberts
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Susan C Yanik
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Robert P Meech
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Tim L Hargrove
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Steven J Verhulst
- Statistics and Research Consulting, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Leonard P Rybak
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kathleen C M Campbell
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
50
|
Tao L, Segil N. Early transcriptional response to aminoglycoside antibiotic suggests alternate pathways leading to apoptosis in sensory hair cells in the mouse inner ear. Front Cell Neurosci 2015; 9:190. [PMID: 26052268 PMCID: PMC4439550 DOI: 10.3389/fncel.2015.00190] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/29/2015] [Indexed: 01/22/2023] Open
Abstract
Aminoglycoside antibiotics are “the drug of choice” for treating many bacterial infections, but their administration results in hearing loss in up to one fourth of the patients who receive them. Several biochemical pathways have been implicated in aminoglycoside antibiotic ototoxicity; however, little is known about how hair cells respond to aminoglycoside antibiotics at the transcriptome level. Here we have investigated the genome-wide response to the aminoglycoside antibiotic gentamicin. Using organotypic cultures of the perinatal organ of Corti, we performed RNA sequencing using cDNA libraries obtained from FACS-purified hair cells. Within 3 h of gentamicin treatment, the messenger RNA level of more than three thousand genes in hair cells changed significantly. Bioinformatic analysis of these changes highlighted several known signal transduction pathways, including the JNK pathway and the NF-κB pathway, in addition to genes involved in the stress response, apoptosis, cell cycle control, and DNA damage repair. In contrast, only 698 genes, mainly involved in cell cycle and metabolite biosynthetic processes, were significantly affected in the non-hair cell population. The gene expression profiles of hair cells in response to gentamicin share a considerable similarity with those previously observed in gentamicin-induced nephrotoxicity. Our findings suggest that previously observed early responses to gentamicin in hair cells in specific signaling pathways are reflected in changes in gene expression. Additionally, the observed changes in gene expression of cell cycle regulatory genes indicate a disruption of the postmitotic state, which may suggest an alternate pathway regulating gentamicin-induced apoptotic hair cell death. This work provides a more comprehensive view of aminoglycoside antibiotic ototoxicity, and thus contributes to identifying potential pathways or therapeutic targets to alleviate this important side effect of aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Litao Tao
- Genetic, Molecular and Cellular Biology Program, University of Southern California Los Angeles, CA, USA ; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Los Angeles, CA, USA
| | - Neil Segil
- Genetic, Molecular and Cellular Biology Program, University of Southern California Los Angeles, CA, USA ; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Los Angeles, CA, USA ; Department of Otolaryngology, University of Southern California Los Angeles, CA, USA
| |
Collapse
|