1
|
Rincón H, Gómez-Martínez M, Gómez-Álvarez M, Saldaña E. Medial superior olive in the rat: Anatomy, sources of input and axonal projections. Hear Res 2024; 449:109036. [PMID: 38797037 DOI: 10.1016/j.heares.2024.109036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Although rats and mice are among the preferred animal models for investigating many characteristics of auditory function, they are rarely used to study an essential aspect of binaural hearing: the ability of animals to localize the sources of low-frequency sounds by detecting the interaural time difference (ITD), that is the difference in the time at which the sound arrives at each ear. In mammals, ITDs are mostly encoded in the medial superior olive (MSO), one of the main nuclei of the superior olivary complex (SOC). Because of their small heads and high frequency hearing range, rats and mice are often considered unable to use ITDs for sound localization. Moreover, their MSO is frequently viewed as too small or insignificant compared to that of mammals that use ITDs to localize sounds, including cats and gerbils. However, recent research has demonstrated remarkable similarities between most morphological and physiological features of mouse MSO neurons and those of MSO neurons of mammals that use ITDs. In this context, we have analyzed the structure and neural afferent and efferent connections of the rat MSO, which had never been studied by injecting neuroanatomical tracers into the nucleus. The rat MSO spans the SOC longitudinally. It is relatively small caudally, but grows rostrally into a well-developed column of stacked bipolar neurons. By placing small, precise injections of the bidirectional tracer biotinylated dextran amine (BDA) into the MSO, we show that this nucleus is innervated mainly by the most ventral and rostral spherical bushy cells of the anteroventral cochlear nucleus of both sides, and by the most ventrolateral principal neurons of the ipsilateral medial nucleus of the trapezoid body. The same experiments reveal that the MSO densely innervates the most dorsolateral region of the central nucleus of the inferior colliculus, the central region of the dorsal nucleus of the lateral lemniscus, and the most lateral region of the intermediate nucleus of the lateral lemniscus of its own side. Therefore, the MSO is selectively innervated by, and sends projections to, neurons that process low-frequency sounds. The structural and hodological features of the rat MSO are notably similar to those of the MSO of cats and gerbils. While these similarities raise the question of what functions other than ITD coding the MSO performs, they also suggest that the rat MSO is an appropriate model for future MSO-centered research.
Collapse
Affiliation(s)
- Héctor Rincón
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
| | - Mario Gómez-Martínez
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
| | - Marcelo Gómez-Álvarez
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Enrique Saldaña
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
2
|
Maraslioglu-Sperber A, Pizzi E, Fisch JO, Kattler K, Ritter T, Friauf E. Molecular and functional profiling of cell diversity and identity in the lateral superior olive, an auditory brainstem center with ascending and descending projections. Front Cell Neurosci 2024; 18:1354520. [PMID: 38846638 PMCID: PMC11153811 DOI: 10.3389/fncel.2024.1354520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 06/09/2024] Open
Abstract
The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvβ3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Erika Pizzi
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jonas O. Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Kathrin Kattler
- Genetics/Epigenetics Group, Department of Biological Sciences, Saarland University, Saarbrücken, Germany
| | - Tamara Ritter
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
3
|
Tuz-Sasik MU, Manuel R, Boije H. Efferent axons in the zebrafish lateral line degenerate following sensory hair cell ablation. Mol Cell Neurosci 2023; 127:103900. [PMID: 37714280 DOI: 10.1016/j.mcn.2023.103900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
The zebrafish lateral line is a frequently used model to study the mechanisms behind peripheral neuronal innervation of sensory organs and the regeneration thereof. The lateral line system consists of neuromasts, a cluster of protruding hair cells, which are innervated by sensory afferent and modulatory efferent neurons. These flow-sensing hair cells are similar to the hair cells in the mammalian ear. Though, while hair cell loss in humans is irreversible, the zebrafish neuromasts are regarded as the fastest regenerating structure in vertebrates, making them an ideal model to study regeneration. However, one component of the lateral line system, the efferent projections, has largely been omitted in regenerative studies. Here, for the first time, we bring insights into the fate of efferent axons during ablation and regeneration of the hair cells in the zebrafish lateral line. Our behavioral analysis showed functional recovery of hair cells and sensory transmission within 48 h and their regeneration were in line with previous studies. Analysis of the inhibitory efferent projections revealed that in approximately half the cases the inhibitory efferent axons degenerated, which was never observed for the sensory afferent axons. Quantification of hair cells following ablation suggests that the presence of mature hair cells in the neuromast may prevent axon degeneration. Within 120 h, degenerated efferent axons regenerated along the axonal tract of the lateral line. Reanalysis of published single cell neuromast data hinted to a role for Bdnf in the survival of efferent axons. However, sequestering Bdnf, blocking the Trk-receptors, and inhibiting the downstream ERK-signaling, did not induce axon degeneration, indicating that efferent survival is not mediated through neurotrophic factors. To further explore the relation between hair cells and efferent projections, we generated atoh1a mutants, where mature hair cells never form. In larvae lacking hair cells, inhibitory efferent projections were still present, following the tract of the sensory afferent without displaying any innervation. Our study reveal the fate of efferent innervation following hair cell ablation and provide insights into the inherent differences in regeneration between neurons in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Melek Umay Tuz-Sasik
- Department of Immunology, Genetics and Pathology, Cell and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Remy Manuel
- Department of Immunology, Genetics and Pathology, Cell and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Henrik Boije
- Department of Immunology, Genetics and Pathology, Cell and Neurobiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Gómez-Martínez M, Rincón H, Gómez-Álvarez M, Gómez-Nieto R, Saldaña E. The nuclei of the lateral lemniscus: unexpected players in the descending auditory pathway. Front Neuroanat 2023; 17:1242245. [PMID: 37621862 PMCID: PMC10445163 DOI: 10.3389/fnana.2023.1242245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction In the mammalian auditory pathway, the nuclei of the lateral lemniscus (NLL) are thought to be exclusively involved in the bottom-up transmission of auditory information. However, our repeated observation of numerous NLL neurons labeled after injection of retrograde tracers into the superior olivary complex (SOC) led us to systematically investigate with retrograde tracers the descending projections from the NLL to the SOC of the rat. Methods We performed large injections of FluoroGold into the SOC to determine NLL contributions to descending projections, and focal injections of biotinylated dextran amine (BDA) to pinpoint the specific nuclei of the SOC innervated by each NLL. Results The SOC is innervated by thousands of neurons distributed across four nuclei or regions associated with the lateral lemniscus: the ipsilateral ventral and intermediate nuclei of the lateral lemniscus (VNLL and INLL); the medial paralemniscal region (PL) of both sides; and the ipsilateral semilunar nucleus (SLN), a previously unrecognized nucleus that wraps around the INLL dorsally, medially, and caudally and consists of small, flat neurons. In some experiments, at least 30% of neurons in the VNLL and INLL were retrogradely labeled. All nuclei of the SOC, except the medial and lateral superior olives, are innervated by abundant lemniscal neurons, and each SOC nucleus receives a unique combination of lemniscal inputs. The primary target of the projections from the VNLL is the ventral nucleus of the trapezoid body (VNTB), followed by the superior paraolivary nucleus (SPON), and the medial nucleus of the trapezoid body (MNTB). The INLL selectively innervates the VNTB. The PL innervates dorsal periolivary regions bilaterally. The SLN preferentially innervates the MNTB and may provide the first identified non-calyceal excitatory input to MNTB neurons. Discussion Our novel findings have strong implications for understanding acoustic information processing in the initial stages of the auditory pathway. Based on the proportion of lemniscal neurons involved in all the projections described, the NLL should be considered major players in the descending auditory pathway.
Collapse
Affiliation(s)
- Mario Gómez-Martínez
- Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Héctor Rincón
- Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Marcelo Gómez-Álvarez
- Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Enrique Saldaña
- Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
5
|
Frank MM, Sitko AA, Suthakar K, Torres Cadenas L, Hunt M, Yuk MC, Weisz CJC, Goodrich LV. Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system. eLife 2023; 12:e83855. [PMID: 36876911 PMCID: PMC10147377 DOI: 10.7554/elife.83855] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development. In addition, we discovered a neuropeptide-enriched LOC subtype that produces Neuropeptide Y along with other neurotransmitters. Throughout the cochlea, both LOC subtypes extend arborizations over wide frequency domains. Moreover, LOC neuropeptide expression is strongly upregulated days after acoustic trauma, potentially providing a sustained protective signal to the cochlea. OCNs are therefore poised to have diffuse, dynamic effects on early auditory processing over timescales ranging from milliseconds to days.
Collapse
Affiliation(s)
- Michelle M Frank
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Austen A Sitko
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Kirupa Suthakar
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Mackenzie Hunt
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mary Caroline Yuk
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Catherine JC Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
6
|
Neuronal Cytoglobin in the Auditory Brainstem of Rat and Mouse: Distribution, Cochlear Projection, and Nitric Oxide Production. Brain Sci 2023; 13:brainsci13010107. [PMID: 36672088 PMCID: PMC9856379 DOI: 10.3390/brainsci13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 01/08/2023] Open
Abstract
Cytoglobin (Cygb), a hemoprotein of the globin family, is expressed in the supportive tissue cells of the fibroblast lineage and in distinct neuronal cell populations. The expression pattern and regulatory parameters of fibroblasts and related cells were studied in organs such as the kidney and liver in a variety of animal models. In contrast, knowledge about cytoglobin-expressing neurons is sparse. Only a few papers described the distribution in the brain as ubiquitous with a restricted number of neurons in focal regions. Although there is evidence for cytoglobin involvement in neuronal hypoxia tolerance, its presence in the auditory system was not studied despite high metabolism rates and oxygen demands of the cochlea and related brainstem centers. In a continuation of a previous study demonstrating Cygb-neurons in, inter alia, auditory regions of the mouse brain, we concentrated on the superior olivary complex (SOC) in the present study. We sought to investigate the distribution, projection pattern and neurochemistry of Cygb-neurons in the SOC. We conducted immunohistochemistry using a Cygb antibody and found that this brainstem region, functionally competent for bilateral hearing and providing cochlear hair cell innervation, contains a considerable number of Cygb-expressing neurons (averaging 2067 ± 211 making up 10 ±1% percent of total neuron number) in rats, and 514 ± 138 (6 ± 1%) in mice. They were observed in all regions of the SOC. Retrograde neuronal tract tracing with Fluorogold injected into the cochlea demonstrated that 1243 ± 100 (6 ± 1% of total neuron number in rat SOC)) were olivocochlear neurons. Approximately 56% of total Cygb neurons were retrogradely labelled, while the majority of olivocochlear neurons of both lateral and medial systems were Cygb-immunoreactive. We also conducted double immunofluorescence staining for Cygb and neuronal nitric oxide synthase (nNOS), the enzyme responsible for nitric oxide production, and observed that cytoglobin in the SOC frequently co-localized with nNOS. Our findings suggest that cytoglobin plays an important physiologic role in the oxygen homeostasis of the peripheral and central auditory nervous system. Further studies, also including transgenic animal models, are required to shed more light on the function(s) of Cygb in neurons, in particular of the auditory system.
Collapse
|
7
|
Williams IR, Filimontseva A, Connelly CJ, Ryugo DK. The lateral superior olive in the mouse: Two systems of projecting neurons. Front Neural Circuits 2022; 16:1038500. [PMID: 36338332 PMCID: PMC9630946 DOI: 10.3389/fncir.2022.1038500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023] Open
Abstract
The lateral superior olive (LSO) is a key structure in the central auditory system of mammals that exerts efferent control on cochlear sensitivity and is involved in the processing of binaural level differences for sound localization. Understanding how the LSO contributes to these processes requires knowledge about the resident cells and their connections with other auditory structures. We used standard histological stains and retrograde tracer injections into the inferior colliculus (IC) and cochlea in order to characterize two basic groups of neurons: (1) Principal and periolivary (PO) neurons have projections to the IC as part of the ascending auditory pathway; and (2) lateral olivocochlear (LOC) intrinsic and shell efferents have descending projections to the cochlea. Principal and intrinsic neurons are intermixed within the LSO, exhibit fusiform somata, and have disk-shaped dendritic arborizations. The principal neurons have bilateral, symmetric, and tonotopic projections to the IC. The intrinsic efferents have strictly ipsilateral projections, known to be tonotopic from previous publications. PO and shell neurons represent much smaller populations (<10% of principal and intrinsic neurons, respectively), have multipolar somata, reside outside the LSO, and have non-topographic, bilateral projections. PO and shell neurons appear to have widespread projections to their targets that imply a more diffuse modulatory function. The somata and dendrites of principal and intrinsic neurons form a laminar matrix within the LSO and share quantifiably similar alignment to the tonotopic axis. Their restricted projections emphasize the importance of frequency in binaural processing and efferent control for auditory perception. This study addressed and expanded on previous findings of cell types, circuit laterality, and projection tonotopy in the LSO of the mouse.
Collapse
Affiliation(s)
- Isabella R. Williams
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia,*Correspondence: Isabella R. Williams,
| | | | - Catherine J. Connelly
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - David K. Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia,Department of Otolaryngology-Head, Neck and Skull Base Surgery, St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
8
|
Romero GE, Trussell LO. Central circuitry and function of the cochlear efferent systems. Hear Res 2022; 425:108516. [DOI: 10.1016/j.heares.2022.108516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
|
9
|
Plazas PV, Elgoyhen AB. The Cholinergic Lateral Line Efferent Synapse: Structural, Functional and Molecular Similarities With Those of the Cochlea. Front Cell Neurosci 2021; 15:765083. [PMID: 34712122 PMCID: PMC8545859 DOI: 10.3389/fncel.2021.765083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Vertebrate hair cell (HC) systems are innervated by efferent fibers that modulate their response to external stimuli. In mammals, the best studied efferent-HC synapse, the cholinergic medial olivocochlear (MOC) efferent system, makes direct synaptic contacts with HCs. The net effect of MOC activity is to hyperpolarize HCs through the activation of α9α10 nicotinic cholinergic receptors (nAChRs) and the subsequent activation of Ca2+-dependent SK2 potassium channels. A serious obstacle in research on many mammalian sensory systems in their native context is that their constituent neurons are difficult to access even in newborn animals, hampering circuit observation, mapping, or controlled manipulation. By contrast, fishes and amphibians have a superficial and accessible mechanosensory system, the lateral line (LL), which circumvents many of these problems. LL responsiveness is modulated by efferent neurons which aid to distinguish between external and self-generated stimuli. One component of the LL efferent system is cholinergic and its activation inhibits LL afferent activity, similar to what has been described for MOC efferents. The zebrafish (Danio rerio) has emerged as a powerful model system for studying human hearing and balance disorders, since LL HC are structurally and functionally analogous to cochlear HCs, but are optically and pharmacologically accessible within an intact specimen. Complementing mammalian studies, zebrafish have been used to gain significant insights into many facets of HC biology, including mechanotransduction and synaptic physiology as well as mechanisms of both hereditary and acquired HC dysfunction. With the rise of the zebrafish LL as a model in which to study auditory system function and disease, there has been an increased interest in studying its efferent system and evaluate the similarity between mammalian and piscine efferent synapses. Advances derived from studies in zebrafish include understanding the effect of the LL efferent system on HC and afferent activity, and revealing that an α9-containing nAChR, functionally coupled to SK channels, operates at the LL efferent synapse. In this review, we discuss the tools and findings of these recent investigations into zebrafish efferent-HC synapse, their commonalities with the mammalian counterpart and discuss several emerging areas for future studies.
Collapse
Affiliation(s)
- Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
10
|
Kitcher SR, Pederson AM, Weisz CJC. Diverse identities and sites of action of cochlear neurotransmitters. Hear Res 2021; 419:108278. [PMID: 34108087 DOI: 10.1016/j.heares.2021.108278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022]
Abstract
Accurate encoding of acoustic stimuli requires temporally precise responses to sound integrated with cellular mechanisms that encode the complexity of stimuli over varying timescales and orders of magnitude of intensity. Sound in mammals is initially encoded in the cochlea, the peripheral hearing organ, which contains functionally specialized cells (including hair cells, afferent and efferent neurons, and a multitude of supporting cells) to allow faithful acoustic perception. To accomplish the demanding physiological requirements of hearing, the cochlea has developed synaptic arrangements that operate over different timescales, with varied strengths, and with the ability to adjust function in dynamic hearing conditions. Multiple neurotransmitters interact to support the precision and complexity of hearing. Here, we review the location of release, action, and function of neurotransmitters in the mammalian cochlea with an emphasis on recent work describing the complexity of signaling.
Collapse
Affiliation(s)
- Siân R Kitcher
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Alia M Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
11
|
Suthakar K, Ryugo DK. Projections from the ventral nucleus of the lateral lemniscus to the cochlea in the mouse. J Comp Neurol 2021; 529:2995-3012. [PMID: 33754334 DOI: 10.1002/cne.25143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/01/2023]
Abstract
Auditory efferents originate in the central auditory system and project to the cochlea. Although the specific anatomy of the olivocochlear (OC) efferents can vary between species, two types of auditory efferents have been identified based upon the general location of their cell bodies and their distinctly different axon terminations in the organ of Corti. In the mouse, the relatively small somata of the lateral (LOC) efferents reside in the lateral superior olive (LSO), have unmyelinated axons, and terminate around ipsilateral inner hair cells (IHCs), primarily against the afferent processes of type I auditory nerve fibers. In contrast, the larger somata of the medial (MOC) efferents are distributed in the ventral nucleus of the trapezoid body (VNTB), have myelinated axons, and terminate bilaterally against the base of multiple outer hair cells (OHCs). Using in vivo retrograde cell body marking, anterograde axon tracing, immunohistochemistry, and electron microscopy, we have identified a group of efferent neurons in mouse, whose cell bodies reside in the ventral nucleus of the lateral lemniscus (VNLL). By virtue of their location, we call them dorsal efferent (DE) neurons. Labeled DE cells were immuno-negative for tyrosine hydroxylase, glycine, and GABA, but immuno-positive for choline acetyltransferase. Morphologically, DEs resembled LOC efferents by their small somata, unmyelinated axons, and ipsilateral projection to IHCs. These three classes of efferent neurons all project axons directly to the cochlea and exhibit cholinergic staining characteristics. The challenge is to discover the contributions of this new population of neurons to auditory efferent function.
Collapse
Affiliation(s)
- Kirupa Suthakar
- Hearing Research, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia.,Department of Otolaryngology, Head, Neck & Skull Base Surgery, St. Vincent's Hospital, Sydney, New South Wales, Australia.,The Johns Hopkins University School of Medicine, Otolaryngology-HNS, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Wang H, Wang S, Lu Y, Chen Y, Huang W, Qiu M, Wu H, Hua Y. Cytoarchitecture and innervation of the mouse cochlear amplifier revealed by large-scale volume electron microscopy. J Comp Neurol 2021; 529:2958-2969. [PMID: 33719053 PMCID: PMC8252425 DOI: 10.1002/cne.25137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022]
Abstract
In mammalian cochlea, sound‐induced vibration is amplified by a three‐row lattice of Y‐shaped microstructures consisting of electromotile outer hair cell and supporting Deiters cell. This highly organized structure is thought to be essential for hearing of low‐level sounds. Prior studies reported differences in geometry and synaptic innervation of the outer hair cells between rows, but how these fine features are achieved at subcellular level still remains unclear. Using serial block‐face electron microscopy, we acquired few‐hundred‐micron‐sized cytoarchitecture of mouse organ of Corti at nanometer resolution. Structural quantifications were performed on the Y‐shapes as well as afferent and efferent projections to outer hair cells (OHCs). Several new features, which support the previously observed inter‐row heterogeneity, are described. Our result provides structural bases for the gradient of mechanical properties and diverse centrifugal regulation of OHC rows.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| | - Shengxiong Wang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai, China.,Putuo People's Hospital, Tongji University, Shanghai, China
| | - Yan Lu
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| | - Ying Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wenqing Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| | - Miaoxin Qiu
- Putuo People's Hospital, Tongji University, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| | - Yunfeng Hua
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| |
Collapse
|
13
|
Wu JS, Yi E, Manca M, Javaid H, Lauer AM, Glowatzki E. Sound exposure dynamically induces dopamine synthesis in cholinergic LOC efferents for feedback to auditory nerve fibers. eLife 2020; 9:52419. [PMID: 31975688 PMCID: PMC7043886 DOI: 10.7554/elife.52419] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/23/2020] [Indexed: 11/13/2022] Open
Abstract
Lateral olivocochlear (LOC) efferent neurons modulate auditory nerve fiber (ANF) activity using a large repertoire of neurotransmitters, including dopamine (DA) and acetylcholine (ACh). Little is known about how individual neurotransmitter systems are differentially utilized in response to the ever-changing acoustic environment. Here we present quantitative evidence in rodents that the dopaminergic LOC input to ANFs is dynamically regulated according to the animal's recent acoustic experience. Sound exposure upregulates tyrosine hydroxylase, an enzyme responsible for dopamine synthesis, in cholinergic LOC intrinsic neurons, suggesting that individual LOC neurons might at times co-release ACh and DA. We further demonstrate that dopamine down-regulates ANF firing rates by reducing both the hair cell release rate and the size of synaptic events. Collectively, our results suggest that LOC intrinsic neurons can undergo on-demand neurotransmitter re-specification to re-calibrate ANF activity, adjust the gain at hair cell/ANF synapses, and possibly to protect these synapses from noise damage.
Collapse
Affiliation(s)
- Jingjing Sherry Wu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Eunyoung Yi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Republic of Korea
| | - Marco Manca
- The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hamad Javaid
- The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Amanda M Lauer
- The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Elisabeth Glowatzki
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
14
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
15
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
16
|
Liu X, Zhang O, Chen A, Hu K, Ehret G, Yan J. Corticofugal Augmentation of the Auditory Brainstem Response With Respect to Cortical Preference. Front Syst Neurosci 2019; 13:39. [PMID: 31496941 PMCID: PMC6713121 DOI: 10.3389/fnsys.2019.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022] Open
Abstract
Physiological studies documented highly specific corticofugal modulations making subcortical centers focus processing on sounds that the auditory cortex (AC) has experienced to be important. Here, we show the effects of focal conditioning (FC) of the primary auditory cortex (FCAI) on auditory brainstem response (ABR) amplitudes and latencies in house mice. FCAI significantly increased ABR peak amplitudes (peaks I–V), decreased thresholds, and shortened peak latencies in responses to the frequency tuned by conditioned cortical neurons. The amounts of peak amplitude increases and latency decreases were specific for each processing level up to the auditory midbrain. The data provide new insights into possible corticofugal modulation of inner hair cell synapses and new corticofugal effects as neuronal enhancement of processing in the superior olivary complex (SOC) and lateral lemniscus (LL). Thus, our comprehensive ABR approach confirms the role of the AC as instructor of lower auditory levels and extends this role specifically to the cochlea, SOC, and LL. The whole pathway from the cochlea to the inferior colliculus appears, in a common mode, instructed in a very similar way.
Collapse
Affiliation(s)
- Xiuping Liu
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Oliver Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Amber Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kaili Hu
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Günter Ehret
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | - Jun Yan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Fischl MJ, Ueberfuhr MA, Drexl M, Pagella S, Sinclair JL, Alexandrova O, Deussing JM, Kopp-Scheinpflug C. Urocortin 3 signalling in the auditory brainstem aids recovery of hearing after reversible noise-induced threshold shift. J Physiol 2019; 597:4341-4355. [PMID: 31270820 PMCID: PMC6852351 DOI: 10.1113/jp278132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/03/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Ongoing, moderate noise exposure does not instantly damage the auditory system but may cause lasting deficits, such as elevated thresholds and accelerated ageing of the auditory system. The neuromodulatory peptide urocortin-3 (UCN3) is involved in the body's recovery from a stress response, and is also expressed in the cochlea and the auditory brainstem. Lack of UCN3 facilitates age-induced hearing loss and causes permanently elevated auditory thresholds following a single 2 h noise exposure at moderate intensities. Outer hair cell function in mice lacking UCN3 is unaffected, so that the observed auditory deficits are most likely due to inner hair cell function or central mechanisms. Highly specific, rather than ubiquitous, expression of UCN3 in the brain renders it a promising candidate for designing drugs to ameliorate stress-related auditory deficits, including recovery from acoustic trauma. ABSTRACT Environmental acoustic noise is omnipresent in our modern society, with sound levels that are considered non-damaging still causing long-lasting or permanent changes in the auditory system. The small neuromodulatory peptide urocortin-3 (UCN3) is the endogenous ligand for corticotropin-releasing factor receptor type 2 and together they are known to play an important role in stress recovery. UCN3 expression has been observed in the auditory brainstem, but its role remains unclear. Here we describe the detailed distribution of UCN3 expression in the murine auditory brainstem and provide evidence that UCN3 is expressed in the synaptic region of inner hair cells in the cochlea. We also show that mice with deficient UCN3 signalling experience premature ageing of the auditory system starting at an age of 4.7 months with significantly elevated thresholds of auditory brainstem responses (ABRs) compared to age-matched wild-type mice. Following a single, 2 h exposure to moderate (84 or 94 dB SPL) noise, UCN3-deficient mice exhibited significantly larger shifts in ABR thresholds combined with maladaptive recovery. In wild-type mice, the same noise exposure did not cause lasting changes to auditory thresholds. The presence of UCN3-expressing neurons throughout the auditory brainstem and the predisposition to hearing loss caused by preventing its normal expression suggests UCN3 as an important neuromodulatory peptide in the auditory system's response to loud sounds.
Collapse
Affiliation(s)
- Matthew J Fischl
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Margarete A Ueberfuhr
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Markus Drexl
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Sara Pagella
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - James L Sinclair
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Olga Alexandrova
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Jan M Deussing
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
| | - Conny Kopp-Scheinpflug
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
18
|
Baashar A, Robertson D, Yates NJ, Mulders WHAM. Targets of olivocochlear collaterals in cochlear nucleus of rat and guinea pig. J Comp Neurol 2019; 527:2273-2290. [PMID: 30861121 DOI: 10.1002/cne.24681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/11/2022]
Abstract
Descending auditory pathways can modify afferent auditory input en route to cortex. One component of these pathways is the olivocochlear system which originates in brainstem and terminates in cochlea. Medial olivocochlear (MOC) neurons also project collaterals to cochlear nucleus and make synaptic contacts with dendrites of multipolar neurons. Two broadly distinct populations of multipolar cells exist: T-stellate and D-stellate neurons, thought to project to inferior colliculus and contralateral cochlear nucleus, respectively. It is unclear which of these neurons receive direct MOC collateral input due to conflicting results between in vivo and in vitro studies. This study used anatomical techniques to identify which multipolar cell population receives synaptic innervation from MOC collaterals. The retrograde tracer Fluorogold was injected into inferior colliculus or cochlear nucleus to label T-stellate and D-stellate neurons, respectively. Axonal branches of MOC neurons were labeled by biocytin injections at the floor of the fourth ventricle. Fluorogold injections resulted in labeled cochlear nucleus multipolar neurons. Biocytin abundantly labeled MOC collaterals which entered cochlear nucleus. Microscopic analysis revealed that MOC collaterals made some putative synaptic contacts with the retrogradely labeled neurons but many more putative contacts were observed on unidentified neural targets. This suggest that both T- and D-stellate neurons receive synaptic innervation from the MOC collaterals on their somata and proximal dendrites. The prevalence of these contacts cannot be stated with certainty because of technical limitations, but the possibility exists that the collaterals may also make contacts with neurons not projecting to inferior colliculus or the contralateral cochlear nucleus.
Collapse
Affiliation(s)
- Ahmaed Baashar
- The Auditory Laboratory, School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Department of Anatomy, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Donald Robertson
- The Auditory Laboratory, School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Nathanael James Yates
- Preclinical Intensive Care Research Unit, School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Wilhelmina Henrica Antonia Maria Mulders
- The Auditory Laboratory, School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Ear Science Institute Australia, The Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| |
Collapse
|
19
|
Mattsson TS, Lind O, Follestad T, Grøndahl K, Wilson W, Nordgård S. Contralateral suppression of otoacoustic emissions in a clinical sample of children with auditory processing disorder. Int J Audiol 2019; 58:301-310. [DOI: 10.1080/14992027.2019.1570358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tone Stokkereit Mattsson
- Department of Otorhinolaryngology, Head and Neck Surgery, Ålesund Hospital, Ålesund, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ola Lind
- Department of Otorhinolaryngology, Head and Neck Surgery, Haukeland University Hospital, Bergen, Norway
| | - Turid Follestad
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjell Grøndahl
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Wayne Wilson
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Ståle Nordgård
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
20
|
Frank MM, Goodrich LV. Talking back: Development of the olivocochlear efferent system. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e324. [PMID: 29944783 PMCID: PMC6185769 DOI: 10.1002/wdev.324] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development.
Collapse
|
21
|
Lopez-Poveda EA. Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance. Front Neurol 2018; 9:197. [PMID: 29632514 PMCID: PMC5879449 DOI: 10.3389/fneur.2018.00197] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Olivocochlear efferents allow the central auditory system to adjust the functioning of the inner ear during active and passive listening. While many aspects of efferent anatomy, physiology and function are well established, others remain controversial. This article reviews the current knowledge on olivocochlear efferents, with emphasis on human medial efferents. The review covers (1) the anatomy and physiology of olivocochlear efferents in animals; (2) the methods used for investigating this auditory feedback system in humans, their limitations and best practices; (3) the characteristics of medial-olivocochlear efferents in humans, with a critical analysis of some discrepancies across human studies and between animal and human studies; (4) the possible roles of olivocochlear efferents in hearing, discussing the evidence in favor and against their role in facilitating the detection of signals in noise and in protecting the auditory system from excessive acoustic stimulation; and (5) the emerging association between abnormal olivocochlear efferent function and several health conditions. Finally, we summarize some open issues and introduce promising approaches for investigating the roles of efferents in human hearing using cochlear implants.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
22
|
Sánchez-Benito D, Gómez-Nieto R, Hernández-Noriega S, Murashima AAB, de Oliveira JAC, Garcia-Cairasco N, López DE, Hyppolito MA. Morphofunctional alterations in the olivocochlear efferent system of the genetic audiogenic seizure-prone hamster GASH:Sal. Epilepsy Behav 2017; 71:193-206. [PMID: 27492627 DOI: 10.1016/j.yebeh.2016.05.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
The genetic audiogenic seizure hamster (GASH:Sal) is a model of a form of reflex epilepsy that is manifested as generalized tonic-clonic seizures induced by external acoustic stimulation. The morphofunctional alterations in the auditory system of the GASH:Sal that may contribute to seizure susceptibility have not been thoroughly determined. In this study, we analyzed the olivocochlear efferent system of the GASH:Sal from the organ of Corti, including outer and inner hair cells, to the olivocochlear neurons, including shell, lateral, and medial olivocochlear (LOC and MOC) neurons that innervate the cochlear receptor. To achieve this, we carried out a multi-technical approach that combined auditory hearing screenings, scanning electron microscopy, morphometric analysis of labeled LOC and MOC neurons after unilateral Fluoro-Gold injections into the cochlea, and 3D reconstruction of the lateral superior olive (LSO). Our results showed that the GASH:Sal exhibited higher auditory brain response (ABR) thresholds than their controls, as well as absence of distortion-product of otoacoustic emissions (DPOAEs) in a wide range of frequencies. The ABR and DPOAE results also showed differences between the left and right ears, indicating asymmetrical hearing alterations in the GASH:Sal. These alterations in the peripheral auditory activity correlated with morphological alterations. At the cochlear level, the scanning electron microscopy analysis showed marked distortions of the stereocilia from basal to apical cochlear turns in the GASH:Sal, which were not observed in the control hamsters. At the brainstem level, MOC, LOC, and shell neurons had reduced soma areas compared with control animals. This LOC neuron shrinkage contributed to reduction in the LSO volume of the GASH:Sal as shown in the 3D reconstruction analysis. Our study demonstrated that the morphofunctional alterations of the olivocochlear efferent system are innate components of the GASH:Sal, which might contribute to their susceptibility to audiogenic seizures. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".
Collapse
Affiliation(s)
- David Sánchez-Benito
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Sonia Hernández-Noriega
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | | | - José Antonio Cortes de Oliveira
- Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Dolores E López
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain.
| | - Miguel Angelo Hyppolito
- Laboratory of Neurobiology of Hearing, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Vetter DE. The mammalian olivocochlear system--a legacy of non-cerebellar research in the Mugnaini lab. THE CEREBELLUM 2016; 14:557-69. [PMID: 25592068 DOI: 10.1007/s12311-014-0637-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although the major emphasis of Enrico Mugnaini's research has been on investigations of the cerebellum, a significant amount of work over a relatively short span of time was also done in his lab on a number of other brain systems. These centered on sensory systems. One of these extra-cerebellar systems that he embraced was the auditory system. Portions of the cochlear nucleus, the first synaptic relay station along the central auditory pathways, possess a cerebellar-like circuitry and neurochemistry, and this no doubt lured Enrico into the auditory field. As new tools became available to pursue neuroanatomical research in general, which included a novel antibody to glutamic acid decarboxylase (GAD), Enrico's lab soon branched out into investigating many other brain structures beyond the cerebellum, with an overall goal of producing a map illustrating GAD expression in the brain. In collaboration with long-term colleagues, one of these many non-cerebellar regions he took an interest in was an efferent pathway originating in the superior olive and projecting to the cochlea, the peripheral end organ for hearing. There was a need for a more complete neurochemical map of this olivocochlear efferent system, and armed with new antibodies and well-established tract tracing tools, together we set out to further explore this system. This short review describes the work done with Enrico on the olivocochlear system of rodents, and also continues the story beyond Enrico's lab to reveal how the work done in his lab fits into the larger scheme of current, ongoing research into the olivocochlear system.
Collapse
Affiliation(s)
- Douglas E Vetter
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
24
|
Reijntjes DO, Pyott SJ. The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery. Hear Res 2016; 336:1-16. [DOI: 10.1016/j.heares.2016.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/12/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
|
25
|
Gómez-Álvarez M, Saldaña E. Different tonotopic regions of the lateral superior olive receive a similar combination of afferent inputs. J Comp Neurol 2015; 524:2230-50. [PMID: 26659473 DOI: 10.1002/cne.23942] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/06/2022]
Abstract
The mammalian lateral superior olive (LSO) codes disparities in the intensity of the sound that reaches the two ears by integrating ipsilateral excitation and contralateral inhibition, but it remains unclear what particular neuron types convey acoustic information to the nucleus. It is also uncertain whether the known conspicuous morphofunctional differences and gradients along the tonotopic axis of the LSO relate to qualitative and/or quantitative regional differences in its afferents. To clarify these issues, we made small, single injections of the neuroanatomical tracer biotinylated dextran amine (BDA) into different tonotopic regions of the LSO of albino rats and analyzed the neurons labeled retrogradely in brainstem auditory nuclei. We demonstrate that the LSO is innervated tonotopically by four brainstem neuron types: spherical bushy cells and planar multipolar neurons of the ipsilateral ventral cochlear nucleus, principal neurons of the ipsilateral medial nucleus of the trapezoid body, and small multipolar neurons of the contralateral ventral nucleus of the trapezoid body. Unexpectedly, the proportion of labeled neurons of each type was virtually identical in all cases, thus indicating that all tonotopic regions of the LSO receive a similar combination of inputs. Even more surprisingly, our data also suggest that the representation of frequencies in the LSO differs from that of the nuclei that innervate it: compared to the latter nuclei, the LSO seems to possess a relatively larger portion of its volume devoted to processing frequencies in the lower-middle part of the spectrum, and a relative smaller portion devoted to higher frequencies. J. Comp. Neurol. 524:2230-2250, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marcelo Gómez-Álvarez
- Neurohistology Laboratory, Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
| | - Enrique Saldaña
- Neurohistology Laboratory, Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
26
|
Reuss S, Closhen-Gabrisch S, Closhen C. The brainstem efferent acoustic chiasm in pigmented and albino rats. Hear Res 2015; 332:1-6. [PMID: 26657095 DOI: 10.1016/j.heares.2015.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
The present study examined whether structural peculiarities in the brain-efferent pathway to the organ of Corti may underlie functional differences in hearing between pigmented and albino individuals of the same mammalian species. Pigmented Brown-Norway rats and albino Wistar rats received unilateral injections of an aqueous solution of the retrograde neuronal tracer Fluorogold (FG) into the scala tympani of the cochlea to identify olivocochlear neurons (OCN) in the brainstem superior olivary complex. After five days, brains were perfusion-fixed and brainstem sections were cut and analyzed with respect to retrogradely labeled neurons. Intrinsic neurons of the lateral system were located exclusively in the ipsilateral lateral superior olive (LSO) in both groups. Shell neurons surrounding the LSO and in periolivary regions, which made up only 5-8% of all OCN, were more often contralaterally located in albino than in pigmented animals. A striking difference was observed in the laterality of neurons of the medial olivocochlear (MOC) system, which provided more than one third of all OCN. These neurons, located in the rostral periolivary region and in the ventral nucleus of the trapezoid body, were observed contralateral to 45% in pigmented and to 68% in albino animals. Our study, the first to compare the origin of the olivocochlear bundle in pigmented and albino rats, provides evidence for differences in the crossing pattern of the olivocochlear pathway. These were found predominantly in the MOC system providing the direct efferent innervation of cochlear outer hair cells. Our findings may account for the alterations in auditory perception observed in albino mammals including man.
Collapse
Affiliation(s)
- Stefan Reuss
- Department of Nuclear Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.
| | - Stefanie Closhen-Gabrisch
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Christina Closhen
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
27
|
Reuss S, Closhen C, Riemann R, Jaumann M, Knipper M, Rüttiger L, Wolpert S. Absence of Early Neuronal Death in the Olivocochlear System Following Acoustic Overstimulation. Anat Rec (Hoboken) 2015; 299:103-10. [DOI: 10.1002/ar.23277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/10/2015] [Accepted: 08/23/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Stefan Reuss
- Department of Nuclear Medicine; University Medical Center, Johannes Gutenberg-University; Mainz Germany
| | - Christina Closhen
- Department of Anatomy and Cell Biology; University Medical Center, Johannes Gutenberg-University; Mainz Germany
| | - Randolf Riemann
- Department of Otorhinolaryngology; Elbe-Kliniken; Stade Germany
| | - Mirko Jaumann
- Molecular Physiology of Hearing, Hearing Research Center; University of Tübingen; Tübingen Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Hearing Research Center; University of Tübingen; Tübingen Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Hearing Research Center; University of Tübingen; Tübingen Germany
| | - Stephan Wolpert
- Molecular Physiology of Hearing, Hearing Research Center; University of Tübingen; Tübingen Germany
| |
Collapse
|
28
|
Radtke-Schuller S, Seeler S, Grothe B. Restricted loss of olivocochlear but not vestibular efferent neurons in the senescent gerbil (Meriones unguiculatus). Front Aging Neurosci 2015; 7:4. [PMID: 25762929 PMCID: PMC4327622 DOI: 10.3389/fnagi.2015.00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/11/2015] [Indexed: 11/19/2022] Open
Abstract
Degeneration of hearing and vertigo are symptoms of age-related auditory and vestibular disorders reflecting multifactorial changes in the peripheral and central nervous system whose interplay remains largely unknown. Originating bilaterally in the brain stem, vestibular and auditory efferent cholinergic projections exert feedback control on the peripheral sensory organs, and modulate sensory processing. We studied age-related changes in the auditory and vestibular efferent systems by evaluating number of cholinergic efferent neurons in young adult and aged gerbils, and in cholinergic trigeminal neurons serving as a control for efferents not related to the inner ear. We observed a significant loss of olivocochlear (OC) neurons in aged compared to young adult animals, whereas the overall number of lateral superior olive (LSO) cells was not reduced in aging. Although the loss of lateral and medial olivocochlear (MOC) neurons was uniform and equal on both sides of the brain, there were frequency-related differences within the lateral olivocochlear (LOC) neurons, where the decline was larger in the medial limb of the superior olivary nucleus (high frequency representation) than in the lateral limb (middle-to-low frequency representation). In contrast, neither the number of vestibular efferent neurons, nor the population of motor trigeminal neurons were significantly reduced in the aged animals. These observations suggest differential effects of aging on the respective cholinergic efferent brainstem systems.
Collapse
Affiliation(s)
- Susanne Radtke-Schuller
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Germany ; IFB German Center for Vertigo and Balance Disorders Munich, Germany
| | - Sabine Seeler
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Germany ; IFB German Center for Vertigo and Balance Disorders Munich, Germany
| |
Collapse
|
29
|
Neuroglobin Expression in the Mammalian Auditory System. Mol Neurobiol 2015; 53:1461-1477. [PMID: 25636685 DOI: 10.1007/s12035-014-9082-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/29/2014] [Indexed: 01/07/2023]
Abstract
The energy-yielding pathways that provide the large amounts of metabolic energy required by inner ear sensorineural cells are poorly understood. Neuroglobin (Ngb) is a neuron-specific hemoprotein of the globin family, which is suggested to be involved in oxidative energy metabolism. Here, we present quantitative real-time reverse transcription PCR, in situ hybridization, immunohistochemical, and Western blot evidence that neuroglobin is highly expressed in the mouse and rat cochlea. For primary cochlea neurons, Ngb expression is limited to the subpopulation of type I spiral ganglion cells, those which innervate inner hair cells, while the subpopulation of type II spiral ganglion cells which innervate the outer hair cells do not express Ngb. We further investigated Ngb distribution in rat, mouse, and human auditory brainstem centers, and found that the cochlear nuclei and superior olivary complex (SOC) also express considerable amounts of Ngb. Notably, the majority of olivocochlear neurons, those which provide efferent innervation of outer hair cells as identified by neuronal tract tracing, were Ngb-immunoreactive. We also observed that neuroglobin in the SOC frequently co-localized with neuronal nitric oxide synthase, the enzyme responsible for nitric oxide production. Our findings suggest that neuroglobin is well positioned to play an important physiologic role in the oxygen homeostasis of the peripheral and central auditory nervous system, and provides the first evidence that Ngb signal differentiates the central projections of the inner and outer hair cells.
Collapse
|
30
|
Dettling J, Franz C, Zimmermann U, Lee SC, Bress A, Brandt N, Feil R, Pfister M, Engel J, Flamant F, Rüttiger L, Knipper M. Autonomous functions of murine thyroid hormone receptor TRα and TRβ in cochlear hair cells. Mol Cell Endocrinol 2014; 382:26-37. [PMID: 24012852 DOI: 10.1016/j.mce.2013.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/22/2013] [Accepted: 08/29/2013] [Indexed: 11/18/2022]
Abstract
Thyroid hormone acts on gene transcription by binding to its nuclear receptors TRα1 and TRβ. Whereas global deletion of TRβ causes deafness, global TRα-deficient mice have normal hearing thresholds. Since the individual roles of the two receptors in cochlear hair cells are still unclear, we generated mice with a hair cell-specific mutation of TRα1 or deletion of TRβ using the Cre-loxP system. Hair cell-specific TRβ mutant mice showed normal hearing thresholds but delayed BK channel expression in inner hair cells, slightly stronger outer hair cell function, and slightly reduced amplitudes of auditory brainstem responses. In contrast, hair cell-specific TRα mutant mice showed normal timing of BK channel expression, slightly reduced outer hair cell function, and slightly enhanced amplitudes of auditory brainstem responses. Our data demonstrate that TRβ-related deafness originates outside of hair cells and that TRα and TRβ play opposing, non-redundant roles in hair cells. A role for thyroid hormone receptors in controlling key regulators that shape signal transduction during development is discussed. Thyroid hormone may act through different thyroid hormone receptor activities to permanently alter the sensitivity of auditory neurotransmission.
Collapse
Affiliation(s)
- Juliane Dettling
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Christoph Franz
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Ulrike Zimmermann
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Sze Chim Lee
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Andreas Bress
- Molecular Genetics, THRC, Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Niels Brandt
- Department of Biophysics, Saarland University, 66421 Homburg/Saar, Germany
| | - Robert Feil
- Department of Signal Transduction & Transgenic Models, Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Markus Pfister
- Molecular Genetics, THRC, Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Jutta Engel
- Department of Biophysics, Saarland University, 66421 Homburg/Saar, Germany
| | - Frédéric Flamant
- Institut de Génomique Fonctionnelle, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, Lyon, France
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany.
| |
Collapse
|
31
|
Sahley TL, Hammonds MD, Musiek FE. Endogenous dynorphins, glutamate and N-methyl-d-aspartate (NMDA) receptors may participate in a stress-mediated Type-I auditory neural exacerbation of tinnitus. Brain Res 2013; 1499:80-108. [DOI: 10.1016/j.brainres.2013.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 12/12/2022]
|
32
|
Lendvai B, Halmos GB, Polony G, Kapocsi J, Horváth T, Aller M, Sylvester Vizi E, Zelles T. Chemical neuroprotection in the cochlea: The modulation of dopamine release from lateral olivocochlear efferents. Neurochem Int 2011; 59:150-8. [DOI: 10.1016/j.neuint.2011.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 05/12/2011] [Accepted: 05/17/2011] [Indexed: 01/16/2023]
|
33
|
Kaiser A, Alexandrova O, Grothe B. Urocortin-expressing olivocochlear neurons exhibit tonotopic and developmental changes in the auditory brainstem and in the innervation of the cochlea. J Comp Neurol 2011; 519:2758-78. [DOI: 10.1002/cne.22650] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Guinan JJ. Physiology of the Medial and Lateral Olivocochlear Systems. AUDITORY AND VESTIBULAR EFFERENTS 2011. [DOI: 10.1007/978-1-4419-7070-1_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
|
36
|
|
37
|
Abstract
Animal models have demonstrated that mild hearing loss caused by acoustic trauma results in spontaneous hyperactivity in the central auditory pathways. This hyperactivity has been hypothesized to be involved in the generation of tinnitus, a phantom auditory sensation. We have recently shown that such hyperactivity, recorded in the inferior colliculus, is still dependent on cochlear neural output for some time after recovery (up to 6 weeks). We have now studied the capacity of an intrinsic efferent system, i.e., the olivocochlear system, to alter hyperactivity. This system is known to modulate cochlear neural output. Anesthetized guinea pigs were exposed to a loud sound and after 2 or 3 weeks of recovery, single-neuron recordings in inferior colliculus were made to confirm hyperactivity. Olivocochlear axons were electrically stimulated and effects on cochlear neural output and on highly spontaneous neurons in inferior colliculus were assessed. Olivocochlear stimulation suppressed spontaneous hyperactivity in the inferior colliculus. This result is in agreement with our earlier finding that hyperactivity can be modulated by altering cochlear neural output. Interestingly, the central suppression was generally much larger and longer lasting than reported previously for primary afferents. Blockade of the intracochlear effects of olivocochlear system activation eliminated some but not all of the effects observed on spontaneous activity, suggesting also a central component to the effects of stimulation. More research is needed to investigate whether these central effects of olivocochlear efferent stimulation are due to central intrinsic circuitry or to coactivation of central efferent collaterals to the cochlear nucleus.
Collapse
|
38
|
Somatic motility and hair bundle mechanics, are both necessary for cochlear amplification? Hear Res 2010; 273:109-22. [PMID: 20430075 DOI: 10.1016/j.heares.2010.03.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/02/2010] [Accepted: 03/08/2010] [Indexed: 11/22/2022]
Abstract
Hearing organs have evolved to detect sounds across several orders of magnitude of both intensity and frequency. Detection limits are at the atomic level despite the energy associated with sound being limited thermodynamically. Several mechanisms have evolved to account for the remarkable frequency selectivity, dynamic range, and sensitivity of these various hearing organs, together termed the active process or cochlear amplifier. Similarities between hearing organs of disparate species provides insight into the factors driving the development of the cochlear amplifier. These properties include: a tonotopic map, the emergence of a two hair cell system, the separation of efferent and afferent innervations, the role of the tectorial membrane, and the shift from intrinsic tuning and amplification to a more end organ driven process. Two major contributors to the active process are hair bundle mechanics and outer hair cell electromotility, the former present in all hair cell organs tested, the latter only present in mammalian cochlear outer hair cells. Both of these processes have advantages and disadvantages, and how these processes interact to generate the active process in the mammalian system is highly disputed. A hypothesis is put forth suggesting that hair bundle mechanics provides amplification and filtering in most hair cells, while in mammalian cochlea, outer hair cell motility provides the amplification on a cycle by cycle basis driven by the hair bundle that provides frequency selectivity (in concert with the tectorial membrane) and compressive nonlinearity. Separating components of the active process may provide additional sites for regulation of this process.
Collapse
|
39
|
Murthy V, Taranda J, Elgoyhen AB, Vetter DE. Activity of nAChRs containing alpha9 subunits modulates synapse stabilization via bidirectional signaling programs. Dev Neurobiol 2009; 69:931-49. [PMID: 19790106 PMCID: PMC2819290 DOI: 10.1002/dneu.20753] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although the synaptogenic program for cholinergic synapses of the neuromuscular junction is well known, little is known of the identity or dynamic expression patterns of proteins involved in non-neuromuscular nicotinic synapse development. We have previously demonstrated abnormal presynaptic terminal morphology following loss of nicotinic acetylcholine receptor (nAChR) alpha9 subunit expression in adult cochleae. However, the molecular mechanisms underlying these changes have remained obscure. To better understand synapse formation and the role of cholinergic activity in the synaptogenesis of the inner ear, we exploit the nAChR alpha9 subunit null mouse. In this mouse, functional acetylcholine (ACh) neurotransmission to the hair cells is completely silenced. Results demonstrate a premature, effusive innervation to the synaptic pole of the outer hair cells in alpha9 null mice coinciding with delayed expression of cell adhesion proteins during the period of effusive contact. Collapse of the ectopic innervation coincides with an age-related hyperexpression pattern in the null mice. In addition, we document changes in expression of presynaptic vesicle recycling/trafficking machinery in the alpha9 null mice that suggests a bidirectional information flow between the target of the neural innervation (the hair cells) and the presynaptic terminal that is modified by hair cell nAChR activity. Loss of nAChR activity may alter transcriptional activity, as CREB binding protein expression is decreased coincident with the increased expression of N-Cadherin in the adult alpha9 null mice. Finally, by using mice expressing the nondesensitizing alpha9 L9'T point mutant nAChR subunit, we show that increased nAChR activity drives synaptic hyperinnervation.
Collapse
Affiliation(s)
- Vidya Murthy
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
40
|
Charitidi K, Canlon B. Estrogen receptors in the central auditory system of male and female mice. Neuroscience 2009; 165:923-33. [PMID: 19925852 DOI: 10.1016/j.neuroscience.2009.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 11/17/2022]
Abstract
The estrogen receptors in the central auditory system of male and female mice were characterized using immunocytochemical methods. Estrogen receptors alpha and beta (ERalpha, ERbeta) were localized predominantly in the ventral cochlear nucleus, nucleus of the trapezoid body, the lateral- and medio-ventral periolivary nuclei, the dorsal lateral lemniscus, and the inferior colliculus. The medial geniculate nucleus was negative for both ERalpha and ERbeta whereas the auditory cortex was positive for ERalpha. The lateral superior olive, the ventral lateral lemniscus and the central nucleus of the inferior colliculus expressed only ERbeta. The differential localization of ERalpha and ERbeta may indicate distinct roles for these two receptors in auditory processing. No major differences in the pattern, number or intensity of receptor expression was found between male and female animals. The comprehensive anatomic map that is constructed for ERalpha and ERbeta in the central auditory pathway will be a useful foundation to elucidate the complexity of estrogen actions in the auditory system.
Collapse
Affiliation(s)
- K Charitidi
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm 171 77, Sweden
| | | |
Collapse
|
41
|
Connections of the superior paraolivary nucleus of the rat: projections to the inferior colliculus. Neuroscience 2009; 163:372-87. [PMID: 19539725 DOI: 10.1016/j.neuroscience.2009.06.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 11/21/2022]
Abstract
GABAergic neurotransmission contributes to shaping the response properties of inferior colliculus (IC) neurons. In rodents, the superior paraolivary nucleus (SPON) is a prominent and well-defined cell group of the superior olivary complex that sends significant but often neglected GABAergic projections to the IC. To investigate the trajectory, distribution and morphology of these projections, we injected the neuroanatomical tracer biotinylated dextran amine into the SPON of albino rats. Our results demonstrate that: (1) the SPON innervates densely all three subdivisions of the ipsilateral IC: central nucleus (CNIC), dorsal cortex (DCIC) and external cortex (ECIC). The SPON also sends a sparse projection to the contralateral DCIC via the commissure of the IC. (2) SPON axons are relatively thick (diameter >1.2 microm), ascend to the midbrain tectum in the medial aspect of the lateral lemniscus, and, for the most part, do not innervate the nuclei of the lateral lemniscus. (3) SPON fibers ramify profusely within the IC and bear abundant en passant and terminal boutons. (4) The axons of neurons in discrete regions of the SPON form two laminar terminal plexuses in the ipsilateral IC: a medial plexus that spans the CNIC and DCIC parallel to the known fibrodendritic laminae of the CNIC, and a lateral plexus located in the ECIC and oriented more or less parallel to the surface of the IC. (5) The projection from SPON to the ipsilateral IC is topographic: medial SPON neurons innervate the ventromedial region of the CNIC and DCIC and the ventrolateral region of the ECIC, whereas more laterally situated SPON neurons innervate more dorsolateral regions of the CNIC and DCIC and more dorsomedial regions of the ECIC. Thus, SPON fibers follow a pattern of distribution within the IC similar to that previously reported for intracollicular and corticocollicular projections.
Collapse
|
42
|
|
43
|
Sahley TL, Anderson DJ, Chernicky CL. Bi-phasic intensity-dependent opioid-mediated neural amplitude changes in the chinchilla cochlea: partial blockade by an N-Methyl-D-Aspartate (NMDA)-receptor antagonist. Eur J Pharmacol 2007; 580:100-15. [PMID: 18036588 DOI: 10.1016/j.ejphar.2007.10.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 10/10/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
Dynorphins, glutamate, and glutamate-sensitive N-Methyl-D-Aspartate (NMDA) receptors exist in the mammalian cochlea. Dynorphins produce neural excitation and excitotoxic effects in the spinal cord through a kappa-opioid facilitation of NMDA receptor-sensitivity to glutamate. The kappa-opioid receptor drug agonists N-dimethylallyl-normetazocine [(-)-pentazocine (50 mmol)] and trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide [U-50488H (100 mmol)] were administered across the cochlear round window membrane in the chinchilla. Each drug produced significant post-baseline amplitude changes in the click-evoked auditory nerve compound action potential. Amplitude changes at threshold amounted to increases in sensitivity that ranged from 4-8 decibels, measured in sound pressure level (dB SPL). The large neural amplitude increases at threshold were accompanied by progressively smaller amplitude changes at 5 and 10 dB above threshold (dB SL). However, at stimulus intensities > or =20 dB SL, post-baseline neural amplitudes were suppressed to levels below baseline and control values. These bi-phasic intensity-dependent neural amplitude changes have never before been observed following i.v. administered (-)-pentazocine in this species. Finally, the bi-phasic neural amplitude changes in U-50488H-treated (100 mmol) animals were partially blocked (except at 20 dB SL), following a round window pre-treatment with the NMDA receptor drug antagonist, dizocilpine hydrogen maleate [(+)-MK-801 (8 mmol)]. Our data suggests that endogenous dynorphins within lateral efferent olivocochlear neurons differentially modulate auditory neural excitation, possibly through cochlear NMDA receptors and glutamate. The role played by lateral efferent opioid neuromodulation at cochlear NMDA receptors, is discussed.
Collapse
Affiliation(s)
- Tony L Sahley
- Department of Health Sciences, Cleveland State University, Cleveland, Ohio 44115, United States.
| | | | | |
Collapse
|
44
|
Kang BJ, Chang DA, Mackay DD, West GH, Moreira TS, Takakura AC, Gwilt JM, Guyenet PG, Stornetta RL. Central nervous system distribution of the transcription factor Phox2b in the adult rat. J Comp Neurol 2007; 503:627-41. [PMID: 17559094 DOI: 10.1002/cne.21409] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phox2b is required for development of the peripheral autonomic nervous system and a subset of cranial nerves and lower brainstem nuclei. Phox2b mutations in man cause diffuse autonomic dysfunction and deficits in the automatic control of breathing. Here we study the distribution of Phox2b in the adult rat hindbrain to determine whether this protein is selectively expressed by neurons involved in respiratory and autonomic control. In the medulla oblongata, Phox2b-immunoreactive nuclei were present in the dorsal vagal complex, intermediate reticular nucleus, dorsomedial spinal trigeminal nucleus, nucleus ambiguus, catecholaminergic neurons, and retrotrapezoid nucleus (RTN). Phox2b was expressed by both central excitatory relays of the sympathetic baroreflex (nucleus of the solitary tract and C1 neurons) but not by the inhibitory relay of this reflex. Phox2b was absent from the ventral respiratory column (VRC) caudal to RTN and rare within the parabrachial nuclei. In the pons, Phox2b was confined to cholinergic efferent neurons (salivary, vestibulocochlear) and noncholinergic peritrigeminal neurons. Rostral to the pons, Phox2b was detected only in the oculomotor complex. In adult rats, Phox2b is neither a comprehensive nor a selective marker of hindbrain autonomic pathways. This marker identifies a subset of hindbrain neurons that control orofacial movements (dorsomedial spinal trigeminal nucleus, pontine peritrigeminal neurons), balance and auditory function (vestibulocochlear efferents), the eyes, and both divisions of the autonomic efferent system. Phox2b is virtually absent from the respiratory rhythm and pattern generator (VRC and dorsolateral pons) but is highly expressed by neurons involved in the chemical drive and reflex regulation of this oscillator.
Collapse
Affiliation(s)
- B J Kang
- Department of Anesthesiology, Dankook University College of Medicine, Chonan City, 330-714 Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang F, Boettcher FA, Sun XM. Contralateral suppression of distortion product otoacoustic emissions: effect of the primary frequency in Dpgrams. Int J Audiol 2007; 46:187-95. [PMID: 17454232 DOI: 10.1080/14992020601164162] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The amplitude of the 2f1-f2 distortion product otoacoustic emission (DPOAE) can be suppressed by presenting contralateral acoustic stimulation. To test the hypothesis that DPOAE contralateral suppression is influenced by the primary frequency in DPgrams, DPgrams were recorded at resolutions of 1, 8, and 17 pts/octave, in the absence and presence of contralateral broadband noise (BBN). Participants were 20 normal-hearing human adults. In DPgrams with higher frequency resolutions, DPOAE suppression at amplitude peaks in DPgrams (8 pts/octave: Mean = - 0.92 dB, SD = 0.71 for BBN at 60 dB SPL; 17 pts/octave: Mean = - 0.25 to -1.44 dB, SD = 0.51 to 0.86 for BBN at 40 to 70 dB SPL, respectively) was larger than the suppression at the dips in DPgrams (8 pts/octave: Mean = - 0.13 dB, SD = 1.00; 17 pts/octave: Mean = - 0.03 to -0.73 dB, SD = 0.55 to 0.91). A larger intersubject variability in DPOAE contralateral suppression was observed at the dips. The results suggest that measuring DPOAE contralateral suppression at the primary frequencies corresponding to the peaks in DPgrams with higher frequency resolutions may improve the assessment of the efferent system function.
Collapse
Affiliation(s)
- Fawen Zhang
- Department of Otolaryngology, Head and Neck Surgery, University of Iowa, Iowa, USA.
| | | | | |
Collapse
|
46
|
Reisch A, Illing RB, Laszig R. Immediate early gene expression invoked by electrical intracochlear stimulation in some but not all types of neurons in the rat auditory brainstem. Exp Neurol 2007; 208:193-206. [PMID: 17825819 DOI: 10.1016/j.expneurol.2007.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/20/2007] [Accepted: 06/29/2007] [Indexed: 11/27/2022]
Abstract
Specific patterns of sensory activity may induce plastic remodeling of neurons and the communication network they form in the adult mammalian brain. Among the indicators for the initiation of neuronal remodeling is the expression of immediate early genes (IEGs). The IEGs c-fos and egr-1 encode transcription factors. Following spectrally and temporally precisely defined unilateral electrical intracochlear stimulation (EIS) that corresponded in strength to physiological acoustic stimuli and lasted for 2 h under anesthesia, we characterized those neuronal cell types in ventral (VCN) and dorsal cochlear nucleus (DCN), lateral superior olive (LSO) and central nucleus of the inferior colliculus (CIC) of the rat brain that expressed IEGs. We found that EIS affected only specific types of neurons. Whereas sub-populations of glutamatergic and glycinergic cells responded in all four regions, GABAergic neurons failed to do so except in DCN. Combining immunocytochemistry with axonal tracing, neurons participating in major ascending pathways, commissural cells of VCN and certain types of neurons of the descending auditory system were seen to respond to EIS with IEG expression. By contrast, principal LSO cells projecting to the contralateral CIC as well as collicular efferents of the DCN did not. In total, less than 50% of the identified neurons turned up expression of the IEGs studied. The pattern of IEG expression caused by unilateral EIS led us to suggest that dominant sensory activity may quickly initiate a facilitation of central pathways serving the active ear at the expense of those serving the unstimulated ear.
Collapse
Affiliation(s)
- Adrian Reisch
- Neurobiological Research Laboratory, Killianstr. 5, D-79106 Freiburg, Germany
| | | | | |
Collapse
|
47
|
Rajan R. Bandwidth dependency of cochlear centrifugal pathways in modulating hearing desensitization caused by loud sound. Neuroscience 2007; 147:1103-13. [PMID: 17600627 DOI: 10.1016/j.neuroscience.2007.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/06/2007] [Accepted: 05/10/2007] [Indexed: 11/19/2022]
Abstract
Centrifugal olivocochlear (OC) pathways modulate cochlear hearing desensitization induced by loud sounds, but there is a null point, determined by sound bandwidth, for this effect. In a previous study, using loud sounds from the region of greatest hearing sensitivity in cats, OC pathways did not affect desensitization induced by 2-kHz wide noise, but did to narrower bandwidth (tones) or broader bandwidth (3.5 kHz-wide or 5 kHz-wide noise) trauma from the same cochlear region. The bandwidth null-point effect occurred in three very different conditions in which OC pathways modulated losses to narrower or broader bandwidth traumata, confirming the robustness of this phenomenon, and was also true for sub-component OC pathways: neither crossed nor uncrossed OC pathways individually modulated desensitization to that 2 kHz-wide noise. The medial olivocochlear system (MOCS) that is most likely to have modulated desensitization in that study, varies in its cochlear distribution; in cats, densest innervation is in the region of greatest hearing sensitivity and the decrease away from that region means MOCS effects there may not translate to other regions. This hypothesis was now tested in lower- (around 4 kHz) and higher- (around 18 kHz) frequency cochlear regions. Across this fairly large cochlear swath, no OC modulation of desensitization occurred to 2-kHz-wide bandwidth sounds, but did to broader bandwidth; thus the bandwidth dependency was constant across this swath. However, when OC effects did occur, the pattern of effects of OC sub-components could be idiosyncratic to sound bandwidth and cochlear region even for similar net OC effects.
Collapse
Affiliation(s)
- R Rajan
- Department of Physiology, Monash University, Monash, Victoria 3800, Australia.
| |
Collapse
|
48
|
Niu X, Tahera Y, Canlon B. Environmental enrichment to sound activates dopaminergic pathways in the auditory system. Physiol Behav 2007; 92:34-9. [PMID: 17631367 DOI: 10.1016/j.physbeh.2007.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Environmental enrichment to sound stimulation, in the adult, can promote physiological changes and protection against trauma in the auditory peripheral and central nervous system. Sound enrichment, or sound conditioning is a method that utilizes a low-level, non-damaging acoustic stimulus as a protective agent. Pre-treating subjects to a moderate or low-level acoustic stimulus reduces the damaging effects of a subsequent traumatic stimulus. The intention of this review is to describe how environmental enrichment to sound affords protection against a subsequent trauma, and the role that the dopaminergic pathways in the cochlea and the auditory brainstem play in this protection. Dopamine is released from the lateral efferents and exerts a tonic inhibition of auditory nerve activity thus preserving auditory sensitivity and protecting against excitotoxicity. Sound conditioning up-regulated tyrosine hydroxylase in the lateral efferents under the inner hair cells and acoustic trauma reduced these levels. Thus, sound conditioning triggers an up-regulation of tyrosine hydroxylase both in the lateral efferent of cochlea and in the lateral superior olivary complex. These findings expand our understanding of the neurochemical balance and regulation between the lateral olivocochlear neurons and the lateral efferent terminals in the cochlea during sound stimulation.
Collapse
Affiliation(s)
- Xianzhi Niu
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | | | | |
Collapse
|
49
|
Darrow KN, Maison SF, Liberman MC. Cochlear efferent feedback balances interaural sensitivity. Nat Neurosci 2006; 9:1474-6. [PMID: 17115038 PMCID: PMC1806686 DOI: 10.1038/nn1807] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 10/26/2006] [Indexed: 11/08/2022]
Abstract
Neurons in the lateral superior olive (LSO) compute sound location based on differences in interaural intensity, coded in ascending signals from the two cochleas. Unilateral destruction of the neuronal feedback from the LSO to the cochlea, the lateral olivocochlear efferents, disrupted the normal interaural correlation in response amplitudes to sounds of equal intensity. Thus, lateral olivocochlear feedback maintains the binaural balance in neural excitability required for accurate localization of sounds in space.
Collapse
Affiliation(s)
- Keith N Darrow
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
50
|
Darrow KN, Maison SF, Liberman MC. Selective removal of lateral olivocochlear efferents increases vulnerability to acute acoustic injury. J Neurophysiol 2006; 97:1775-85. [PMID: 17093118 PMCID: PMC1805782 DOI: 10.1152/jn.00955.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cochlear sensory cells and neurons receive efferent feedback from the olivocochlear (OC) system. The myelinated medial component of the OC system and its effects on outer hair cells (OHCs) have been implicated in protection from acoustic injury. The unmyelinated lateral (L)OC fibers target ipsilateral cochlear nerve dendrites and pharmacological studies suggest the LOC's dopaminergic component may protect these dendrites from excitotoxic effects of acoustic overexposure. Here, we explore LOC function in vivo by selective stereotaxic destruction of LOC cell bodies in mouse. Lesion success in removing the LOC, and sparing the medial (M)OC, was assessed by histological analysis of brain stem sections and cochlear whole mounts. Auditory brain stem responses (ABRs), a neural-based metric, and distortion product otoacoustic emissions (DPOAEs), an OHC-based metric, were measured in control and surgical mice. In cases where the LOC was at least partially destroyed, there were increases in suprathreshold neural responses that were frequency- and level-independent and not attributable to OHC-based effects. These interaural response asymmetries were not found in controls or in cases where the lesion missed the LOC. In LOC-lesion cases, after exposure to a traumatic stimulus, temporary threshold shifts were greater in the ipsilateral ear, but only when measured in the neural response; OHC-based measurements were always bilaterally symmetric, suggesting OHC vulnerability was unaffected. Interaural asymmetries in threshold shift were not found in either unlesioned controls or in cases that missed the LOC. These findings suggest that the LOC modulates cochlear nerve excitability and protects the cochlea from neural damage in acute acoustic injury.
Collapse
Affiliation(s)
- Keith N. Darrow
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Program in Speech and Hearing Bioscience and Technology, Division of Health Science and Technology, Harvard and MIT, Cambridge, MA
| | - Stéphane F. Maison
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114
| | - M. Charles Liberman
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114
- Program in Speech and Hearing Bioscience and Technology, Division of Health Science and Technology, Harvard and MIT, Cambridge, MA
| |
Collapse
|