1
|
Bom Braga GO, Parrilli A, Zboray R, Bulatović M, Wagner F. Quantitative Evaluation of the 3D Anatomy of the Human Osseous Spiral Lamina Using MicroCT. J Assoc Res Otolaryngol 2023; 24:441-452. [PMID: 37407801 PMCID: PMC10504225 DOI: 10.1007/s10162-023-00904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
PURPOSE The osseous spiral lamina (OSL) is an inner cochlear bony structure that projects from the modiolus from base to apex, separating the cochlear canal into the scala vestibuli and scala tympani. The porosity of the OSL has recently attracted the attention of scientists due to its potential impact on the overall sound transduction. The bony pillars between the vestibular and tympanic plates of the OSL are not always visible in conventional histopathological studies, so imaging of such structures is usually lacking or incomplete. With this pilot study, we aimed, for the first time, to anatomically demonstrate the OSL in great detail and in 3D. METHODS We measured width, thickness, and porosity of the human OSL by microCT using increasing nominal resolutions up to 2.5-µm voxel size. Additionally, 3D models of the individual plates at the basal and middle turns and the apex were created from the CT datasets. RESULTS We found a constant presence of porosity in both tympanic plate and vestibular plate from basal turn to the apex. The tympanic plate appears to be more porous than vestibular plate in the basal and middle turns, while it is less porous in the apex. Furthermore, the 3D reconstruction allowed the bony pillars that lie between the OSL plates to be observed in great detail. CONCLUSION By enhancing our comprehension of the OSL, we can advance our comprehension of hearing mechanisms and enhance the accuracy and effectiveness of cochlear models.
Collapse
Affiliation(s)
- Gabriela O Bom Braga
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Annapaola Parrilli
- Center for X-Ray Analytics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| | - Robert Zboray
- Center for X-Ray Analytics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Milica Bulatović
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Franca Wagner
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Human cochlear microstructures at risk of electrode insertion trauma, elucidated in 3D with contrast-enhanced microCT. Sci Rep 2023; 13:2191. [PMID: 36750646 PMCID: PMC9905077 DOI: 10.1038/s41598-023-29401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Cochlear implant restores hearing loss through electrical stimulation of the hearing nerve from within the cochlea. Unfortunately, surgical implantation of this neuroprosthesis often traumatizes delicate intracochlear structures, resulting in loss of residual hearing and compromising hearing in noisy environments and appreciation of music. To avoid cochlear trauma, insertion techniques and devices have to be adjusted to the cochlear microanatomy. However, existing techniques were unable to achieve a representative visualization of the human cochlea: classical histology damages the tissues and lacks 3D perspective; standard microCT fails to resolve the cochlear soft tissues; and previously used X-ray contrast-enhancing staining agents are destructive. In this study, we overcame these limitations by performing contrast-enhanced microCT imaging (CECT) with a novel polyoxometalate staining agent Hf-WD POM. With Hf-WD POM-based CECT, we achieved nondestructive, high-resolution, simultaneous, 3D visualization of the mineralized and soft microstructures in fresh-frozen human cochleae. This enabled quantitative analysis of the true intracochlear dimensions and led to anatomical discoveries, concerning surgically-relevant microstructures: the round window membrane, the Rosenthal's canal and the secondary spiral lamina. Furthermore, we demonstrated that Hf-WD POM-based CECT enables quantitative assessment of these structures as well as their trauma.
Collapse
|
3
|
Iyer JS, Zhu N, Gasilov S, Ladak HM, Agrawal SK, Stankovic KM. Visualizing the 3D cytoarchitecture of the human cochlea in an intact temporal bone using synchrotron radiation phase contrast imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:3757-3767. [PMID: 30338153 DOI: 10.1364/boe.9.00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 05/21/2023]
Abstract
The gold standard method for visualizing the pathologies underlying human sensorineural hearing loss has remained post-mortem histology for over 125 years, despite awareness that histological preparation induces severe artifacts in biological tissue. Historically, the transition from post-mortem assessment to non-invasive clinical biomedical imaging in living humans has revolutionized diagnosis and treatment of disease; however, innovation in non-invasive techniques for cellular-level intracochlear imaging in humans has been difficult due to the cochlea's small size, complex 3D configuration, fragility, and deep encasement within bone. Here we investigate the ability of synchrotron radiation-facilitated X-ray absorption and phase contrast imaging to enable visualization of sensory cells and nerve fibers in the cochlea's sensory epithelium in situ in 3D intact, non-decalcified, unstained human temporal bones. Our findings show that this imaging technique resolves the bone-encased sensory epithelium's cytoarchitecture with unprecedented levels of cellular detail for an intact, unstained specimen, and is capable of distinguishing between healthy and damaged epithelium. All analyses were performed using commercially available software that quickly reconstructs and facilitates 3D manipulation of massive data sets. Results suggest that synchrotron radiation phase contrast imaging has the future potential to replace histology as a gold standard for evaluating intracochlear structural integrity in human specimens, and motivate further optimization for translation to the clinic.
Collapse
Affiliation(s)
- Janani S Iyer
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University Graduate School of Arts and Sciences, 1350 Massachusetts Ave, Cambridge, MA, USA
| | - Ning Zhu
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - Sergei Gasilov
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - Hanif M Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - Sumit K Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - Konstantina M Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University Graduate School of Arts and Sciences, 1350 Massachusetts Ave, Cambridge, MA, USA
| |
Collapse
|
4
|
Iyer JS, Zhu N, Gasilov S, Ladak HM, Agrawal SK, Stankovic KM. Visualizing the 3D cytoarchitecture of the human cochlea in an intact temporal bone using synchrotron radiation phase contrast imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:3757-3767. [PMID: 30338153 PMCID: PMC6191620 DOI: 10.1364/boe.9.003757] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 05/21/2023]
Abstract
The gold standard method for visualizing the pathologies underlying human sensorineural hearing loss has remained post-mortem histology for over 125 years, despite awareness that histological preparation induces severe artifacts in biological tissue. Historically, the transition from post-mortem assessment to non-invasive clinical biomedical imaging in living humans has revolutionized diagnosis and treatment of disease; however, innovation in non-invasive techniques for cellular-level intracochlear imaging in humans has been difficult due to the cochlea's small size, complex 3D configuration, fragility, and deep encasement within bone. Here we investigate the ability of synchrotron radiation-facilitated X-ray absorption and phase contrast imaging to enable visualization of sensory cells and nerve fibers in the cochlea's sensory epithelium in situ in 3D intact, non-decalcified, unstained human temporal bones. Our findings show that this imaging technique resolves the bone-encased sensory epithelium's cytoarchitecture with unprecedented levels of cellular detail for an intact, unstained specimen, and is capable of distinguishing between healthy and damaged epithelium. All analyses were performed using commercially available software that quickly reconstructs and facilitates 3D manipulation of massive data sets. Results suggest that synchrotron radiation phase contrast imaging has the future potential to replace histology as a gold standard for evaluating intracochlear structural integrity in human specimens, and motivate further optimization for translation to the clinic.
Collapse
Affiliation(s)
- Janani S. Iyer
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University Graduate School of Arts and Sciences, 1350 Massachusetts Ave, Cambridge, MA, USA
| | - Ning Zhu
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - Sergei Gasilov
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - Hanif M. Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - Sumit K. Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - Konstantina M. Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University Graduate School of Arts and Sciences, 1350 Massachusetts Ave, Cambridge, MA, USA
| |
Collapse
|
5
|
Johnson Chacko L, Schmidbauer DT, Handschuh S, Reka A, Fritscher KD, Raudaschl P, Saba R, Handler M, Schier PP, Baumgarten D, Fischer N, Pechriggl EJ, Brenner E, Hoermann R, Glueckert R, Schrott-Fischer A. Analysis of Vestibular Labyrinthine Geometry and Variation in the Human Temporal Bone. Front Neurosci 2018. [PMID: 29535601 PMCID: PMC5834493 DOI: 10.3389/fnins.2018.00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stable posture and body movement in humans is dictated by the precise functioning of the ampulla organs in the semi-circular canals. Statistical analysis of the interrelationship between bony and membranous compartments within the semi-circular canals is dependent on the visualization of soft tissue structures. Thirty-one human inner ears were prepared, post-fixed with osmium tetroxide and decalcified for soft tissue contrast enhancement. High resolution X-ray microtomography images at 15 μm voxel-size were manually segmented. This data served as templates for centerline generation and cross-sectional area extraction. Our estimates demonstrate the variability of individual specimens from averaged centerlines of both bony and membranous labyrinth. Centerline lengths and cross-sectional areas along these lines were identified from segmented data. Using centerlines weighted by the inverse squares of the cross-sectional areas, plane angles could be quantified. The fit planes indicate that the bony labyrinth resembles a Cartesian coordinate system more closely than the membranous labyrinth. A widening in the membranous labyrinth of the lateral semi-circular canal was observed in some of the specimens. Likewise, the cross-sectional areas in the perilymphatic spaces of the lateral canal differed from the other canals. For the first time we could precisely describe the geometry of the human membranous labyrinth based on a large sample size. Awareness of the variations in the canal geometry of the membranous and bony labyrinth would be a helpful reference in designing electrodes for future vestibular prosthesis and simulating fluid dynamics more precisely.
Collapse
Affiliation(s)
- Lejo Johnson Chacko
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik T Schmidbauer
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Biotechnology & Food Engineering, Management Center Innsbruck, Innsbruck, Austria
| | - Stephan Handschuh
- VetImaging, VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Alen Reka
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Karl D Fritscher
- Institute of Biomedical Image Analysis, UMIT, Hall in Tirol, Austria
| | - Patrik Raudaschl
- Institute of Biomedical Image Analysis, UMIT, Hall in Tirol, Austria
| | | | - Michael Handler
- Institute of Electrical and Biomedical Engineering, UMIT, Hall in Tirol, Austria
| | - Peter P Schier
- Institute of Electrical and Biomedical Engineering, UMIT, Hall in Tirol, Austria
| | - Daniel Baumgarten
- Institute of Electrical and Biomedical Engineering, UMIT, Hall in Tirol, Austria.,Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Natalie Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth J Pechriggl
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Brenner
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Romed Hoermann
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria.,University Clinics Innsbruck, Tirol Kliniken, Innsbruck, Austria
| | | |
Collapse
|
6
|
Tinne N, Antonopoulos GC, Mohebbi S, Andrade J, Nolte L, Meyer H, Heisterkamp A, Majdani O, Ripken T. Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT). PLoS One 2017; 12:e0184069. [PMID: 28873437 PMCID: PMC5584946 DOI: 10.1371/journal.pone.0184069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/17/2017] [Indexed: 11/19/2022] Open
Abstract
The present study focuses on the application of scanning laser optical tomography (SLOT) for visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique which allows for tomographic imaging of the internal structure of transparent specimens. Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy. For this purpose, the preparation before imaging comprises decalcification, dehydration as well as optical clearing of the cochlea samples in toto. Here, we demonstrate results of SLOT imaging visualizing hard and soft tissue structures with an optical resolution of down to 15 μm using extinction and autofluorescence as contrast mechanisms. Furthermore, the internal structure can be analyzed nondestructively and quantitatively in detail by sectioning of the three-dimensional datasets. The method of X-ray Micro Computed Tomography (μCT) has been previously applied to explanted cochlea and is solely based on absorption contrast. An advantage of SLOT is that it uses visible light for image formation and thus provides a variety of contrast mechanisms known from other light microscopy techniques, such as fluorescence or scattering. We show that SLOT data is consistent with μCT anatomical data and provides additional information by using fluorescence. We demonstrate that SLOT is applicable for cochlea with metallic cochlear implants (CI) that would lead to significant artifacts in μCT imaging. In conclusion, the present study demonstrates the capability of SLOT for resolution visualization of cleared human cochleae ex vivo using multiple contrast mechanisms and lays the foundation for a broad variety of additional studies.
Collapse
Affiliation(s)
- Nadine Tinne
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover, Germany
| | | | - Saleh Mohebbi
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - José Andrade
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Lena Nolte
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hannover, Germany
| | - Heiko Meyer
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hannover, Germany
- Biofabrication for NIFE, Hannover, Germany
| | - Alexander Heisterkamp
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover, Germany
- Biofabrication for NIFE, Hannover, Germany
- Institute of Quantum Optics, Leibniz University of Hanover, Hannover, Germany
| | - Omid Majdani
- Cluster of Excellence “Hearing4all”, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Tammo Ripken
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover, Germany
- Biofabrication for NIFE, Hannover, Germany
- * E-mail:
| |
Collapse
|
7
|
Koch RW, Ladak HM, Elfarnawany M, Agrawal SK. Measuring Cochlear Duct Length - a historical analysis of methods and results. J Otolaryngol Head Neck Surg 2017; 46:19. [PMID: 28270200 PMCID: PMC5341452 DOI: 10.1186/s40463-017-0194-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/22/2017] [Indexed: 11/22/2022] Open
Abstract
Background Cochlear Duct Length (CDL) has been an important measure for the development and advancement of cochlear implants. Emerging literature has shown CDL can be used in preoperative settings to select the proper sized electrode and develop customized frequency maps. In order to improve post-operative outcomes, and develop new electrode technologies, methods of measuring CDL must be validated to allow usage in the clinic. Purpose The purpose of this review is to assess the various techniques used to calculate CDL and provide the reader with enough information to make an informed decision on how to conduct future studies measuring the CDL. Results The methods to measure CDL, the modality used to capture images, and the location of the measurement have all changed as technology evolved. With recent popularity and advancement in computed tomography (CT) imaging in place of histologic sections, measurements of CDL have been focused at the lateral wall (LW) instead of the organ of Corti (OC), due to the inability of CT to view intracochlear structures. After analyzing results from methods such as directly measuring CDL from histology, indirectly reconstructing the shape of the cochlea, and determining CDL based on spiral coefficients, it was determined the three dimensional (3D) reconstruction method is the most reliable method to measure CDL. 3D reconstruction provides excellent visualization of the cochlea and avoids errors evident in other methods. Due to the number of varying methods with varying accuracies, certain guidelines must be followed in the future to allow direct comparison of CDL values between studies. Conclusion After summarizing and analyzing the interesting history of CDL measurements, the use of standardized guidelines and the importance of CDL for future cochlear implant developments is emphasized for future studies.
Collapse
Affiliation(s)
- Robert W Koch
- Biomedical Engineering, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada.
| | - Hanif M Ladak
- Biomedical Engineering, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada.,Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada.,Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Mai Elfarnawany
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
| | - Sumit K Agrawal
- Biomedical Engineering, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada.,Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada.,Department of Electrical and Computer Engineering, Western University, London, ON, Canada.,London Health Science Centre, University Hospital, Room B1-333, 339 Windermere Rd, London, ON, Canada
| |
Collapse
|
8
|
Elfarnawany M, Alam SR, Rohani SA, Zhu N, Agrawal SK, Ladak HM. Micro-CT versus synchrotron radiation phase contrast imaging of human cochlea. J Microsc 2016; 265:349-357. [PMID: 27935035 DOI: 10.1111/jmi.12507] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/29/2016] [Accepted: 10/30/2016] [Indexed: 11/26/2022]
Abstract
High-resolution images of the cochlea are used to develop atlases to extract anatomical features from low-resolution clinical computed tomography (CT) images. We compare visualization and contrast of conventional absorption-based micro-CT to synchrotron radiation phase contrast imaging (SR-PCI) images of whole unstained, nondecalcified human cochleae. Three cadaveric cochleae were imaged using SR-PCI and micro-CT. Images were visually compared and contrast-to-noise ratios (CNRs) were computed from n = 27 regions-of-interest (enclosing soft tissue) for quantitative comparisons. Three-dimensional (3D) models of cochlear internal structures were constructed from SR-PCI images using a semiautomatic segmentation method. SR-PCI images provided superior visualization of soft tissue microstructures over conventional micro-CT images. CNR improved from 7.5 ± 2.5 in micro-CT images to 18.0 ± 4.3 in SR-PCI images (p < 0.0001). The semiautomatic segmentations yielded accurate reconstructions of 3D models of the intracochlear anatomy. The improved visualization, contrast and modelling achieved using SR-PCI images are very promising for developing atlas-based segmentation methods for postoperative evaluation of cochlear implant surgery.
Collapse
Affiliation(s)
- M Elfarnawany
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
| | - S Riyahi Alam
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
| | - S A Rohani
- Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada
| | - N Zhu
- Bio-Medical Imaging and Therapy Facility, Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - S K Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada.,Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - H M Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada.,Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Detailed Anatomy of the Nasolabial Muscle in Human Fetuses as Determined by Micro-CT Combined With Iodine Staining. Ann Plast Surg 2016; 76:111-6. [PMID: 25003453 DOI: 10.1097/sap.0000000000000219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aims to investigate the 3-dimensional (3D) anatomical structure of the orbicularis oris and nasalis, which are closely associated with the appearance of the upper lip and lower part of the nose. The relationship of the complicated 3D anatomical structure with the outline shape was also determined. METHODS Microcomputed tomography combined with iodine staining was used to scan the nasolabial tissues of 3 aborted fetuses. The strictly aligned, corrected, full-capacity, 2-dimensional (2D) grayscale images obtained were then used to reconstruct 3D structures using a 3D reconstruction software. RESULTS 2D grayscale slices and a 3D anatomical model of the orbicularis oris and nasalis of the specimens were obtained. The 2D images and the 3D model confirmed the orbicularis oris anatomical structure reported in previous studies and also provided new insights (such as the close association of the formation of the philtral dimple, lip peak, philtral ridge, and nasal sill with the orbicularis oris). In addition, the results show that the nasolabial muscle consists of muscle fibers from different sources and is divided into four distinct parts: pars marginalis, pars peripheralis, muscle fibers of the levator labii superioris, and nasalis muscle fibers. CONCLUSION The 3D anatomical structures indicate that the orbicularis oris and nasalis are closely associated with the appearances of the upper lip and lower part of the nose. The results may aid plastic surgeons in performing cleft-lip correction surgery.
Collapse
|
10
|
Vasopressin induces endolymphatic hydrops in mouse inner ear, as evaluated with repeated 9.4 T MRI. Hear Res 2015; 330:119-24. [PMID: 26048336 DOI: 10.1016/j.heares.2015.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/09/2015] [Accepted: 05/25/2015] [Indexed: 11/24/2022]
Abstract
From histopathological specimens, endolymphatic hydrops has been demonstrated in association with inner ear disorders. Recent studies have observed findings suggestive of hydrops using MRI in humans. Previous studies suggest that vasopressin may play a critical role in endolymph homeostasis and may be involved in the development of Ménière's disease. In this study we evaluate the effect of vasopressin administration in vivo in longitudinal studies using two mouse strains. High resolution MRI at 9.4 T in combination with intraperitoneally delivered Gadolinium contrast, was performed before and after chronic subcutaneous administration of vasopressin via mini-osmotic pumps in the same mouse. A development of endolymphatic hydrops over time could be demonstrated in C57BL6 mice (5 mice, 2 and 4 weeks of administration) as well as in CBA/J mice (4 mice, 2 weeks of administration; 6 mice, 3 and 4 weeks of administration). In most C57BL6 mice hydrops developed first after more than 2 weeks while CBA/J mice had an earlier response. These results may suggest an in vivo model for studying endolymphatic hydrops and corroborates the future use of MRI as a tool in the diagnosis and treatment of inner ear diseases, such as Ménière's disease. MRI may also be developed as a critical tool in evaluating inner ear homeostasis in genetically modified mice, to augment the understanding of human disease.
Collapse
|
11
|
van der Jagt A, Webb AG, Frijns JHM, Verbist BM. Reply:. AJNR Am J Neuroradiol 2014; 35:E11. [PMID: 25324498 DOI: 10.3174/ajnr.a4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- A van der Jagt
- Department of Otorhinolaryngology Leiden University Medical Center Leiden, the Netherlands
| | - A G Webb
- CJ Gorter Centre for High Field MRI and Department of Radiology Leiden University Medical Center Leiden, the Netherlands
| | - J H M Frijns
- Department of Otorhinolaryngology Leiden University Medical Center and Leiden Institute for Brain and Cognition Leiden, the Netherlands
| | - B M Verbist
- Department of Radiology Leiden University Medical Center and Radboud University Medical Center Leiden, the Netherlands
| |
Collapse
|
12
|
Kakigi A, Takubo Y, Egami N, Kashio A, Ushio M, Sakamoto T, Yamashita S, Yamasoba T. Evaluation of the Internal Structure of Normal and Pathological Guinea Pig Cochleae Using Optical Coherence Tomography. ACTA ACUST UNITED AC 2013; 18:335-43. [DOI: 10.1159/000354620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022]
|
13
|
Rau C, Hwang M, Lee WK, Richter CP. Quantitative X-ray tomography of the mouse cochlea. PLoS One 2012; 7:e33568. [PMID: 22485145 PMCID: PMC3317668 DOI: 10.1371/journal.pone.0033568] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/13/2012] [Indexed: 11/29/2022] Open
Abstract
Imaging with hard X-rays allows visualizing cochlear structures while maintaining intrinsic qualities of the tissue, including structure and size. With coherent X-rays, soft tissues, including membranes, can be imaged as well as cells making use of the so-called in-line phase contrast. In the present experiments, partially coherent synchrotron radiation has been used for micro-tomography. Three-dimensional reconstructions of the mouse cochlea have been created using the EM3D software and the volume has been segmented in the Amira Software Suite. The structures that have been reconstructed include scala tympani, scala media, scala vestibuli, Reissner's membrane, basilar membrane, tectorial membrane, organ of Corti, spiral limbus, spiral ganglion and cochlear nerve. Cross-sectional areas of the scalae were measured. The results provide a realistic and quantitative reconstruction of the cochlea.
Collapse
Affiliation(s)
- Christoph Rau
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, United Kingdom.
| | | | | | | |
Collapse
|
14
|
Pender DJ. A model analysis of tensile stress in the toadfish vestibular membranes. Int J Otolaryngol 2011; 2011:519293. [PMID: 21716692 PMCID: PMC3118606 DOI: 10.1155/2011/519293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 04/11/2011] [Indexed: 11/17/2022] Open
Abstract
Background. A theoretical model analysis of stress in the vestibular membranes has identified a geometrical stress factor incorporating shape, size, and thickness that can be used to assess peak stress in the various chambers. Methods. Using published measurements of the toadfish vestibular membranes made during surgery, the geometrical stress factor can be evaluated for each chamber based on the model. Results. The mean geometrical stress factor is calculated to be the lowest in the semicircular canal (4.4), intermediate in the ampulla (6.0), and the highest in the utricle (17.4). Conclusions. The model predicts that substantial hoop stress disparities exist in the toadfish vestibular labyrinth. Stress is least in the semicircular canal, which therefore appears to be the structure with greatest stability. The utricle is found to be the most stress prone structure in the vestibular labyrinth and therefore appears to be the chamber most vulnerable to distention and potential modification.
Collapse
Affiliation(s)
- Daniel J. Pender
- The Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
15
|
Salt AN, Plontke SK. Endolymphatic hydrops: pathophysiology and experimental models. Otolaryngol Clin North Am 2010; 43:971-83. [PMID: 20713237 DOI: 10.1016/j.otc.2010.05.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is well established that endolymphatic hydrops plays a role in Ménière disease, even though the precise role is not fully understood and the presence of hydrops in the ear does not always result in symptoms of the disease. It nevertheless follows that a scientific understanding of how hydrops arises, how it affects the function of the ear, and how it can be manipulated or reversed could contribute to the development of effective treatments for the disease. Measurements in animal models in which endolymphatic hydrops has been induced have given numerous insights into the relationships between hydrops and other pathologic and electrophysiological changes, and how these changes influence the function of the ear. The prominent role of the endolymphatic sac in endolymph volume regulation, and the cascade of histopathological and electrophysiological changes that are associated with chronic endolymphatic hydrops, have now been established. An increasing number of models are now available that allow specific aspects of the interrelationships to be studied. The yclical nature of Ménière symptoms gives hope that treatments can be developed to maintain the ear in permanent state of remission, possibly by controlling endolymphatic hydrops, thereby avoiding the rogressive damage and secondary pathologic changes that may also contribute to the patient's symptoms.
Collapse
Affiliation(s)
- Alec N Salt
- Department of Otolaryngology, Washington University School of Medicine, Box 8115, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| | | |
Collapse
|
16
|
Zou J, Zhang W, Poe D, Zhang Y, Ramadan UA, Pyykkö I. Differential passage of gadolinium through the mouse inner ear barriers evaluated with 4.7T MRI. Hear Res 2009; 259:36-43. [PMID: 19818391 DOI: 10.1016/j.heares.2009.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 12/16/2022]
Abstract
Magnetic resonance imaging (MRI), supplemented by contrast agents, is a powerful tool that can be used to visualise the structures of the inner ear in vivo and assess some aspects of physiology, such as the permeability of agents through membranes. The mouse is an excellent animal species for investigating human diseases, including hearing loss but detailed MRI studies with contrast have not been reported. In this work, we aimed to demonstrate the limits of MR imaging resolution of the fine inner ear structures in the mouse and to explore the permeability of the intracochlear barriers to gadolinium-tetra-azacyclo-dodecane-tetra-acetic acid (Gd-DOTA) administered by intravenous injection (IV) or intratympanic (IT) routes. Twenty-three female FVB mice were imaged with a 4.7-T MR scanner using both 2D and high resolution 3D sequences. Inner ear region of interest (ROI) signal intensities and perilymph volumes were evaluated. Finer structures were studied using 3D acquisition and reconstruction techniques and comparisons were made to similarly oriented histological sections that were examined by light microscopy. Gd-DOTA enhancement occurred in the perilymphatic compartment and highlighted the contiguous inner ear structures, but enhancement did not appear within the endolymph. The dynamic uptake of Gd-DOTA in the perilymphatic compartments reached an initial plateau 80min after IV administration and continued to slightly increase to a maximum level by 100min. The perilymph volume demonstrated by Gd-DOTA uptake was statistically significantly larger in the IV group (1.72mm(3)) than in the IT group (1.28mm(3)) (p<0.05).
Collapse
Affiliation(s)
- Jing Zou
- Department of Otolaryngology, University of Tampere, Medical School, FM1, 3rd Floor, Biokatu 6, 33520 Tampere, Finland.
| | | | | | | | | | | |
Collapse
|
17
|
Tomo I, Le Calvez S, Maier H, Boutet de Monvel J, Fridberger A, Ulfendahl M. Imaging the living inner ear using intravital confocal microscopy. Neuroimage 2007; 35:1393-400. [PMID: 17382563 DOI: 10.1016/j.neuroimage.2007.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 02/01/2007] [Accepted: 02/09/2007] [Indexed: 11/25/2022] Open
Abstract
Confocal laser scanning microscopy permits detailed visualization of structures deep within thick fluorescently labeled specimen. This makes it possible to investigate living cells inside intact tissue without prior chemical sample fixation and sectioning. Isolated guinea pig temporal bones have previously been used for confocal experiments in vitro, but tissue deterioration limits their use to a few hours after the death of the animal. In order to preserve the cochlea in an optimal functional and physiological condition, we have developed an in vivo model based on a confocal microscopy approach. Using a ventral surgical approach, the inner ear is exposed in deeply anaesthetized, tracheotomized, living guinea pigs. To label the inner ear structures, scala tympani is perfused via an opening in the basal turn, delivering tissue culture medium with fluorescent vital dyes (RH 795 and calcein AM). An apical opening is made in the bony shell of cochlea to enable visualization using a custom-built objective lens. Intravital confocal microscopy, with preserved blood and nerve supply, may offer an important tool for studying auditory physiology and the pathology of hearing loss. After acoustic overstimulation, shortening and swelling of the sensory hair cells were observed.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Cochlea/anatomy & histology
- Ear, Inner/anatomy & histology
- Ear, Inner/physiology
- Guinea Pigs
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/pathology
- Hair Cells, Auditory, Outer/physiology
- Hair Cells, Auditory, Outer/ultrastructure
- Image Processing, Computer-Assisted
- Microscopy, Confocal
- Noise/adverse effects
- Scala Tympani/anatomy & histology
- Scala Tympani/physiology
Collapse
Affiliation(s)
- Igor Tomo
- Center for Hearing and Communication Research, Karolinska Institutet, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Shinomori Y, Spack DS, Jones DD, Kimura RS. Volumetric and dimensional analysis of the guinea pig inner ear. Ann Otol Rhinol Laryngol 2001; 110:91-8. [PMID: 11201817 DOI: 10.1177/000348940111000117] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to provide accurate volumetric data on the fluid spaces and soft tissue in the guinea pig inner ear by measuring all histologic serial sections by means of Metamorph Imaging Software at 400x to 1,000x magnification. The total endolymph volume of the inner ear was 4.691 mm3, of which 1.501 mm3 was in the cochlea, 3.090 mm3 in the vestibular labyrinth, and 0.100 mm3 in the endolymphatic duct and sac. The total perilymph volume was 15.938 mm3, of which 8.867 mm3 was in the cochlea and 7.071 mm3 in the vestibular labyrinth. The volume of the organ of Corti per millimeter length increased toward the apex, but the volumes of the stria vascularis, spiral ligament, and spiral limbus decreased. The volume of the macula utriculi was larger than that of the macula sacculi. The measurement of the luminal surface area of the stria vascularis was 3.944 mm2, and that of the vestibular dark cells was 5.772 mm2.
Collapse
Affiliation(s)
- Y Shinomori
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
19
|
Lohuis PJ, Börjesson PK, Klis SF, Smoorenburg GF. The rat cochlea in the absence of circulating adrenal hormones: an electrophysiological and morphological study. Hear Res 2000; 143:189-96. [PMID: 10771196 DOI: 10.1016/s0378-5955(00)00043-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Circulating adrenal hormones affect strial function. Removal of endogenous levels of adrenal steroids by bilateral adrenalectomy (ADX) in rats causes a decrease of Na(+)/K(+)-ATPase activity in the cochlear lateral wall [Rarey et al., 1989. Arch. Otolaryngol. Head Neck Surg. 115, 817-821] and a decrease of the volume of the marginal cells in the stria vascularis [Lohuis et al., 1990. Acta Otolaryngol. (Stockh.) 110, 348-356]. To study further the effect of absence of circulating adrenocorticosteroids on cochlear function, 18 male Long Evans rats underwent either an ADX or a SHAM operation. Electrocochleography was performed 1 week after surgery for tone bursts in a frequency range of 1-16 kHz. Thereafter, the cochleas were harvested and examined histologically. No significant changes in the amplitude growth curves of the summating potential (SP), the compound action potential (CAP) and the cochlear microphonics (CM) were detected after ADX. However, visually, there appeared to be a decrease of endolymphatic volume (tentatively called imdrops). Reissner's membrane (RM) extended less into scala vestibuli in ADX animals than in SHAM-operated animals. The ratio between the length of RM and the straight distance between the medial and lateral attachment points of RM were used as an objective measure to quantify this effect in each sub-apical half turn of the cochlea. The decrease in length of RM was statistically significant. Thus, circulating adrenal hormones appear to be necessary for normal cochlear fluid homeostasis. Absence of one or more of these hormones leads to shrinkage of the scala media (imdrops). However, the absence of adrenal hormones does not affect the gross cochlear potentials. Apparently, the cochlea is capable of compensating for the absence of circulating adrenal hormones to sustain the conditions necessary for proper cochlear transduction.
Collapse
Affiliation(s)
- P J Lohuis
- Hearing Research Laboratories, Department of Otorhinolaryngology, University Medical Center, Room G.02.531, Heidelberglaan 100, NL-3584 CX, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Lohuis PJ, Klis SF, Klop WM, van Emst MG, Smoorenburg GF. Signs of endolymphatic hydrops after perilymphatic perfusion of the guinea pig cochlea with cholera toxin; a pharmacological model of acute endolymphatic hydrops. Hear Res 1999; 137:103-13. [PMID: 10545638 DOI: 10.1016/s0378-5955(99)00130-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There are indications that endolymph homeostasis is controlled by intracellular cAMP levels in cells surrounding the scala media. Cholera toxin is a potent stimulator of adenylate cyclase, i.e. it increases cAMP levels. We hypothesized that perilymphatic perfusion of cholera toxin might increase endolymph volume by stimulating adenylate cyclase activity, providing us with a pharmacological model of acute endolymphatic hydrops (EH). Guinea pig cochleas were perfused with artificial perilymph (15 min), with or without cholera toxin (10 microg/ml). The endocochlear potential (EP) was measured during and after perfusion. The summating potential (SP), evoked by 2, 4 and 8 kHz tone bursts, was measured via an apically placed electrode 0, 1, 2, 3 and 4 h after perfusion. Thereafter, the cochleas were fixed to enable measurement of the length of Reissner's membrane, reflecting EH. After perfusion the EP increased significantly over time in the cholera toxin group as compared to the controls. Also, the SP increased gradually at all frequencies in the cholera toxin group. Comparison within animals showed that the increase in SP became significant after 2 h at 4 kHz, after 3 h at 2 kHz and after 4 h at 8 kHz. In the control group the SP did not change significantly. The compound action potential (CAP) amplitude decreased monotonically over time at all frequencies in both the cholera toxin group and the control group, but it decreased faster in the cholera toxin group. Also, the cochlear microphonics amplitude decreased over time at all frequencies in both groups, but the decrease was significant only in the cholera toxin group after 3 h at 2 and 4 kHz. Quantification of the length of Reissner's membrane showed a small but insignificant enlargement in the cholera toxin treated animals compared to controls. These results are in accord with our view that EH is accompanied by an increase in SP and a decrease in CAP. Our results partially confirm previous results of Feldman and Brusilow (Proc. Natl. Acad. Sci. USA (1973) 73, 1761-1764). New aspects in relation to that study are the significantly increased EP and SP. In the classical EH model, based on obstruction of the absorptive function of the endolymphatic sac, increased SPs are accompanied by decreased EPs. In this cholera toxin model of EH, it is unlikely that the endolymphatic sac is involved. Apparently, EH can be based on mechanisms located in the cochlea itself as opposed to mechanisms located in the endolymphatic sac.
Collapse
Affiliation(s)
- P J Lohuis
- Hearing Research Laboratories, Department of Otorhinolaryngology, Utrecht University, Room G.02.531, Heidelberglaan 100, NL-3584 CX, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Thorne M, Salt AN, DeMott JE, Henson MM, Henson OW, Gewalt SL. Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images. Laryngoscope 1999; 109:1661-8. [PMID: 10522939 DOI: 10.1097/00005537-199910000-00021] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To establish the dimensions and volumes of the cochlear fluid spaces. STUDY DESIGN Fluid space volumes, lengths, and cross-sectional areas were derived for the cochleas from six species: human, guinea pig, bat, rat, mouse, and gerbil. METHODS Three-dimensional reconstructions of the fluid spaces were made from magnetic resonance microscopy (MRM) images. Consecutive serial slices composed of isotropic voxels (25 microm3) representing the entire volume of fixed, isolated cochleas were obtained. The boundaries delineating the fluid spaces, including Reissner's membrane, were resolved for all specimens, except for the human, in which Reissner's membrane was not consistently resolved. Three-dimensional reconstructions of the endolymphatic and perilymphatic fluid spaces were generated. Fluid space length and variation of cross-sectional area with distance were derived by an algorithm that followed the midpoint of the space along the length of the spiral. The total volume of each fluid space was derived from a voxel count for each specimen. RESULTS Length, volume, and cross-sectional areas are provided for six species. In all cases, the length of the endolymphatic fluid space was consistently longer than that of either perilymphatic scala, primarily as a result of a greater radius of curvature. For guinea pig specimens, the measured volumes of the fluid spaces were considerably lower than those suggested by previous reports based on histological data. CONCLUSIONS The quantification of cochlear fluid spaces provided by this study will enable the more accurate calculation of drug and other solute movements in fluids of the inner ear during experimental or clinical manipulations.
Collapse
Affiliation(s)
- M Thorne
- Department of Otolaryngology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|