1
|
Natarajan N, Batts S, Stankovic KM. Noise-Induced Hearing Loss. J Clin Med 2023; 12:2347. [PMID: 36983347 PMCID: PMC10059082 DOI: 10.3390/jcm12062347] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Noise-induced hearing loss (NIHL) is the second most common cause of sensorineural hearing loss, after age-related hearing loss, and affects approximately 5% of the world's population. NIHL is associated with substantial physical, mental, social, and economic impacts at the patient and societal levels. Stress and social isolation in patients' workplace and personal lives contribute to quality-of-life decrements which may often go undetected. The pathophysiology of NIHL is multifactorial and complex, encompassing genetic and environmental factors with substantial occupational contributions. The diagnosis and screening of NIHL are conducted by reviewing a patient's history of noise exposure, audiograms, speech-in-noise test results, and measurements of distortion product otoacoustic emissions and auditory brainstem response. Essential aspects of decreasing the burden of NIHL are prevention and early detection, such as implementation of educational and screening programs in routine primary care and specialty clinics. Additionally, current research on the pharmacological treatment of NIHL includes anti-inflammatory, antioxidant, anti-excitatory, and anti-apoptotic agents. Although there have been substantial advances in understanding the pathophysiology of NIHL, there remain low levels of evidence for effective pharmacotherapeutic interventions. Future directions should include personalized prevention and targeted treatment strategies based on a holistic view of an individual's occupation, genetics, and pathology.
Collapse
Affiliation(s)
- Nirvikalpa Natarajan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Reynolds A, Bielefeld EC. Music as a unique source of noise-induced hearing loss. Hear Res 2023; 430:108706. [PMID: 36736160 DOI: 10.1016/j.heares.2023.108706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/06/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Music is among the most important artistic, cultural, and entertainment modalities in any society. With the proliferation of music genres and the technological advances that allow people to consume music in any location and at any time, music over-exposure has become a significant public health issue. Music-induced hearing loss has a great deal in common with noise-induced hearing loss. However, there are important differences that make music a unique insult to the auditory system and a unique threat to public health. Its unique properties also make it a potentially valuable asset in sound conditioning paradigms. This review discusses hearing loss from noise and music, comparing and contrasting the two. Recent research on music-induced hearing loss is reviewed, followed by discussion of the differences in music-induced hearing loss between performers and consumers. The review concludes with a discussion of the potential of music as a sound conditioning stimulus to protect against acquired hearing loss.
Collapse
Affiliation(s)
- Alison Reynolds
- Department of Speech and Hearing Science, The Ohio State University, 110 Pressey Hall, 1070 Carmack Road, Columbus, OH 43210, USA
| | - Eric C Bielefeld
- Department of Speech and Hearing Science, The Ohio State University, 110 Pressey Hall, 1070 Carmack Road, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Harrison RT, DeBacker JR, Trevino M, Bielefeld EC, Lobarinas E. Cochlear Preconditioning as a Modulator of Susceptibility to Hearing Loss. Antioxid Redox Signal 2022; 36:1215-1228. [PMID: 34011160 DOI: 10.1089/ars.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: Acquired sensorineural hearing loss is a major public health problem worldwide. The leading causes of sensorineural hearing loss are noise, aging, and ototoxic medications, with the key underlying pathology being damage to the cochlea. The review focuses on the phenomenon of preconditioning, in which the susceptibility to cochlear injury is reduced by exposing the ear to a stressful stimulus. Recent Advances: Cochlear conditioning has focused on the use of mono-modal conditioning, specifically conditioning the cochlea with moderate noise exposures before a traumatic exposure that causes permanent hearing loss. Recently, cross-modal conditioning has been explored more thoroughly, to prevent not only noise-induced hearing loss, but also age-related and drug-induced hearing losses. Critical Issues: Noise exposures that cause only temporary threshold shifts (TTSs) can cause long-term synaptopathy, injury to the synapses between the inner hair cells and spiral ganglion cells. This discovery has the potential to significantly alter the field of cochlear preconditioning with noise. Further, cochlear preconditioning can be the gateway to the development of clinically deployable therapeutics. Therefore, understanding the underlying mechanisms of conditioning is crucial for optimizing clinical protection against sensorineural hearing loss. Future Directions: Before the discovery of synaptopathy, noise exposures that caused only TTSs were believed to be either harmless or potentially beneficial. Any considerations of preconditioning with noise must consider the potential for injury to the synapses. Further, the discovery of different methods to precondition the cochlea against injury will yield new avenues for protection against hearing loss in the vulnerable populations. Antioxid. Redox Signal. 36, 1215-1228.
Collapse
Affiliation(s)
- Ryan T Harrison
- Department of Speech and Hearing Science, The Ohio State University, Columbus, Ohio, USA
| | - J Riley DeBacker
- Department of Speech and Hearing Science, The Ohio State University, Columbus, Ohio, USA
| | - Monica Trevino
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| | - Eric C Bielefeld
- Department of Speech and Hearing Science, The Ohio State University, Columbus, Ohio, USA
| | - Edward Lobarinas
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
4
|
Campbell K, Cosenza N, Meech R, Buhnerkempe M, Qin J, Rybak L, Fox D. Preloaded D-methionine protects from steady state and impulse noise-induced hearing loss and induces long-term cochlear and endogenous antioxidant effects. PLoS One 2021; 16:e0261049. [PMID: 34879107 PMCID: PMC8654202 DOI: 10.1371/journal.pone.0261049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
Objective Determine effective preloading timepoints for D-methionine (D-met) otoprotection from steady state or impulse noise and impact on cochlear and serum antioxidant measures. Design D-met started 2.0-, 2.5-, 3.0-, or 3.5- days before steady-state or impulse noise exposure with saline controls. Auditory brainstem response (ABRs) measured from 2 to 20 kHz at baseline and 21 days post-noise. Samples were then collected for serum (SOD, CAT, GR, GPx) and cochlear (GSH, GSSG) antioxidant levels. Study sample Ten Chinchillas per group. Results Preloading D-met significantly reduced ABR threshold shifts for both impulse and steady state noise exposures but with different optimal starting time points and with differences in antioxidant measures. For impulse noise exposure, the 2.0, 2.5, and 3.0 day preloading start provide significant threshold shift protection at all frequencies. Compared to the saline controls, serum GR for the 3.0 and 3.5 day preloading groups was significantly increased at 21 days with no significant increase in SOD, CAT or GPx for any impulse preloading time point. Cochlear GSH, GSSG, and GSH/GSSG ratio were not significantly different from saline controls at 21 days post noise exposure. For steady state noise exposure, significant threshold shift protection occurred at all frequencies for the 3.5, 3.0 and 2.5 day preloading start times but protection only occurred at 3 of the 6 test frequencies for the 2.0 day preloading start point. Compared to the saline controls, preloaded D-met steady-state noise groups demonstrated significantly higher serum SOD for the 2.5–3.5 day starting time points and GPx for the 2.5 day starting time but no significant increase in GR or CAT for any preloading time point. Compared to saline controls, D-met significantly increased cochlear GSH concentrations in the 2 and 2.5 day steady-state noise exposed groups but no significant differences in GSSG or the GSH/GSSG ratio were noted for any steady state noise-exposed group. Conclusions The optimal D-met preloading starting time window is earlier for steady state (3.5–2.5 days) than impulse noise (3.0–2.0). At 21 days post impulse noise, D-met increased serum GR for 2 preloading time points but not SOD, CAT, or GpX and not cochlear GSH, GSSG or the GSH/GSSG ratio. At 21 days post steady state noise D-met increased serum SOD and GPx at select preloading time points but not CAT or GR. However D-met did increase the cochlear GSH at select preloading time points but not GSSG or the GSH/GSSG ratio.
Collapse
Affiliation(s)
- Kathleen Campbell
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- * E-mail:
| | - Nicole Cosenza
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Robert Meech
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Michael Buhnerkempe
- Department of Internal Medicine, Statistics, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Jun Qin
- Department of Engineering, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Leonard Rybak
- Department of Otolaryngology Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Daniel Fox
- Department of Clinical Research, Springfield Clinic, Springfield, Illinois, United States of America
| |
Collapse
|
5
|
Manohar S, Ding D, Jiang H, Li L, Chen GD, Kador P, Salvi R. Combined antioxidants and anti-inflammatory therapies fail to attenuate the early and late phases of cyclodextrin-induced cochlear damage and hearing loss. Hear Res 2021; 414:108409. [PMID: 34953289 DOI: 10.1016/j.heares.2021.108409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 12/06/2021] [Indexed: 11/04/2022]
Abstract
Niemann-Pick C1 (NPC1) is a fatal neurodegenerative disease caused by aberrant cholesterol metabolism. The progression of the disease can be slowed by removing excess cholesterol with high-doses of 2-hyroxypropyl-beta-cyclodextrin (HPβCD). Unfortunately, HPβCD causes hearing loss; the initial first phase involves a rapid destruction of outer hair cells (OHCs) while the second phase, occurring 4-6 weeks later, involves the destruction of inner hair cells (IHCs), pillar cells, collapse of the organ of Corti and spiral ganglion neuron degeneration. To determine whether the first and/or second phase of HPβCD-induced cochlear damage is linked, in part, to excess oxidative stress or neuroinflammation, rats were treated with a single-dose of 3000 mg/kg HPβCD alone or together with one of two combination therapies. Each combination therapy was administered from 2-days before to 6-weeks after the HPβCD treatment. Combination 1 consisted of minocycline, an antibiotic that suppresses neuroinflammation, and HK-2, a multifunctional redox modulator that suppresses oxidative stress. Combination 2 was comprised of minocycline plus N-acetyl cysteine (NAC), which upregulates glutathione, a potent antioxidant. To determine if either combination therapy could prevent HPβCD-induced hearing impairment and cochlear damage, distortion product otoacoustic emissions (DPOAE) were measured to assess OHC function and the cochlear compound action potential (CAP) was measured to assess the function of IHCs and auditory nerve fibers. Cochleograms were prepared to quantify the amount of OHC, IHC and pillar cell (PC) loss. HPβCD significantly reduced DPOAE and CAP amplitudes and caused significant OHC, IHC and OPC losses with losses greater in the high-frequency base of the cochlea than the apex. Neither minocycline + HK-2 (MIN+ HK-2) nor minocycline + NAC (MIN+NAC) prevented the loss of DPOAEs, CAPs, OHCs, IHCs or IPCs caused by HPβCD. These results suggest that oxidative stress and neuroinflammation are unlikely to play major roles in mediating the first or second phase of HPβCD-induced cochlear damage. Thus, HPβCD-induced ototoxicity must be mediated by some other unknown cell-death pathway possibly involving loss of trophic support from damaged support cells or disrupted cholesterol metabolism.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Li Li
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Peter Kador
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA.
| |
Collapse
|
6
|
Current topics in hearing research: Deafferentation and threshold independent hearing loss. Hear Res 2021; 419:108408. [PMID: 34955321 DOI: 10.1016/j.heares.2021.108408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
Hearing research findings in recent years have begun to change how we think about hearing loss and how we consider the risk of auditory damage from noise exposure. These findings include evidence of noise-induced cochlear damage in the absence of corresponding permanent threshold elevation or evidence of hair cell loss. Animal studies in several species have shown that noise exposures that produce robust but only temporary threshold shifts can permanently damage inner hair cell synaptic ribbons. This type of synaptic degeneration has also been shown to occur as a result of aging in animals and humans. The emergence of these data has motivated a number of clinical studies aimed at identifying the perceptual correlates associated with synaptopathy. The deficits believed to arise from synaptopathy include poorer hearing in background noise, tinnitus and hyperacusis (loudness intolerance). However, the findings from human studies have been mixed. Key questions remain as to whether synaptopathy reliably produces suprathreshold perceptual deficits or whether it serves as an early indicator of auditory damage with suprathreshold deficits emerging later as a function of further cochlear damage. Here, we provide an overview of both human and animal studies that explore the relationship among inner hair cell damage, including loss of afferent synapses, auditory thresholds, and suprathreshold measures of hearing.
Collapse
|
7
|
Kador PF, Salvi R. Multifunctional Redox Modulators Protect Auditory, Visual, and Cognitive Function. Antioxid Redox Signal 2021; 36:1136-1157. [PMID: 34162214 PMCID: PMC9221172 DOI: 10.1089/ars.2021.0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022]
Abstract
Significance: Oxidative stress contributes to vision, hearing and neurodegenerative disorders. Currently, no treatments prevent these disorders; therefore, there is an urgent need for redox modulators that can prevent these disorders. Recent Advances: Oxidative stress is associated with the generation of reactive oxygen species (ROS) and reactive nitrogen species, metal dyshomeostasis, and mitochondrial dysfunction. Here, we discuss the role that oxidative stress and metal dyshomeostasis play in hearing loss, visual impairments, and neurodegeneration and discuss the benefits of a new class of multifunctional redox modulators (MFRMs) that suppress sensory and neural degeneration. MFRMs not only reduce free radicals but also independently bind transition metals associated with the generation of hydroxyl radicals. The MFRMs redistribute zinc from neurotoxic amyloid beta zinc (Aβ:Zn) complexes to the cytoplasm, facilitating the degradation of Aβ plaques by matrix metalloprotease-2 (MMP-2). Although MFRMs bind copper (Cu1+, Cu2+), iron (Fe2+, Fe3+), zinc (Zn2+), and manganese (Mn2+), they do not deplete free cytoplasmic Zn+2 and they protect mitochondria from Mn+2-induced dysfunction. Oral administration of MFRMs reduce ROS-induced cataracts, protect the retina from light-induced degeneration, reduce neurotoxic Aβ:Zn plaque formation, and protect auditory hair cells from noise-induced hearing loss. Critical Issues: Regulation of redox balance is essential for clinical efficacy in maintaining sensory functions. Future Directions: Future use of these MFRMs requires additional pharmacokinetic, pharmacodynamics, and toxicological data to bring them into widespread clinical use. Additional animal studies are also needed to determine whether MFRMs can prevent neurodegeneration, dementia, and other forms of vision and hearing loss.
Collapse
Affiliation(s)
- Peter F. Kador
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
8
|
Association Analysis of Candidate Gene Polymorphisms and Audiometric Measures of Noise-Induced Hearing Loss in Young Musicians. Otol Neurotol 2021; 41:e538-e547. [PMID: 32176153 DOI: 10.1097/mao.0000000000002615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION This study aimed to investigate the association between candidate genetic variants and audiometric measures of noise-induced hearing loss (NIHL) in young musicians. METHODS The study analyzed a database by Phillips et al. (Feasibility of a bilateral 4000-6000 Hz notch as a phenotype for genetic association analysis. Int J Audiol 2015;54:645-52.) which included behavioral hearing thresholds, distortion-product otoacoustic emissions (DPOAE), tympanometric, and genetic data of 166 participants meeting the inclusion criteria. Nineteen single nucleotide polymorphisms (SNPs) in 13 cochlear genes previously associated with NIHL in factory workers were included in the present investigation. The average hearing threshold at 3000 and 4000 Hz (AHT) and average DPOAE signal to noise ratio (DPOAE SNR) in both ears were calculated. RESULTS The regression analyses showed that two SNPs- one in KCNE1 (rs2070358) and the other in CAT (rs12273124) revealed a statistically significant relationship with DPOAE SNR in both ears. Two SNPs in MYH14 and one in GJB4 revealed a significant association with DPOAE SNR in the left ear. Two SNPs in HSP70, one in CDH23 and one in KCNJ10 showed significant association with DPOAE SNR in the right ear. None of the included SNPs showed association with AHT in both ears. CONCLUSIONS A genetic variant in KCNE1 was associated with the strength of the cochlear amplifier as assessed by DPOAE SNR. Musicians carrying causal genetic variants to NIHL might exhibit changes in their auditory functions early in the lifespan even when most subjects had their hearing thresholds within normal limits. These participants are likely to show the clinical manifestation of NIHL in the future if no preventive measures are applied.
Collapse
|
9
|
Alvarado JC, Fuentes-Santamaría V, Melgar-Rojas P, Gabaldón-Ull MC, Cabanes-Sanchis JJ, Juiz JM. Oral Antioxidant Vitamins and Magnesium Limit Noise-Induced Hearing Loss by Promoting Sensory Hair Cell Survival: Role of Antioxidant Enzymes and Apoptosis Genes. Antioxidants (Basel) 2020; 9:E1177. [PMID: 33255728 PMCID: PMC7761130 DOI: 10.3390/antiox9121177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Noise induces oxidative stress in the cochlea followed by sensory cell death and hearing loss. The proof of principle that injections of antioxidant vitamins and Mg2+ prevent noise-induced hearing loss (NIHL) has been established. However, effectiveness of oral administration remains controversial and otoprotection mechanisms are unclear. Using auditory evoked potentials, quantitative PCR, and immunocytochemistry, we explored effects of oral administration of vitamins A, C, E, and Mg2+ (ACEMg) on auditory function and sensory cell survival following NIHL in rats. Oral ACEMg reduced auditory thresholds shifts after NIHL. Improved auditory function correlated with increased survival of sensory outer hair cells. In parallel, oral ACEMg modulated the expression timeline of antioxidant enzymes in the cochlea after NIHL. There was increased expression of glutathione peroxidase-1 and catalase at 1 and 10 days, respectively. Also, pro-apoptotic caspase-3 and Bax levels were diminished in ACEMg-treated rats, at 10 and 30 days, respectively, following noise overstimulation, whereas, at day 10 after noise exposure, the levels of anti-apoptotic Bcl-2, were significantly increased. Therefore, oral ACEMg improves auditory function by limiting sensory hair cell death in the auditory receptor following NIHL. Regulation of the expression of antioxidant enzymes and apoptosis-related proteins in cochlear structures is involved in such an otoprotective mechanism.
Collapse
Affiliation(s)
- Juan C. Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (V.F.-S.); (P.M.-R.); (M.C.G.-U.); (J.J.C.-S.)
| | - Verónica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (V.F.-S.); (P.M.-R.); (M.C.G.-U.); (J.J.C.-S.)
| | - Pedro Melgar-Rojas
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (V.F.-S.); (P.M.-R.); (M.C.G.-U.); (J.J.C.-S.)
| | - María C. Gabaldón-Ull
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (V.F.-S.); (P.M.-R.); (M.C.G.-U.); (J.J.C.-S.)
| | - José J. Cabanes-Sanchis
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (V.F.-S.); (P.M.-R.); (M.C.G.-U.); (J.J.C.-S.)
| | - José M. Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (V.F.-S.); (P.M.-R.); (M.C.G.-U.); (J.J.C.-S.)
- Department of Otolaryngology, Hannover Medical School, NIFE-VIANNA, Cluster of Excellence Hearing4all-German Research Foundation, 30625 Hannover, Germany
| |
Collapse
|
10
|
Antioxidant Therapy against Oxidative Damage of the Inner Ear: Protection and Preconditioning. Antioxidants (Basel) 2020; 9:antiox9111076. [PMID: 33147893 PMCID: PMC7693733 DOI: 10.3390/antiox9111076] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is an important mechanism underlying cellular damage of the inner ear, resulting in hearing loss. In order to prevent hearing loss, several types of antioxidants have been investigated; several experiments have shown their ability to effectively prevent noise-induced hearing loss, age-related hearing loss, and ototoxicity in animal models. Exogenous antioxidants has been used as single therapeutic agents or in combination. Antioxidant therapy is generally administered before the production of reactive oxygen species. However, post-exposure treatment could also be effective. Preconditioning refers to the phenomenon of pre-inducing a preventative pathway by subtle stimuli that do not cause permanent damage in the inner ear. This renders the inner ear more resistant to actual stimuli that cause permanent hearing damage. The preconditioning mechanism is also related to the induction of antioxidant enzymes. In this review, we discuss the mechanisms underlying antioxidant-associated therapeutic effects and preconditioning in the inner ear.
Collapse
|
11
|
Hsp70/Bmi1-FoxO1-SOD Signaling Pathway Contributes to the Protective Effect of Sound Conditioning against Acute Acoustic Trauma in a Rat Model. Neural Plast 2020; 2020:8823785. [PMID: 33082778 PMCID: PMC7556106 DOI: 10.1155/2020/8823785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Sound conditioning (SC) is defined as “toughening” to lower levels of sound over time, which reduces a subsequent noise-induced threshold shift. Although the protective effect of SC in mammals is generally understood, the exact mechanisms involved have not yet been elucidated. To confirm the protective effect of SC against noise exposure (NE) and the stress-related signaling pathway of its rescue, we observed target molecule changes caused by SC of low frequency prior to NE as well as histology analysis in vivo and verified the suggested mechanisms in SGNs in vitro. Further, we investigated the potential role of Hsp70 and Bmi1 in SC by targeting SOD1 and SOD2 which are regulated by the FoxO1 signaling pathway based on mitochondrial function and reactive oxygen species (ROS) levels. Finally, we sought to identify the possible molecular mechanisms associated with the beneficial effects of SC against noise-induced trauma. Data from the rat model were evaluated by western blot, immunofluorescence, and RT-PCR. The results revealed that SC upregulated Hsp70, Bmi1, FoxO1, SOD1, and SOD2 expression in spiral ganglion neurons (SGNs). Moreover, the auditory brainstem responses (ABRs) and electron microscopy revealed that SC could protect against acute acoustic trauma (AAT) based on a significant reduction of hearing impairment and visible reduction in outer hair cell loss as well as ultrastructural changes in OHCs and SGNs. Collectively, these results suggested that the contribution of Bmi1 toward decreased sensitivity to noise-induced trauma following SC was triggered by Hsp70 induction and associated with enhancement of the antioxidant system and decreased mitochondrial superoxide accumulation. This contribution of Bmi1 was achieved by direct targeting of SOD1 and SOD2, which was regulated by FoxO1. Therefore, the Hsp70/Bmi1-FoxO1-SOD signaling pathway might contribute to the protective effect of SC against AAT in a rat model.
Collapse
|
12
|
Zhang C, Frye MD, Sun W, Sharma A, Manohar S, Salvi R, Hu BH. New insights on repeated acoustic injury: Augmentation of cochlear susceptibility and inflammatory reaction resultant of prior acoustic injury. Hear Res 2020; 393:107996. [PMID: 32534268 DOI: 10.1016/j.heares.2020.107996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
In industrial and military settings, individuals who suffer from one episode of acoustic trauma are likely to sustain another episode of acoustic stress, creating an opportunity for a potential interaction between the two stress conditions. We previously demonstrated that acoustic overstimulation perturbs the cochlear immune environment. However, how the cochlear immune system responds to repeated acoustic overstimulation is unknown. Here, we used a mouse model to investigate the cochlear immune response to repeated stress. We reveal that exposure to an intense noise at 120 dB SPL for 1 h activates the cochlear immune response in a time-dependent fashion with substantial expansion and activation of the macrophage population in the cochlea at 2-days post-exposure. At 20-days post-exposure, the number and pro-inflammatory phenotypes of cochlear macrophages have significantly subsided, but have yet to return to homeostatic levels. Monocytes with anti-inflammatory phenotypes are recruited into the cochlea. With the presence of this residual immune activation, a second exposure to the same noise provokes an exaggerated inflammatory response as evidenced by exacerbated maturation of macrophages. Furthermore, the second noise causes greater sensory cell pathogenesis. Unlike the first noise-induced damage that occurs mainly between 0 and 2 days post-exposure, the second noise-induced damage occurs more frequently between 2 and 20 days post-exposure, the period when secondary damage takes place. These observations suggest that repeated acoustic overstimulation exacerbates cochlear inflammation and secondary sensory cell pathogenesis. Together, our results suggest that the cochlear immune system plays an important role in modulating cochlear responses to repeated acoustic stress.
Collapse
Affiliation(s)
- Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Mitchell D Frye
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Wei Sun
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Ashu Sharma
- Department of Oral Biology, University at Buffalo, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA, 14214.
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| |
Collapse
|
13
|
Fan L, Zhang Z, Wang H, Li C, Xing Y, Yin S, Chen Z, Wang J. Pre-exposure to Lower-Level Noise Mitigates Cochlear Synaptic Loss Induced by High-Level Noise. Front Syst Neurosci 2020; 14:25. [PMID: 32477075 PMCID: PMC7235317 DOI: 10.3389/fnsys.2020.00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
The auditory sensory organs appear to be less damaged by exposure to high-level noise that is presented after exposure to non-traumatizing low-level noise. This phenomenon is known as the toughening or conditioning effect. Functionally, it is manifested by a reduced threshold shift, and morphologically by a reduced hair cell loss. However, it remains unclear whether prior exposure to toughening noise can mitigate the synaptic loss induced by exposure to damaging noise. Since the cochlear afferent synapse between the inner hair cells and primary auditory neurons has been identified as a novel site involved in noise-induced cochlear damage, we were interested in assessing whether this synapse can be toughened. In the present study, the synaptic loss was induced by a damaging noise exposure (106 dB SPL) and compared across Guinea pigs who had and had not been previously exposed to a toughening noise (85 dB SPL). Results revealed that the toughening noise heavily reduced the synaptic loss observed 1 day after exposure to the damaging noise. Although it was significant, the protective effect of the toughening noise on permanent synaptic loss was much smaller. Compared with cases in the control group without noise exposure, coding deficits were seen in both toughened groups, as reflected in the compound action potential (CAP) by signals with amplitude modulation. In general, the pre-exposure to the toughening noise resulted in a significantly reduced synaptic loss by the high-level noise. However, this morphological protection was not accompanied by a robust functional benefit.
Collapse
Affiliation(s)
- Liqiang Fan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hui Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Chunyan Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yazhi Xing
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhengnong Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jian Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,School of Communication Sciences and Disorders, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
14
|
Novel oral multifunctional antioxidant prevents noise-induced hearing loss and hair cell loss. Hear Res 2020; 388:107880. [PMID: 31945692 DOI: 10.1016/j.heares.2019.107880] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/09/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022]
Abstract
Oxidative stress is a major contributor to noise-induced hearing loss, the most common cause of hearing loss among military personnel and young adults. HK-2 is a potent, orally-active, multifunctional, redox-modulating drug that has been shown to protect against a wide range of neurological disorders with no observed side effects. HK-2 protected cochlear HEI-OC1 cells against various forms of experimentally-induced oxidative stressors similar to those observed during and after intense noise exposure. The mechanisms by which HK-2 protects cells is twofold, first by its ability to reduce oxidative stress generated by free radicals, and second, by its ability to complex biologically active transition metals such as Fe+2, thus reducing their availability to participate in the Fenton reaction where highly toxic hydroxyl radicals are generated. For the rat in vivo studies, HK-2 provided significant protection against noise-induced hearing loss and hair cell loss. Noise-induced hearing loss was induced by an 8-16 kHz octave band noises presented for 8 h/d for 21 days at an intensity of 95 dB SPL. In the Prevention study, HK-2 was administered orally beginning 5 days before the start of the noise and ending 10 days after the noise. Treatment with HK-2 dose-dependently reduced the amount of noise-induced hearing impairment, reflected in the cochlear compound action potential, and noise-induced hair cell loss. In a subsequent Rescue experiment in which HK-2 was administered for 10 days starting after the noise was turned off, HK-2 also significantly reduced the amount of hearing impairment, but the effect size was substantially less than in the Prevention studies. HK-2 alone did not adversely affect HEI-OC1 cell viability, nor did it cause any adverse changes in rat body weight, behavior, cochlear function or hair cell integrity. Thus, HK-2 is a novel, safe, orally-deliverable and highly effective otoprotective compound with considerable potential for preventing hearing loss from noise and other hearing disorders linked to excessive oxidative stress.
Collapse
|
15
|
Trevino M, Lobarinas E, Maulden AC, Heinz MG. The chinchilla animal model for hearing science and noise-induced hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3710. [PMID: 31795699 PMCID: PMC6881193 DOI: 10.1121/1.5132950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 05/07/2023]
Abstract
The chinchilla animal model for noise-induced hearing loss has an extensive history spanning more than 50 years. Many behavioral, anatomical, and physiological characteristics of the chinchilla make it a valuable animal model for hearing science. These include similarities with human hearing frequency and intensity sensitivity, the ability to be trained behaviorally with acoustic stimuli relevant to human hearing, a docile nature that allows many physiological measures to be made in an awake state, physiological robustness that allows for data to be collected from all levels of the auditory system, and the ability to model various types of conductive and sensorineural hearing losses that mimic pathologies observed in humans. Given these attributes, chinchillas have been used repeatedly to study anatomical, physiological, and behavioral effects of continuous and impulse noise exposures that produce either temporary or permanent threshold shifts. Based on the mechanistic insights from noise-exposure studies, chinchillas have also been used in pre-clinical drug studies for the prevention and rescue of noise-induced hearing loss. This review paper highlights the role of the chinchilla model in hearing science, its important contributions, and its advantages and limitations.
Collapse
Affiliation(s)
- Monica Trevino
- School of Behavioral and Brain Sciences, Callier Center, The University of Texas at Dallas, 1966 Inwood Road, Dallas, Texas 75235, USA
| | - Edward Lobarinas
- School of Behavioral and Brain Sciences, Callier Center, The University of Texas at Dallas, 1966 Inwood Road, Dallas, Texas 75235, USA
| | - Amanda C Maulden
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, Indiana 47907, USA
| | - Michael G Heinz
- Weldon School of Biomedical Engineering, Purdue University, 715 Clinic Drive, West Lafayette, Indiana 47907, USA
| |
Collapse
|
16
|
Shin SA, Lyu AR, Jeong SH, Kim TH, Park MJ, Park YH. Acoustic Trauma Modulates Cochlear Blood Flow and Vasoactive Factors in a Rodent Model of Noise-Induced Hearing Loss. Int J Mol Sci 2019; 20:ijms20215316. [PMID: 31731459 PMCID: PMC6862585 DOI: 10.3390/ijms20215316] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Noise exposure affects the organ of Corti and the lateral wall of the cochlea, including the stria vascularis and spiral ligament. Although the inner ear vasculature and spiral ligament fibrocytes in the lateral wall consist of a significant proportion of cells in the cochlea, relatively little is known regarding their functional significance. In this study, 6-week-old male C57BL/6 mice were exposed to noise trauma to induce transient hearing threshold shift (TTS) or permanent hearing threshold shift (PTS). Compared to mice with TTS, mice with PTS exhibited lower cochlear blood flow and lower vessel diameter in the stria vascularis, accompanied by reduced expression levels of genes involved in vasodilation and increased expression levels of genes related to vasoconstriction. Ultrastructural analyses by transmission electron microscopy revealed that the stria vascularis and spiral ligament fibrocytes were more damaged by PTS than by TTS. Moreover, mice with PTS expressed significantly higher levels of proinflammatory cytokines in the cochlea (e.g., IL-1β, IL-6, and TNF-α). Overall, our findings suggest that cochlear microcirculation and lateral wall pathologies are differentially modulated by the severity of acoustic trauma and are associated with changes in vasoactive factors and inflammatory responses in the cochlea.
Collapse
Affiliation(s)
- Sun-Ae Shin
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-A.S.); (A.-R.L.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Ah-Ra Lyu
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-A.S.); (A.-R.L.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Seong-Hun Jeong
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Tae Hwan Kim
- Biomedical Convergence Research Center, Chungnam National University Hospital, Daejeon 35015, Korea;
| | - Min Jung Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-A.S.); (A.-R.L.)
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (M.J.P.); (Y.-H.P.); Tel.: +82-42-280-7697(M.J.P.); Fax: +82-42-253-4059 (M.J.P.)
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-A.S.); (A.-R.L.)
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (M.J.P.); (Y.-H.P.); Tel.: +82-42-280-7697(M.J.P.); Fax: +82-42-253-4059 (M.J.P.)
| |
Collapse
|
17
|
Lin X, Li G, Zhang Y, Zhao J, Lu J, Gao Y, Liu H, Li GL, Yang T, Song L, Wu H. Hearing consequences in Gjb2 knock-in mice: implications for human p.V37I mutation. Aging (Albany NY) 2019; 11:7416-7441. [PMID: 31562289 PMCID: PMC6782001 DOI: 10.18632/aging.102246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023]
Abstract
Human p.V37I mutation of GJB2 gene was strongly correlated with late-onset progressive hearing loss, especially among East Asia populations. We generated a knock-in mouse model based on human p.V37I variant (c.109G>A) that recapitulated the human phenotype. Cochlear pathology revealed no significant hair cell loss, stria vascularis atrophy or spiral ganglion neuron loss, but a significant change in the length of gap junction plaques, which may have contributed to the observed mild endocochlear potential (EP) drop in homozygous mice lasting lifetime. The cochlear amplification in homozygous mice was compromised, but outer hair cells' function remained unchanged, indicating that the reduced amplification was EP- rather than prestin-generated. In addition to ABR threshold elevation, ABR wave I latencies were also prolonged in aged homozygous animals. We found in homozygous IHCs a significant increase in ICa but no change in Ca2+ efficiency in triggering exocytosis. Environmental insults such as noise exposure, middle ear injection of KCl solution and systemic application of furosemide all exacerbated the pathological phenotype in homozygous mice. We conclude that this Gjb2 mutation-induced hearing loss results from 1) reduced cochlear amplifier caused by lowered EP, 2) IHCs excitotoxicity associated with potassium accumulation around hair cells, and 3) progression induced by environmental insults.
Collapse
Affiliation(s)
- Xin Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Gen Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Jingjing Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Jiawen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Yunge Gao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Geng-Lin Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200125, China
| |
Collapse
|
18
|
Shah RR, Suen JJ, Cellum IP, Spitzer JB, Lalwani AK. The effect of brief subway station noise exposure on commuter hearing. Laryngoscope Investig Otolaryngol 2019; 3:486-491. [PMID: 30599034 PMCID: PMC6302728 DOI: 10.1002/lio2.216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022] Open
Abstract
Objective To demonstrate that brief exposure to subway noise causes temporary threshold shift and is preventable with noise protection. Methods The study was conducted as a randomized crossover trial. Twenty subjects were randomly assigned to two groups, one with hearing protection and one without. Subjects were exposed to subway platform noise for 15 minutes. Pre‐ and post‐exposure pure tone audiometry (PTA) and otoacoustic emissions were compared. After a washout period, subjects switched hearing protection groups and repeated the process. Results A statistically significant reduction in PTA thresholds after subway noise exposure was identified, for subjects with and without hearing protection (P < .001). For exposure without hearing protection, the mean threshold was 5.19 dB pre‐exposure and 3.91 dB post‐exposure (decrease of 1.28 dB; 95% confidence interval, 0.82–1.74). For exposure with hearing protection, the mean threshold was 4.81 dB pre‐exposure and 3.47 dB post‐exposure (decrease of 1.34 dB; 95% confidence interval, 0.89–1.79). Conclusion Brief exposure to subway noise did not cause hearing loss with or without noise protection. Though clinically insignificant, the unexpected finding of reduction in PTA suggests that there are complex heterogeneous short‐ and long‐term cochlear responses to noise exposure that should be further explored. Level of Evidence 1b
Collapse
Affiliation(s)
- Ravi R Shah
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Philadelphia Pennsylvania USA
| | - Jonathan J Suen
- Department of Otolaryngology-Head and Neck Surgery Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Ilana P Cellum
- Department of Otolaryngology-Head and Neck Surgery Columbia University College of Physicians and Surgeons New York New York USA
| | - Jaclyn B Spitzer
- Department of Otolaryngology-Head and Neck Surgery Columbia University College of Physicians and Surgeons New York New York USA
| | - Anil K Lalwani
- Department of Otolaryngology-Head and Neck Surgery Columbia University College of Physicians and Surgeons New York New York USA
| |
Collapse
|
19
|
Musazzi UM, Franzé S, Cilurzo F. Innovative pharmaceutical approaches for the management of inner ear disorders. Drug Deliv Transl Res 2018; 8:436-449. [PMID: 28462501 DOI: 10.1007/s13346-017-0384-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sense of hearing is essential for permitting human beings to interact with the environment, and its dysfunctions can strongly impact on the quality of life. In this context, the cochlea plays a fundamental role in the transformation of the airborne sound waves into electrical signals, which can be processed by the brain. However, several diseases and external stimuli (e.g., noise, drugs) can damage the sensorineural structures of cochlea, inducing progressive hearing dysfunctions until deafness. In clinical practice, the current pharmacological approaches to treat cochlear diseases are based on the almost exclusive use of systemic steroids. In the last decades, the efficacy of novel therapeutic molecules has been proven, taking advantage from a better comprehension of the pathological mechanisms underlying many cochlear diseases. In addition, the feasibility of intratympanic administration of drugs also permitted to overcome the pharmacokinetic limitations of the systemic drug administration, opening new frontiers in drug delivery to cochlea. Several innovative drug delivery systems, such as in situ gelling systems or nanocarriers, were designed, and their efficacy has been proven in vitro and in vivo in cochlear models. The current review aims to describe the art of state in the cochlear drug delivery, highlighting lights and shadows and discussing the most critical aspects still pending in the field.
Collapse
Affiliation(s)
- Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy.
| | - Silvia Franzé
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy
| |
Collapse
|
20
|
Lim HW, Pak K, Ryan AF, Kurabi A. Screening Mammalian Cochlear Hair Cells to Identify Critical Processes in Aminoglycoside-Mediated Damage. Front Cell Neurosci 2018; 12:179. [PMID: 30013464 PMCID: PMC6036173 DOI: 10.3389/fncel.2018.00179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
There is considerable interest in discovering drugs with the potential to protect inner ear hair cells (HCs) from damage. One means of discovery is to screen compound libraries. Excellent screening protocols have been developed employing cell lines derived from the cochlea and zebrafish larvae. However, these do not address the differentiated mammalian hair cell. We have developed a screening method employing micro-explants of the mammalian organ of Corti (oC) to identify compounds with the ability to influence aminoglycoside-induced HC loss. The assay is based on short segments of the neonatal mouse oC, containing ~80 HCs which selectively express green fluorescent protein (GFP). This allows the screening of hundreds of potential protectants in an assay that includes both inner and outer HCs. This review article describes various screening methods, including the micro-explant assay. In addition, two micro-explant screening studies in which antioxidant and kinase inhibitor libraries were evaluated are reviewed. The results from these screens are related to current models of HC damage and protection.
Collapse
Affiliation(s)
- Hyun Woo Lim
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States.,Department of Otolaryngology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Kwang Pak
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States.,San Diego VA Healthcare System, La Jolla, CA, United States
| | - Allen F Ryan
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States.,San Diego VA Healthcare System, La Jolla, CA, United States.,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arwa Kurabi
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
21
|
Apoptotic mechanisms after repeated noise trauma in the mouse medial geniculate body and primary auditory cortex. Exp Brain Res 2017; 235:3673-3682. [DOI: 10.1007/s00221-017-5091-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/14/2017] [Indexed: 12/26/2022]
|
22
|
Han C, Kim MJ, Ding D, Park HJ, White K, Walker L, Gu T, Tanokura M, Yamasoba T, Linser P, Salvi R, Someya S. GSR is not essential for the maintenance of antioxidant defenses in mouse cochlea: Possible role of the thioredoxin system as a functional backup for GSR. PLoS One 2017; 12:e0180817. [PMID: 28686716 PMCID: PMC5501606 DOI: 10.1371/journal.pone.0180817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022] Open
Abstract
Glutathione reductase (GSR), a key member of the glutathione antioxidant defense system, converts oxidized glutathione (GSSG) to reduced glutathione (GSH) and maintains the intracellular glutathione redox state to protect the cells from oxidative damage. Previous reports have shown that Gsr deficiency results in defects in host defense against bacterial infection, while diquat induces renal injury in Gsr hypomorphic mice. In flies, overexpression of GSR extended lifespan under hyperoxia. In the current study, we investigated the roles of GSR in cochlear antioxidant defense using Gsr homozygous knockout mice that were backcrossed onto the CBA/CaJ mouse strain, a normal-hearing strain that does not carry a specific Cdh23 mutation that causes progressive hair cell degeneration and early onset of hearing loss. Gsr-/- mice displayed a significant decrease in GSR activity and GSH/GSSG ratios in the cytosol of the inner ears. However, Gsr deficiency did not affect ABR (auditory brainstem response) hearing thresholds, wave I amplitudes or wave I latencies in young mice. No histological abnormalities were observed in the cochlea of Gsr-/- mice. Furthermore, there were no differences in the activities of cytosolic glutathione-related enzymes, including glutathione peroxidase and glutamate-cysteine ligase, or the levels of oxidative damage markers in the inner ears between WT and Gsr-/- mice. In contrast, Gsr deficiency resulted in increased activities of cytosolic thioredoxin and thioredoxin reductase in the inner ears. Therefore, under normal physiological conditions, GSR is not essential for the maintenance of antioxidant defenses in mouse cochlea. Given that the thioredoxin system is known to reduce GSSG to GSH in multiple species, our findings suggest that the thioredoxin system can support GSSG reduction in the mouse peripheral auditory system.
Collapse
Affiliation(s)
- Chul Han
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
| | - Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, United States of America
| | - Hyo-Jin Park
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
- Whitney Laboratory, University of Florida, St Augustine, FL, United States of America
| | - Karessa White
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
| | - Logan Walker
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
| | - Tongjun Gu
- Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States of America
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, University of Tokyo, Hongo, Tokyo, Japan
| | - Paul Linser
- Whitney Laboratory, University of Florida, St Augustine, FL, United States of America
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, United States of America
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
23
|
G6pd Deficiency Does Not Affect the Cytosolic Glutathione or Thioredoxin Antioxidant Defense in Mouse Cochlea. J Neurosci 2017; 37:5770-5781. [PMID: 28473643 DOI: 10.1523/jneurosci.0519-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/21/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP+ to NADPH and is thought to be the principal source of NADPH for the cytosolic glutathione and thioredoxin antioxidant defense systems. We investigated the roles of G6PD in the cytosolic antioxidant defense in the cochlea of G6pd hypomorphic mice that were backcrossed onto normal-hearing CBA/CaJ mice. Young G6pd-deficient mice displayed a significant decrease in cytosolic G6PD protein levels and activities in the inner ears. However, G6pd deficiency did not affect the cytosolic NADPH redox state, or glutathione or thioredoxin antioxidant defense in the inner ears. No histological abnormalities or oxidative damage was observed in the cochlea of G6pd hemizygous males or homozygous females. Furthermore, G6pd deficiency did not affect auditory brainstem response hearing thresholds, wave I amplitudes or wave I latencies in young males or females. In contrast, G6pd deficiency resulted in increased activities and protein levels of cytosolic isocitrate dehydrogenase 1, an enzyme that catalyzes the conversion of isocitrate to α-ketoglutarate and NADP+ to NADPH, in the inner ear. In a mouse inner ear cell line, knockdown of Idh1, but not G6pd, decreased cell growth rates, cytosolic NADPH levels, and thioredoxin reductase activities. Therefore, under normal physiological conditions, G6pd deficiency does not affect the cytosolic glutathione or thioredoxin antioxidant defense in mouse cochlea. Under G6pd deficiency conditions, isocitrate dehydrogenase 1 likely functions as the principal source of NADPH for cytosolic antioxidant defense in the cochlea.SIGNIFICANCE STATEMENT Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway; it catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconate and NADP+ to NADPH and is thought to be the principal source of NADPH for the cytosolic glutathione and thioredoxin antioxidant defense systems. In the current study, we show that, under normal physiological conditions, G6pd deficiency does not affect the cytosolic glutathione or thioredoxin antioxidant defense in the mouse cochlea. However, under G6pd deficiency conditions, isocitrate dehydrogenase 1 likely functions as the principal source of NADPH for cytosolic antioxidant defense in the cochlea.
Collapse
|
24
|
Fröhlich F, Basta D, Strübing I, Ernst A, Gröschel M. Time course of cell death due to acoustic overstimulation in the mouse medial geniculate body and primary auditory cortex. Noise Health 2017; 19:133-139. [PMID: 28615543 PMCID: PMC5501023 DOI: 10.4103/nah.nah_10_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It has previously been shown that acoustic overstimulation induces cell death and extensive cell loss in key structures of the central auditory pathway. A correlation between noise-induced apoptosis and cell loss was hypothesized for the cochlear nucleus and colliculus inferior. To determine the role of cell death in noise-induced cell loss in thalamic and cortical structures, the present mouse study (NMRI strain) describes the time course following noise exposure of cell death mechanisms for the ventral medial geniculate body (vMGB), medial MGB (mMGB), and dorsal MGB (dMGB) and the six histological layers of the primary auditory cortex (AI 1-6). Therefore, a terminal deoxynucleotidyl transferase dioxyuridine triphosphate nick-end labeling assay (TUNEL) was performed in these structures 24 h, 7 days, and 14 days after noise exposure (3 h, 115 dB sound pressure level, 5-20 kHz), as well as in unexposed controls. In the dMGB, TUNEL was statistically significant elevated 24 h postexposure. AI-1 showed a decrease in TUNEL after 14 days. There was no statistically significant difference between groups for the other brain areas investigated. dMGB's widespread connection within the central auditory pathway and its nontonotopical organization might explain its prominent increase in TUNEL compared to the other MGB subdivisions and the AI. It is assumed that the onset and peak of noise-induced cell death is delayed in higher areas of the central auditory pathway and takes place between 24 h and 7 days postexposure in thalamic and cortical structures.
Collapse
Affiliation(s)
- Felix Fröhlich
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Dietmar Basta
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Ira Strübing
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Arne Ernst
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Moritz Gröschel
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| |
Collapse
|
25
|
Kurabi A, Keithley EM, Housley GD, Ryan AF, Wong ACY. Cellular mechanisms of noise-induced hearing loss. Hear Res 2016; 349:129-137. [PMID: 27916698 PMCID: PMC6750278 DOI: 10.1016/j.heares.2016.11.013] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Exposure to intense sound or noise can result in purely temporary threshold shift (TTS), or leave a residual permanent threshold shift (PTS) along with alterations in growth functions of auditory nerve output. Recent research has revealed a number of mechanisms that contribute to noise-induced hearing loss (NIHL). The principle cause of NIHL is damage to cochlear hair cells and associated synaptopathy. Contributions to TTS include reversible damage to hair cell (HC) stereocilia or synapses, while moderate TTS reflects protective purinergic hearing adaptation. PTS represents permanent damage to or loss of HCs and synapses. While the substrates of HC damage are complex, they include the accumulation of reactive oxygen species and the active stimulation of intracellular stress pathways, leading to programmed and/or necrotic cell death. Permanent damage to cochlear neurons can also contribute to the effects of NIHL, in addition to HC damage. These mechanisms have translational potential for pharmacological intervention and provide multiple opportunities to prevent HC damage or to rescue HCs and spiral ganglion neurons that have suffered injury. This paper reviews advances in our understanding of cellular mechanisms that contribute to NIHL and their potential for therapeutic manipulation.
Collapse
Affiliation(s)
- Arwa Kurabi
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Elizabeth M Keithley
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Gary D Housley
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Allen F Ryan
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States.
| | - Ann C-Y Wong
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| |
Collapse
|
26
|
Kwon DN, Park WJ, Choi YJ, Gurunathan S, Kim JH. Oxidative stress and ROS metabolism via down-regulation of sirtuin 3 expression in Cmah-null mice affect hearing loss. Aging (Albany NY) 2016; 7:579-94. [PMID: 26319214 PMCID: PMC4586103 DOI: 10.18632/aging.100800] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CMP-Neu5Ac hydroxylase (Cmah) disruption caused several abnormalities and diseases including hearing loss in old age. However, underling molecular mechanisms that give rise to age-related hearing loss (AHL) in Cmah-null mouse are still obscure. In this study, Cmah-null mice showed age-related decline of hearing associated with loss of sensory hair cells, spiral ganglion neurons, and/or stria vascularis degeneration in the cochlea. To identify differential gene expression profiles and pathway associated with AHL, we performed microarray analysis using Illumina MouseRef-8 v2 Expression BeadChip and pathway-focused PCR array in the cochlear tissues of Cmah-null mouse. Pathway and molecular mechanism analysis using differentially expressed genes provided evidences that altered biological pathway due to oxidative damage by low expressed antioxidants and dysregulated reactive oxygen species (ROS) metabolism. Especially, low sirtuin 3 (Sirt3) gene expressions in Cmah-null mice decreased both of downstream regulator (Foxo1 and MnSod) and regulatory transcription factor (Hif1αand Foxo3α) gene expression. Taken together, we suggest that down-regulation of Sirt3 expression leads to oxidative stress and mitochondrial dysfunction by regulation of ROS and that it could alter various signaling pathways in Cmah-null mice with AHL.
Collapse
Affiliation(s)
- Deug-Nam Kwon
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Woo-Jin Park
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Yun-Jung Choi
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | | | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
27
|
Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, Jareño-Flores T, Miller JM, Juiz JM. Noise-Induced "Toughening" Effect in Wistar Rats: Enhanced Auditory Brainstem Responses Are Related to Calretinin and Nitric Oxide Synthase Upregulation. Front Neuroanat 2016; 10:19. [PMID: 27065815 PMCID: PMC4815363 DOI: 10.3389/fnana.2016.00019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/15/2016] [Indexed: 01/07/2023] Open
Abstract
An appropriate conditioning noise exposure may reduce a subsequent noise-induced threshold shift. Although this "toughening" effect helps to protect the auditory system from a subsequent traumatic noise exposure, the mechanisms that regulate this protective process are not fully understood yet. Accordingly, the goal of the present study was to characterize physiological processes associated with "toughening" and to determine their relationship to metabolic changes in the cochlea and cochlear nucleus (CN). Auditory brainstem responses (ABR) were evaluated in Wistar rats before and after exposures to a sound conditioning protocol consisting of a broad-band white noise of 118 dB SPL for 1 h every 72 h, four times. After the last ABR evaluation, animals were perfused and their cochleae and brains removed and processed for the activity markers calretinin (CR) and neuronal nitric oxide synthase (nNOS). Toughening was demonstrated by a progressively faster recovery of the threshold shift, as well as wave amplitudes and latencies over time. Immunostaining revealed an increase in CR and nNOS levels in the spiral ganglion, spiral ligament, and CN in noise-conditioned rats. Overall, these results suggest that the protective mechanisms of the auditory toughening effect initiate in the cochlea and extend to the central auditory system. Such phenomenon might be in part related to an interplay between CR and nitric oxide signaling pathways, and involve an increased cytosolic calcium buffering capacity induced by the noise conditioning protocol.
Collapse
Affiliation(s)
- Juan C Alvarado
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Verónica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - María C Gabaldón-Ull
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Tania Jareño-Flores
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid Madrid, Spain
| | - Josef M Miller
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska InstitutetStockholm, Sweden; Kresge Hearing Research Institute, University of MichiganAnn Arbor, MI, USA
| | - José M Juiz
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| |
Collapse
|
28
|
Spankovich C, Lobarinas E, Ding D, Salvi R, Le Prell CG. Assessment of thermal treatment via irrigation of external ear to reduce cisplatin-induced hearing loss. Hear Res 2016; 332:55-60. [DOI: 10.1016/j.heares.2015.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/21/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022]
|
29
|
Genetic variation in APE1 gene promoter is associated with noise-induced hearing loss in a Chinese population. Int Arch Occup Environ Health 2015; 89:621-8. [DOI: 10.1007/s00420-015-1100-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 10/18/2015] [Indexed: 10/22/2022]
|
30
|
Polanski JF, Soares AD, de Mendonça Cruz OL. Antioxidant therapy in the elderly with tinnitus. Braz J Otorhinolaryngol 2015; 82:269-74. [PMID: 26547700 PMCID: PMC9444615 DOI: 10.1016/j.bjorl.2015.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/27/2015] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Several approaches have been tried for the treatment of tinnitus, from cognitive-behavioral therapies and sound enrichment to medication. In this context, antioxidants, widely used in numerous areas of medicine, appear to represent a promising approach for the control of this symptom, which often is poorly controlled. OBJECTIVE To evaluate the effects of antioxidant therapy for tinnitus in a group of elderly patients. METHODS Prospective, randomized, double-blinded, placebo-controlled clinical trial. The sample consisted of 58 subjects aged 60 years or older, with a complaint of tinnitus associated with sensorineural hearing loss. These individuals completed the Tinnitus Handicap Inventory (THI) questionnaire before and after six months of therapy. The treatment regimens were: Ginkgo biloba dry extract (120mg/day), α-lipoic acid (60mg/day)+vitamin C (600mg/day), papaverine hydrochloride (100mg/day)+vitamin E (400mg/day), and placebo. RESULTS There was no statistically significant difference between THI by degree (p=0.441) and by score (p=0.848) before and after treatment. CONCLUSION There was no benefit from the use of antioxidant agents for tinnitus in this sample.
Collapse
Affiliation(s)
- José Fernando Polanski
- Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Hospital de Clínicas, Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | - Oswaldo Laércio de Mendonça Cruz
- Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Department of Otorhinolaryngology and Head and Neck Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
31
|
Tang PC, Watson GM. Proteomic identification of hair cell repair proteins in the model sea anemone Nematostella vectensis. Hear Res 2015; 327:245-56. [PMID: 26183436 DOI: 10.1016/j.heares.2015.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/15/2015] [Accepted: 07/09/2015] [Indexed: 12/26/2022]
Abstract
Sea anemones have an extraordinary capability to repair damaged hair bundles, even after severe trauma. A group of secreted proteins, named repair proteins (RPs), found in mucus covering sea anemones significantly assists the repair of damaged hair bundle mechanoreceptors both in the sea anemone Haliplanella luciae and the blind cavefish Astyanax hubbsi. The polypeptide constituents of RPs must be identified in order to gain insight into the molecular mechanisms by which repair of hair bundles is accomplished. In this study, several polypeptides of RPs were isolated from mucus using blue native PAGE and then sequenced using LC-MS/MS. Thirty-seven known polypeptides were identified, including Hsp70s, as well as many polypeptide subunits of the 20S proteasome. Other identified polypeptides included those involved in cellular stress responses, protein folding, and protein degradation. Specific inhibitors of Hsp70s and the 20S proteasome were employed in experiments to test their involvement in hair bundle repair. The results of those experiments suggested that repair requires biologically active Hsp70s and 20S proteasomes. A model is proposed that considers the function of extracellular Hsp70s and 20S proteasomes in the repair of damaged hair cells.
Collapse
Affiliation(s)
- Pei-Ciao Tang
- Department of Biology, University of Louisiana Lafayette, USA
| | - Glen M Watson
- Department of Biology, University of Louisiana Lafayette, USA.
| |
Collapse
|
32
|
Repeated Moderate Noise Exposure in the Rat--an Early Adulthood Noise Exposure Model. J Assoc Res Otolaryngol 2015; 16:763-72. [PMID: 26162417 PMCID: PMC4636596 DOI: 10.1007/s10162-015-0537-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/26/2015] [Indexed: 01/12/2023] Open
Abstract
In this study, we investigated the effects of varying intensity levels of repeated moderate noise exposures on hearing. The aim was to define an appropriate intensity level that could be repeated several times without giving rise to a permanent hearing loss, and thus establish a model for early adulthood moderate noise exposure in rats. Female Sprague-Dawley rats were exposed to broadband noise for 90 min, with a 50 % duty cycle at levels of 101, 104, 107, or 110 dB sound pressure level (SPL), and compared to a control group of non-exposed animals. Exposure was repeated every 6 weeks for a maximum of six repetitions or until a permanent hearing loss was observed. Hearing was assessed by the auditory brainstem response (ABR). Rats exposed to the higher intensities of 107 and 110 dB SPL showed permanent threshold shifts following the first exposure, while rats exposed to 101 and 104 dB SPL could be exposed at least six times without a sustained change in hearing thresholds. ABR amplitudes decreased over time for all groups, including the non-exposed control group, while the latencies were unaffected. A possible change in noise susceptibility following the repeated moderate noise exposures was tested by subjecting the animals to high-intensity noise exposure of 110 dB for 4 h. Rats previously exposed repeatedly to 104 dB SPL were slightly more resistant to high-intensity noise exposure than non-exposed rats or rats exposed to 101 dB SPL. Repeated moderate exposure to 104 dB SPL broadband noise is a viable model for early adulthood noise exposure in rats and may be useful for the study of noise exposure on age-related hearing loss.
Collapse
|
33
|
Shi L, Liu K, Wang H, Zhang Y, Hong Z, Wang M, Wang X, Jiang X, Yang S. Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice. Acta Otolaryngol 2015; 135:1093-102. [PMID: 26139555 DOI: 10.3109/00016489.2015.1061699] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Noise exposure can cause a decline in cochlear ribbon synapses and result in consequent hearing loss. The reduction of synaptic puncta appears reversible and may contribute to hearing restoration in mice after noise exposure. OBJECTIVE To detect whether noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in C57BL/6J mice. METHODS The mice were assigned randomly to five groups and exposed to white noise at 110 dB SPL for 2 h except the control group. ABR thresholds were acquired before noise exposure (control), immediately following exposure (Day 0), or on Days 4, 7, or 14 after noise exposure. Light microscopy, scanning emission microscopy, and whole mounts examination was utilized to study whether there is morphology change of outer hair cells (OHC), inner hair cells (IHC), or spiral ganglion cells (SGN) due to the 110 dB white noise. Moreover, experimental approaches, including immunostaining and confocal microcopy, were used to detect whether ribbon synapses were the primary targets of noise-induced temporary hearing loss. RESULT Exposure to 110 dB white noise for 2 h induced TTS in mice, with the maximal ABR threshold elevations seen on the 4(th) day after noise exposure. There were no significant morphological changes in the cochlea. Paralleled changes of pre-synaptic ribbons in both the number and post-synaptic density (PSDs) during this noise exposure were detected. The number of pre-synaptic ribbon, post-synaptic density (PSDs), and co-localized puncta correlated with the shifts of ABR thresholds. Moreover, a complete recovery of ABR thresholds and synaptic puncta was seen on the 14(th) day after the noise stimulations.
Collapse
MESH Headings
- Acoustic Stimulation/adverse effects
- Animals
- Auditory Threshold/physiology
- Cochlea/metabolism
- Cochlea/physiopathology
- Cochlea/ultrastructure
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/ultrastructure
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Neuronal Plasticity
- Spiral Ganglion/metabolism
- Spiral Ganglion/ultrastructure
- Synapses
Collapse
Affiliation(s)
- Lin Shi
- a 1 Department of Otorhinolaryngology, The First Affiliated Hospital, China Medical University , Shenyang 110001, PR China
- c 3 Department of Otorhinolaryngology, The First Affiliated Hospital, Dalian Medical University , Dalian 116013, PR China
| | - Ke Liu
- b 2 Department of Otolaryngology, Head & Neck Surgery, The Institute of Otolaryngology, Chinese PLA General Hospital , 28 Fuxing Road, Beijing, 100853, PR China
| | - Haolin Wang
- c 3 Department of Otorhinolaryngology, The First Affiliated Hospital, Dalian Medical University , Dalian 116013, PR China
| | - Yue Zhang
- b 2 Department of Otolaryngology, Head & Neck Surgery, The Institute of Otolaryngology, Chinese PLA General Hospital , 28 Fuxing Road, Beijing, 100853, PR China
| | - Zhijun Hong
- c 3 Department of Otorhinolaryngology, The First Affiliated Hospital, Dalian Medical University , Dalian 116013, PR China
| | - Mingyu Wang
- c 3 Department of Otorhinolaryngology, The First Affiliated Hospital, Dalian Medical University , Dalian 116013, PR China
| | - Xiaoyu Wang
- b 2 Department of Otolaryngology, Head & Neck Surgery, The Institute of Otolaryngology, Chinese PLA General Hospital , 28 Fuxing Road, Beijing, 100853, PR China
| | - Xuejun Jiang
- a 1 Department of Otorhinolaryngology, The First Affiliated Hospital, China Medical University , Shenyang 110001, PR China
| | - Shiming Yang
- b 2 Department of Otolaryngology, Head & Neck Surgery, The Institute of Otolaryngology, Chinese PLA General Hospital , 28 Fuxing Road, Beijing, 100853, PR China
| |
Collapse
|
34
|
Vetter DE. Cellular signaling protective against noise-induced hearing loss – A role for novel intrinsic cochlear signaling involving corticotropin-releasing factor? Biochem Pharmacol 2015; 97:1-15. [PMID: 26074267 DOI: 10.1016/j.bcp.2015.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/08/2015] [Indexed: 12/11/2022]
Abstract
Hearing loss afflicts approximately 15% of the world's population, and crosses all socioeconomic boundaries. While great strides have been made in understanding the genetic components of syndromic and non-syndromic hearing loss, understanding of the mechanisms underlying noise-induced hearing loss (NIHL) have come much more slowly. NIHL is not simply a mechanism by which older individuals loose their hearing. Significantly, the incidence of NIHL is increasing, and is now involving ever younger populations. This may predict future increased occurrences of hearing loss. Current research has shown that even short-term exposures to loud sounds generating what was previously considered temporary hearing loss, actually produces an almost immediate and permanent loss of specific populations of auditory nerve fibers. Additionally, recurrent exposures to intense sound may hasten age-related hearing loss. While NIHL is a significant medical concern, to date, few compounds have delivered significant protection, arguing that new targets need to be identified. In this commentary, we will explore cellular signaling processes taking place in the cochlea believed to be involved in protection against hearing loss, and highlight new data suggestive of novel signaling not previously recognized as occurring in the cochlea, that is perhaps protective of hearing. This includes a recently described local hypothalamic-pituitary-adrenal axis (HPA)-like signaling system fully contained in the cochlea. This system may represent a local cellular stress-response system based on stress hormone release similar to the systemic HPA axis. Its discovery may hold hope for new drug therapies that can be delivered directly to the cochlea, circumventing systemic side effects.
Collapse
Affiliation(s)
- Douglas E Vetter
- University of Mississippi Medical Center, Department of Neurobiology and Anatomical Sciences, 2500 N. State St., Jackson, MS 39216, USA.
| |
Collapse
|
35
|
Harrison RT, DeBacker JR, Bielefeld EC. A low-dose regimen of cisplatin before high-dose cisplatin potentiates ototoxicity. Laryngoscope 2014; 125:E78-83. [DOI: 10.1002/lary.24948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Ryan T. Harrison
- Department of Speech and Hearing Science; The Ohio State University; Columbus Ohio U.S.A
| | - J. Riley DeBacker
- Department of Speech and Hearing Science; The Ohio State University; Columbus Ohio U.S.A
| | - Eric C. Bielefeld
- Department of Speech and Hearing Science; The Ohio State University; Columbus Ohio U.S.A
| |
Collapse
|
36
|
Shen H, Cao J, Hong Z, Liu K, Shi J, Ding L, Zhang H, Du C, Li Q, Zhang Z, Zhu B. A functional Ser326Cys polymorphism in hOGG1 is associated with noise-induced hearing loss in a Chinese population. PLoS One 2014; 9:e89662. [PMID: 24599382 PMCID: PMC3943766 DOI: 10.1371/journal.pone.0089662] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/22/2014] [Indexed: 01/23/2023] Open
Abstract
DNA damage to cochlear hair cells caused by 8-oxoguanine (8-oxoG) is essential for the development of noise-induced hearing loss (NIHL). Human 8-oxoG DNA glycosylase1 (hOGG1) is a key enzyme in the base excision repair (BER) pathway that eliminates 8-oxoG. Many epidemiological and functional studies have suggested that the hOGG1 Ser326Cys polymorphism (rs1052133) is associated with many diseases. The purpose of this investigation was to investigate whether the hOGG1 Ser326Cys polymorphism in the human BER pathway is associated with genetic susceptibility to NIHL in a Chinese population. This polymorphism was genotyped among 612 workers with NIHL and 615 workers with normal hearing. We found that individuals with the hOGG1 Cys/Cys genotype had a statistically significantly increased risk of NIHL compared with those who carried the hOGG1 Ser/Ser genotype (adjusted OR=1.59, 95% CI=1.13-2.25) and this increased risk was more pronounced among the workers in the 15- to 25- and >25-year noise exposure time, 85-92 dB(A) noise exposure level, ever smoking, and ever drinking groups, similar effects were also observed in a recessive model. In summary, our data suggested that the hOGG1 Cys/Cys genotype may be a genetic susceptibility marker for NIHL in the Chinese Han population.
Collapse
Affiliation(s)
- Huanxi Shen
- Kunshan Municipal Center for Disease Prevention and Control, Kunshan, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Jinglian Cao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Zhiqiang Hong
- Kunshan Municipal Center for Disease Prevention and Control, Kunshan, China
| | - Kai Liu
- Department of Disease Prevention and Control of Yizheng Hospital, Drum Tower Hospital Group of Nanjing, Yizheng, China
| | - Jian Shi
- Kunshan Municipal Center for Disease Prevention and Control, Kunshan, China
| | - Lu Ding
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Hengdong Zhang
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Cheng Du
- Kunshan Municipal Center for Disease Prevention and Control, Kunshan, China
| | - Qian Li
- The First People's Hospital of Kunshan, Kunshan, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail: (BZ); (ZZ)
| | - Baoli Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
- * E-mail: (BZ); (ZZ)
| |
Collapse
|
37
|
Roy S, Ryals MM, Van den Bruele AB, Fitzgerald TS, Cunningham LL. Sound preconditioning therapy inhibits ototoxic hearing loss in mice. J Clin Invest 2014; 123:4945-9. [PMID: 24216513 DOI: 10.1172/jci71353] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/12/2013] [Indexed: 01/28/2023] Open
Abstract
Therapeutic drugs with ototoxic side effects cause significant hearing loss for thousands of patients annually. Two major classes of ototoxic drugs are cisplatin and the aminoglycoside antibiotics, both of which are toxic to mechanosensory hair cells, the receptor cells of the inner ear. A critical need exists for therapies that protect the inner ear without inhibiting the therapeutic efficacy of these drugs. The induction of heat shock proteins (HSPs) inhibits both aminoglycoside- and cisplatin-induced hair cell death and hearing loss. We hypothesized that exposure to sound that is titrated to stress the inner ear without causing permanent damage would induce HSPs in the cochlea and inhibit ototoxic drug–induced hearing loss. We developed a sound exposure protocol that induces HSPs without causing permanent hearing loss. We used this protocol in conjunction with a newly developed mouse model of cisplatin ototoxicity and found that preconditioning mouse inner ears with sound has a robust protective effect against cisplatin-induced hearing loss and hair cell death. Sound therapy also provided protection against aminoglycoside-induced hearing loss. These data indicate that sound preconditioning protects against both classes of ototoxic drugs, and they suggest that sound therapy holds promise for preventing hearing loss in patients receiving these drugs.
Collapse
|
38
|
Zeng L, Yang Y, Hu Y, Sun Y, Du Z, Xie Z, Zhou T, Kong W. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model. PLoS One 2014; 9:e88019. [PMID: 24505357 PMCID: PMC3913718 DOI: 10.1371/journal.pone.0088019] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/03/2014] [Indexed: 12/31/2022] Open
Abstract
Age-related dysfunction of the central auditory system, also known as central presbycusis, can affect speech perception and sound localization. Understanding the pathogenesis of central presbycusis will help to develop novel approaches to prevent or treat this disease. In this study, the mechanisms of central presbycusis were investigated using a mimetic aging rat model induced by chronic injection of D-galactose (D-Gal). We showed that malondialdehyde (MDA) levels were increased and manganese superoxide dismutase (SOD2) activity was reduced in the auditory cortex in natural aging and D-Gal-induced mimetic aging rats. Furthermore, mitochondrial DNA (mtDNA) 4834 bp deletion, abnormal ultrastructure and cell apoptosis in the auditory cortex were also found in natural aging and D-Gal mimetic aging rats. Sirt3, a mitochondrial NAD+-dependent deacetylase, has been shown to play a crucial role in controlling cellular reactive oxygen species (ROS) homeostasis. However, the role of Sirt3 in the pathogenesis of age-related central auditory cortex deterioration is still unclear. Here, we showed that decreased Sirt3 expression might be associated with increased SOD2 acetylation, which negatively regulates SOD2 activity. Oxidative stress accumulation was likely the result of low SOD2 activity and a decline in ROS clearance. Our findings indicate that Sirt3 might play an essential role, via the mediation of SOD2, in central presbycusis and that manipulation of Sirt3 expression might provide a new approach to combat aging and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Lingling Zeng
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Yang Yang
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Yujuan Hu
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Zhengde Du
- Department of Otorhinolaryngology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, China
| | - Zhen Xie
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P. R. China
- * E-mail:
| |
Collapse
|
39
|
Gentamicin conditioning confers auditory protection against noise trauma. Eur Arch Otorhinolaryngol 2013; 271:2641-8. [PMID: 24114061 DOI: 10.1007/s00405-013-2707-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Auditory conditioning consists of the pre-exposure to low levels of a potential harmful agent to protect against a subsequent harmful presentation. The agent that was first tested was noise. This paradigm was more recently successfully tested with other agents. Nonetheless, the vast majority of the studies utilize the same agent to condition and to cause the trauma. The aim of this study was to verify whether conditioning with an agent different from the agent used to cause the trauma can also be effective. Thus, the following groups were organized: group Cont, which is the noise trauma control group, was exposed to 110-dB broadband noise centered at 4 kHz for 72 h; group Gent, which is the gentamicin conditioning control group, was administered 30 mg/kg of gentamicin daily for 30 consecutive days; and group Expt was conditioned with gentamicin similarly to group Gent and then subjected to a noise trauma similarly to group Cont. The animals were functionally and morphologically evaluated through the measurement of the auditory brainstem response and scanning electron microscopy, respectively. The following variables were investigated: outer hair cell injury and auditory threshold shift. The group that was conditioned with the drug exhibited significantly less outer hair cell damage, 10.8 and 22.9%, respectively (p = 0.0146), although did not maintain the proper functioning of the auditory system. We, therefore, conclude that conditioning with a different agent from that used to cause the trauma is effective, which suggests that both agents that were used promote similar mechanisms of self-protection.
Collapse
|
40
|
Han C, Someya S. Mouse models of age-related mitochondrial neurosensory hearing loss. Mol Cell Neurosci 2013; 55:95-100. [PMID: 22820179 PMCID: PMC3609944 DOI: 10.1016/j.mcn.2012.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/01/2012] [Accepted: 07/10/2012] [Indexed: 11/18/2022] Open
Abstract
Hearing loss is the most common sensory disorder in the elderly population. Overall, 10% of the population has a hearing loss in the US, and this age-related hearing disorder is projected to afflict more than 28 million Americans by 2030. Age-related hearing loss is associated with loss of sensory hair cells (sensory hearing loss) and/or spiral ganglion neurons (neuronal hearing loss) in the cochlea of the inner ear. Many lines of evidence indicate that oxidative stress and associated mitochondrial dysfunction play a central role in age-related neurodegenerative diseases and are a cause of age-related neurosensory hearing loss. Yet, the molecular mechanisms of how oxidative stress and/or mitochondrial dysfunction lead to hearing loss during aging remain unclear, and currently there is no treatment for this age-dependent disorder. Several mouse models of aging and age-related diseases have been linked to age-related mitochondrial neurosensory hearing loss. Evaluation of these animal models has offered basic knowledge of the mechanism underlying hearing loss associated with oxidative stress, mitochondrial dysfunction, and aging. Here we review the evidence that specific mutations in the mitochondrial DNA or nuclear DNA that affect mitochondrial function result in increased oxidative damage and associated loss of sensory hair cells and/or spiral ganglion neurons in the cochlea during aging, thereby causing hearing loss in these mouse models. Future studies comparing these models will provide further insight into fundamental knowledge about the disordered process of hearing and treatments to improve the lives of individuals with communication disorders. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
- Chul Han
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32610, USA
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
41
|
Seidman MD, Tang W, Bai VU, Ahmad N, Jiang H, Media J, Patel N, Rubin CJ, Standring RT. Resveratrol Decreases Noise-Induced Cyclooxygenase-2 Expression in the Rat Cochlea. Otolaryngol Head Neck Surg 2013; 148:827-33. [DOI: 10.1177/0194599813475777] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Our previous studies have demonstrated the efficacy of resveratrol, a grape constituent noted for its antioxidant and anti-inflammatory properties, in reducing temporary threshold shifts and decreasing cochlear hair cell damage following noise exposure. This study was designed to identify the potential protective mechanism of resveratrol by measuring its effect on cyclooxygenase-2 (COX-2) protein expression and reactive oxygen species (ROS) formation following noise exposure. Study Design Controlled animal intervention study. Setting Otology Laboratory, Henry Ford Health System. Subjects and Methods Twenty-two healthy male Fischer 344 rats (2-3 months old) were exposed to acoustic trauma of variable duration with or without intervention. An additional 20 healthy male rats were used to study COX-2 expression at different time points during and following treatment of 24 hours of noise exposure. Cochlear harvest was performed at various time intervals for measurement of COX-2 protein expression via Western blot analysis and immunostaining. Peripheral blood was also obtained for ROS analysis using flow cytometry. Results Acoustic trauma exposure resulted in a progressive up-regulation of COX-2 protein expression, commencing at 8 hours and peaking at 32 hours. Similarly, ROS production increased after noise exposure. However, treatment with resveratrol reduced noise-induced COX-2 expression as well as ROS formation in the blood as compared with the controls. Conclusion COX-2 levels are induced dramatically following noise exposure. This increased expression may be a potential mechanism of noise-induced hearing loss (NIHL) and a possible mechanism of resveratrol’s ability to mitigate NIHL by its ability to reduce COX-2 expression.
Collapse
Affiliation(s)
- Michael D. Seidman
- Department of Otolaryngology–Head & Neck Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Wenxue Tang
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Venkatesh Uma Bai
- Department of Otolaryngology–Head & Neck Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Nadir Ahmad
- Department of Otolaryngology–Head & Neck Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hao Jiang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Joseph Media
- Drug Discovery and Development Laboratories, Henry Ford Health System, Detroit, Michigan, USA
| | - Nimisha Patel
- Department of Otolaryngology–Head & Neck Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Cory J. Rubin
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert T. Standring
- Department of Otolaryngology–Head & Neck Surgery, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
42
|
Genetic variation in GSTM1 is associated with susceptibility to noise-induced hearing loss in a Chinese population. J Occup Environ Med 2013; 54:1157-62. [PMID: 22885711 DOI: 10.1097/jom.0b013e31825902ce] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES To investigate whether glutathione S-transferases (GST) genetic polymorphisms (GSTT1 rs1049055, GSTM1 rs10712361, and GSTP1 rs1695) are associated with susceptibility to noise-induced hearing loss (NIHL). METHODS These polymorphisms were analyzed in 444 NIHL and 445 normal hearing workers. In addition, total plasma GST activity was measured in all subjects. RESULTS Individuals with the GSTM1 null genotype had a statistically significantly increased risk of NIHL (odds ratio [OR] = 1.64, 95% confidence interval [CI] = 1.26 to 2.13) compared with those carrying a wild-type GSTM1 genotype. This effect was more pronounced among the workers exposed to 86 to 91 dB(A) (OR = 3.35, 95% CI = 1.54 to 7.31). Glutathione S-transferase activity of the NIHL workers was also lower than that of normal hearing workers (14.5 ± 5.1 U/ml vs 15.9 ± 6.3 U/ml, P = 0.010). CONCLUSION Our results suggest that GSTM1 polymorphism is associated with susceptibility to NIHL.
Collapse
|
43
|
Rewerska A, Pawelczyk M, Rajkowska E, Politanski P, Sliwinska-Kowalska M. Evaluating D-methionine dose to attenuate oxidative stress-mediated hearing loss following overexposure to noise. Eur Arch Otorhinolaryngol 2012. [PMID: 23179931 PMCID: PMC3608867 DOI: 10.1007/s00405-012-2265-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Noise exposure causes an excessive reactive oxygen species (ROS) generation as an unwanted byproduct of high metabolic activity. Oxidative stress and antioxidative protective mechanisms have been therefore proposed as the most interesting issues in the development of noise-induced hearing loss. The aim of this study was to examine changes in superoxide dismutase (SOD), catalase (CAT) and the auditory brainstem response (ABR) in the cochlea of C57BL/6 mice 1, 7 and 14 days after exposure to 4 kHz octave band noise at the intensity of 110 dB SPL for 8 h. The evaluation of three d-methionine (d-met) doses (100, 200 and 400 mg/kg) has been performed in order to choose an optimal concentration displaying most effectively its antioxidant and thereby otoprotective functions. Administering d-met at the dose of 400 mg/kg resulted in a significant decrease in threshold shift (TS) independently of the evaluation time after exposure to noise. SOD activity was strongly supported by the same concentration (400 mg/kg) of d-met. This effect was seen not shortly, but 7 and 14 days after exposure to noise. CAT activity was induced only by noise and it reached the peak levels 7 days after exposure. d-Met at the doses of 200 and 400 mg/kg significantly decreased noise-induced changes in CAT activity. The findings of this study indicate that the protective effect depends on the concentration of d-met and can be fully expressed only when the drug is administered in the dose 400 mg/kg.
Collapse
Affiliation(s)
- A. Rewerska
- Department of Audiology and Phoniatrics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - M. Pawelczyk
- Department of Audiology and Phoniatrics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - E. Rajkowska
- Department of Audiology and Phoniatrics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - P. Politanski
- Electromagnetic Hazards Laboratory, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - M. Sliwinska-Kowalska
- Department of Audiology and Phoniatrics, Nofer Institute of Occupational Medicine, Lodz, Poland
- Klinika Audiologii i Foniatrii, Instytut Medycyny Pracy im. prof. J. Nofera, ul. Sw. Teresy 8, 91-348 Lodz, Poland
| |
Collapse
|
44
|
Ding D, Allman BL, Salvi R. Review: ototoxic characteristics of platinum antitumor drugs. Anat Rec (Hoboken) 2012; 295:1851-67. [PMID: 23044998 DOI: 10.1002/ar.22577] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022]
Abstract
Cisplatin, carboplatin, nedaplatin, and oxaliplatin are widely used in contemporary oncology; however, their ototoxic and neurotoxic side effects are quite different as discussed in this review. Cisplatin is considered the most ototoxic, but despite its reputation, the magnitude of hair cell loss that occurs with a single, large drug bolus is limited and confined to the base of the cochlea. For all of these platinum compounds, a major factor limiting damage is drug uptake from stria vascularis into the cochlear fluids. Disrupting the blood-labyrinth barrier with diuretics or noise exposure enhances drug uptake and significantly increases the amount of damage. Combined treatment with ethacrynic acid (a loop diuretic) and cisplatin results in rapid apoptotic hair cell death characterized by upregulation of initiator caspase-8 and membrane death receptor, TRADD, followed by downstream executioners, caspase-3 and caspase-6. Unlike cisplatin, nedaplatin and oxaliplatin are highly neurotoxic when applied to cochlear cultures preferentially damaging auditory nerve fibers at low concentrations and hair cells at high concentrations. Carboplatin, considered far less ototoxic than cisplatin, is paradoxically highly toxic to chinchilla inner hair cells and type I spiral ganglion neurons; however, at high doses it also damages outer hair cells. Hair cell death from cisplatin and carboplatin is characterized in its early stages by upregulation of p53; blocking p53 expression with pifithrin-α prevents hair cell death. Major differences in the toxicity of these four platinum compounds may arise from several different metal transporters that selectively regulate the influx, efflux, and sequestration of these drugs.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
45
|
Lim YM, Hayashi S, Tsuda L. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons. PLoS One 2012; 7:e37028. [PMID: 22666340 PMCID: PMC3364243 DOI: 10.1371/journal.pone.0037028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/11/2012] [Indexed: 12/23/2022] Open
Abstract
Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1) is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box–like and WD40 repeats–containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1) and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.
Collapse
Affiliation(s)
- Young-Mi Lim
- Animal Models of Aging, National Center for Geriatrics and Gerontology, Gengo, Obu, Aichi, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Department of Biology, Kobe University Graduate School of Science, Kobe, Hyogo, Japan
| | - Leo Tsuda
- Animal Models of Aging, National Center for Geriatrics and Gerontology, Gengo, Obu, Aichi, Japan
- * E-mail:
| |
Collapse
|
46
|
Gong TW, Lomax MI. Genes That Influence Susceptibility to Noise-Induced Hearing Loss. NOISE-INDUCED HEARING LOSS 2012. [DOI: 10.1007/978-1-4419-9523-0_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
Le Prell CG. Noise-Induced Hearing Loss: From Animal Models to Human Trials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 730:191-5. [DOI: 10.1007/978-1-4419-7311-5_43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Etchelecou MC, Coulet O, Derkenne R, Tomasi M, Noreña AJ. Temporary off-frequency listening after noise trauma. Hear Res 2011; 282:81-91. [PMID: 21986211 DOI: 10.1016/j.heares.2011.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 11/25/2022]
Abstract
Hearing loss is routinely estimated from the audiogram, even though this measure gives only a rough approximation of hearing. Indeed, cochlear regions functioning poorly, if at all, called dead regions, are not detected by a simple audiogram. To detect cochlear dead regions, additional measurements of psychophysical tuning curves or thresholds in background noise (TEN test) are required. A first aim of this study was to assess the presence of dead regions after impulse noise trauma using psychophysical tuning curves. The procedure we used was based on a compromise between the need to collect reliable estimates of psychophysical tuning curves and the limited time available to obtain these estimates in a hospital setting. Psychophysical tuning curves were measured using simultaneous masking with a 2-alternative forced choice paradigm, where the target was randomly placed in one of the two masker presentations. It is well known that some components of noise-induced hearing loss are reversible. A second aim of this study was to examine the potential recovery of dead regions after acoustic trauma. A third issue addressed in this article was the relationship between noise-induced dead regions and tinnitus. We found that 70% of the subjects had dead regions after noise trauma, while 88% reported tinnitus. Moreover, we found that the extent of dead regions probably diminished in about 50% of subjects, which highlights the ability of the human auditory system to recover from noise-induced hearing loss.
Collapse
Affiliation(s)
- M-C Etchelecou
- Laveran Hospital, 34, boulevard Laveran 13013, Marseille, France
| | | | | | | | | |
Collapse
|
49
|
Jamesdaniel S, Hu B, Kermany MH, Jiang H, Ding D, Coling D, Salvi R. Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear. J Proteomics 2011; 75:410-24. [PMID: 21871588 DOI: 10.1016/j.jprot.2011.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 08/04/2011] [Accepted: 08/08/2011] [Indexed: 12/20/2022]
Abstract
Noise exposure is a major cause of hearing loss. Classical methods of studying protein involvement have provided a basis for understanding signaling pathways that mediate hearing loss and damage repair but do not lend themselves to studying large networks of proteins that are likely to increase or decrease during noise trauma. To address this issue, antibody microarrays were used to quantify the very early changes in protein expression in three distinct regions of the chinchilla cochlea 2h after exposure to a 0.5-8 kHz band of noise for 2h at 112 dB SPL. The noise exposure caused significant functional impairment 2h post-exposure which only partially recovered. Distortion product otoacoustic emissions were abolished 2h after the exposure, but at 4 weeks post-exposure, otoacoustic emissions were present, but still greatly depressed. Cochleograms obtained 4 weeks post-exposure demonstrated significant loss of outer hair cells in the basal 60% of the cochlea corresponding to frequencies in the noise spectrum. A comparative analysis of the very early (2h post-exposure) noise-induced proteomic changes indicated that the sensory epithelium, lateral wall and modiolus differ in their biological response to noise. Bioinformatic analysis of the cochlear protein profile using "The Database for Annotation, Visualization and Integrated Discovery 2008" (DAVID - http://david.abcc. ncifcrf.gov) revealed the initiation of the cell death process in sensory epithelium and modiolus. An increase in Fas and phosphorylation of FAK and p38/MAPK in the sensory epithelium suggest that noise-induced stress signals at the cell membrane are transmitted to the nucleus by Fas and focal adhesion signaling through the p38/MAPK signaling pathway. Up-regulation of downstream nuclear proteins E2F3 and WSTF in immunoblots and microarrays along with their immunolocalization in the outer hair cells supported the pivotal role of p38/MAPK signaling in the mechanism underlying noise-induced hearing loss.
Collapse
Affiliation(s)
- Samson Jamesdaniel
- Center for Hearing and Deafness, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Uchida Y, Sugiura S, Ando F, Nakashima T, Shimokata H. Molecular genetic epidemiology of age-related hearing impairment. Auris Nasus Larynx 2011; 38:657-65. [PMID: 21601397 DOI: 10.1016/j.anl.2011.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/18/2011] [Accepted: 02/21/2011] [Indexed: 12/11/2022]
Abstract
Genetic epidemiology focuses on the genetic determinants in the etiology of disease among populations and seeks to elucidate the role of genetic factors and their interaction with environmental factors in disease occurrence. In recent years, genetic epidemiological research has become more focused on complex diseases, and human genome analysis technology has made remarkable advances. Age-related hearing impairment (ARHI) is a complex trait, which results from a multitude of confounding intrinsic and extrinsic factors. Although the number of genetic investigations of ARHI is increasing at a surprising rate, the etiology of ARHI is not firmly established. In this article, we review (1) the methodological strategies used to analyze genetic factors that contribute to human ARHI, (2) several representative investigations, and (3) specific genetic risk factors for human ARHI identified in previous work.
Collapse
Affiliation(s)
- Yasue Uchida
- Department of Otorhinolaryngology, National Center for Geriatrics and Gerontology, Japan.
| | | | | | | | | |
Collapse
|