1
|
Sun Y, Zhu D, Kong L, Du W, Qu L, Yang Y, Rao G, Huang F, Tong X. Vasicine attenuates atherosclerosis via lipid regulation, inflammation inhibition, and autophagy activation in ApoE -/- mice. Int Immunopharmacol 2024; 142:112996. [PMID: 39243558 DOI: 10.1016/j.intimp.2024.112996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Atherosclerosis is marked with the accumulation of low-density lipoproteins and chronic inflammation. The anti-inflammatory therapies exert protective effects on atherosclerosis. Vasicine is a bioactive alkaloid with anti-inflammatory activity from a medicinal plant in Ayurveda and Unani. In this study, the effects of vasicine were evaluated on atherosclerosis in vivo and in vitro. The results showed that vasicine alleviated atherosclerotic lesions and regulated the lipid synthesis by reducing the levels of TC, TG, LDL-C and inhibiting the expresses of scavenger receptors (SR-A, CD36 and LOX-1) to inhibit foam cell formations. And vasicine decreased the levels of IL-1β, IL-6, MCP-1, and TNF-α to modulate inflammatory response. Besides, vasicine downregulated MAPK and PI3K/AKT/mTOR pathway to activated autophagy, which inhibited the procession of atherosclerosis.
Collapse
Affiliation(s)
- Yun Sun
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Defen Zhu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Lingqi Kong
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Wenxia Du
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Lu Qu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Yingfei Yang
- Zhaotong Hospital of Chinese Traditional Medicine, Zhaotong 657000, People's Republic of China
| | - Gaoxiong Rao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Feng Huang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China; School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China.
| | - Xiaoyun Tong
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China; The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, People's Republic of China.
| |
Collapse
|
2
|
Nasir M, Ramash R, Fatima H, Ashraf S, Munir I, Asghar S, Adnan M, Masood A, Chaudhari SK. Phytochemical Characterization and Assessment of Crude Extracts from Justicia adhatoda for Phytotoxic and Cytotoxic Activity. SCIENTIFICA 2024; 2024:1374346. [PMID: 39359907 PMCID: PMC11446621 DOI: 10.1155/2024/1374346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Background The aim of the study was to investigate the cytotoxicity, phytotoxicity, and proximate and phytochemical analysis of methanolic extracts of the leaves of Justicia adhatoda. Methods Methanolic leaf extract of J. adhatoda was screened for phytotoxic activity by using root length inhibition and seed germination assays. Cytotoxic activity was calculated using brine shrimp lethality bioassay. Plant extracts were also investigated for their proximate composition. The presence of several phytochemicals was tested by employing different methods. Results Decrease in seed germination and root length, 62.67% and 83.11%, was proportional to the increasing concentration of the methanolic extract of the plant. Cytotoxicity assay results indicated that the methanolic extract possessed significant cytotoxic potential with an LC-50 of 217 µg/ml. Proximate analysis revealed that the leaves of J. adhatoda contain 9.4% moisture, 90.6% dry matter, 19.25% crude protein, 4.5% crude fat, 8.0% crude fiber, and 11.5% total ash. Conclusion Methanolic extracts of J. adhatoda leaves showed significant cytotoxic effects and may have potential use in medicine. The J. adhatoda foliar extract shows good inhibitory effects against seed germination and root growth. Therefore, it might be used as soil additive in crops to control weeds. Further research is required to detect and isolate phytotoxins from the plant that might replace synthetic herbicides with eco-friendly herbicides.
Collapse
Affiliation(s)
- Muhammad Nasir
- Department of Botany The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Roha Ramash
- Department of Botany The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Hira Fatima
- Department of Botany The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Sana Ashraf
- Department of Zoology The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Iqra Munir
- Department of Botany The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Sundas Asghar
- Department of Zoology The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Muhammad Adnan
- Department of Botany The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Atifa Masood
- Department of Botany The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | | |
Collapse
|
3
|
Peron G, Prasad Phuyal G, Hošek J, Adhikari R, Dall'Acqua S. Identification of hydroxyquinazoline alkaloids from Justicia adhatoda L. leaves, a traditional natural remedy with NF-κB and AP-1-mediated anti-inflammatory properties and antioxidant activity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118345. [PMID: 38754645 DOI: 10.1016/j.jep.2024.118345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Justicia adhatoda L. is used as traditional medicine in Nepal to treat cough, asthma, and inflammatory disorders, and is indicated as "Asuro". Leaves are used worldwide as herbal medicine due to cardiotonic, expectorant, anti-asthmatic, and bronchodilatory properties. The aim of this work was to study the phytochemical composition of leaves of Nepalese J. adhatoda and assess their anti-inflammatory and antioxidant properties in vitro. MATERIALS AND METHODS Secondary metabolites were extracted from dried leaves using methanol (JAME: J. adhatoda methanol extract). They were analysed by means of liquid chromatography coupled with multiple-stage mass spectrometry (LC-MSn). Anti-inflammatory potential was determined by the NF-κB and AP-1 inhibition assay, and DPPH, ABTS, and β-carotene bleaching assays were performed to assess its antioxidant properties. RESULTS JAME is a rich source of secondary metabolites, especially quinazoline alkaloids such as vasicine, vasicinone, vasicoline, and adhatodine. 7-Hydroxy derivatives of peganidine, vasicolinone, and adhatodine were also identified by means of MSn data and are here reported in J. adhatoda for the first time. JAME inhibited NF-κB and AP-1 expression in THP-1 cells to a greater extent than the positive control prednisolone. A moderate radical-quenching property was observed in DPPH and ABTS assays, but the anti-carotene bleaching activity was significantly higher than the reference BHT. CONCLUSIONS To the best of our knowledge, this is the first insight into the phytochemical composition of Asuro leaves from Nepal and their bioactivity. Our results will contribute to the valorisation of this medicinal species still widely used in the traditional and complementary medicine.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, viale Europa 11, 25123, Brescia, Italy; Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kiritipur, 44613, Kathmandu, Nepal.
| | - Ganga Prasad Phuyal
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kiritipur, 44613, Kathmandu, Nepal.
| | - Jan Hošek
- Veterinary Research Institute, Hudcova 296/70, CZ-621 00, Brno, Czech Republic; Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00, Brno, Czech Republic.
| | - Rameshwar Adhikari
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kiritipur, 44613, Kathmandu, Nepal; Central Department of Chemistry, Tribhuvan University, Kiritipur, 44613, Kathmandu, Nepal.
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy.
| |
Collapse
|
4
|
Khandelwal P, Wadhwani BD, Rao RS, Mali D, Vyas P, Kumar T, Nair R. Exploring the pharmacological and chemical aspects of pyrrolo-quinazoline derivatives in Adhatoda vasica. Heliyon 2024; 10:e25727. [PMID: 38379997 PMCID: PMC10877266 DOI: 10.1016/j.heliyon.2024.e25727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Adhatoda or Justicia is one of the biggest and complex genera of the Acanthaceae family. Adhatoda vasica is commonly known as 'Adosa'. It is an ayurvedic medicine with a medicinal history of more than a thousand years in India. Traditionally, it is used to treat cough, asthma, phlegm, bleeding hemorrhoids, for both adults and youth. This plant possesses antiarthritis, antiseptic, antimicrobial, anti-tuberculosis, anti-inflammatory and abortifacient properties. Alkaloids are the major phytoconstituents present in the plant in the form of pyrrolo-quinazoline derivatives viz vasicine, vasicinone, vasicinol, adhatodine, adhatodinine, adhavasinone and anisotine etc. The asserted objectives are to conduct a systematic review on the phytochemistry, pharmacology and traditional uses of A. vasica, as well as highlighting the challenges found in the research. This will promote the utilization of A. vasica at extract level and further development of new drug leads based on the compounds isolated and used for treatment of various ailments. The present review covers the literature survey from 1888 to 2023. The relevant data has been collected from various peer-reviwed journals, and books via Sci-Finder, PubMed, Science Direct, Google Scholar, EBSCO, online electronic journals, SpringerLink and Wiley. This paper aims to present a systematic review of known traditional applications, pharmacological and chemical aspects in Adhatoda vasica.
Collapse
Affiliation(s)
- Poonam Khandelwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Barkha Darra Wadhwani
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Ravindra Singh Rao
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Deepak Mali
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Pooja Vyas
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Tarun Kumar
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Rashmy Nair
- Department of Chemistry, S.S. Jain Subodh P.G. College, Jaipur, 302004, Rajasthan, India
| |
Collapse
|
5
|
Muthusamy SP, Jagadeeswaran A, Natarajan A. Pharmacokinetics, dynamics, toxicology and molecular docking of bioactive alkaloid vasicine from Adhatoda vasica: a promising toxin binder against aflatoxin B1 and ochratoxin A. Poult Sci 2024; 103:103272. [PMID: 38100946 PMCID: PMC10764263 DOI: 10.1016/j.psj.2023.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Vasicine from Adhatoda vasica was investigated in the management of aflatoxicosis and ochratoxicosis by in silico molecular docking approach. The computational analysis was carried out using Discovery Studio Autodock 4.5 tool. Absorption, distribution, metabolism, and excretion (ADME), pharmacodynamics and toxicity studies were also carried out using Swiss ADME and PASS online server, respectively. The standard drug compound used was silymarin and the structure were retrieved from the protein data bank for both the test compound vasicine and the standard drug. Vasicine interacted with aflatoxin B1 at 10 different poses and the maximum dock score was found to be 83.04 and the binding energy was -37.54 kcal/mol. Silymarin interacted with aflatoxin B1 at 10 different poses and the maximum dock score was found to be 143.578 and the binding energy was -67.32 kcal/mol. Vasicine interacted with ochratoxin A at 10 different poses and the maximum dock score was found to be 73.75 and the binding energy was -56.20 kcal/mol. Silymarin interacted with ochratoxin A at 10 different poses and the maximum dock score was found to be 89.23 and the binding energy was -98.86 kcal/mol. The compounds possess good gastro intestinal absorption with antioxidant property and exhibits minimum adverse effects. The obtained results support the toxin mitigating potential of the test compound with minimum adverse effects and hence vasicine can be regarded as a potential toxin binder of aflatoxin B1 and ochratoxin A, wherein it can be implemented for alleviating aflatoxicosis and ochratoxicosis.
Collapse
Affiliation(s)
- Sakthi Priya Muthusamy
- Department of Veterinary Pharmacology and Toxicology, Veterinary College and Research Institute, Namakkal 637 002, Tamil Nadu, India.
| | - Appusamy Jagadeeswaran
- Department of Veterinary Pharmacology and Toxicology, Veterinary College and Research Institute, Namakkal 637 002, Tamil Nadu, India
| | - Amirthalingam Natarajan
- Animal Feed Analytical and Quality Assurance Laboratory, Veterinary College and Research Institute, Namakkal 637 002, Tamil Nadu, India
| |
Collapse
|
6
|
Rudrapal M, Vallinayagam S, Aldosari S, Khan J, Albadrani H, Al-Shareeda A, Kamal M. Valorization of Adhatoda vasica leaves: Extraction, in vitro analyses and in silico approaches. Front Nutr 2023; 10:1161471. [PMID: 37063312 PMCID: PMC10099809 DOI: 10.3389/fnut.2023.1161471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Adhatoda vasica (also called Vasaka) is a traditional medicinal herb used traditionally for the relief of cough, asthma, nasal congestion, bronchial inflammation, upper respiratory infections, bleeding disorders, skin diseases, leprosy, tuberculosis, diabetes, allergic conditions, rheumatism, tumor, and many more diseases. The present study aims to investigate the biological activities of vasicine, a potent alkaloid from A. vasica with different biological/ pharmacological assays and in silico techniques. Vasicine showed antimicrobial activity as evidenced fromthe colony-forming unit assay. It showed antioxidant activity in ABTS scavenging assay (IC50 = 11.5 μg/ml), ferric reducing power assay (IC50 = 15 μg/ml), DPPH radical scavenging assay (IC50 = 18.2 μg/ml), hydroxyl radical scavenging assay (IC50 = 22 μg/ml), and hydrogen peroxide assay (IC50 = 27.8 μg/ml). It also showed anti-inflammatory activity in proteinase inhibitory assay (IC50 = 76 μg/ml), BSA method (IC50 = 51.7 μg/ml), egg albumin method (IC50 = 53.2 μg/ml), and lipooxygenase inhibition assay (IC50 = 76 μg/ml). Vasicine showed antidiabetic activity in α-amylase inhibition assay (IC50 = 47.6 μg/ml), α-glucosidase inhibition assay (IC50 = 49.68 μg/ml), and non-enzymatic glycosylation of hemoglobin assay. It showed antiviral activity against HIV-protease (IC50 = 38.5 μg/ml). Vasicine also showed anticancer activity against lung cancer cells (IC50 = 46.5 μg/ml) and human fibroblast cells (IC50 = 82.5 μg/ml). In silico studies revealed that similar to the native ligands, vasicine also showed a low binding energy, i.e., good binding affinity for the active binding sites and interacted with α-amylase (-6.7 kcal/mol), α-glucosidase (-7.6 kcal/mol), cyclooxygenase (-7.4 kcal/mol), epidermal growth factor receptor (-6.4 kcal/mol), lipooxygenase (-6.9 kcal/mol), and HIV-protease (-6.4 kcal/mol). The present study ascertains the potential of vasicine as a bioactive compound isolated from A. vasica having therapeutic usefulness in many human diseases.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, India
- *Correspondence: Mithun Rudrapal
| | - Sugumari Vallinayagam
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R and D Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sahar Aldosari
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
- Sahar Aldosari s.aldosarimu.edu.sa
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Hind Albadrani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Alaa Al-Shareeda
- Department of Cellular Therapy and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of the Saudi Biobank, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
7
|
Identification of Concomitant Inhibitors against Glutamine Synthetase and Isocitrate Lyase in Mycobacterium tuberculosis from Natural Sources. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4661491. [PMID: 36225979 PMCID: PMC9550479 DOI: 10.1155/2022/4661491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Tuberculosis (T.B.) is a disease that occurs due to infection by the bacterium, Mycobacterium tuberculosis (Mtb), which is responsible for millions of deaths every year. Due to the emergence of multidrug and extensive drug-resistant Mtb strains, there is an urgent need to develop more powerful drugs for inclusion in the current tuberculosis treatment regime. In this study, 1778 molecules from four medicinal plants, Azadirachta indica, Camellia sinensis, Adhatoda vasica, and Ginkgo biloba, were selected and docked against two chosen drug targets, namely, Glutamine Synthetase (G.S.) and Isocitrate Lyase (I.C.L.). Molecular Docking was performed using the Glide module of the Schrӧdinger suite to identify the best-performing ligands; the complexes formed by the best-performing ligands were further investigated for their binding stability via Molecular Dynamics Simulation of 100 ns. The present study suggests that Azadiradione from Azadirachta indica possesses the potential to inhibit Glutamine Synthetase and Isocitrate Lyase of M. tuberculosis concomitantly. The excellent docking score of the ligand and the stability of receptor-ligand complexes, coupled with the complete pharmacokinetic profile of Azadiradione, support the proposal of the small molecule, Azadiradione as a novel antitubercular agent. Further, wet lab analysis of Azadiradione may lead to the possible discovery of a novel antitubercular drug.
Collapse
|
8
|
Basit A, Shutian T, Khan A, Khan SM, Shahzad R, Khan A, Khan S, Khan M. Anti-inflammatory and analgesic potential of leaf extract of Justicia adhatoda L. (Acanthaceae) in Carrageenan and Formalin-induced models by targeting oxidative stress. Biomed Pharmacother 2022; 153:113322. [DOI: 10.1016/j.biopha.2022.113322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
|
9
|
Vasicine alleviates 2,4-dinitrochlorobenzene-induced atopic dermatitis and passive cutaneous anaphylaxis in BALB/c mice. Clin Immunol 2022; 244:109102. [DOI: 10.1016/j.clim.2022.109102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
|
10
|
Singh B, Sahu PM, Aloria M, Reddy SS, Prasad J, Sharma RA. Azotobacter chroococcum and Pseudomonas putida enhance pyrroloquinazoline alkaloids accumulation in Adhatoda vasica hairy roots by biotization. J Biotechnol 2022; 353:51-60. [PMID: 35691257 DOI: 10.1016/j.jbiotec.2022.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Adhatoda vasica is used in the treatment of cold, cough, chronic bronchitis, asthma, diarrhea, and dysentery. The biological activities of this species are attributed with the presence of alkaloids, triterpenoids, and flavonoids. Agrobacterium rhizogenes-mediated transformation of A. vasica, produces pyrroloquinazoline alkaloids, was achieved by infecting leaf discs with strain ATCC15834. The bacterial strain infected 82.7% leaf discs and 5-7 hairy root initials were developed from the cut edges of leaf discs. In this study, seven strains of Azotobacter chroococcum and five strains of Pseudomonas putida were used for the biotization of hairy roots. Plant growth-promoting rhizobacteria (PGPR) develops symbiotic association with roots of plants and increases the growth parameters of plants. PGPR (A. chroococcum and P. putida) increased the profiles of nitrogenase and acid phosphatase enzymes, biomass, dry matter contents, anthranilate synthase activity and accumulation of pyrroloquizoline alkaloids in the biotized hairy roots. Both enzymes (nitrogenase and acid phosphatase) maintain sufficient supply of nitrogen and dissolved phosphorus to the cells of hairy roots therefore, the levels of anthranilate synthase activity and pyrroloquinazoline alkaloids are increased. Total seven pyrroloquinazoline alkaloids (vasicine, vasicinone, vasicine acetate, 2-acetyl benzyl amine, vasicinolone, deoxyvasicine and vasicol) were identified from the biotized hairy roots of A. vasica. In our study, biotization increased the profiles of pyrroloquinazoline alkaloids therefore, this strategy may be used in increasing the production of medicinally important secondary metabolites in other plant species also. Our hypothetical model demonstrates that P. putida cell surface receptors receive root exudates by attaching on hairy roots. After attachment, the bacterial strain penetrates in the biotized hairy roots. This endophytic interaction stimulates acid phosphatase activity in the cells of biotized hairy roots. The P. putida plasmid gene (ppp1) expression led to the synthesis of acid phosphatase in cytosol. The enzyme enhances phosphorus availability as well as induces the formation of phosphoribosyl diphosphate. Later, phosphoribosyl diphosphate metabolizes to tryptophan and finally tryptophan converts to anthranilic acid. The synthesized anthranilic acid used in the synthesis of alkaloids in A. vasica.
Collapse
Affiliation(s)
- Bharat Singh
- Institute of Biotechnology, Amity University Rajasthan, Jaipur 303 002, India.
| | - Pooran M Sahu
- Department of Botany, University of Rajasthan, Jaipur 302 004, India
| | - Mukesh Aloria
- Institute of Biotechnology, Amity University Rajasthan, Jaipur 303 002, India
| | - Samar S Reddy
- Department of Biotechnology, KL University, Guntur 522502, India; Pratistha Industries Limited, Manjeera Colony, Old Alwal, Secundrabad 500 010, India
| | | | - Ram A Sharma
- Department of Botany, University of Rajasthan, Jaipur 302 004, India
| |
Collapse
|
11
|
Mukherjee S, Chatterjee N, Sircar A, Maikap S, Singh A, Acharyya S, Paul S. A Comparative Analysis of Heavy Metal Effects on Medicinal Plants. Appl Biochem Biotechnol 2022; 195:2483-2518. [PMID: 35488955 DOI: 10.1007/s12010-022-03938-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Popularity of herbal drugs has always been in high demand, but recently it has been increasing all over the world, especially in India, because of the lower range of adverse health effects as compared to synthetic or man-made drugs. Not only this but their cost-effectiveness and easy availability to the poor people and the masses, particularly in developing countries, are major causes for their demand. But there lies a huge problem during the process of plant collection that affects their medicinal properties to certain degrees. This is caused by heavy metal toxicity in soil in different locations of the Indian subcontinent. This was correlated with their potential to cause health damage. Exposure of humans to heavy metals includes diverse pathways from food to water to consumption and inhalation of polluted air to permanent damage to exposed skin and even by occupational exposure at workplaces. As we can understand, the main mechanisms of heavy metal toxicity include the production of free radicals to affect the host by oxidative stress, damaging biological molecules such as enzymes, proteins, lipids, and even nucleic acids and finally damaging DNA which is the fastest way to carcinogenesis and in addition, neurotoxicity. Therefore, in this paper, we have researched how the plants/herbs are affected due to heavy metal deposition in their habitat and how it can lead to serious clinical complications.
Collapse
Affiliation(s)
- Susmita Mukherjee
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Nivedita Chatterjee
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Asmeeta Sircar
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Shimantika Maikap
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Abhilasha Singh
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Sudeshna Acharyya
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Sonali Paul
- Department of Biotechnology, University of Engineering and Management, Kolkata, India.
| |
Collapse
|
12
|
Li X, Wu L, Wu R, Sun M, Fu K, Kuang T, Wang Z. Comparison of medicinal preparations of Ayurveda in India and five traditional medicines in China. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114775. [PMID: 34742863 DOI: 10.1016/j.jep.2021.114775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayurveda is the main traditional healthcare system in Indian medicine. Tibetan medicine (TM), Mongolian medicine (MM), Buddhist medicine (BM), Dai medicine (DM), and Uyghur medicine (UM) are main traditional medicines practiced in China. These are existing traditional medical systems that still play a role in disease prevention and treatment. AIM OF THE STUDY To reveal the similarities and differences of traditional medicinal preparations between Ayurveda in India and five traditional medicines in China to deepen medical exchanges and cooperation between the two countries and beyond. METHODS All preparations were extracted from statutory pharmacopoeias, ministry standards, and prescription textbooks from China and India. The information of each preparation, such as therapeutic uses, medicinal materials, and preparation forms, was recorded in Excel for statistical analysis and visual comparison. RESULTS A total of 645 Ayurvedic preparations, 458 TM preparations, 164 MM preparations, 616 BM preparations, 227 DM preparations, and 94 UM preparations were identified. Preparations of the six traditional medicines were mostly used for treating digestive, respiratory, and urogenital system diseases. The preparation forms of these six traditional medicines are mainly pills and powders. There are 38 shared-use medicinal materials in Ayurveda and TM preparations, 25 in Ayurveda and MM preparations, 30 in Ayurveda and BM preparations, 39 in Ayurveda and DM preparations, and 31 in Ayurveda and UM preparations. Finally, we selected one important shared-use preparation (Triphala) and 51 medicinal materials to research traditional use and modern pharmacology. CONCLUSIONS These preparations are used by different prescribers and users of medicinal materials in different medical systems with the similarities and differences. The similarities may reflect the historical exchanges of traditional medicines between the two countries. The differences showed that traditional medicines in China have absorbed some theories, diagnoses, and treatments from Ayurveda but also retained their own ethnic and regional characteristics.
Collapse
Affiliation(s)
- Xiaoli Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ruixia Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ming Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tingting Kuang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Research Institute of Traditional Indian Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Research Institute of Traditional Indian Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
13
|
A UPLC-DAD-Based Bio-Screening Assay for the Evaluation of the Angiotensin Converting Enzyme Inhibitory Potential of Plant Extracts and Compounds: Pyrroquinazoline Alkaloids from Adhatoda vasica as a Case Study. Molecules 2021; 26:molecules26226971. [PMID: 34834066 PMCID: PMC8617709 DOI: 10.3390/molecules26226971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/03/2022] Open
Abstract
Angiotensin converting enzyme (ACE) plays a crucial role in regulating blood pressure in the human body. Identification of potential ACE inhibitors from medicinal plants supported the idea of repurposing these medicinal plants against hypertension. A method based on ultra-performance liquid chromatography (UPLC) coupled with a diode array detector (DAD) was used for the rapid screening of plant extracts and purified compounds to determine their ACE inhibitory activity. Hippuryl-histidiyl-leucine (HHL) was used as a substrate, which is converted into hippuric acid (HA) by the action of ACE. A calibration curve of the substrate HHL was developed with the linear regression 0.999. The limits of detection and quantification of this method were found to be 0.134 and 0.4061 mM, respectively. Different parameters of ACE inhibitory assay were optimized, including concentration, incubation time and temperature. The ACE inhibition potential of Adhatoda vasica (methanolic-aqueous extract) and its isolated pyrroquinazoline alkaloids, vasicinol (1), vasicine (2) and vasicinone (3) was evaluated. Compounds 1–3 were characterized by various spectroscopic techniques. The IC50 values of vasicinol (1), vasicine (2) and vasicinone (3) were found to be 6.45, 2.60 and 13.49 mM, respectively. Molecular docking studies of compounds 1–3 were also performed. Among these compounds, vasicinol (1) binds as effectively as captopril, a standard drug of ACE inhibition.
Collapse
|
14
|
D’souza PS, Holla R, Swamy G. Effect of Adhatoda zeylanica Ethanolic Extract on Attenuated Kidney in Streptozotocin-Induced Diabetic Rats. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2021. [DOI: 10.1055/s-0040-1722801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Objective The present study was aimed to evaluate the effect of ethanolic extract of Adhatoda zeylanica (EAZ) leaves on streptozotocin (STZ)-induced diabetes mellitus (DM) and its renal complications in male Wistar albino rats.
Materials and Methods Adult male Wistar albino rats were randomly selected from a colony, divided into four groups, namely, A, B, C, and D, with each having six rats (n = 6) and each weighing between 200 and 250 g. Group A served as control and received only water per oral (p.o.). Group B, C, and D animals received a single dose of STZ at 45 mg/kg body weight (kbw) intraperitoneal administration (i.p.) on day 1 and observed for fasting blood glucose (FBG) to induce DM for next 72 hours. After the DM was induced, group B served as DM control, group C received the standard drug glibenclamide (GL) at 5 mg/kbw p.o. once daily, and group D received EAZ of 500 mg/kbw p.o. once daily for 35 days. After the observation period, the animals were euthanized, serum creatinine and blood urea, antioxidants in the kidney tissue homogenate, and histopathological studies were assessed to know the ameliorative effect of the test drugs.
Results Renal parameters, such as serum creatinine, blood urea, antioxidants activities, in group D were nearer to the control when compared with groups B and C. Histopathological studies revealed that there was minimal renal damage in group D when compared with groups B and C.
Conclusion Administration of ethanolic EAZ showed significant ameliorative effects on the FBG, biochemical, oxidative, and histopathological parameters on kidney tissues treated with STZ to induce DM.
Collapse
Affiliation(s)
| | - Rajendra Holla
- Department of Pharmacology, K.S. Hegde Medical Academy, Mangalore, Karnataka, India
| | - Gangadhara Swamy
- Department of Anatomy, Subbiah Institute of Medical Sciences and Research Center, Shivamogga, Karnataka, India
| |
Collapse
|
15
|
Sharma V, Kaur R, Sharma VL. Ameliorative potential of Adhatoda vasica against anti-tubercular drugs induced hepatic impairments in female Wistar rats in relation to oxidative stress and xeno-metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113771. [PMID: 33388427 DOI: 10.1016/j.jep.2020.113771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Adhatoda vasica Nees is widely used herb of indigenous system to treat various ailments especially upper respiratory tract infections. Not only, anti-tubercular efficacy of crude extract and phytoconstituents of A. vasica has been documented but its hepatoprotective role against various drugs mediated hepatic alterations in different animal models has also been observed. BACKGROUND AND PURPOSE Isoniazid, rifampicin and pyrazinamide (H-R-Z) are anti-tubercular drugs normally prescribed by health professionals for the treatment of tuberculosis, however along with their medical effectiveness these drugs also exhibit hepatotoxicity among TB patients. Unexpectedly, substantial toxicological data on the metabolism of anti-TB drugs are available but the mystery behind these xenobiotics is too complex and partly implicit. In this study, we further explored the hepatotoxic effects of these xeno-metabolic products and their amelioration by Adhatoda vasica Nees by elucidating its mechanistic action. METHODS We generated a hepatotoxic rodent model by oral administration of H, R and Z (30.85, 61.7 and 132.65 mg/kg body weight) drugs for 25 days in Wistar rats. Additionally, to achieve hepatoprotection two different doses of Adhatoda vasica Nees ethanolic leaf extract (200 and 300 mg/kg body weight) were used along with H-R-Z dosage, orally and once daily for 25 days and tried to ascertain their mechanistic action. For this, initially phytoconstituents of the extract were evaluated followed by extract standardization using RP-HPLC and FTIR methods. Furthermore, antioxidant activity of the extract was analyzed by DPPH assay. Finally, different treated groups were analyzed for hepatic oxidative stress markers, antioxidant markers, histopathological changes and gene expression study including CYP2E1, CYP7A1, NAT, NR1I2 and UGT1A1 genes involved in phase I and phase II xeno-metabolism. RESULTS Estimated content of vasicine in RP-HPLC method and free-radical scavenging activity in DPPH assay was found to be 134.519 ± 0.00269μg/10mg of leaf extract and 47.81 μg/mL respectively. In H-R-Z treated group, a significant increase in the levels of thiobarbituric acid, significant reduction in the levels of GSH, and enzymatic markers and marked changes in hepatic histological architecture were observed. In addition, there was significance up-regulation of CYP7A and NAT genes, down-regulation of CYP2E1 gene and insignificant expression levels of NR1I2 and UGT1A1 genes were observed in H-R-Z group. Conversely, high dose of A. vasica extract effectively diminished these alterations by declining oxidative stress and boosting of antioxidant levels. In addition, it acted as bi-functional inducer of both phase I (CYP2E1) and phase II (NAT and UGT1A1) enzyme systems. CONCLUSION Hence, we concluded that anti-TB drugs exposure has potential to generate reactive metabolites that eventually cause hepatotoxicity by altering oxidant-antioxidant levels and their own metabolism. This study not only emphasized on xeno-metabolism mediated hepatic alterations but also explore the benefit of A. vasica on these toxic insults.
Collapse
Affiliation(s)
- Varsha Sharma
- Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Rajwinder Kaur
- Department of Zoology, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
16
|
Gheware A, Dholakia D, Kannan S, Panda L, Rani R, Pattnaik BR, Jain V, Parekh Y, Enayathullah MG, Bokara KK, Subramanian V, Mukerji M, Agrawal A, Prasher B. Adhatoda Vasica attenuates inflammatory and hypoxic responses in preclinical mouse models: potential for repurposing in COVID-19-like conditions. Respir Res 2021; 22:99. [PMID: 33823870 PMCID: PMC8022127 DOI: 10.1186/s12931-021-01698-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND COVID-19 pneumonia has been associated with severe acute hypoxia, sepsis-like states, thrombosis and chronic sequelae including persisting hypoxia and fibrosis. The molecular hypoxia response pathway has been associated with such pathologies and our recent observations on anti-hypoxic and anti-inflammatory effects of whole aqueous extract of Adhatoda Vasica (AV) prompted us to explore its effects on relevant preclinical mouse models. METHODS In this study, we tested the effect of whole aqueous extract of AV, in murine models of bleomycin induced pulmonary fibrosis, Cecum Ligation and Puncture (CLP) induced sepsis, and siRNA induced hypoxia-thrombosis phenotype. The effect on lung of AV treated naïve mice was also studied at transcriptome level. We also determined if the extract may have any effect on SARS-CoV2 replication. RESULTS Oral administration AV extract attenuates increased airway inflammation, levels of transforming growth factor-β1 (TGF-β1), IL-6, HIF-1α and improves the overall survival rates of mice in the models of pulmonary fibrosis and sepsis and rescues the siRNA induced inflammation and associated blood coagulation phenotypes in mice. We observed downregulation of hypoxia, inflammation, TGF-β1, and angiogenesis genes and upregulation of adaptive immunity-related genes in the lung transcriptome. AV treatment also reduced the viral load in Vero cells infected with SARS-CoV2. CONCLUSION Our results provide a scientific rationale for this ayurvedic herbal medicine in ameliorating the hypoxia-hyperinflammation features and highlights the repurposing potential of AV in COVID-19-like conditions.
Collapse
Affiliation(s)
- Atish Gheware
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, 110007, India
- CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics) CSIR-IGIB, Delhi, 110007, India
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics), CSIR- IGIB, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhwani Dholakia
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, 110007, India
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics), CSIR- IGIB, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sadasivam Kannan
- Center for High Computing, CSIR- Central Leather Research Institute (CLRI), Chennai, 600020, India
| | - Lipsa Panda
- Center for Translational Research in Lung Disease, CSIR- IGIB, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ritu Rani
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, 110007, India
- CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics) CSIR-IGIB, Delhi, 110007, India
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics), CSIR- IGIB, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Vaibhav Jain
- Center for Translational Research in Lung Disease, CSIR- IGIB, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yash Parekh
- CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, 500007, India
| | - M Ghalib Enayathullah
- CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Kiran Kumar Bokara
- CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Venkatesan Subramanian
- Center for High Computing, CSIR- Central Leather Research Institute (CLRI), Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mitali Mukerji
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, 110007, India
- CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics) CSIR-IGIB, Delhi, 110007, India
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics), CSIR- IGIB, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anurag Agrawal
- Center for Translational Research in Lung Disease, CSIR- IGIB, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Bhavana Prasher
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, 110007, India.
- CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics) CSIR-IGIB, Delhi, 110007, India.
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR's Ayurgenomics Unit-TRISUTRA (Translational Research and Innovative Science ThRoughAyurgenomics), CSIR- IGIB, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Gheware A, Panda L, Khanna K, Bhatraju NK, Jain V, Sagar S, Kumar M, Singh VP, Kannan S, Subramanian V, Mukerji M, Agrawal A, Prasher B. Adhatoda vasica rescues the hypoxia-dependent severe asthma symptoms and mitochondrial dysfunction. Am J Physiol Lung Cell Mol Physiol 2021; 320:L757-L769. [PMID: 33565386 DOI: 10.1152/ajplung.00511.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Severe asthma is a chronic airway disease that exhibits poor response to conventional asthma therapies. Growing evidence suggests that elevated hypoxia increases the severity of asthmatic inflammation among patients and in model systems. In this study, we elucidate the therapeutic effects and mechanistic basis of Adhatoda vasica (AV) aqueous extract on mouse models of acute allergic as well as severe asthma subtypes at physiological, histopathological, and molecular levels. Oral administration of AV extract attenuates the increased airway resistance and inflammation in acute allergic asthmatic mice and alleviates the molecular signatures of steroid (dexamethasone) resistance like IL-17A, KC (murine IL-8 homologue), and HIF-1α (hypoxia-inducible factor-1α) in severe asthmatic mice. AV inhibits HIF-1α levels through restoration of expression of its negative regulator-PHD2 (prolyl hydroxylase domain-2). Alleviation of hypoxic response mediated by AV is further confirmed in the acute and severe asthma model. AV reverses cellular hypoxia-induced mitochondrial dysfunction in human bronchial epithelial cells-evident from bioenergetic profiles and morphological analysis of mitochondria. In silico docking of AV constituents reveal higher negative binding affinity for C and O-glycosides for HIF-1α, IL-6, Janus kinase 1/3, TNF-α, and TGF-β-key players of hypoxia inflammation. This study for the first time provides a molecular basis of action and effect of AV whole extract that is widely used in Ayurveda practice for diverse respiratory ailments. Further, through its effect on hypoxia-induced mitochondrial dysfunction, the study highlights its potential to treat severe steroid-resistant asthma.
Collapse
Affiliation(s)
- Atish Gheware
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,CSIR's Ayurgenomics Unit, TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics), CSIR-IGIB, Delhi, India.,Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Lipsa Panda
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kritika Khanna
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naveen Kumar Bhatraju
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India
| | - Vaibhav Jain
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shakti Sagar
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manish Kumar
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India
| | - Vijay Pal Singh
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India
| | - Sadasivam Kannan
- Center for High Computing, CSIR-Central Leather Research Institute (CLRI), Chennai, India
| | - Venkatesan Subramanian
- Center for High Computing, CSIR-Central Leather Research Institute (CLRI), Chennai, India
| | - Mitali Mukerji
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,CSIR's Ayurgenomics Unit, TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics), CSIR-IGIB, Delhi, India.,Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Agrawal
- Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bhavana Prasher
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,CSIR's Ayurgenomics Unit, TRISUTRA (Translational Research and Innovative Science ThRough Ayurgenomics), CSIR-IGIB, Delhi, India.,Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR-IGIB, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
18
|
Promising phytochemicals of traditional Indian herbal steam inhalation therapy to combat COVID-19 - An in silico study. Food Chem Toxicol 2021; 148:111966. [PMID: 33412235 PMCID: PMC7780060 DOI: 10.1016/j.fct.2020.111966] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/27/2020] [Indexed: 12/12/2022]
Abstract
Background COVID-19, the presently prevailing global public health emergency has culminated in international instability in economy. This unprecedented pandemic outbreak pressingly necessitated the trans-disciplinary approach in developing novel/new anti-COVID-19 drugs especially, small molecule inhibitors targeting the seminal proteins of viral etiological agent, SARS-CoV-2. Methods Based on the traditional medicinal knowledge, we made an attempt through molecular docking analysis to explore the phytochemical constituents of three most commonly used Indian herbs in ‘steam inhalation therapy’ against well recognized viral receptor proteins. Results A total of 57 phytochemicals were scrutinized virtually against four structural protein targets of SARS-CoV-2 viz. 3CLpro, ACE-2, spike glycoprotein and RdRp. Providentially, two bioactives from each of the three plants i.e. apigenin-o-7-glucuronide and ellagic acid from Eucalyptus globulus; eudesmol and viridiflorene from Vitex negundo and; vasicolinone and anisotine from Justicia adhatoda were identified to be the best hit lead molecules based on interaction energies, conventional hydrogen bonding numbers and other non-covalent interactions. On comparison with the known SARS-CoV-2 protease inhibitor –lopinavir and RdRp inhibitor –remdesivir, apigenin-o-7-glucuronide was found to be a phenomenal inhibitor of both protease and polymerase, as it strongly interacts with their active sites and exhibited remarkably high binding affinity. Furthermore, in silico drug-likeness and ADMET prediction analyses clearly evidenced the usability of the identified bioactives to develop as drug against COVID-19. Conclusion Overall, the data of the present study exemplifies that the phytochemicals from selected traditional herbs having significance in steam inhalation therapy would be promising in combating COVID-19.
Collapse
|
19
|
Padhiari BM, Ray A, Jena S, Champati BB, Sahoo A, Mohanty S, Nayak S. Simultaneous quantification of vasicine and vasicinone in different parts of Justicia adhatoda using high-performance thin-layer chromatography‒densitometry: comparison of different extraction techniques and solvent systems. JPC-J PLANAR CHROMAT 2020. [DOI: 10.1007/s00764-020-00070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Antibacterial, Antifungal, Antiviral, and Anthelmintic Activities of Medicinal Plants of Nepal Selected Based on Ethnobotanical Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1043471. [PMID: 32382275 PMCID: PMC7193273 DOI: 10.1155/2020/1043471] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Background Infections by microbes (viruses, bacteria, and fungi) and parasites can cause serious diseases in both humans and animals. Heavy use of antimicrobials has created selective pressure and caused resistance to currently available antibiotics, hence the need for finding new and better antibiotics. Natural products, especially from plants, are known for their medicinal properties, including antimicrobial and anthelmintic activities. Geoclimatic variation, together with diversity in ethnomedicinal traditions, has made the Himalayas of Nepal an invaluable repository of traditional medicinal plants. We studied antiviral, antibacterial, antifungal, and anthelmintic activities of medicinal plants, selected based upon ethnobotanical evidence. Methods Ethanolic and methanolic extracts were tested (1) on a panel of microbes: two Gram-positive bacteria (Staphylococcus aureus and Listeria innocua), four Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, and Shigella sonnei), and one fungal species: Candida albicans; (2) against three different viruses: yellow fever, chikungunya, and enterovirus; and (3) on the nematode Caenorhabditis elegans. Also, cytotoxicity was assessed on human hepatoma (Huh), rhabdosarcoma (RD), and Vero (VC) cell lines. Results Of 18 plants studied, Ampelocissus tomentosa and Aleuritopteris anceps inhibited S. aureus (MIC 35 μg/mL and 649 μg/mL, respectively) and Pseudomonas aeruginosa (MIC 15 μg/mL and 38 μg/mL, respectively). Rhododendron arboreum and Adhatoda vasica inhibited S. enterica (MIC 285 μg/mL and 326 μg/mL, respectively). Kalanchoe pinnata, Ampelocissus tomentosa, and Paris polyphylla were active against chikungunya virus, and Clerodendrum serratum was active against yellow fever virus (EC50 15.9 μg/mL); Terminalia chebula was active against enterovirus (EC50 10.6 μg/mL). Ampelocissus tomentosa, Boenninghausenia albiflora, Dichrocephala integrifolia, and Kalanchoe pinnata significantly reduced C. elegans motility, comparable to levamisole. Conclusions In countries like Nepal, with a high burden of infectious and parasitic diseases, and a current health system unable to combat the burden of diseases, evaluation of local plants as a treatment or potential source of drugs can help expand treatment options. Screening plants against a broad range of pathogens (bacteria, viruses, fungi, and parasites) will support bioprospecting in Nepal, which may eventually lead to new drug development.
Collapse
|
21
|
Magyar CL, Wall TJ, Davies SB, Campbell MV, Barna HA, Smith SR, Savich CJ, Mosey RA. Triflic anhydride mediated synthesis of 3,4-dihydroquinazolines: a three-component one-pot tandem procedure. Org Biomol Chem 2020; 17:7995-8000. [PMID: 31408069 DOI: 10.1039/c9ob01596e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A one-pot three-component tandem reaction involving a key Pictet-Spengler-like annulation step has been developed, providing an efficient method for the synthesis of 3,4-dihydroquinazolines in moderate to good yields from amides, aldehydes, and amines. The multicomponent triflic anhydride mediated reaction tolerates the installation of numerous functional groups, affording extensive diversity about the heterocyclic scaffold.
Collapse
Affiliation(s)
- Christina L Magyar
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Evaluation of antiplasmodial properties in 15 selected traditional medicinal plants from India. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:80-85. [DOI: 10.1016/j.joim.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/12/2019] [Indexed: 11/22/2022]
|
23
|
Jiang T, Zhang L, Ding M, Li M. Protective Effect Of Vasicine Against Myocardial Infarction In Rats Via Modulation Of Oxidative Stress, Inflammation, And The PI3K/Akt Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3773-3784. [PMID: 31802850 PMCID: PMC6827513 DOI: 10.2147/dddt.s220396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Background Myocardial infarction is the leading cause of damage to the heart and is classified as a major cause of death related to cardiovascular disease. In the present study, we intended to investigate the protective effect of vasicine (VAS) against myocardial infarction in rats, and its mechanism. Methods Myocardial infarction was induced by isoproterenol (ISO, 100 mg/kg) at an interval of 24 h for 2 days. Different doses of VAS (2.5, 5, and 10 mg/kg body weight) were administered to the rats. The effect of VAS on oxidative stress markers such as, myocardial necrosis, myocardial ability and infarct volume, inflammatory cytokines, membrane-bound myocardial enzymes, and histopathological changes was investigated. Western blot analysis was also conducted to analyze the effect of VAS on autophagy (PI3K/Akt) and apoptosis (Bcl-2, Bax, and caspase-3). The number of apoptotic cells in the different groups was also identified using TUNEL. Results Results suggested that VAS causes reduction in myocardial necrosis by reduction of elevated LDH, CK-MB, and TnT levels. It also causes augmentation of left ventricular systolic pressure (LVSP) and myocardial contractility as determined in terms of +dp/dtmax and –dp/dtmax. Furthermore, VAS causes reduction of TNF-α and IL-6 levels. VAS also improved cardiac function via enhancing posterior wall thickness of the LV with concurrent increase in the mass of LV. In the present study, VAS caused activation of phosphorylated PI3K (p-PI3K) and phosphorylated Akt (p-Akt) in a dose-dependent manner. Furthermore, VAS suppressed apoptosis when tested on animals suffering from ISO-induced MI, by decreasing the expression of cleaved Caspase-3 and Bax while increasing the expression of Bcl-2. Conclusion In conclusion, vasicine has a protective effect against MI in vivo, through inhibiting oxidative stress, inflammation and excessive autophagy, to suppress apoptosis via activation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Tiechao Jiang
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.,Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun 130033, People's Republic of China
| | - Lirong Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Mei Ding
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.,Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun 130033, People's Republic of China
| | - Min Li
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| |
Collapse
|
24
|
Deng G, Wu C, Rong X, Li S, Ju Z, Wang Y, Ma C, Ding W, Guan H, Cheng X, Liu W, Wang C. Ameliorative effect of deoxyvasicine on scopolamine-induced cognitive dysfunction by restoration of cholinergic function in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153007. [PMID: 31301537 DOI: 10.1016/j.phymed.2019.153007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/16/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aerial parts of Peganum harmala Linn is used as a traditional medical herb for treatment of amnesia in Uighur medicine in China. Deoxyvasicine (DVAS) is one of the chief active ingredients in P. harmala, it possesses strong acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities in vitro, but the therapeutic effect and mechanisms on amnesia in vivo are unclear. PURPOSE The objective of this study was to investigate the improvement effect of DVAS from P. harmala in learning and memory deficits of scopolamine-induced mice and elucidate the underlying mechanisms involved. METHODS Mice were pretreated with DVAS (5, 15 and 45 mg/kg) and huperzine-A (0.2 mg/kg) by gavage for 7 days, and subsequently were daily intraperitoneally injected with scopolamine (1 mg/kg) to induce learning and memory deficits and behavioral performance was assessed by Morris water maze. To further evaluate the potential mechanisms of DVAS in improving learning and memory capabilities, pathological change, levels of various biochemical markers and protein expressions related to cholinergic system, oxidative stress, and neuroinflammation were examined. RESULTS The results showed that DVAS could alleviate learning and memory deficits in scopolamine-treated mice. DVAS could regulate cholinergic function by inhibiting AChE and activating choline acetyltransferase (ChAT) activities and protein expressions. DVAS could induce brain-derived neurotrophic factor and protect hippocampal pyramidal cells against neuronal damage. DVAS also enhanced antioxidant defense via increasing the antioxidant enzyme level and activity of glutathione peroxidase, and anti-inflammatory function through suppressing tumor necrosis factor-α. Additionally, DVAS could regulate the neurotransmitters by elevating acetylcholine, 5-hydroxytryptamine, γ-aminobutyric acid and reducing 5-hydroxyindole-3-acetic acid and glutamic acid. CONCLUSION Results illustrated that DVAS may be a promising candidate compound against amnesia via restoration of cholinergic function, regulating neurotransmitters, attenuating neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Gang Deng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China; Pingxiang Health Vocational College, Pingxiang 337000, China
| | - Chao Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Xiaojuan Rong
- Xinjiang Institute of Materia Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China; Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhengcai Ju
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Youxu Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Chao Ma
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Wenzheng Ding
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Rood, Shanghai 201203, China
| | - Wei Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Rood, Shanghai 201203, China.
| |
Collapse
|
25
|
Medicinally Important Herbal Flowers in Sri Lanka. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2321961. [PMID: 31263504 PMCID: PMC6556806 DOI: 10.1155/2019/2321961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/29/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
Abstract
Background The plant kingdom is rich with a numerous number of plants with various medical properties which can be used to treat various medical issues. Sri Lanka is a country full of biodiversity which is gifted with many plant resources. It has a rich history of traditional medicine systems consisting of Ayurveda, Unani, and Deshiya Chikitsa, where these plant resources are used as remedies for the diseases. In the traditional medicine system, various plant parts such as leaves, roots, fruits, flowers, and bark are used to treat disease conditions. Although less attention is paid to the medicinal importance of the flowers, some of them have been used to treat many diseases from the ancient time. Some properties of the flowers may differ from the properties of the other plant parts. For example, Sesbania grandiflora (Katuru murunga) flowers have shown anticancer properties against various cell models whereas some flowers have shown antispermatogenic properties. Flowers of Woodfordia floribunda (Militta) are added as fermenting agents in the preparation of Arishtas in Ayurveda. Also the most popular Clove oil is obtained from the flower buds of Syzygium aromaticum (Karabu-neti) which is used to treat toothaches since it has antibiotic and antiseptic properties. This article gives an overview of herbal flowers used in the traditional medicine system of Sri Lanka and their pharmacological importance. Method A comprehensive literature survey was done on the medicinally important flowers in Sri Lanka. Data was collected from Libraries of Ayurveda in Sri Lanka and from scientific databases. Results According to the survey many flowers are used as astringent, cardiac tonic, and febrifuge. Also some flowers are used to treat dysentery, diarrhoea, and indigestion. Some flowers are useful in the treatment of bleeding piles while some are useful in the treatment of asthma and bronchitis. Conclusion It was revealed that there are many flowers with valuable therapeutic effects. Traditional medicine systems prevailing in Sri Lanka have made use of these flowers with therapeutic effects to cure so many diseases. The review of medicinally important herbal flowers provides knowledge and pharmacological leads which will help for the wellbeing of the human beings. Although there are phytochemical studies done to identify the chemical compounds on some flowers, chemical composition of many flowers remains unrevealed. So further studies need to be done to identify the chemical composition of these flowers.
Collapse
|
26
|
Gantait S, Panigrahi J. In vitro biotechnological advancements in Malabar nut ( Adhatoda vasica Nees): Achievements, status and prospects. J Genet Eng Biotechnol 2018; 16:545-552. [PMID: 30733772 PMCID: PMC6353731 DOI: 10.1016/j.jgeb.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/10/2018] [Accepted: 03/13/2018] [Indexed: 11/06/2022]
Abstract
Adhatoda vasica Nees, belonging to family Acanthaceae, is a well-known medicinal plant. It is endorsed for its pyrroloquinazoline alkaloids and its derivatives, such as vasicine and vasicinone. Germinating A. vasica seeds is a tedious task; on that account, vegetative propagation is the preferred method for its multiplication. For rapid and large-scale multiplication, germplasm conservation as well as secondary metabolites production, in vitro culture of A. vasica was preferred over conventional propagation by several researchers; however, some major applications of this tissue culture technique are still awaiting to undergo extensive research. The present review, for the first time, illustrates all the major achievements associated with in vitro regeneration of A. vasica, reported till date and highlights the future prospects.
Collapse
Key Words
- 2,4-D, 2,4-dichlorophenoxyacetic acid
- AC, Activated charcoal
- Artificial seed
- B5, B5 medium, or Gamborg’s medium
- BA, N6-benzyladenine
- GA3, gibberellin A3
- IAA, indole-3-acetic acid
- IBA, indole-3-butyric acid
- Kn, Kinetin or 6-furfurylaminopurine
- MS, Murashige and Skoog
- Medicinal plant
- NAA, α-napthalene acetic acid
- Organogenesis
- PGR, plant growth regulator
- SH, Schenk and Hildebrandt
- Somatic embryogenesis
- TDZ, thidiazuron
- Vasicine
- Vasicinone
Collapse
Affiliation(s)
- Saikat Gantait
- All India Coordinated Research Project on Groundnut, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal 741235, India
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252, India
| | - Jitendriya Panigrahi
- Department of Biotechnology, Shri A.N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| |
Collapse
|
27
|
Zhu Y, Liu W, Qi S, Wang H, Wang Y, Deng G, Zhang Y, Li S, Ma C, Wang Y, Cheng X, Wang C. Stereoselective glucuronidation metabolism, pharmacokinetics, anti-amnesic pharmacodynamics, and toxic properties of vasicine enantiomers in vitro and in vivo. Eur J Pharm Sci 2018; 123:459-474. [PMID: 30077712 DOI: 10.1016/j.ejps.2018.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 01/05/2023]
Abstract
Vasicine (VAS) is a potential natural cholinesterase inhibitor for treatment of Alzheimer's disease. Due to one chiral centre (C-3) presenting in molecule, VAS has two enantiomers, d-vasicine (d-VAS) and l-vasicine (l-VAS). The study was undertaken to investigate the stereoselective glucuronidation metabolism, pharmacokinetics, anti-amnesic effect and acute toxicity of VAS enantiomers. In results, the glucuronidation metabolic rate of l-VAS was faster than d-VAS in human liver microsomes and isoenzymes tests, and it was proved that the UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B15 were the major metabolic enzymes for glucuronidation of l-VAS, while only UGT1A9 for d-VAS, which take responsibility of the significantly less metabolic affinity of d-VAS than l-VAS in HLM and rhUGT1A9. The plasma exposure of d-VAS in rats was 1.3-fold and 1.6-fold higher than that of l-VAS after intravenous and oral administration of d-VAS and l-VAS, respectively. And the plasma exposure of the major glucuronidation metabolite d-VASG was one of tenth of l-VASG or more less, no matter by intravenous or oral administration. Both d-VAS and l-VAS were exhibited promising acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, and the BChE inhibitory activity of d-VAS with IC50 of 0.03 ± 0.001 μM was significantly stronger than that of l-VAS with IC50 of 0.98 ± 0.19 μM. The molecular docking results indicated that d-VAS and l-VAS could bind to the catalytic active site (CAS position) either of human AChE and BChE, and the BChE combing ability of d-VAS (the score of GBI/WAS dG -7.398) was stronger than that of l-VAS (the score of GBI/WAS dG -7.135). Both d-VAS and l-VAS could improving the learning and memory on scopolamine-induced memory deficits in mice. The content of acetylcholine (ACh) after oral administration d-VAS increased more than that of l-VAS in mice cortex, through inhibiting cholinesterase (ChE) and increasing choline acetyltransferase (ChAT). In addition, the LD50 value of d-VAS (282.51 mg·kg-1) was slight lower than l-VAS (319.75 mg·kg-1). These results indicated that VAS enantiomers displayed significantly stereoselective metabolic, pharmacokinetics, anti-amnesic effect and toxic properties in vitro and in vivo. The d-VAS might be the dominant configuration for treating Alzheimer's disease.
Collapse
Affiliation(s)
- Yudan Zhu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Wei Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Shenglan Qi
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Hanxue Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Yuwen Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Gang Deng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Yunpeng Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Chao Ma
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Yongli Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
28
|
Dey T, Dutta P, Manna P, Kalita J, Boruah HPD, Buragohain AK, Unni B. Anti-Proliferative Activities of Vasicinone on Lung Carcinoma Cells Mediated via Activation of Both Mitochondria-Dependent and Independent Pathways. Biomol Ther (Seoul) 2018; 26:409-416. [PMID: 29310422 PMCID: PMC6029685 DOI: 10.4062/biomolther.2017.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/11/2017] [Accepted: 08/14/2017] [Indexed: 11/07/2022] Open
Abstract
Vasicinone, a quinazoline alkaloid from Adhatoda vasica Nees. is well known for its bronchodilator activity. However its antiproliferative activities is yet to be elucidated. Here-in we investigated the anti-proliferative effect of vasicinone and its underlying mechanism against A549 lung carcinoma cells. The A549 cells upon treatment with various doses of vasicinone (10, 30, 50, 70 µM) for 72 h showed significant decrease in cell viability. Vasicinone treatment also showed DNA fragmentation, LDH leakage, and disruption of mitochondrial potential, and lower wound healing ability in A549 cells. The Annexin V/PI staining showed disrupted plasma membrane integrity and permeability of PI in treated cells. Moreover vasicinone treatment also lead to down regulation of Bcl-2, Fas death receptor and up regulation of PARP, BAD and cytochrome c, suggesting the anti-proliferative nature of vasicinone which mediated apoptosis through both Fas death receptors as well as Bcl-2 regulated signaling. Furthermore, our preliminary studies with vasicinone treatment also showed to lower the ROS levels in A549 cells and have potential free radical scavenging (DPPH, Hydroxyl) activity and ferric reducing power in cell free systems. Thus combining all, vasicinone may be used to develop a new therapeutic agent against oxidative stress induced lung cancer.
Collapse
Affiliation(s)
- Tapan Dey
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, India
| | - Prachurjya Dutta
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology Campus, Jorhat 785006, Assam, India
| | - Prasenjit Manna
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology Campus, Jorhat 785006, Assam, India
| | - Jatin Kalita
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology Campus, Jorhat 785006, Assam, India
| | - Hari Prasanna Deka Boruah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology Campus, Jorhat 785006, Assam, India
| | - Alak Kumar Buragohain
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, India
| | - Balagopalan Unni
- Biological Sciences, Assam Downtown University, Guwahati 781026, India
| |
Collapse
|
29
|
Bigoniya P, Mishra S. Pharmacokinetic Interaction of Salbutamol Co-administered with Vasicine Isolated from Adhathoda vasica on Rabbit. PHARMACEUTICAL SCIENCES 2018. [DOI: 10.15171/ps.2018.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
30
|
Sano K, Someya T, Hara K, Sagane Y, Watanabe T, Wijesekara R. Effect of traditional plants in Sri Lanka on skin keratinocyte count. Data Brief 2018; 18:727-730. [PMID: 29900227 PMCID: PMC5996253 DOI: 10.1016/j.dib.2018.03.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 11/19/2022] Open
Abstract
This article describes the effects of extracts of several plants collected in Sri Lanka on the number of human skin keratinocytes. This study especially focuses on the plants traditionally used in indigenous systems of medicine in Sri Lanka, such as Ayurveda, as described below (English name, “local name in Sri Lanka,” scientific name). Neem plant,”kohomba,” Azadirachta indica (Sujarwo et al., 2016; Nature’s Beauty Creations Ltd., 2014) [1,2], emblic myrobalan plant, “nelli,” Phyllanthus emblica (Singh et al., 2011; Nature’s Beauty Creations Ltd., 2014) [3,4], malabar nut plant, “adhatoda,” Justicia adhatoda (Claeson et al., 2000; Nature’s Beauty Creations Ltd., 2014) [5,6], holy basil plant, “maduruthala,” Ocimum tenuiflorum ( Cohen et al., 2014; Nature’s Beauty Creations Ltd., 2014) [7,8]. The expression profiles are provided as line graphs.
Collapse
Affiliation(s)
- Katsura Sano
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
- Corresponding author.
| | - Takao Someya
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Kotaro Hara
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Yoshimasa Sagane
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - Toshihiro Watanabe
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - R.G.S. Wijesekara
- Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila 60170, Sri Lanka
| |
Collapse
|
31
|
Sano K, Someya T, Hara K, Sagane Y, Watanabe T, Wijesekara RGS. Effect of traditional plants in Sri Lanka on skin fibroblast cell number. Data Brief 2018; 19:611-615. [PMID: 29900360 PMCID: PMC5997883 DOI: 10.1016/j.dib.2018.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/18/2018] [Accepted: 05/07/2018] [Indexed: 10/28/2022] Open
Abstract
This article describes the effects of extracts of several plants collected in Sri Lanka on the cell number of human skin fibroblasts. This study especially focuses on the plants traditionally used in indigenous systems of medicine in Sri Lanka, such as Ayurveda, as described below (English name, "local name in Sri Lanka," scientific name). Bougainvillea plant, "bouganvilla," Bougainvillea grabla (Nature׳s Beauty Creations Ltd., 2014) [1], purple fruited pea eggplant,"welthibbatu," Solanum trilobatum (Nature׳s Beauty Creations Ltd., 2014) [2], country borage plant, "kapparawalliya," Plectranthus amboinicus (Nature׳s Beauty Creations Ltd., 2014) [3], malabar nut plant, "adhatoda," Justicia adhatoda (Nature׳s Beauty Creations Ltd., 2014) [4], long pepper plant,"thippili," Piper longum (Nature׳s Beauty Creations Ltd., 2014) [5], holy basil plant, "maduruthala," Ocimum tenuiflorum (Nature׳s Beauty Creations Ltd., 2014) [6], air plant, "akkapana," Kalanchoe pinnata (Nature׳s Beauty Creations Ltd., 2014) [7], plumed cockscomb plant, "kiri-henda," Celosia argentea (Nature׳s Beauty Creations Ltd., 2014) [8], neem plant,"kohomba," Azadirachta indica (Nature׳s Beauty Creations Ltd., 2014) [9], emblic myrobalan plant, "nelli," Phyllanthus emblica (Nature׳s Beauty Creations Ltd., 2014) [10]. Human skin fibroblast cells were treated with various concentration of plant extracts (0-3.0%), and the cell viability of cells were detected using calcein assay. The cell viabillity profiles are provided as line graphs.
Collapse
Affiliation(s)
- Katsura Sano
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Takao Someya
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Kotaro Hara
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Yoshimasa Sagane
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - Toshihiro Watanabe
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - R G S Wijesekara
- Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila 60170, Sri Lanka
| |
Collapse
|
32
|
Panigrahi J, Gantait S, Patel IC. Concurrent production and relative quantification of vasicinone from in vivo and in vitro plant parts of Malabar nut ( Adhatoda vasica Nees). 3 Biotech 2017; 7:280. [PMID: 28828287 PMCID: PMC5559387 DOI: 10.1007/s13205-017-0882-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/10/2017] [Indexed: 11/26/2022] Open
Abstract
The present study documents a simultaneous production and comparative assessment of extracted vasicinone from in vivo (leaves and stems) and in vitro (leaves, stems and calli) plant parts of Adhatoda vasica Nees, a well-known medicinal plant. High-performance thin layer chromatography (HPTLC) analysis of the above-mentioned plant parts, collected at their 60-day-old growth stage, was performed via methanolic extraction and with the aid of toluene:butanol:butyl acetate (9:0.5:0.5; v/v/v) solvent system. The method was validated with the help of aluminium sheet precoated with silica gel 60 F254 TLC plates, following the ICH guidelines in order to maintain accuracy, precision and repeatability. Correlation coefficient, limit of detection and limit of quantification values were found to be reasonable. The outcome revealed a linearity that ranged between 2 and 6 µg/spot. During the comparison of estimated vasicinone quantity from in vivo and in vitro plant parts, it was evident that in vitro samples produced relatively higher vasicinone than that of the in vivo counterparts. Maximum vasicinone (6.402 ± 0.010% of dry weight) production was quantified from in vitro leaves followed by calli (5.222 ± 0.092% of dry weight) and in vitro stems (2.007 ± 0.041% of dry weight). On the other hand, in vivo leaves and stems produced comparatively lower quantities of vasicinone (2.412 ± 0.139 and 1.933 ± 0.046% of dry weight, respectively) suggesting the in vitro clonal propagation as a superior approach in comparison to in vivo propagation. Nonetheless, simultaneous production from both the sources (in vivo and in vitro plant parts) provides a new avenue for augmented production of vasicinone.
Collapse
Affiliation(s)
- Jitendriya Panigrahi
- Department of Biotechnology, Shri A. N. Patel P. G. Institute, Anand, Gujarat 388001 India
| | - Saikat Gantait
- All India Coordinated Research Project on Groundnut, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal 741235 India
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| | - Illa C. Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265 India
| |
Collapse
|
33
|
Balachandran C, Arun Y, Sangeetha B, Duraipandiyan V, Awale S, Emi N, Ignacimuthu S, Perumal P. In vitro and in vivo anticancer activity of 2-acetyl-benzylamine isolated from Adhatoda vasica L. leaves. Biomed Pharmacother 2017; 93:796-806. [DOI: 10.1016/j.biopha.2017.06.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 01/05/2023] Open
|
34
|
Shukla S, Ahirwal L, Bajpai VK, Huh YS, Han YK. Growth Inhibitory Effects of Adhatoda vasica and Its Potential at Reducing Listeria monocytogenes in Chicken Meat. Front Microbiol 2017; 8:1260. [PMID: 28769879 PMCID: PMC5511825 DOI: 10.3389/fmicb.2017.01260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/23/2017] [Indexed: 11/13/2022] Open
Abstract
The inhibitory effects of Adhatoda vasica ethanolic leaf extract (AVELE) against Listeria monocytogenes were examined to assess its potential to preserve minimally processed meat products safely. The total phenolic, flavonoid, and alkaloid levels in AVELE were 10.09 ± 4.52 mg of gallic acid equivalents (GAE)/g, 22.43 ± 1.62 mg of quercetin equivalents/g, and 19.43 ± 3.90 mg/g, respectively. AVELE (1, 5, 10, or 20%) had considerable antibacterial effects against L. monocytogenes NCIM 24563 in terms of the inhibitory zones (7.4-13.6 mm), MIC (100 mg/mL or 10% formulated solution), reduced cell viability, potassium ion efflux, and the release of 260-nm absorbing materials and extracellular ATP. AVELE was used as a rinse solution (5, 10, and 20%) for raw chicken breast meat. A 20% rinsing solution applied for 60 min inhibited the L. monocytogenes NCIM 24563 counts significantly on raw chicken breast meat. Moreover, L. monocytogenes NCIM 24563 did not grow in the meat sample when the rinse time was increased to 90 min at the same concentration. L. monocytogenes showed a greater reduction to ~3 CFU/g after rinsing with a 10 and 20% AVELE solution for 30 min than with a 5% AVELE solution. The rinsing processes with AVELE produced the final cooked chicken products with higher sensory attribute scores, such as taste, juiciness, and tenderness, compared to the control group along with a decrease in microbial contamination. Chicken meat rinsed with AVELE (rinsing time of 90 min) showed better sensory attribute scores of juiciness and tenderness, as well as the overall sensory quality compared to the untreated group. This research highlights the effectiveness of AVELE against L. monocytogenes NCIM 24563, suggesting that AVELE can be used as an effective antimicrobial marinade and/or a rinse for meat preservation.
Collapse
Affiliation(s)
- Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University SeoulSeoul, South Korea
| | - Laxmi Ahirwal
- Laboratory of Plant Pathology and Microbiology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Vivek K Bajpai
- Department of Applied Microbiology and Biotechnology, Yeungnam UniversityGyeongsan-si, South Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha UniversityIncheon, South Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University SeoulSeoul, South Korea
| |
Collapse
|
35
|
[More than expectorant: new scientific data on ambroxol in the context of the treatment of bronchopulmonary diseases]. MMW Fortschr Med 2017. [PMID: 28643291 DOI: 10.1007/s15006-017-9805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ambroxol has been established for decades in the treatment of acute and chronic respiratory diseases. In 2015, the European Medicines Agency reassessed the clinical benefit-risk ratio of the drug. OBJECTIVE What new scientific data on ambroxol, which are relevant to the treatment of bronchopulmonary diseases, are available? METHOD The review is based on a systematic literature research in medline with the search term "ambroxol" during the publication period 2006-2015. Non-relevant publications were excluded manually. RESULTS AND CONCLUSIONS Ambroxol is still intensively researched. The traditional indication as an expectorant is confirmed. But there is also an ever better understanding of the various mechanisms of action as well as the ever more exact modeling of the structures under investigation. New fields of application are conceivable, e. g. in patients with severe pulmonary disease who undergo surgery or who are in intensive care, as an adjuvant in anti-infective therapies, especially in infections with biofilm-producing pathogens, or in rare diseases such as lysosomal storage diseases. However, final evidence of the clinical relevance in these fields of application is still missing.
Collapse
|
36
|
Identification, occurrence and activity of quinazoline alkaloids in Peganum harmala. Food Chem Toxicol 2017; 103:261-269. [DOI: 10.1016/j.fct.2017.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 11/23/2022]
|
37
|
Leonti M, Stafford GI, Cero MD, Cabras S, Castellanos ME, Casu L, Weckerle CS. Reverse ethnopharmacology and drug discovery. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:417-431. [PMID: 28063920 DOI: 10.1016/j.jep.2016.12.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ethnopharmacological investigations of traditional medicines have made significant contributions to plant-derived drugs, as well as the advancement of pharmacology. Drug discovery from medicinal flora is more complex than generally acknowledged because plants are applied for different therapeutic indications within and across cultures. Therefore we propose the concept of "reverse ethnopharmacology" and compare biomedical uses of plant taxa with their ethnomedicinal and popular uses and test the effect of these on the probability of finding biomedical and specifically anticancer drugs. MATERIALS AND METHODS For this analysis we use data on taxonomy and medical indications of plant derived biomedical drugs, clinical trial, and preclinical trial drug candidates published by Zhu et al. (2011) and compare their therapeutic indications with their ethnomedicinal and popular uses as reported in the NAPRALERT® database. Specifically, we test for increase or decrease of the probability of finding anticancer drugs based on ethnomedicinal and popular reports with Bayesian logistic regression analyses. RESULTS Anticancer therapy resulted as the most frequent biomedicinal indication of the therapeutics derived from the 225 drug producing higher plant taxa and showed an association with ethnomedicinal and popular uses in women's medicine, which was also the most important popular use-category. Popular remedies for dysmenorrhoea, and uses as emmenagogues, abortifacients and contraceptives showed a positive effect on the probability of finding anticancer drugs. Another positive effect on the probability of discovering anticancer therapeutics was estimated for popular herbal drugs associated with the therapy of viral and bacterial infections, while the highest effect was found for popular remedies used to treat cancer symptoms. However, this latter effect seems to be influenced by the feedback loop and divulgence of biomedical knowledge on the popular level. CONCLUSION We introduce the concept of reverse ethnopharmacology and show that it is possible to estimate the probability of finding biomedical drugs based on ethnomedicinal uses. The detected associations confirm the classical ethnopharmacological approach where a popular remedy for disease category X results in a biomedical drug for disease category X but does also point out the existence of cross-over relationships where popular remedies for disease category X result in biomedical therapeutics for disease category Y (Zhu et al., 2011).
Collapse
Affiliation(s)
- Marco Leonti
- Department of Biomedical Sciences, University of Cagliari, 09124, Cagliari, Italy.
| | - Gary I Stafford
- Institute of Systematic and Evolutionary Botany, University of Zürich, 8008, Zürich, Switzerland; Department of Botany and Zoology, Stellenbosch University, 7601, Stellenbosch, South Africa
| | - Maja Dal Cero
- Institute of Systematic and Evolutionary Botany, University of Zürich, 8008, Zürich, Switzerland
| | - Stefano Cabras
- Department of Mathematics and Informatics, University of Cagliari, 09124, Cagliari, Italy; Department of Statistics, Universidad Carlos III de Madrid, 28908 Getafe (Madrid, Spain)
| | | | - Laura Casu
- Department of Life and Environmental Sciences, University of Cagliari, 09124, Cagliari, Italy
| | - Caroline S Weckerle
- Institute of Systematic and Evolutionary Botany, University of Zürich, 8008, Zürich, Switzerland
| |
Collapse
|
38
|
Swain SS, Sahu MC, Padhy RN. In silico attempt for adduct agent(s) against malaria: Combination of chloroquine with alkaloids of Adhatoda vasica. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2015; 122:16-25. [PMID: 26142781 DOI: 10.1016/j.cmpb.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
With the aim of controlling drug resistant Plasmodium falciparum, a computational attempt of designing novel adduct antimalarial drugs through the molecular docking method of combining chloroquine with five alkaloids, individually is presented. These alkaloids were obtained from the medicinal plant, Adhatoda vasica. From the obtained individual docking values of important derivatives of quinine and chloroquine, as well as, individual alkaloids and adduct agents of chloroquine with Adhatoda alkaloids as ligands, it was discernible that the 'adduct agent-1 with chloroquine and adhatodine' combination had the minimum energy of interaction, as the docking score value of -11.144 kcal/mol against the target protein, triosephosphate isomerase (TIM), the key enzyme of glycolytic pathway. Drug resistance of P. falciparum is due to a mutation in the polypeptide of TIM. Moratorium of mutant TIM would disrupt the metabolism during the control of the drug resistant P. falciparum. This in silico work helped to locate the 'adduct agent-1 with chloroquine and adhatodine', which could be taken up by pharmacology for further development of this compound as a new drug against drug resistant Plasmodium.
Collapse
Affiliation(s)
- Shasank S Swain
- Central Research Laboratory, IMS and Sum Hospital, Siksha 'O' Anusandhan University, K-8 Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Mahesh C Sahu
- Central Research Laboratory, IMS and Sum Hospital, Siksha 'O' Anusandhan University, K-8 Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, IMS and Sum Hospital, Siksha 'O' Anusandhan University, K-8 Kalinga Nagar, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
39
|
Arvinder K, Davinder K, Saroj A. Evaluation of antioxidant and antimutagenic potential of Justicia adhatoda leaves extract. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajb2015.14486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
40
|
Ghosh Tarafdar R, Nath S, Das Talukdar A, Dutta Choudhury M. Antidiabetic plants used among the ethnic communities of Unakoti district of Tripura, India. JOURNAL OF ETHNOPHARMACOLOGY 2015; 160:219-226. [PMID: 25457986 DOI: 10.1016/j.jep.2014.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/02/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A large group of ethnic communities living in Unakoti district of Tripura, India is still dependent on traditional herbal remedies for treatment of diabetes. Valuable information collected from these communities in the present investigation is important in maintaining their indigenous knowledge of folklore medicine. METHODS Systematic and extensive field surveys were conducted during 2011-2013 among the ethnic inhabitants of Unokati district, Tripura, India covering all the seasons to collect information on their traditional herbal medication system for treatment of diabetes. Obtained data were analysed through fidelity level (FL), use value (UV) and relative frequency of citation (RFC) to authenticate the uniqueness of the species being used for diabetes treatment. RESULTS In this current study a total of 39 medicinal plant species belonging to 37 genera and 28 families were presented, used by the traditional healers of Unakoti district, Tripura, India for diabetes treatment. FL, UV and RFC values of collected plants for the selected study area ranges between 06% and 100%, 0.07% and 2.64% and 0.02% and 0.51% respectively. Out of 39 collected plants, 11, 5 and 3 plant species have showed significant (<50%) FL, UV and RFC values respectively. CONCLUSION Like many other ethnic communities of the world, inhabitants of Unakoti district depend on a traditional medication system to treat diabetes. Documented floras are locally available and need proper further pharmacological validation to endorse their traditional use in a modern health care system. This will help in the development of effective herbal antidiabetic medicines in near future.
Collapse
Affiliation(s)
- Ramananda Ghosh Tarafdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India.
| | - Sushmita Nath
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Anupam Das Talukdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Manabendra Dutta Choudhury
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| |
Collapse
|
41
|
Antimicrobial, antioxidant, and cytotoxic properties of vasicine acetate synthesized from vasicine isolated from Adhatoda vasica L. BIOMED RESEARCH INTERNATIONAL 2015; 2015:727304. [PMID: 25632399 PMCID: PMC4303024 DOI: 10.1155/2015/727304] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 09/28/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022]
Abstract
Adhatoda vasica (L.) (Acanthaceae) is used in the indigenous system of medicine in India. The alkaloid Vasicine was isolated from ethanolic extract of the leaves of A. vasica using column chromatography. Vasicine acetate was obtained by acetylation of Vasicine. Vasicine acetate exhibited good zone of inhibition against bacteria: 10 mm against E. aerogenes, 10 mm against S. epidermidis, and 10 mm against P. aeruginosa. Vasicine acetate showed minimum inhibitory concentration values against bacteria: M. luteus (125 μg/mL), E. aerogenes (125 μg/mL), S. epidermidis (125 μg/mL), and P. aeruginosa (125 μg/mL). The radical scavenging activity of Vasicine acetate was the maximum at 1000 μg/mL (66.15%). The compound showed prominent cytotoxic activity in vitro against A549 lung adenocarcinoma cancer cell line. Quantification of Vasicine and Vasicine acetate by HPLC-DAD analysis showed their contents to be 0.2293% and 0.0156%, respectively, on dry weight basis of the leaves. Vasicine acetate could be probed further in drug discovery programme.
Collapse
|
42
|
Tricyclic Quinazoline Alkaloids: Isolation, Synthesis, Chemical Modification, and Biological Activity. Chem Nat Compd 2014. [DOI: 10.1007/s10600-014-1086-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Evaluation and Comparison of Radical Scavenging Properties of Solvent Extracts from Justicia adhatoda Leaf Using DPPH Assay. Appl Biochem Biotechnol 2014; 174:2413-25. [DOI: 10.1007/s12010-014-1164-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
44
|
Vijayanandraj S, Brinda R, Kannan K, Adhithya R, Vinothini S, Senthil K, Chinta RR, Paranidharan V, Velazhahan R. Detoxification of aflatoxin B1 by an aqueous extract from leaves of Adhatoda vasica Nees. Microbiol Res 2014; 169:294-300. [DOI: 10.1016/j.micres.2013.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
45
|
Luitel DR, Rokaya MB, Timsina B, Münzbergová Z. Medicinal plants used by the Tamang community in the Makawanpur district of central Nepal. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2014; 10:5. [PMID: 24410808 PMCID: PMC3904474 DOI: 10.1186/1746-4269-10-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 11/30/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND We can conserve cultural heritage and gain extensive knowledge of plant species with pharmacological potential to cure simple to life-threatening diseases by studying the use of plants in indigenous communities. Therefore, it is important to conduct ethnobotanical studies in indigenous communities and to validate the reported uses of plants by comparing ethnobotanical studies with phytochemical and pharmacological studies. MATERIALS AND METHODS This study was conducted in a Tamang community dwelling in the Makawanpur district of central Nepal. We used semi-structured and structured questionnaires during interviews to collect information. We compared use reports with available phytochemical and pharmacological studies for validation. RESULTS A total of 161 plant species belonging to 86 families and 144 genera to cure 89 human ailments were documented. Although 68 plant species were cited as medicinal in previous studies, 55 different uses described by the Tamang people were not found in any of the compared studies. Traditional uses for 60 plant species were consistent with pharmacological and phytochemical studies. CONCLUSIONS The Tamang people in Makawanpur are rich in ethnopharmacological understanding. The present study highlights important medicinal plant species by validating their traditional uses. Different plant species can improve local economies through proper harvesting, adequate management and development of modern techniques to maximize their use.
Collapse
Affiliation(s)
- Dol Raj Luitel
- Department of Plant Resources Office, Ministry of Forest and Soil Conservation, Thapathali, Kathmandu, Nepal
| | - Maan B Rokaya
- Institute of Botany, Academy of Sciences of the Czech Republic, Zamek 1, Průhonice 25243, Czech Republic
- Department of Biodiversity Research, Global Change Research Centre AS ČR, Na sádkách 7, České Budějovice 37005, Czech Republic
| | - Binu Timsina
- Department of Biodiversity Research, Global Change Research Centre AS ČR, Na sádkách 7, České Budějovice 37005, Czech Republic
- Institute for Environmental Studies/Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague 12801, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany, Academy of Sciences of the Czech Republic, Zamek 1, Průhonice 25243, Czech Republic
- Institute for Environmental Studies/Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague 12801, Czech Republic
| |
Collapse
|
46
|
Sheikh ZA, Zahoor A, Khan SS, Usmanghani K. Design, Development and Phytochemical Evaluation of a Poly Herbal Formulation Linkus Syrup. Chin Med 2014. [DOI: 10.4236/cm.2014.52012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Binyameen M, Hussain A, Yousefi F, Birgersson G, Schlyter F. Modulation of Reproductive Behaviors by Non-Host Volatiles in the Polyphagous Egyptian Cotton Leafworm, Spodoptera littoralis. J Chem Ecol 2013; 39:1273-83. [DOI: 10.1007/s10886-013-0354-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 07/22/2013] [Accepted: 09/21/2013] [Indexed: 01/10/2023]
|
48
|
Patil MY, Vadivelan R, Dhanabal SP, Satishkumar MN, Elango K, Antony S. Anti-oxidant, anti-inflammatory and anti-cholinergic action of Adhatoda vasica Nees contributes to amelioration of diabetic encephalopathy in rats: Behavioral and biochemical evidences. Int J Diabetes Dev Ctries 2013. [DOI: 10.1007/s13410-013-0145-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
49
|
Brinda R, Vijayanandraj S, Uma D, Malathi D, Paranidharan V, Velazhahan R. Role of Adhatoda vasica (L.) Nees leaf extract in the prevention of aflatoxin-induced toxicity in Wistar rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2743-2748. [PMID: 23519623 DOI: 10.1002/jsfa.6093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/22/2013] [Accepted: 02/08/2013] [Indexed: 06/01/2023]
Abstract
BACKGROUND Aflatoxin contamination of various foodstuffs and agricultural commodities is a major problem worldwide. Several strategies have been reported for the detoxification of aflatoxins in contaminated foods and feeds, but all these methods have their own shortcomings. Traditional medicinal plants are potential sources of aflatoxin-detoxifying compounds. In this study a spray-dried formulation of Adhatoda vasica (L.) Nees leaf extract was prepared and its chemopreventive effect on aflatoxin B1 (AFB1)-induced biochemical changes in the liver and serum of Wistar rats was investigated. RESULTS Administration of AFB1 (1.5 mg kg(-1) body weight (BW) intraperitoneally) to rats significantly reduced the activities of superoxide dismutase and catalase in liver tissues and increased the activities of aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase and the levels of very-low-density lipoprotein, low-density lipoprotein and cholesterol in blood serum. However, pre-feeding of rats with A. vasica formulation (500 mg kg(-1) BW for 7 days) protected the animals from AFB1-induced biochemical changes during subsequent exposure to AFB1. CONCLUSION Pre-feeding of rats with A. vasica formulation counteracted the hepatic dysfunction induced by subsequent treatment with AFB1. This formulated A. vasica extract offers a biologically safe alternative to detoxify aflatoxin and has huge potential to be used in the poultry industry to reduce aflatoxicosis.
Collapse
Affiliation(s)
- Rajendran Brinda
- Department of Food and Agricultural Processing Engineering, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
50
|
Jha DK, Panda L, Lavanya P, Ramaiah S, Anbarasu A. Detection and confirmation of alkaloids in leaves of Justicia adhatoda and bioinformatics approach to elicit its anti-tuberculosis activity. Appl Biochem Biotechnol 2012; 168:980-90. [PMID: 22899014 DOI: 10.1007/s12010-012-9834-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 08/06/2012] [Indexed: 11/28/2022]
Abstract
The extraction and determination of alkaloids was performed and confirmed by phytochemical analysis. Six different quinazoline alkaloids (vasicoline, vasicolinone, vasicinone, vasicine, adhatodine and anisotine) were found in the leaf of Justicia adhatoda (J. adhatoda). The presence of the peaks obtained through HPLC indicated the diverse nature of alkaloid present in the leaf. The enzyme β-ketoacyl-acyl-carrier protein synthase III that catalyses the initial step of fatty acid biosynthesis (FabH) via a type II fatty acid synthase has unique structural features and universal occurrence in Mycobacterium tuberculosis (M. tuberculosis). Thus, it was considered as a target for designing of anti-tuberculosis compounds. Docking simulations were conducted on the above alkaloids derived from J. adhatoda. The combination of docking/scoring provided interesting insights into the binding of different inhibitors and their activity. These results will be useful for designing inhibitors for M. tuberculosis and also will be a good starting point for natural plant-based pharmaceutical chemistry.
Collapse
Affiliation(s)
- Deepak Kumar Jha
- Medical and Biological computing laboratory, School of Biosciences and Technology, VIT University, Vellore, India
| | | | | | | | | |
Collapse
|