1
|
Zhong W, Zhang Q. Atractylodin: An Alkyne Compound with Anticancer Potential. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024:1-29. [PMID: 39192675 DOI: 10.1142/s0192415x24500551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Atractylodin is one of the main active ingredients of Atractylodis Rhizoma. It has various pharmacological properties, such as antigastric ulcer, immune regulation, antibacterial, anti-inflammatory, antitumor, anti-oxidant, and neuroprotective properties. In the past few decades, atractylodin has attracted the attention of researchers due to its excellent therapeutic effects. This paper aims to review the pharmacology of atractylodin, focusing mainly on its pharmacological effects in tumor treatment. Atractylodin exerts its antitumor effect by regulating different signaling pathways to induce important biological events such as apoptosis, cell cycle arrest, and autophagy, inhibiting cancer cell invasion and metastasis. In the process of cell apoptosis, atractylodin mainly induces cancer cell apoptosis by downregulating the Notch signaling pathway, affecting multiple upstream and downstream targets. In addition, atractylodin induces autophagy in cancer cells by regulating various signaling pathways such as PI3K/AKT/mTOR, p38MAPK, and hypothalamic Sirt1 and p-AMPK. Atractylodin effectively induces G1/M and G2/M phase arrest under the action of multiple signaling pathways. Among them, the pathways related to G1/M are more widely stagnated. In inhibiting the migration and invasion of cancer cells, atractylodin mainly regulates the Wnt signaling pathway, downregulates the expression of N-cadherin in cancer cells, and then blocks the PI3K/AKT/mTOR signaling pathway, inhibiting the phosphorylation of PI3K, AKT, and mTOR proteins, thereby having a significant impact on the invasion and migration of cancer cells. This paper systematically reviews the research progress on the antitumor effects and mechanisms of atractylodin, hoping to provide a reference and theoretical basis for its clinical application and new drug development.
Collapse
Affiliation(s)
- Wenxia Zhong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qi Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
2
|
Wang Y, Wang S, Wang TL, Chang LK, Zhou JH, Yang K, Guo LP. Structure of crude polysaccharides from Atractylodes lancea rhizome and treatment of diarrhea owing to spleen deficiency through intestinal flora. Biomed Chromatogr 2024; 38:e5818. [PMID: 38230827 DOI: 10.1002/bmc.5818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
To optimize the extraction process of crude polysaccharides from Atractylodes and elaborate the mechanism of Atractylodes polysaccharides in treating diarrhea owing to spleen deficiency, so as to lay a foundation for further development and utilization of Atractylodes lancea, we used an orthogonal test to optimize the extraction process and established a model of spleen deficiency. It was further combined with histopathology and intestinal flora to elaborate the mechanism of Atractylodes polysaccharides in the treatment of spleen-deficiency diarrhea. The optimized extraction conditions were as follows: the ratio of material to liquid was 1:25; the rotational speed was 150 rpm; the extraction temperature was 60°C; the extraction time was 2 h; and the extraction rate was about 23%. The therapeutic effect of Atractylodes polysaccharides on a spleen-deficiency diarrhea model in mice showed that the water content of stools and diarrhea grade in the treatment group were alleviated, and the levels of gastrin, motilin and d-xylose were improved. The analysis results based on gut microbiota showed that the model group had a higher diversity of gut microbiota than the normal group and treatment group, and the treatment group could correct the diversity of gut microbiota in model mice. Analysis based on the level of phylum and genus showed that the treatment group could inhibit the abundance of Helicobacter pylori genus and increase beneficial bacteria genera. The conclusion was that the optimized extraction process of Atractylodes polysaccharides was reasonable and feasible, and had a good therapeutic effect on spleen deficiency diarrhea.
Collapse
Affiliation(s)
- Yue Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Sheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tie-Lin Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Kun Chang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun-Hui Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Lan-Ping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Kim HY, Kim JH. Sesquiterpenoids Isolated from the Rhizomes of Genus Atractylodes. Chem Biodivers 2022; 19:e202200703. [PMID: 36323637 DOI: 10.1002/cbdv.202200703] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Atractylodes plants have been used in traditional herbal medicine to treat gastrointestinal diseases and contain various chemical compounds. Sesquiterpenoids are the most important therapeutic compounds in Atractylodes rhizomes. Based on studies reported from 2000 to 2022, we classified sesquiterpenoids by their chemical skeletons and original resources. Moreover, we discussed their biosynthesis and physicochemical and pharmacological features. We reported sesquiterpenoids with skeletal moieties, such as monocyclic sesquiterpenes (bisabolene- and elemene-type), bicyclic sesquiterpenes (eudesmane-, isopterocarpolone-, hydroxycarissone-, eremophilane-, bisesquiterpenoid-, guaiane- and spirovetivane-type and eudesmane lactones) and tricyclic sesquiterpenes (cyperene- and patchoulene-type), with their biosynthetic pathways, chemical modifications and in vivo metabolites. The pharmacological activities of sesquiterpenoids as anti-inflammatory, anti-tumor, anti-diabetic and anti-microbial and for treating gastrointestinal disorders have been reported for this genus.
Collapse
Affiliation(s)
- Han-Young Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, 50612, Korea
| | - Jung-Hoon Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, 50612, Korea
| |
Collapse
|
4
|
Sun Z, Zhang Y, Peng X, Huang S, Zhou H, Xu J, Gu Q. Diverse Sesquiterpenoids and Polyacetylenes from Atractylodes lancea and Their Anti-Osteoclastogenesis Activity. JOURNAL OF NATURAL PRODUCTS 2022; 85:866-877. [PMID: 35324175 DOI: 10.1021/acs.jnatprod.1c00997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Twenty-two sesquiterpenoids (1-22) and 11 polyacetylenes (23-33) were obtained from the rhizomes of Atractylodes lancea. Among them, 11 compounds (1-5, 11, 12, 23, 24, 30, and 31) are new. The scaffolds represented by the isolates of sesquiterpenoids were found to be varied and included two rare rearranged spirovetivane sesquiterpenoids with a spiro [4,4] skeleton, eight spirovetivanes, three guaianes, eight eudesmanes, and one eremophilane. Their planar structures and relative configurations were elucidated by UV, IR, 1D and 2D NMR, and HRESIMS data analysis. The absolute configurations of the new sesquiterpenoids were determined using X-ray diffraction analysis and by comparison of the calculated and experimental electronic circular dichroism and optical rotation data, as well as chemical transformations. All the isolated compounds (1-33) were evaluated for their activity against RANKL-induced osteoclastogenesis in bone marrow macrophages. Two polyacetylene-type compounds, 25 and 32, showed potent activity with IC50 values of 1.3 and 0.64 μM, respectively. Rearranged spirovetivane sesquiterpenoids with a spiro [4,4] skeleton are reported herein from the genus Atractylodes for the first time. Polyacetylenes were demonstrated as the main active constituents of A. lancea with osteoclastogenesis inhibitory activity.
Collapse
Affiliation(s)
- Zhejun Sun
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yuting Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xing Peng
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Shijie Huang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
5
|
Zhang F, Jiang Y, Jiao P, Li S, Tang C. Ligand fishing via a monolithic column coated with white blood cell membranes: A useful technique for screening active compounds in Astractylodes lancea. J Chromatogr A 2021; 1656:462544. [PMID: 34543881 DOI: 10.1016/j.chroma.2021.462544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023]
Abstract
The cell membrane-coated monolithic column (CMMC) ligand fishing assay is an interesting approach set up for the study of natural products (NPs). NPs such as Atractylodes lancea contain many compounds. Traditional methods used to separate compounds and determine active compounds by pharmacological tests are time-consuming and inefficient. Therefore, an alternative method is required to determine active compounds in NPs. Here, white blood cells were broken, and the white blood cell membranes (WBCMs) were immobilized on the surface of a monolithic column to form a CMMC. The column was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and confocal laser scanning microscopy. Combined with gas chromatography/mass spectrometry (GC/MS), the CMMC was used to screen active compounds in Atractylodes lancea. Three potential active compounds including hinesol, β-eudesmol, and 4-phenylbenzaldehyde were discovered. A molecular docking assay demonstrated that these compounds could bind to MD-2 laid on WBCMs. In addition, antiinflammatory effects by the discovered compound in vitro were confirmed, and β-eudesmol showed a concentration-dependent inhibitory effect on the tumor necrosis factor (TNF)-α of a RAW264.7 cell (P < 0.05). The CMMC ligand fishing assay exhibits good selectivity, great speed effects and is a potentially reliable tool for drug discovery in NPs.
Collapse
Affiliation(s)
- Fan Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuan Jiang
- Department of Pharmacy, Tianjin Union Medical Center, 130, Jieyuan Road, Hongqiao District, Tianjin 300121, China
| | - Pan Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shaoyong Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Cheng Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
6
|
Chen L, Yang J, Zhao SJ, Li TS, Jiao RQ, Kong LD. Atractylodis rhizoma water extract attenuates fructose-induced glomerular injury in rats through anti-oxidation to inhibit TRPC6/p-CaMK4 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153643. [PMID: 34325092 DOI: 10.1016/j.phymed.2021.153643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Atractylodis rhizoma, an aromatic herb for resolving dampness, is used to treat Kidney-related edema in traditional Chinese medicine for thousands years. This herb possesses antioxidant effect. However, it is not yet clear how Atractylodis rhizoma prevents glomerular injury through its anti-oxidation. PURPOSE Based the analysis of Atractylodis rhizoma water extract (ARE) components and network pharmacology, this study was to explore whether ARE prevented glomerular injury via its anti-oxidation to inhibit oxidative stress-driven transient receptor potential channel 6 (TRPC6) and its downstream molecule calcium/calmodulin-dependent protein kinase IV (CaMK4) signaling. METHODS Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze ARE components. Network pharmacology analysis was preliminarily performed. Male Sprague-Dawley rats were given 10% fructose drinking water (100 mL/d) for 16 weeks. ARE at 720 and 1090 mg/kg was orally administered to rats for the last 8 weeks. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity in rat kidney cortex were detected, respectively. In rat glomeruli, redox-related factors forkhead box O3 (FoxO3), SOD2 and catalase (CAT), podocyte slit diaphragm proteins podocin and nephrin, cytoskeleton proteins CD2-associated protein (CD2AP) and α-Actinin-4, as well as TRPC6, p-CaMK4 and synaptopodin protein levels were analyzed by Western Blotting. SOD2 and CAT mRNA levels were detected by qRT-PCR. RESULTS 36 components were identified in ARE. Among them, network pharmacology analysis indicated that ARE might inhibit kidney oxidative stress. Accordingly, ARE up-regulated nuclear FoxO3 expression, and then increased SOD2 and CAT at mRNA and protein levels in glomeruli of fructose-fed rats. It reduced H2O2 and MDA levels, and increased SOD activity in renal cortex of fructose-fed rats. Subsequently, ARE down-regulated TRPC6 and p-CaMK4, and up-regulated synaptopodin in glomeruli of fructose-fed rats. Furthermore, ARE increased podocin and nephrin, as well as CD2AP and α-Actinin-4, being consistent with its reduction of urine albumin-to-creatinine ratio and improvement of glomerular structure injury in this animal model. CONCLUSIONS These results suggest that ARE may prevent glomerular injury in fructose-fed rats possibly by reducing oxidative stress to inhibit TRPC6/p-CaMK4 signaling and up-regulate synaptopodin expression. Therefore, ARE may be a promising drug for treating high fructose-induced glomerular injury in clinic.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Si-Jie Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tu-Shuai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Tharabenjasin P, Ferraris RP, Choowongkomon K, Pongkorpsakol P, Worakajit N, Sawasvirojwong S, Pabalan N, Na-Bangchang K, Muanprasat C. β-eudesmol but not atractylodin exerts an inhibitory effect on CFTR-mediated chloride transport in human intestinal epithelial cells. Biomed Pharmacother 2021; 142:112030. [PMID: 34426253 DOI: 10.1016/j.biopha.2021.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/13/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022] Open
Abstract
Oriental herbal medicine with the two bioactive constituents, β-eudesmol (BE) and atractylodin (AT), has been used as a remedy for gastrointestinal disorders. There was no scientific evidence reporting their antidiarrheal effect and underpinning mechanisms. Therefore, we aimed to investigate the anti-secretory activity of these two compounds in vitro. The inhibitory effect of BE and AT on cAMP-induced Cl- secretion was evaluated by Ussing chamber in human intestinal epithelial (T84) cells. Short-circuit current (ISC) and apical Cl- current (ICl-) were measured after adding indirect and direct cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel activator. MTT assay was used to determine cellular cytotoxicity. Protein-ligand interaction was investigated by in silico molecular docking analysis. BE, but not AT concentration-dependently (IC50 of ~1.05 µM) reduced cAMP-mediated, CFTRinh-172 inhibitable Cl- secretion as determined by transepithelial ISC across a monolayer of T84 cells. Potency of CFTR-mediated ICl- inhibition by BE did not change with the use of different CFTR activators suggesting a direct blockage of the channel active site(s). Pretreatment with BE completely prevented cAMP-induced ICl-. Furthermore, BE at concentrations up to 200 µM (24 h) had no effect on T84 cell viability. In silico studies indicated that BE could best dock onto dephosphorylated structure of CFTR at ATP-binding pockets in nucleotide-binding domain (NBD) 2 region. These findings provide the first evidence for the anti-secretory effect of BE involving inhibition of CFTR function. BE represents a promising candidate for the therapeutic or prophylactic intervention of diarrhea resulted from intestinal hypersecretion of Cl.
Collapse
Affiliation(s)
- Phuntila Tharabenjasin
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongnung, Klongluang, Pathum Thani 10120, Thailand
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07946, USA
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok 10900, Thailand
| | - Pawin Pongkorpsakol
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nichakorn Worakajit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Phli, Samut Prakan 10540, Thailand
| | - Sutthipong Sawasvirojwong
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Phayathai Rd, Pathumwan, Bangkok 10330, Thailand
| | - Noel Pabalan
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongnung, Klongluang, Pathum Thani 10120, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongnung, Klongluang, Pathum Thani 10120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Rangsit Center, Thammasat University (Rangsit Campus), Klongnung, Klongluang, Pathum Thani 10120, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Phli, Samut Prakan 10540, Thailand.
| |
Collapse
|
8
|
Wang Y, Yan M, Qin R, Gong Y. Enzymolysis-Microwave-Assisted Hydrodistillation for Extraction of Volatile Oil from Atractylodes Chinensis and Its Hypoglycemic Activity in vitro. J AOAC Int 2021; 104:1196-1205. [PMID: 33471094 DOI: 10.1093/jaoacint/qsab008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/23/2020] [Accepted: 01/06/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Atractylodes chinensis (family Asteraceae) is a perennial herb with many pharmacological effects. OBJECTIVE Extraction of volatile oil from Atractylodes chinensis was optimized and its hypoglycemic activities were studied. METHODS Enzymolysis-microwave-assisted hydrodistillation (EMAHD) was adopted to extract the volatile oil, and the technology was optimized using a single-factor experiment that incorporated response surface methodology (RSM). The extraction rates of volatile oil by EMAHD, microwave-assisted hydrodistillation (MAHD), and hydrodistillation (HD) methods were compared at different times. The ingredients of Atractylodes chinensis volatile oil were analyzed by gas chromatography-mass spectrometry. Scanning electron microscopy (SEM) were used to analyze the microstructural changes in Atractylodes chinensis residue before and after extraction. The inhibition of α-amylase activity was determined. RESULTS The obtained optimal extraction conditions for EMAHD were as follows: enzyme concentration 1.6%, pH 7, enzymolysis time 20 min, enzymolysis temperature 50°C, liquid-solid ratio 30:1, microwave power 455 W, and microwave time 40 min. The levels of the main ingredients and the in vitro inhibition of α-amylase activities were higher for Atractylodes chinensis volatile oil extracted by EMAHD than by HD or MAHD. The powder residue of Atractylodes chinensis remaining after EMAHD showed a ruptured and collapsed cell structure, indicating accelerated dissolution of the volatile oil. CONCLUSIONS AND HIGHLIGHTS EMAHD is deemed a method with many advantages for extraction of volatile oil from Atractylodes chinensis. The volatile oil of Atractylodes chinensis is a promising component for treating hyperglycemia.
Collapse
Affiliation(s)
- Yitong Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.,Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
| | - Meixing Yan
- Department of pharmacy, Qingdao Women and Children's Hospital, Qingdao, China
| | - Ruiqing Qin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.,Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.,Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Kanda H, Yang Y, Duan S, Kogure Y, Wang S, Iwaoka E, Ishikawa M, Takeda S, Sonoda H, Mizuta K, Aoki S, Yamamoto S, Noguchi K, Dai Y. Atractylodin Produces Antinociceptive Effect through a Long-Lasting TRPA1 Channel Activation. Int J Mol Sci 2021; 22:3614. [PMID: 33807167 PMCID: PMC8036394 DOI: 10.3390/ijms22073614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022] Open
Abstract
Atractylodin (ATR) is a bioactive component found in dried rhizomes of Atractylodes lancea (AL) De Candolle. Although AL has accumulated empirical evidence for the treatment of pain, the molecular mechanism underlying the anti-pain effect of ATR remains unclear. In this study, we found that ATR increases transient receptor potential ankyrin-1 (TRPA1) single-channel activity in hTRPA1 expressing HEK293 cells. A bath application of ATR produced a long-lasting calcium response, and the response was completely diminished in the dorsal root ganglion neurons of TRPA1 knockout mice. Intraplantar injection of ATR evoked moderate and prolonged nociceptive behavior compared to the injection of allyl isothiocyanate (AITC). Systemic application of ATR inhibited AITC-induced nociceptive responses in a dose-dependent manner. Co-application of ATR and QX-314 increased the noxious heat threshold compared with AITC in vivo. Collectively, we concluded that ATR is a unique agonist of TRPA1 channels, which produces long-lasting channel activation. Our results indicated ATR-mediated anti-nociceptive effect through the desensitization of TRPA1-expressing nociceptors.
Collapse
Affiliation(s)
- Hirosato Kanda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
- Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Yanjing Yang
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
- Department of Pathophysiology, Shenyang Medical College, Shenyang 110034, China
| | - Shaoqi Duan
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Yoko Kogure
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Shenglan Wang
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Emiko Iwaoka
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Miku Ishikawa
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Saki Takeda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Hidemi Sonoda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Kyoka Mizuta
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Shunji Aoki
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Satoshi Yamamoto
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
| | - Yi Dai
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
- Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| |
Collapse
|
10
|
Zhang WJ, Zhao ZY, Chang LK, Cao Y, Wang S, Kang CZ, Wang HY, Zhou L, Huang LQ, Guo LP. Atractylodis Rhizoma: A review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113415. [PMID: 32987126 PMCID: PMC7521906 DOI: 10.1016/j.jep.2020.113415] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 05/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atractylodis Rhizoma (AR), mainly includes Atractylodes lancea (Thunb.) DC. (A. lancea) and Atractylodes chinensis (DC.) Koidz. (A. chinensis) is widely used in East Asia as a diuretic and stomachic drug, for the treatment of rheumatic diseases, digestive disorders, night blindness, and influenza as it contains a variety of sesquiterpenoids and other components of medicinal importance. AIM OF THE REVIEW A systematic summary on the botany, traditional uses, phytochemistry, pharmacology, toxicology, and quality control of AR was presented to explore the future therapeutic potential and scientific potential of this plant. MATERIALS AND METHODS A review of the literature was performed by consulting scientific databases including Google Scholar, Web of Science, Baidu Scholar, Springer, PubMed, ScienceDirect, CNKI, etc. Plant taxonomy was confirmed to the database "The Plant List". RESULTS Over 200 chemical compounds have been isolated from AR, notably sesquiterpenoids and alkynes. Various pharmacological activities have been demonstrated, especially improving gastrointestinal function and thus allowed to assert most of the traditional uses of AR. CONCLUSIONS The researches on AR are extensive, but gaps still remain. The molecular mechanism, structure-activity relationship, potential synergistic and antagonistic effects of these components need to be further elucidated. It is suggested that further studies should be carried out in the aspects of comprehensive evaluation of the quality of medicinal materials, understanding of the "effective forms" and "additive effects" of the pharmacodynamic substances based on the same pharmacophore of TCM, and its long-term toxicity in vivo and clinical efficacy.
Collapse
Affiliation(s)
- Wen-Jin Zhang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhen-Yu Zhao
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li-Kun Chang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ye Cao
- Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Sheng Wang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chuan-Zhi Kang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong-Yang Wang
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Li Zhou
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lu-Qi Huang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lan-Ping Guo
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
11
|
Acharya B, Chaijaroenkul W, Na-Bangchang K. Therapeutic potential and pharmacological activities of β-eudesmol. Chem Biol Drug Des 2021; 97:984-996. [PMID: 33449412 DOI: 10.1111/cbdd.13823] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Herbal medicines are attracting the attention of researchers worldwide. β-Eudesmol is one of the most studied and major bioactive sesquiterpenes, mainly extracted from Atractylodes lancea (Thunb) DC. rhizomes. It has potential anti-tumor and anti-angiogenic activities and is an inhibitor of tumor growth by inhibiting angiogenesis by suppressing CREB activation of the growth factor signaling pathway. It also stimulates neurite outgrowth in rat pheochromocytoma cells with activation of mitogen-activated protein kinases. It may be a promising lead compound for enhancing neural function, and it may help to explain the underlying mechanisms of neural differentiation. In this review, we summarized the currently available clinical and preclinical studies describing the therapeutic applications of β-eudesmol.
Collapse
Affiliation(s)
- Bishwanath Acharya
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.,Drug discovery, and Development Center, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand
| |
Collapse
|
12
|
Tshering G, Plengsuriyakarn T, Na-Bangchang K, Pimtong W. Embryotoxicity evaluation of atractylodin and β-eudesmol using the zebrafish model. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108869. [PMID: 32805444 DOI: 10.1016/j.cbpc.2020.108869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Atractylodin and β-eudesmol are the major active ingredients of Atractylodes lancea (Thunb) DC. (AL). Both compounds exhibit various pharmacological activities, including anticancer activity against cholangiocarcinoma. Despite the widespread use of this plant in traditional medicine in China, Japan, Korea, and Thailand, studies of their toxicological profiles are limited. The present study aimed to evaluate the embryotoxicity of atractylodin and β-eudesmol using the zebrafish model. Zebrafish embryos were exposed to a series of concentrations (6.3, 12.5, 25, 50, and 100 μM) of each compound up to 72 h post-fertilization (hpf). The results showed that atractylodin and β-eudesmol induced mortality of zebrafish embryos with the 50% lethal concentration (LC50) of 36.8 and 53.0 μM, respectively. Both compounds also caused embryonic deformities, including pericardial edema, malformed head, yolk sac edema, and truncated body. Only β-eudesmol decreased the hatching rates, while atractylodin reduced the heart rates of the zebrafish embryos. Additionally, both compounds increased reactive oxygen species (ROS) production and altered the transcriptional expression levels of superoxide dismutase 1 (sod1), catalase (cat), and glutathione S-transferase pi 2 (gstp2) genes. In conclusion, atractylodin and β-eudesmol induce mortality, developmental toxicity, and oxidative stress in zebrafish embryos. These findings may imply similar toxicity of both compounds in humans.
Collapse
Affiliation(s)
- Gyem Tshering
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Khlong Luang, Pathum Thani 12120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Khlong Luang, Pathum Thani 12120, Thailand; Drug Discovery and Development Center, Thammasat University, Paholyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kesara Na-Bangchang
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Khlong Luang, Pathum Thani 12120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Khlong Luang, Pathum Thani 12120, Thailand; Drug Discovery and Development Center, Thammasat University, Paholyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| |
Collapse
|
13
|
Liu Y, Zhang B, Cai Q. Study on the pharmacodynamics and metabolomics of five medicinal species in Atractylodes DC. on rats with rheumatoid arthritis. Biomed Pharmacother 2020; 131:110554. [DOI: 10.1016/j.biopha.2020.110554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022] Open
|
14
|
Mai ZH, Huang Y, Huang D, Huang ZS, He ZX, Li PL, Zhang S, Weng JF, Gu WL. Reversine and herbal Xiang-Sha-Liu-Jun-Zi decoction ameliorate thioacetamide-induced hepatic injury by regulating the RelA/NF-κB/caspase signaling pathway. Open Life Sci 2020; 15:696-710. [PMID: 33817258 PMCID: PMC7747499 DOI: 10.1515/biol-2020-0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
This study investigated the anti-fibrotic effects of reversine and Chinese medicine Xiang–Sha–Liu–Jun–Zi decoction (XSLJZD) on thioacetamide (TAA)-induced hepatic injury. Sprague-Dawley rats were intraperitoneally administered with TAA, then injected with reversine intraperitoneally, and/or orally provided with XSLJZD. TAA resulted in liver injury with increases in the liver index and levels of serum aspartate aminotransferase (AST) and alanine aminotransferase. Reversine alleviated the liver index and AST level and improved TAA-induced pathological changes but decreased TAA-induced collagen deposition, and α-smooth muscle actin and transforming growth factor-β1 expression. Reversine also modulated the mRNA levels of inflammatory cytokines, such as RelA, interleukin (IL)-17A, IL-22, IL-1β, IL-6, NLR family pyrin domain containing 3, platelet-derived growth factor, and monocyte chemoattractant protein, and suppressed nuclear factor (NF)-κB (p65) phosphorylation and caspase 1 activation. Meanwhile, XSLJZD protected TAA-injured liver without increasing fibrosis and enhanced the regulating effect of reversine on RelA, IL-17A, IL-1β, and MCP-1 cytokines. In conclusion, reversine ameliorates liver injury and inhibits inflammation reaction by regulating NF-κB, and XSLJZD protects the liver through its synergistic effect with reversine on regulating inflammatory cytokines.
Collapse
Affiliation(s)
- Zhen-Hao Mai
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Medical University, Guangzhou, Guangdong 510180, People's Republic of China
| | - Yu Huang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| | - Di Huang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| | - Zi-Sheng Huang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Medical University, Guangzhou, Guangdong 510180, People's Republic of China
| | - Zhi-Xiang He
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China
| | - Pei-Lin Li
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China
| | - Shuai Zhang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| | - Jie-Feng Weng
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| | - Wei-Li Gu
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 518180, People's Republic of China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, People's Republic of China
| |
Collapse
|
15
|
Screening of Molecular Targets of Action of Atractylodin in Cholangiocarcinoma by Applying Proteomic and Metabolomic Approaches. Metabolites 2019; 9:metabo9110260. [PMID: 31683902 PMCID: PMC6918361 DOI: 10.3390/metabo9110260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is cancer of the bile duct and the highest incidence of CCA in the world is reported in Thailand. Our previous in vitro and in vivo studies identified Atractylodes lancea (Thunb) D.C. as a promising candidate for CCA treatment. The present study aimed to examine the molecular targets of action of atractylodin, the bioactive compound isolated from A. lancea, in CCA cell line by applying proteomic and metabolomic approaches. Intra- and extracellular proteins and metabolites were identified by LC-MS/MS following exposure of CL-6, the CCA cell line, to atractylodin for 24 and 48 h. Analysis of the protein functions and pathways involved was performed using a Venn diagram, PANTHER, and STITCH software. Analysis of the metabolite functions and pathways involved, including the correlation between proteins and metabolites identified was performed using MetaboAnalyst software. Results suggested the involvement of atractylodin in various cell biology processes. These include the cell cycle, apoptosis, DNA repair, immune response regulation, wound healing, blood vessel development, pyrimidine metabolism, the citrate cycle, purine metabolism, arginine and proline metabolism, glyoxylate and dicarboxylate metabolism, the pentose phosphate pathway, and fatty acid biosynthesis. Therefore, it was proposed that the action of atractylodin may involve the destruction of the DNA of cancer cells, leading to cell cycle arrest and cell apoptosis.
Collapse
|
16
|
Shih YS, Tsai CH, Li TC, Lai HC, Wang KT, Liao WL, Hsieh CL. The effect of Xiang-Sha-Liu-Jun-Zi tang (XSLJZT) on irritable bowel syndrome: A randomized, double-blind, placebo-controlled trial. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111889. [PMID: 31009707 DOI: 10.1016/j.jep.2019.111889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is characterized by chronic, recurrent abdominal pain or abdominal discomfort and changes in defecation habits. Xiang-Sha-Liu-Jun-Zi tang (XSLJZT) is a traditional Chinese medical formula that can modulate gastrointestinal disturbance. PURPOSE To investigate the therapeutic effect of XSLJZT on IBS. MATERIALS AND METHODS This study was designed as a double-blind, randomized, controlled preliminary study. Eighty patients with IBS were assigned to a control group (CG, 40 patients) that received oral administration of an XSLJZT 10% comparator (3.0 g three times daily) for 28 days or to a treatment group (TG, 40 patients) that received XSLJZT. The primary outcome measure was changes in scores on the Gastrointestinal System Rating Scale-IBS. The secondary outcome measures were changes in scores on the irritable bowel syndrome-quality of life (IBS-QOL) and World Health Organization-quality of life-brief. RESULTS A total of 63 patients completed the study (n = 31 for the CG; n = 32 for the TG). The TG were discovered to have significantly lower diarrhea scores than the CG at V2 (second assessment) compared with V1 (first assessment, baseline) (mean change ± SD: CG: 0.19 ± 1.33 vs. TG: -0.38 ± 0.91, p = 0.05). The scores for Item 28 on the IBS-quality of life (QOL) scale ("I feel frustrated that I cannot eat when I want because of my bowel problems") were lower in the CG at V3 (third assessment) compared with V1 but slightly higher in the TG (CG: -0.48 ± 0.89 vs. TG: 0.03 ± 0.65, p = 0.01). CONCLUSION Oral administration of XSLJZT (3.0 g) for 28 days lowered the mean diarrhea score in patients with IBS, indicating that the patients in the TG had greater diarrhea improvement than those in the CG. The present study used 10% XSLJZT as a comparator, and the different items of the Gastrointestinal System Rating Scale-IBS, IBS-QOL, and World Health Organization Quality of Life-Brief were scored separately. Therefore, the selection of an appropriate comparator or placebo and score assessment are crucial issues for future study.
Collapse
Affiliation(s)
- Yi-Sing Shih
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Chang-Hai Tsai
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan; Division of Pediatric Neurology, Department of Pediatrics, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Tsai-Chung Li
- Department of Public Health, College of Public Health, China Medical University, Taichung, 40402, Taiwan; Department of Healthcare Administration, College of Health Science, Asia University, Taichung 413, Taiwan.
| | - Hsueh-Chou Lai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Kun-Teng Wang
- Brion Research Institute of Taiwan, New Taipei City 231, Taiwan.
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Personal Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Ching-Liang Hsieh
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
| |
Collapse
|
17
|
Tsusaka T, Makino B, Ohsawa R, Ezura H. Genetic and environmental factors influencing the contents of essential oil compounds in Atractylodes lancea. PLoS One 2019; 14:e0217522. [PMID: 31136627 PMCID: PMC6538177 DOI: 10.1371/journal.pone.0217522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023] Open
Abstract
Rhizomes of Atractylodes lancea are used in traditional Japanese medicine (Kampo) and Chinese medicine to treat numerous diseases and disorders because they contain many pharmacologically active compounds. The major active compounds in A. lancea are essential oil compounds such as β-eudesmol, hinesol, atractylon, and atractylodin. The contents of the compounds in A. lancea exhibit high variability depending on their habitat. We cultivated clonal lines of A. lancea in different years (2016, 2017) and different locations (Hokkaido, Ibaraki) to investigate the influence of genetic and environmental factors on the contents of major compounds, namely, β-eudesmol, hinesol, atractylon, and atractylodin. Broad sense heritability of β-eudesmol, hinesol, atractylon, and atractylodin contents were 0.84, 0.77, 0.86, and 0.87, respectively. The effects of interannual variability on the contents of the compounds were lower than those of genotype. In addition, the cultivated environmental factors were assessed by different locations, and the correlations between Hokkaido and Ibaraki grown plants based on β-eudesmol, hinesol, atractylon, and atractylodin contents were 0.94, 0.94, 1.00, and 0.83, respectively. The results suggest that the contents of β-eudesmol, hinesol, atractylon, and atractylodin in A. lancea are largely influenced by genetic factors, and clonal propagation could be an effective strategy for obtaining populations with high contents of essential oil compounds. Furthermore, the contents of β-eudesmol, hinesol, atractylon, and atractylodin in A. lancea exhibited few correlations with rhizome yields. A. lancea cultivars with not only high contents of essential oil compounds but also high rhizome yield could be developed through selective breeding.
Collapse
Affiliation(s)
- Takahiro Tsusaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Botanical Raw Materials Production Department 2, Tsumura & Co., Ami, Ibaraki, Japan
- * E-mail: (TT); (HE)
| | - Bunsho Makino
- Botanical Raw Materials Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Ryo Ohsawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (TT); (HE)
| |
Collapse
|
18
|
Abstract
Acetylenic metabolites belong to a class of molecules containing triple bond(s). They are found in plants, fungi, microorganisms, and marine invertebrates. This review presents 139 active acetylenic molecules of plant, fungal, and soil bacterial origin that reveal cytotoxic and/or anticancer activities. Although many compounds of this group possess encouraging characteristics, they have never been evaluated as potential anticancer agents. They are of great interest, especially for the medicine and/or pharmaceutical industries. Here we describe structures and biological activities of acetylenic metabolites.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dmitri O Levitsky
- CNRS UMR 6204, Biotechnologie, Biocatalyse et Biorégulation, Faculté des Sciences et des Techniques, Université de Nantes, P.O. Box 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
19
|
Long L, Wang L, Qi S, Yang Y, Gao H. New sesquiterpenoid glycoside from the rhizomes of Atractylodes lancea. Nat Prod Res 2019; 34:1138-1145. [PMID: 30618310 DOI: 10.1080/14786419.2018.1553170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Six sesquiterpenoids and four lignans (1-10) were isolated from the n-BuOH extract of the rhizomes of Atractylodes lancea. Among them, the new sesquiterpenoid glycoside named (4 R, 5S, 7R)-hinesolone-11-O-β-ᴅ-glucopyranoside (1), along with three known compounds (2-4) were first obtained from this genus. All the isolates were elucidated by spectroscopic analyses and chemical methods, and the absolute configurations were assigned by electronic circular dichroism spectroscopy technique. In addition, the cytotoxic bioassay of compound 1 was evaluated and results showed it had no significant antitumor activity against human cancer cell lines MCF-7, HepG-2 and Hela.
Collapse
Affiliation(s)
- Liping Long
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Lushan Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Shizhou Qi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yiren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
20
|
Jun X, Fu P, Lei Y, Cheng P. Pharmacological effects of medicinal components of Atractylodes lancea (Thunb.) DC. Chin Med 2018; 13:59. [PMID: 30505341 PMCID: PMC6260578 DOI: 10.1186/s13020-018-0216-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Atractylodes lancea Thunb. DC. (AL) has a long history as one of the important herbs used in East Asia. This review is on the purpose of providing a comprehensive summary of the pharmacological effects of AL and its extractions. The publication from PubMed, ScienceDirect, Springer, and Wiley database was collected and summarized. The potential application of AL on the disease could be attributed to its pharmacological properties such as anti-cancer, anti-inflammatory and other essential effects. Hence, this review aims at providing evidence of the pharmacological activities of AL as one of natural products used in clinical trial.
Collapse
Affiliation(s)
- Xie Jun
- 1Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Fu
- 2West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yu Lei
- 1Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Cheng
- 1Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Mathema VB, Chaijaroenkul W, Na-Bangchang K. Cytotoxic activity and molecular targets of atractylodin in cholangiocarcinoma cells. J Pharm Pharmacol 2018; 71:185-195. [DOI: 10.1111/jphp.13024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
Abstract
Objectives
To evaluate the cytotoxic activity of atractylodin and its potential effects on heme oxygenase (HO)-1 production, STAT1/3 phosporylation and major NF-κB protein expression in the cholangiocarcinoma-associated cell line CL-6.
Methods
Standard MTT assay was used for accessing antiproliferative activity on CL-6 cells. Normal human embryonic fibroblast (OUMS) cell was taken as control cell line. Colony formation and wound healing assay were conducted to access the effects of atractylodin on cell proliferation and directional migration activity of CL-6 cells. Western blot was used for evaluating levels of protein expression and phosphorylation.
Key findings
Atractylodin exhibited selective cytotoxicity towards CL-6 as compared with OUMS with IC50 of 216.8 (212.4-233.8) and 351.2 (345.7-359.5) μm [median (range)], respectively. Exposure to the compound dose-dependently inhibited colony formation ability and decreased wound closure potential of CL-6 cells. Atractylodin treatment suppressed HO-1 production in CL-6 cells. It dose-dependently inhibited STAT1/3 protein phosphorylation and moderately inhibited NF-κB (p50), NF-κB (p52), and NF-κB (p65) protein expression in both dose- and time-dependent manner.
Conclusions
Atractylodin exerts significant cytotoxic activity against CL-6 cells which may be linked to its suppressive effect on HO-1 production, STAT1/3 phosphorylation and expression of key NF-κB proteins.
Collapse
Affiliation(s)
- Vivek B Mathema
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Klongluang, Thailand
| | - Wanna Chaijaroenkul
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Klongluang, Thailand
| | - Kesara Na-Bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Klongluang, Thailand
| |
Collapse
|
22
|
Wu J, Li J, Li W, Sun B, Xie J, Cheng W, Zhang Q. Achyranthis bidentatae radix enhanced articular distribution and anti-inflammatory effect of berberine in Sanmiao Wan using an acute gouty arthritis rat model. JOURNAL OF ETHNOPHARMACOLOGY 2018; 221:100-108. [PMID: 29679725 DOI: 10.1016/j.jep.2018.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanmiao Wan (SMW) has been a basic prescription employed for the treatment for gout in the clinic since Yuan dynasty. Achyranthis bidentatae radix (ABR) is designed as a lower-guiding drug in SMW to augment the articular accumulation of active ingredients and improve the anti-inflammatory effect. AIM OF THE STUDY Present study was undertaken to investigate the dose-response relationship of berberine in SMW between the articular concentration and anti-inflammatory effect in the knee joint under the lower-guiding of ABR. MATERIALS AND METHODS Rats were divided into control group, model group and SMW without or with low, medium and high doses of ABR groups. Rat model of acute gouty arthritis (AGA) was established by intra-articular injection of 0.2 mL monosodium urate crystal (20 mg/mL) inside knee joint cavity on day 2 during drug treatment slots. Knee joint swelling, synovial hyperplasia and inflammatory cell infiltration were investigated for anti-inflammatory study. The concentrations of berberine in rat plasma and tissues were determined by UPLC-MS/MS method. The effect of ABR on the expression levels of P-glycoprotein (P-gp) and MDR1 mRNA in the synovial tissues of knee joints in AGA rats was examined by Western blot and RT-qPCR assay, respectively. RESULTS The distribution of berberine increased by 6.53%, 44.31% and 212.96% in the knee joint and 474.93%, 631.01% and 1063.3% in the ankle for SMW with low, medium and high doses of ABR groups, compared with SMW without ABR group. Similarly, the plasma level of berberine increased by 19.81%, 143.4% and 681.13%. On the contrary, the distribution of berberine evidently decreased 3.23, 10.61 and 46.21-fold in heart and 3.68, 6.74 and 24.78-fold in lung. SMW with different doses of ABR groups exhibited better efficiency than SMW without ABR group on ameliorating knee joint swelling, inhibiting synovial hyperplasia and alleviating inflammatory cell infiltration of AGA rats. The treatment with ABR could down-regulate the MDR1 mRNA and P-gp expressions of synovial tissues of knee joints in AGA rats. CONCLUSIONS The enhanced articular distribution of berberine in SMW was attributed to the lower-guiding effect of ABR, which could evidently increase the plasma concentration of berberine, improve the supply of blood of inflamed joint, reduce the distribution of berberine in heart and lung and significantly inhibit the MDR1 mRNA and P-gp expression of synovial tissues of knee joints in AGA rats. The dose-response relationship of berberine between the enhanced articular concentration and improved anti-inflammatory effect in the knee joint under the lower-guiding of ABR was observed for the first time.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Achyranthes
- Animals
- Anti-Inflammatory Agents/blood
- Anti-Inflammatory Agents/pharmacokinetics
- Anti-Inflammatory Agents/therapeutic use
- Arthritis, Gouty/chemically induced
- Arthritis, Gouty/drug therapy
- Arthritis, Gouty/metabolism
- Arthritis, Gouty/pathology
- Berberine/blood
- Berberine/pharmacokinetics
- Berberine/therapeutic use
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacokinetics
- Drugs, Chinese Herbal/therapeutic use
- Knee Joint/drug effects
- Knee Joint/metabolism
- Knee Joint/pathology
- Male
- Phytotherapy
- Plant Roots
- Rats, Sprague-Dawley
- Tissue Distribution
- Uric Acid
Collapse
Affiliation(s)
- Juan Wu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jingya Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Li
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| | - Bei Sun
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| | - Jin Xie
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wenming Cheng
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qunlin Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
23
|
Xue DH, Liu YQ, Cai Q, Liang K, Zheng BY, Li FX, Pang X. Comparison of Bran-Processed and Crude Atractylodes Lancea Effects on Spleen Deficiency Syndrome in Rats. Pharmacogn Mag 2018; 14:214-219. [PMID: 29720834 PMCID: PMC5909318 DOI: 10.4103/pm.pm_126_17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/03/2017] [Indexed: 11/24/2022] Open
Abstract
Background: The rhizome of Atractylodes lancea (AL) is usually used for the treatment of various diseases such as spleen deficiency syndrome (SDS). Both bran-processed and crude AL is included in Chinese Pharmacopoeia. The different efficacies of bran-processed and crude AL on SDS are largely unknown, and the mechanisms of AL effects have not been fully elucidated. Objective: The objective of the study was to compare the effects of bran-processed and crude AL and then assess the mechanisms of treating SDS. Materials and Methods: The model of SDS in rats was established using excessive exertion, combined with an irregular diet and intragastric administration of the extract of Sennae Folium, and different doses of bran-processed and crude AL were gavaged. The serum was analyzed by an enzyme-linked immunosorbent assay (ELISA), and small intestinal tissues were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Results: The injury of SDS was alleviated by the treatment of bran-processed and crude AL. Compared to model group, the indexes of trypsin (TRY), amylase (AMS), vasoactive intestinal peptide (VIP), somatostatin (SS), gastrin (GAS), substance P (SP), Na+-K+-ATPase, and succinic dehydrogenase in serum of each administration group were increased by ELISA, and the mRNA expressions of VIP, SS, GAS, and SP in small intestinal tissues were increased by RT-PCR. Furthermore, in a dose-dependent manner, the bran-processed and crude AL increased the levels of TRY, AMS, VIP, and GAS and the mRNA expression levels of VIP. Compared with the crude AL, the bran-processed AL was more effective in treating SDS. Conclusion: Through the mechanisms of treating SDS by AL, both bran-processed and crude AL has alleviated the symptoms of SDS. SUMMARY Both bran-processed and crude Atractylodes lancea (AL) alleviated symptoms of spleen deficiency syndrome (SDS) Comparing with crude AL, bran. processed AL was more effective in treating SDS The efficacy of AL could be partly attributed to digestive enzyme activity, gastrointestinal hormone levels, membrane protein activity, and changes in mitochondrial activity.
Abbreviations used: AL: Atractylodes lancea; TRY: Trypsin; AMS: Amylase; VIP: Vasoactive intestinal peptide; SS: Somatostatin; GAS: Gastrin; SP: Substance P; ELISA: The enzyme-linked immunosorbent assay; mRNA: Messenger ribonucleic acid; SDH: Succinic dehydrogenase; RT-PCR: Reverse transcription-polymerase chain reaction; TCM: Traditional Chinese medicine; SDS: Spleen deficiency syndrome.
Collapse
Affiliation(s)
- Dong-Hua Xue
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yu-Qiang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Qian Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ke Liang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Bing-Yuan Zheng
- Benxi Institute of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China
| | - Fang-Xiao Li
- Benxi Institute of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China
| | - Xue Pang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| |
Collapse
|
24
|
Research and Development of Atractylodes lancea (Thunb) DC. as a Promising Candidate for Cholangiocarcinoma Chemotherapeutics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5929234. [PMID: 29348769 PMCID: PMC5733893 DOI: 10.1155/2017/5929234] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023]
Abstract
Treatment and control of cholangiocarcinoma (CCA): the bile duct cancer is limited by the lack of effective chemotherapeutic drugs and alternative drugs are needed, particularly those from natural sources. This article reviews steps of research and development of Atractylodes lancea (Thunb) DC. (AL) as potential candidate for CCA chemotherapy, with adoption of the reverse pharmacology approach. Major steps include (1) reviewing of existing information on its phytochemistry and pharmacological properties, (2) screening of its activities against CCA, (3) standardization of AL, (4) nonclinical studies to evaluate anti-CCA activities, (5) phytochemistry and standardization of AL extract, (6) development of oral pharmaceutical formulation of standardized AL extract, and (7) toxicity testing of oral pharmaceutical formulation of standardized AL extract. Results from a series of our study confirm anti-CCA potential and safety profiles of both the crude extract and the finished product (oral pharmaceutical formulation of the standardized AL extract). Phases I and II clinical trials of the product to confirm tolerability and efficacy in healthy subjects and patients with advanced stage CCA will be carried out soon.
Collapse
|
25
|
Yu C, Xiong Y, Chen D, Li Y, Xu B, Lin Y, Tang Z, Jiang C, Wang L. Ameliorative effects of atractylodin on intestinal inflammation and co-occurring dysmotility in both constipation and diarrhea prominent rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 21:1-9. [PMID: 28066135 PMCID: PMC5214900 DOI: 10.4196/kjpp.2017.21.1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/31/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
Abstract
Intestinal disorders often co-occur with inflammation and dysmotility. However, drugs which simultaneously improve intestinal inflammation and co-occurring dysmotility are rarely reported. Atractylodin, a widely used herbal medicine, is used to treat digestive disorders. The present study was designed to characterize the effects of atractylodin on amelioration of both jejunal inflammation and the co-occurring dysmotility in both constipation-prominent (CP) and diarrhea-prominent (DP) rats. The results indicated that atractylodin reduced proinflammatory cytokines TNF-α, IL-1β, and IL-6 in the plasma and inhibited the expression of inflammatory mediators iNOS and NF-kappa B in jejunal segments in both CP and DP rats. The results indicated that atractylodin exerted stimulatory effects and inhibitory effects on the contractility of jejunal segments isolated from CP and DP rats respectively, showing a contractile-state-dependent regulation. Atractylodin-induced contractile-state-dependent regulation was also observed by using rat jejunal segments in low and high contractile states respectively (5 pairs of low/high contractile states). Atractylodin up-regulated the decreased phosphorylation of 20 kDa myosin light chain, protein contents of myosin light chain kinase (MLCK), and MLCK mRNA expression in jejunal segments of CP rats and down-regulated those increased parameters in DP rats. Taken together, atractylodin alleviated rat jejunal inflammation and exerted contractile-state-dependent regulation on the contractility of jejunal segments isolated from CP and DP rats respectively, suggesting the potential clinical implication for ameliorating intestinal inflammation and co-occurring dysmotility.
Collapse
Affiliation(s)
- Changchun Yu
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Yongjian Xiong
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Dapeng Chen
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Yanli Li
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Bin Xu
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Yuan Lin
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Zeyao Tang
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Chunling Jiang
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Li Wang
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
26
|
Cho HD, Kim U, Suh JH, Eom HY, Kim J, Lee SG, Choi YS, Han SB. Classification of the medicinal plants of the genus Atractylodes using high-performance liquid chromatography with diode array and tandem mass spectrometry detection combined with multivariate statistical analysis. J Sep Sci 2016; 39:1286-94. [PMID: 26888213 DOI: 10.1002/jssc.201501279] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 11/09/2022]
Abstract
Analytical methods using high-performance liquid chromatography with diode array and tandem mass spectrometry detection were developed for the discrimination of the rhizomes of four Atractylodes medicinal plants: A. japonica, A. macrocephala, A. chinensis, and A. lancea. A quantitative study was performed, selecting five bioactive components, including atractylenolide I, II, III, eudesma-4(14),7(11)-dien-8-one and atractylodin, on twenty-six Atractylodes samples of various origins. Sample extraction was optimized to sonication with 80% methanol for 40 min at room temperature. High-performance liquid chromatography with diode array detection was established using a C18 column with a water/acetonitrile gradient system at a flow rate of 1.0 mL/min, and the detection wavelength was set at 236 nm. Liquid chromatography with tandem mass spectrometry was applied to certify the reliability of the quantitative results. The developed methods were validated by ensuring specificity, linearity, limit of quantification, accuracy, precision, recovery, robustness, and stability. Results showed that cangzhu contained higher amounts of atractylenolide I and atractylodin than baizhu, and especially atractylodin contents showed the greatest variation between baizhu and cangzhu. Multivariate statistical analysis, such as principal component analysis and hierarchical cluster analysis, were also employed for further classification of the Atractylodes plants. The established method was suitable for quality control of the Atractylodes plants.
Collapse
Affiliation(s)
- Hyun-Deok Cho
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Unyong Kim
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Joon Hyuk Suh
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Han Young Eom
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Junghyun Kim
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Seul Gi Lee
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Sang Beom Han
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
27
|
Eight new eudesmane- and eremophilane-type sesquiterpenoids from Atractylodes lancea. Fitoterapia 2016; 114:115-121. [DOI: 10.1016/j.fitote.2016.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/27/2022]
|
28
|
Xu K, Jiang JS, Feng ZM, Yang YN, Li L, Zang CX, Zhang PC. Bioactive Sesquiterpenoid and Polyacetylene Glycosides from Atractylodes lancea. JOURNAL OF NATURAL PRODUCTS 2016; 79:1567-1575. [PMID: 27228227 DOI: 10.1021/acs.jnatprod.6b00066] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nine new sesquiterpenoids (1-9), five new polyacetylenes (10-14), and six known compounds were isolated from the rhizomes of Atractylodes lancea. These new chemical structures were established using NMR, MS, and ECD data. Notably, compounds 3-5, the aglycone of which possesses two stereogenic centers (C-5 and C-7), exhibited similar ECD spectra to compounds 1 and 2, the aglycone of which possesses one stereogenic center (C-7). Such a difference was supported by the experimental and calculated ECD data and single-crystallographic analyses of 3a. In addition, compound 3 inhibited lipopolysaccharide-induced NO production in BV2 cells with an IC50 value of 11.39 μM (positive control curcumin, IC50 = 4.77 μM); compound 4 showed better hepatoprotective activity against N-acetyl-p-aminophenol-induced HepG2 cell injury than the positive drug (bicyclol) at a concentration of 10 μM (p < 0.001).
Collapse
Affiliation(s)
- Kuo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100050, People's Republic of China
| | - Jian-Shuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100050, People's Republic of China
| | - Zi-Ming Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100050, People's Republic of China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100050, People's Republic of China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100050, People's Republic of China
| | - Cai-Xia Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100050, People's Republic of China
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100050, People's Republic of China
| |
Collapse
|
29
|
Chen LG, Jan YS, Tsai PW, Norimoto H, Michihara S, Murayama C, Wang CC. Anti-inflammatory and Antinociceptive Constituents of Atractylodes japonica Koidzumi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2254-2262. [PMID: 26919689 DOI: 10.1021/acs.jafc.5b05841] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The rhizomes of many Atractylodes species, including Atractylodes chinensis Koidzumi, Atractylodes macrocephala Koidzumi, and Atractylodes japonica Koidzumi, are collectively termed Atractylodis Rhizoma. We prepared n-hexane extracts of the three species and evaluated their anti-inflammatory effects on lipopolysaccharide (LPS)-induced RAW 264.7 cells. Among all n-hexane extracts, those of A. japonica most strongly inhibited nitric oxide (NO) production in LPS-induced RAW 264.7 cells; five sesquiterpenes, atractylon, atractylenolide I, atractylenolide II, atractylenolide III, and 8-epiasterolid, were isolated from A. japonica. The phytochemical content of A. japonica was similar to those of A. chinensis and A. macrocephala. Moreover, the atractylon concentration was higher in A. japonica than in A. chinensis and A. macrocephala. Atractylon significantly inhibited NO and prostaglandin E2 production as well as inducible NO synthase and cyclooxygenase-2 expression in LPS-induced RAW 264.7 cells. Atractylon (40 mg/kg) also significantly reduced the acetic-acid-induced writhing response, carrageenan-induced paw edema, and hot-plate latent pain response in mice. According to the results, A. japonica has anti-inflammatory and antinociceptive effects and atractylon is the major active component of A. japonica. Therefore, atractylon can be used as a bioactivity marker in A. japonica.
Collapse
Affiliation(s)
- Lih-Geeng Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University , Chiayi 60004, Taiwan
| | | | | | - Hisayoshi Norimoto
- Kampo Research Laboratories, Kracie Pharma, Limited , Takaoka, Toyama 933-0856, Japan
| | - Seiwa Michihara
- Kampo Research Laboratories, Kracie Pharma, Limited , Takaoka, Toyama 933-0856, Japan
| | - Chiaki Murayama
- Kampo Research Laboratories, Kracie Pharma, Limited , Takaoka, Toyama 933-0856, Japan
| | | |
Collapse
|
30
|
Ahmed S, Zhan C, Yang Y, Wang X, Yang T, Zhao Z, Zhang Q, Li X, Hu X. The Transcript Profile of a Traditional Chinese Medicine, Atractylodes lancea, Revealing Its Sesquiterpenoid Biosynthesis of the Major Active Components. PLoS One 2016; 11:e0151975. [PMID: 26990438 PMCID: PMC4798728 DOI: 10.1371/journal.pone.0151975] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/07/2016] [Indexed: 11/18/2022] Open
Abstract
Atractylodes lancea (Thunb.) DC., named “Cangzhu” in China, which belongs to the Asteraceae family. In some countries of Southeast Asia (China, Thailand, Korea, Japan etc.) its rhizome, commonly called rhizoma atractylodis, is used to treat many diseases as it contains a variety of sesquiterpenoids and other components of medicinal importance. Despite its medicinal value, the information of the sesquiterpenoid biosynthesis is largely unknown. In this study, we investigated the transcriptome analysis of different tissues of non-model plant A. lancea by using short read sequencing technology (Illumina). We found 62,352 high quality unigenes with an average sequence length of 913 bp in the transcripts of A. Lancea. Among these, 43,049 (69.04%), 30,264 (48.53%), 26,233 (42.07%), 17,881 (28.67%) and 29,057(46.60%) unigenes showed significant similarity (E-value<1e-5) to known proteins in Nr, KEGG, SWISS-PROT, GO, and COG databases, respectively. Of the total 62,352 unigenes, 43,049 (Nr Database) open reading frames were predicted. On the basis of different bioinformatics tools we identify all the enzymes that take part in the terpenoid biosynthesis as well as five different known sesquiterpenoids via cytosolic mevalonic acid (MVA) pathway and plastidal methylerythritol phosphate (MEP) pathways. In our study, 6, 864 Simple Sequence Repeats (SSRs) were also found as great potential markers in A. lancea. This transcriptomic resource of A. lancea provides a great contribution in advancement of research for this specific medicinal plant and more specifically for the gene mining of different classes of terpenoids and other chemical compounds that have medicinal as well as economic importance.
Collapse
Affiliation(s)
- Shakeel Ahmed
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Center for Plant Functional Components, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Chuansong Zhan
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Center for Plant Functional Components, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Yanyan Yang
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xuekui Wang
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Tewu Yang
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Zeying Zhao
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Qiyun Zhang
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Center for Plant Functional Components, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xiaohua Li
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Center for Plant Functional Components, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xuebo Hu
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Center for Plant Functional Components, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- * E-mail:
| |
Collapse
|
31
|
Ma Y, Fujimoto M, Watari H, Kimura M, Shimada Y. The renoprotective effect of shichimotsukokato on hypertension-induced renal dysfunction in spontaneously hypertensive rats. J Nat Med 2015; 70:152-62. [DOI: 10.1007/s11418-015-0945-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
32
|
Plengsuriyakarn T, Matsuda N, Karbwang J, Viyanant V, Hirayama K, Na-Bangchang K. Anticancer Activity of Atractylodes lancea (Thunb.) DC in a Hamster Model and Application of PET-CT for Early Detection and Monitoring Progression of Cholangiocarcinoma. Asian Pac J Cancer Prev 2015; 16:6279-84. [DOI: 10.7314/apjcp.2015.16.15.6279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
33
|
Lim S, Igori D, Zhao F, Yoo RH, An TJ, Lim HS, Lee SH, Moon JS. Complete genome sequence of a tentative new caulimovirus from the medicinal plant Atractylodes macrocephala. Arch Virol 2015; 160:3127-31. [DOI: 10.1007/s00705-015-2576-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/18/2015] [Indexed: 11/29/2022]
|
34
|
Shim YK, Lee JY, Kim NY, Park YH, Yoon H, Shin CM, Park YS, Lee DH. [Efficacy and Safety of New Prokinetic Agent Benachio Q Solution® in Patients with Postprandial Distress Syndrome Subtype in Functional Dyspepsia: A Single-center, Randomized, Double-blind, Placebo-controlled Pilot Study]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2015; 66:17-26. [PMID: 26194125 DOI: 10.4166/kjg.2015.66.1.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND/AIMS Functional dyspepsia (FD) is a gastrointestinal disorder in which the patient suffers from chronic abdominal symptoms despite the absence of organic disease. Benachio Q solution (soln.)® is a new prokinetic herbal medicine. The aim of the present study is to determine the efficacy and safety of Benachio Q soln.® in patients with postprandial distress syndrome (PDS) subtype in FD. METHODS A single-center, randomized, double-blind, placebo-controlled pilot study was performed in 20 patients with PDS. Patients were assigned to receive either Benachio Q soln.® or placebo three times a day. After 4 weeks of treatment, the data on response rates, symptoms severity of PDS and gastric emptying time were analyzed to evaluate its efficacy. Adverse events, laboratory tests and vital sign were analyzed to assess its safety. RESULTS Nine patients were assigned to Benachio group and 10 patients to placebo group. The response rate after 4 weeks was 44.4% and 20.0% in Benachio and placebo group, respectively (p=0.350). The response rate during the first week in Benachio group was better compared to that of placebo group with marginal difference (33.3% vs. 0.0%, p=0.087). Changes of severity score in early satiety on second and third week were -1.8 ± 0.6, -1.9 ± 0.4 and -1.3 ± 0.5, -1.4 ± 0.6 in Benachio and placebo group, respectively (p=0.059 vs. p=0.033). No adverse event was observed. CONCLUSIONS The new herbal drug, Benachio Q soln.® seems to improve the symptoms of PDS subtype in FD and could be used safely. Further larger trial is needed in the future.
Collapse
Affiliation(s)
- Young Kwang Shim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ju Yup Lee
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu,Korea
| | - Na Young Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yo Han Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Bensoussan A, Lee S, Murray C, Bourchier S, van der Kooy F, Pearson JL, Liu J, Chang D, Khoo CS. Choosing chemical markers for quality assurance of complex herbal medicines: Development and application of the herb MaRS criteria. Clin Pharmacol Ther 2015; 97:628-40. [PMID: 25704128 DOI: 10.1002/cpt.100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/12/2015] [Indexed: 11/06/2022]
Abstract
With increasing use of herbal medicines for chronic or serious illness, relevant quality assurance methods are essential for making claims of therapeutic benefit. Adequate demonstration of safety and efficacy based on chemical composition and ensuring consistency between manufactured batches is critical. To date, there has been no uniform standard approach or detailed framework provided to industry for selecting relevant chemical markers used to standardize herbal products. We developed the Herbal Marker Ranking System (Herb MaRS) providing guidance on prioritizing the selection of chemical markers for quality control of complex multi-herb mixtures, while also taking into account the bioactivity in relation to the symptoms of the disease and its concentration in the formula. We apply the Herb MaRS evaluation criteria to a seven-herb formulation for the treatment of irritable bowel syndrome with constipation. Our ranking scale accommodates the clinical and pharmacological use of the formulation and its claimed indications.
Collapse
Affiliation(s)
- A Bensoussan
- National Institute of Complementary Medicine, University of Western Sydney, Penrith, New South Wales, Australia
| | - S Lee
- National Institute of Complementary Medicine, University of Western Sydney, Penrith, New South Wales, Australia
| | - C Murray
- National Institute of Complementary Medicine, University of Western Sydney, Penrith, New South Wales, Australia
| | - S Bourchier
- National Institute of Complementary Medicine, University of Western Sydney, Penrith, New South Wales, Australia
| | - F van der Kooy
- National Institute of Complementary Medicine, University of Western Sydney, Penrith, New South Wales, Australia
| | - J L Pearson
- National Institute of Complementary Medicine, University of Western Sydney, Penrith, New South Wales, Australia
| | - J Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dennis Chang
- National Institute of Complementary Medicine, University of Western Sydney, Penrith, New South Wales, Australia
| | - C S Khoo
- National Institute of Complementary Medicine, University of Western Sydney, Penrith, New South Wales, Australia
| |
Collapse
|
36
|
Koonrungsesomboon N, Na-Bangchang K, Karbwang J. Therapeutic potential and pharmacological activities of Atractylodes lancea (Thunb.) DC. ASIAN PAC J TROP MED 2015; 7:421-8. [PMID: 25066389 DOI: 10.1016/s1995-7645(14)60069-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/24/2013] [Accepted: 03/02/2014] [Indexed: 11/16/2022] Open
Abstract
The rhizome of Atractylodes lancea (A. lancea) (Thunb.) DC. (AL) is extensively used in Chinese, Thai, and Japanese traditional medicines as crude extracts/decoctions or a component in various herbal formulations. Various pharmacological activities of AL and its major constituents have been demonstrated in vitro, ex vivo, and in animal models. Results from the toxicity studies in animal models suggest safety profile of AL and its active constituents. Despite extensive use with positive impression in many diseases, there has not been a clinical study that can conclusively support its efficacy and safety profile in human. This review comprehensively summarizes current information on the pharmacological activities of AL and their active constituents including anticancer, anti-inflammatory, antimicrobial and antipyretic activities, as well as activities on central nervous, cardiovascular, and gastrointestinal systems.
Collapse
Affiliation(s)
- Nut Koonrungsesomboon
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Thailand
| | - Juntra Karbwang
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Japan.
| |
Collapse
|
37
|
Chronic ingestion of high dosed Phikud Navakot extraction induces mesangiolysis in rats with alteration of AQP1 and Hsp60 expressions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:462387. [PMID: 25815318 PMCID: PMC4359841 DOI: 10.1155/2015/462387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/10/2015] [Indexed: 01/19/2023]
Abstract
Phikud Navakot (PN) is commonly used in Thai traditional medicine for alleviation of cardiovascular and cerebrovascular symptoms; however little is known about the chronic toxicity effects of the extracts from the herbs in PN. Repeated extraction doses of 10, 100, and 1,000 mg/kg/day were randomly administered to both male and female Sprague Dawley rats for 12 months. Histopathological study revealed that mesangiolysis was predominately found at the highest dose. Aquaporin 1 (AQP1) expression in the mesangiolytic glomeruli was significantly lower than in the intact glomeruli. This may be relevant to an imbalance of vascular function manifested by AQP1 alteration. In the mesangiolytic glomeruli, 60 kDa heat shock protein (Hsp60) was significantly upregulated on the endothelial lining cells of aneurysm and vascular cyst. Hsp60 increase may be related to endothelial cell damage due to its intracellular protective role. Blood urea nitrogen and creatinine levels remained within their normal range indicating well-functioning renal reserve function. In conclusion, high dosed PN may affect the endothelium leading to inability of vascular permeability and consequence to mesangiolysis. Our results suggest that only a high dose of chronic oral administration of PN is relatively toxic in association with mesangiolysis. The NOAEL was determined to be 100 mg/kg/day.
Collapse
|
38
|
Yu Y, Jia TZ, Cai Q, Jiang N, Ma MY, Min DY, Yuan Y. Comparison of the anti-ulcer activity between the crude and bran-processed Atractylodes lancea in the rat model of gastric ulcer induced by acetic acid. JOURNAL OF ETHNOPHARMACOLOGY 2015; 160:211-218. [PMID: 25481080 DOI: 10.1016/j.jep.2014.10.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/20/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rhizome of Atractylodes lancea (AL, Compositae, Chinese name: Cangzhu; Japanese name: Sou-ju-tsu) has been used traditionally for the treatment of various diseases such as digestive disorders, rheumatic diseases, and influenza in China, Korea and Japan. The crude AL and AL bran-processed are both listed in the Chinese Pharmacopoeia. However, the differences between the effects of the crude and AL bran-processed on gastric ulcer were poorly understood, and the mechanisms for the treatment of gastric ulcer were not clear. This study aimed at comparing the anti-ulcer effects between the crude AL and AL processed in acetic acid induced model in rats and evaluating the mechanisms of action involved in the anti-ulcer properties of AL. MATERIALS AND METHODS The model of gastric ulcer was imitated by acetic acid in rats, and AL was gavaged. The serum and gastric tissues were collected. The levels of epidermal growth factor (EGF), trefoil factor2 (TFF2), tumor necrosis factor-α (TNF-α), interleukin 6, 8 (IL-6, 8) and prostaglandin E2 (PGE2) in serum and gastric tissues were determined by the double-antibody sandwich enzyme-linked immunosorbent assay (ELISA), and the mRNA expressions of EGF, TFF2, TNF-α, and IL-8 in stomach were analyzed by quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Meanwhile, histopathological changes were evaluated by hematoxylin and eosin (HE) stain. The protein expressions of EGF, TFF2, TNF-α, and IL-8 were examined by immunohistochemistry in stomach. RESULTS The results demonstrated that the damage of gastric tissue was obviously alleviated and the productions of TNF-α, IL-8, IL-6, and PGE2 and the mRNA expressions of TNF-α, and IL-8 were notably inhibited. Furthermore, the productions of EGF and TFF2 and the mRNA expressions of EGF and TFF2 were significantly stimulated by both crude AL and AL processed in a dose-dependent manner. Compared with the crude AL, the processed AL was more effective. CONCLUSION The AL processed had more satisfactory effects in treatment of gastric-ulcer than the crude AL. The anti-ulcer effects of AL could be attributed to the anti-inflammatory properties via down-regulating TNF-α, IL-8, IL-6 and PGE2 and to the gastroprotective effects via up-regulating EGF and TFF2.
Collapse
Affiliation(s)
- Yan Yu
- Experimental Center of Traditional Chinese Medicine, The Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China; School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Tian-Zhu Jia
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Qian Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Ning Jiang
- Laboratory of Molecular Biology, School of Basic Medical Science, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Ming-Yue Ma
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Dong-Yu Min
- Experimental Center of Traditional Chinese Medicine, The Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Yuan Yuan
- Institute of Traditional Chinese Medicine of Liaoning Province, Shenyang 110034, China
| |
Collapse
|
39
|
Uehara R, Isomoto H, Minami H, Yamaguchi N, Ohnita K, Ichikawa T, Takeshima F, Shikuwa S, Nakao K. Characteristics of gastrointestinal symptoms and function following endoscopic submucosal dissection and treatment of the gastrointestinal symptoms using rikkunshito. Exp Ther Med 2013; 6:1083-1088. [PMID: 24223626 PMCID: PMC3820687 DOI: 10.3892/etm.2013.1299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 08/07/2013] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate the gastrointestinal (GI) symptoms and gastric emptying following endoscopic submucosal dissection (ESD), as well as to evaluate a novel treatment strategy using rikkunshito, a traditional Japanese herbal medicine. GI symptoms and gastric emptying were evaluated 6–8 days after ESD as part of the Step I study. In the Step 1 study, the Gastrointestinal Symptom Rating Scale (GSRS) scores of the two groups after 4 and 8 weeks of treatment with either a proton pump inhibitor (PPI; PPI monotreatment group, n=5) or a PPI plus rikkunshito (PPI + rikkunshito group, n=8) were compared against baseline values. Abdominal pain and constipation occurred in the majority of patients after ESD. The mean T-max 6–8 days after gastric emptying was 75.4±13.6 min, which was significantly longer compared with that reported in healthy subjects (43.9±10.3 min). In the Step 2 study, the total GSRS score was significantly improved only in the PPI + rikkunshito group after 8 weeks of treatment. In conclusion, ESD affects gastric emptying and is associated with an increased incidence of upper GI symptoms such as abdominal pain and indigestion. Rikkunshito may be useful as a novel supporting therapeutic drug for the treatment of GI symptoms in patients who have undergone ESD.
Collapse
Affiliation(s)
- Ryohei Uehara
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yanai M, Mochiki E, Ogawa A, Morita H, Toyomasu Y, Ogata K, Tabe Y, Ando H, Ohno T, Asao T, Aomori T, Fujita Y, Kuwano H. Intragastric administration of rikkunshito stimulates upper gastrointestinal motility and gastric emptying in conscious dogs. J Gastroenterol 2013; 48:611-9. [PMID: 23053427 DOI: 10.1007/s00535-012-0687-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/13/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Traditional Japanese medicine, known as Kampo medicine, consists of mixtures of several medicinal herbs widely used to treat upper gastrointestinal disorders in Japan. Rikkunshito, one of these medicines, has not been evaluated with respect to its influence on gastrointestinal motor activity. We investigated the effect of rikkunshito on upper gastrointestinal motility and plasma ghrelin concentrations in conscious dogs. METHODS Contractile response to intragastric administration of rikkunshito was studied via surgically implanted force transducers. A powdered extract of rikkunshito (1.3, 2.7, and 4.0 g) dissolved in water was administered into the stomachs of normal and vagotomized dogs before feeding and gastric emptying was evaluated. Several inhibitors of gastrointestinal motility (atropine, hexamethonium, and ondansetron) were injected intravenously before intragastric administration of rikkunshito. Plasma acylated ghrelin levels after intragastric administration of rikkunshito were measured. RESULTS In a fasting state, intragastric administration of rikkunshito induced phasic contractions in the duodenum and jejunum in normal dogs. Rikkunshito-induced contractions were inhibited by atropine, hexamethonium and ondansetron. In vagotomized dogs, rikkunshito induced phasic contractions, similar to normal dogs. Gastric emptying was accelerated by intragastric administration of rikkunshito in a dose-dependent manner. The plasma acylated ghrelin level 150 min after intragastric administration of 4.0 g of rikkunshito was significantly higher than the control value. CONCLUSIONS Intragastric administration of rikkunshito stimulates gastrointestinal contractions in the interdigestive state through cholinergic neurons and 5-HT type 3 receptors. Moreover, rikkunshito increases plasma acylated ghrelin levels. Rikkunshito may alleviate gastrointestinal disorders through its prokinetic effects.
Collapse
Affiliation(s)
- Mitsuhiro Yanai
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yueju pill rapidly induces antidepressant-like effects and acutely enhances BDNF expression in mouse brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:184367. [PMID: 23710213 PMCID: PMC3654702 DOI: 10.1155/2013/184367] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/30/2013] [Indexed: 11/18/2022]
Abstract
The traditional antidepressants have a major disadvantage in delayed onset of efficacy, and the emerging fast-acting antidepressant ketamine has adverse behavioral and neurotoxic effects. Yueju pill, an herb medicine formulated eight hundred years ago by Doctor Zhu Danxi, has been popularly prescribed in China for alleviation of depression-like symptoms. Although several clinical outcome studies reported the relative short onset of antidepressant effects of Yueju, this has not been scientifically investigated. We, therefore, examined the rapid antidepressant effect of Yueju in mice and tested the underlying molecular mechanisms. We found that acute administration of ethanol extract of Yueju rapidly attenuated depressive-like symptoms in learned helpless paradigm, and the antidepressant-like effects were sustained for at least 24 hours in tail suspension test in ICR mice. Additionally, Yueju, like ketamine, rapidly increased the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus, whereas the BDNF mRNA expression remained unaltered. Yueju rapidly reduced the phosphorylation of eukaryotic elongation factor 2 (eEF2), leading to desuppression of BDNF synthesis. Unlike ketamine, both the BDNF expression and eEF2 phosphorylation were revered at 24 hours after Yueju administration. This study is the first to demonstrate the rapid antidepressant effects of an herb medicine, offering an opportunity to improve therapy of depression.
Collapse
|
42
|
Zhao M, Wang Q, Ouyang Z, Han B, Wang W, Wei Y, Wu Y, Yang B. Selective fraction of Atractylodes lancea (Thunb.) DC. and its growth inhibitory effect on human gastric cancer cells. Cytotechnology 2013; 66:201-8. [PMID: 23564282 DOI: 10.1007/s10616-013-9559-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 03/25/2013] [Indexed: 12/27/2022] Open
Abstract
The purpose of this study was to investigate the pharmacological effect of fraction of Atractylodes lancea (Thunb.) DC. (A. lancea) extract. In this study, we isolated different polarity fractions, including petroleum ether (PE), ethyl acetate, n-butanol, and the remaining H2O fractions from the water extract of A. lancea. The antigastric cancer properties of the different fractions in BGC-823 and SGC-7901 cells were evaluated. Apoptotic cells were treated with PE fraction and stained with Hoechst 33342 and 5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide. The cell cycle was analyzed via flow cytometry. The main compounds of PE fraction were determined by HPLC-ESI-MS. Results of this study showed that the PE fraction of A. lancea inhibited the growth of BGC-823 and SGC-7901 cells in a dose- and time-dependent manner. The morphological and mitochondrial transmembrane potential changes suggested that the cells showed preliminary apoptosis characteristics after treatment with the three different polarities. The main compounds of PE fraction include two sesquiterpene compounds: eudesm-4(15),7-diene-9α,11-diol and eudesm-4(15)-ene-7a,11-diol; three sesquiterpene lactone compounds: atractylenolid I, atractylenolid III and 3-β-acetyl-atractylenolid III and one polyacetylenic compound: 4,6,12-tetradecatriene-8,10-diyne-1,3,14-triol.
Collapse
Affiliation(s)
- Ming Zhao
- School of Pharmaceutical Science, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Chinese herbal medicine liu jun zi tang and xiang sha liu jun zi tang for functional dyspepsia: meta-analysis of randomized controlled trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:936459. [PMID: 23304226 PMCID: PMC3530827 DOI: 10.1155/2012/936459] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/15/2012] [Accepted: 10/26/2012] [Indexed: 12/20/2022]
Abstract
Objectives. To assess the efficacy and safety of Liu Jun Zi Tang (LJZT) and Xiang Sha Liu Jun Zi Tang (XSLJZT) for treating functional dyspepsia. Methods. Literature searches were carried out on Medline database, Cochrane Library, CNKI database, Chinese Biomedical Literature database, Wanfang database, and VIP database up to July 2012. Hand search for further references was conducted. Study selection, data extraction, quality assessment, and data analyses were performed according to the Cochrane standards. Results. Fifteen publications in total were suitable for inclusion. There was evidence that LJZT compared with prokinetic drugs increased symptom improvement (odds ratio 1.96, 95% CI 1.15 to 3.36). There was also evidence that XSLJZT compared with prokinetic drugs increased symptom improvement (odds ratio 2.63, 95% CI 1.72 to 4.03). No adverse events were reported in LJZT or XSLJZT group in any of these randomized controlled trials. Conclusion. LJZT and XSLJZT might be more effective compared with prokinetic drugs in the treatment of functional dyspepsia, and no side effects are identified in the included trials. However, due to poor methodological quality in the majority of included studies, the potential benefit from LJZT and XSLJZT need to be confirmed in rigorously designed, multicentre, and large-scale trials.
Collapse
|
44
|
Liu Y, Jia Z, Dong L, Wang R, Qiu G. A randomized pilot study of atractylenolide I on gastric cancer cachexia patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 5:337-44. [PMID: 18830451 PMCID: PMC2529387 DOI: 10.1093/ecam/nem031] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 02/13/2007] [Indexed: 12/25/2022]
Abstract
We determined the therapeutic efficacy of atractylenolide I (ATR), extracted from largehead atractylodes rhizome, in managing gastric cancer cachexia (GCC), and interpreted its probable pharmacological mechanism via investigating tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6) and proteolysis-inducing factor (PIF). This was a randomized but not-blinded pilot. The study group (n = 11) received 1.32 g per day of atractylenolide I (ATR) and the control group (n = 11) received 3.6 g per day of fish-oil-enriched nutritional supplementation (FOE) for 7 weeks. Conservative therapy was similar in both groups. Clinical [appetite, body weight, mid-arm muscle circumference (MAMC), Karnofsky performance status (KPS) status], biomarker (TNF-α, IL-1, IL-6 and PIF) were evaluated in the basal state, at the third and seventh weeks. To analyze changes of cytokines, an immumohistochemistry technique was adopted. Base line characteristics were similar in both groups. Effects on MAMC and body weight increase, TNF-α increase and IL-1 decreases of serum level were significant in both groups (P < 0.05). ATR was significantly more effective than FOE in improving appetite and KPS status, and decreasing PIF positive rate (P < 0.05). Slight nausea (3/11) and dry mouth (1/11) were shown in intervention groups but did not interrupt treatment. These preliminary findings suggest that ATR might be beneficial in alleviating symptoms, in modulating cytokine and in inhibiting PIF proteolysis of gastric cancer cachexia. Further research using a randomized controlled design is necessary to confirm these pilot study findings.
Collapse
Affiliation(s)
- Yi Liu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, State Administration of Traditional Chinese Medicine of People's Republic of China, Beijing and Department of Digestion, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | |
Collapse
|
45
|
Zhang Y, Wang Z, Zhu J, Chen B, Li Y. DETERMINATION OF ATRACTYLODIN IN RAT PLASMA BY HPLC-UV METHOD AND ITS APPLICATION TO A PHARMACOKINETIC STUDY. J LIQ CHROMATOGR R T 2012. [DOI: 10.1080/10826076.2011.608235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yushi Zhang
- a School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Zhimin Wang
- b Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing , China
| | - Jingjing Zhu
- b Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing , China
| | - Bo Chen
- a School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Yujuan Li
- a School of Life Science, Beijing Institute of Technology , Beijing , China
| |
Collapse
|
46
|
Zhu XY, Cheng GL, Liu FH, Yu J, Wang YJ, Yu TQ, Xu JQ, Wang M. Taguchi approach for anti-heat stress prescription compatibility in mice spleen lymphocytes in vitro. Arch Pharm Res 2011; 34:1125-33. [PMID: 21811919 DOI: 10.1007/s12272-011-0710-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/20/2009] [Accepted: 11/26/2010] [Indexed: 11/29/2022]
Abstract
Heat stress (HS) may induce immunosuppression as well as inhibit the proliferation of lymphocytes. This study evaluated the effects on immune function of our prescription on splenic lymphocytes under HS as well as its compatibility. The effects of four herbal extracts from Agastache rugosa, Atractylodes lancea, Cortex Phellodendri, and Gypsum Fibrosum on heat treated splenic lymphocytes were investigated and the compatibility of the prescription was also explored by using the Taguchi method. This study revealed changes in proliferation by traditional Chinese medicines of splenic lymphocytes after HS. Proliferation in the HS group was significantly lower than the control group. Under HS, the effects of higher concentrations of Agastache rugosa (100 and 200 μg/mL), Atractylodes lancea (100 and 200 μg/mL), Cortex Phellodendri (50 and 100 μg/mL) and Gypsum Fibrosum (100 and 200 μg/mL) caused a significant increase on ConA/LPS-induced proliferation of lymphocytes than lower concentrations. We, therefore, conclude that the prescription of traditional Chinese medicines may recover splenic lymphocytes from the immunosuppression induced by HS. The Taguchi design, which allows rapid and high efficiency for the selection of the best conditions for our prescription on HS-treated splenic lymphocytes, demonstrated that Agastache rugosa (200 μg/mL), Atractylodes lancea (200 μg/mL), Cortex Phellodendri (100 μg/mL) and Gypsum Fibrosum (100 μg/mL) were the optimal conditions for the prescription. The validation experiment confirmed that our composition in optimum extraction conditions enhanced effects on ConA or LPS-stimulated lymphocytes under HS. The results showed that the Taguchi optimization approach is a suitable method for optimization of the composition of prescription.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- TCVM Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tominaga K, Kido T, Ochi M, Sadakane C, Mase A, Okazaki H, Yamagami H, Tanigawa T, Watanabe K, Watanabe T, Fujiwara Y, Oshitani N, Arakawa T. The Traditional Japanese Medicine Rikkunshito Promotes Gastric Emptying via the Antagonistic Action of the 5-HT(3) Receptor Pathway in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:248481. [PMID: 19861508 PMCID: PMC3095508 DOI: 10.1093/ecam/nep173] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 10/02/2009] [Indexed: 12/14/2022]
Abstract
The traditional Japanese medicine rikkunshito ameliorates the nitric oxide-associated delay in gastric emptying. Whether rikkunshito affects gastric motility associated with 5-hydroxytryptamine (serotonin: 5-HT) receptors or dopamine receptors is unknown. We examined the effects of rikkunshito on the delay in gastric emptying induced by 5-HT or dopamine using the phenol red method in male Wistar rats. 5-HT (0.01–1.0 mg kg−1, i.p.) dose dependently delayed gastric emptying, similar to the effect of the 5-HT3 receptor agonist 1-(3-chlorophenyl) biguanide (0.01–1.0 mg kg−1, i.p.). Dopamine also dose dependently delayed gastric emptying. The 5-HT3 receptor antagonist ondansetron (0.04–4.0 mg kg−1) and rikkunshito (125–500 mg kg−1) significantly suppressed the delay in gastric emptying caused by 5-HT or 1-(3-chlorophenyl) biguanide. Hesperidin (the most active ingredient in rikkunshito) suppressed the 5-HT-induced delayed gastric emptying in a dose-dependent manner, the maximum effect of which was similar to that of ondansetron (0.4 mg kg−1). The improvement obtained by rikkunshito or ondansetron in delaying gastric emptying was completely blocked by pretreatment with atropine. Rikkunshito appears to improve delay in gastric emptying via the antagonistic action of the 5-HT3 receptor pathway.
Collapse
Affiliation(s)
- K Tominaga
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee SM, Lee HB, Lee CG. A convenience UPLC/PDA method for the quantitative analysis of panaxfuraynes A and B from Panax ginseng. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Wei XH, Cheng XM, Shen JS, Wang ZT. Antidepressant effect of Yueju-Wan ethanol extract and its fractions in mice models of despair. JOURNAL OF ETHNOPHARMACOLOGY 2008; 117:339-344. [PMID: 18343064 DOI: 10.1016/j.jep.2008.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 12/20/2007] [Accepted: 02/02/2008] [Indexed: 05/26/2023]
Abstract
AIM OF THE STUDY Yueju-Wan (YJ), a traditional Chinese medicinal formula, is commonly used for the treatment of depression-related syndromes in China. This study was conducted to evaluate the antidepressant activity of YJ ethanol extract (YJ-E) and its four different fractions, the petroleum ether fraction (YJ-EA), ethyl acetate fraction (YJ-EB), n-butanol fraction (YJ-EC) and final aqueous fraction (YJ-ED). MATERIALS AND METHODS Two experimental despair animal models: the mice tail suspension test (TST) and the mice forced swimming test (FST) were used to evaluate the antidepressant activity of YJ-E and its fractions. These extracts or fractions were administered orally for 7 days, while the parallel positive control was given at the same time using fluoxetine hydrochloride (FLU) in TST and imipramine hydrochloride (IMI) in FST respectively. RESULTS YJ-E high dose (YJ-E2), YJ-EA, YJ-EC and the positive control groups could decrease the duration of immobility in the TST and FST and have no significant changes in locomotor activity. YJ-E low dose (YJ-E1), YJ-EB, YJ-ED and the vehicle solvent (VEH) control group have no obvious effect on these same tests. CONCLUSIONS In these despair animal models, YJ ethanol extract, the petroleum ether fraction and n-butanol fraction show potent antidepressant effects. The petroleum ether fraction and n-butanol fraction appear to be the active fractions of YJ-E.
Collapse
Affiliation(s)
- X H Wei
- Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai 201203, China.
| | | | | | | |
Collapse
|
50
|
Abstract
This review is a comprehensive survey of acetylenic lipids and their derivatives, obtained from living organisms, that have anticancer activity. Acetylenic metabolites belong to a class of molecules containing triple bond(s). They are found in plants, fungi, microorganisms, and marine invertebrates. Although acetylenes are common as components of terrestrial plants, fungi, and bacteria, it is only within the last 30 years that biologically active polyacetylenes having unusual structural features have been reported from plants, cyanobacteria, algae, invertebrates, and other sources. Naturally occurring aquatic acetylenes are of particular interest since many of them display important biological activities and possess antitumor, antibacterial, antimicrobial, antifouling, antifungal, pesticidal, phototoxic, HIV-inhibitory, and immunosuppressive properties. There is no doubt that they are of great interest, especially for the medicinal and/or pharmaceutical industries. This review presents structures and describes cytotoxic and anticancer activities only for more than 300 acetylenic lipids and their derivatives isolated from living organisms.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|