1
|
Foley AR, Bolduc V, Guirguis F, Donkervoort S, Hu Y, Orbach R, McCarty RM, Sarathy A, Norato G, Cummings BB, Lek M, Sarkozy A, Butterfield RJ, Kirschner J, Nascimento A, Benito DND, Quijano-Roy S, Stojkovic T, Merlini L, Comi G, Ryan M, McDonald D, Munot P, Yoon G, Leung E, Finanger E, Leach ME, Collins J, Tian C, Mohassel P, Neuhaus SB, Saade D, Cocanougher BT, Chu ML, Scavina M, Grosmann C, Richardson R, Kossak BD, Gospe SM, Bhise V, Taurina G, Lace B, Troncoso M, Shohat M, Shalata A, Chan SH, Jokela M, Palmio J, Haliloğlu G, Jou C, Gartioux C, Solomon-Degefa H, Freiburg CD, Schiavinato A, Zhou H, Aguti S, Nevo Y, Nishino I, Jimenez-Mallebrera C, Lamandé SR, Allamand V, Gualandi F, Ferlini A, MacArthur DG, Wilton SD, Wagener R, Bertini E, Muntoni F, Bönnemann CG. The recurrent deep intronic pseudoexon-inducing variant COL6A1 c.930+189C>T results in a consistently severe phenotype of COL6-related dystrophy: Towards clinical trial readiness for splice-modulating therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.29.24304673. [PMID: 38585825 PMCID: PMC10996746 DOI: 10.1101/2024.03.29.24304673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Collagen VI-related dystrophies (COL6-RDs) manifest with a spectrum of clinical phenotypes, ranging from Ullrich congenital muscular dystrophy (UCMD), presenting with prominent congenital symptoms and characterised by progressive muscle weakness, joint contractures and respiratory insufficiency, to Bethlem muscular dystrophy, with milder symptoms typically recognised later and at times resembling a limb girdle muscular dystrophy, and intermediate phenotypes falling between UCMD and Bethlem muscular dystrophy. Despite clinical and immunohistochemical features highly suggestive of COL6-RD, some patients had remained without an identified causative variant in COL6A1, COL6A2 or COL6A3. With combined muscle RNA-sequencing and whole-genome sequencing we uncovered a recurrent, de novo deep intronic variant in intron 11 of COL6A1 (c.930+189C>T) that leads to a dominantly acting in-frame pseudoexon insertion. We subsequently identified and have characterised an international cohort of forty-four patients with this COL6A1 intron 11 causative variant, one of the most common recurrent causative variants in the collagen VI genes. Patients manifest a consistently severe phenotype characterised by a paucity of early symptoms followed by an accelerated progression to a severe form of UCMD, except for one patient with somatic mosaicism for this COL6A1 intron 11 variant who manifests a milder phenotype consistent with Bethlem muscular dystrophy. Characterisation of this individual provides a robust validation for the development of our pseudoexon skipping therapy. We have previously shown that splice-modulating antisense oligomers applied in vitro effectively decreased the abundance of the mutant pseudoexon-containing COL6A1 transcripts to levels comparable to the in vivo scenario of the somatic mosaicism shown here, indicating that this therapeutic approach carries significant translational promise for ameliorating the severe form of UCMD caused by this common recurrent COL6A1 causative variant to a Bethlem muscular dystrophy phenotype.
Collapse
Affiliation(s)
- A. Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Fady Guirguis
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
- Dana-Dwek Children’s Hospital, Tel Aviv 64239, Israel
| | - Riley M. McCarty
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Apurva Sarathy
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Gina Norato
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | | | - Monkol Lek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London WC1N 1EH, UK
| | - Russell J. Butterfield
- Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, UT 84132, USA
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg 79110, Germany
| | - Andrés Nascimento
- Neuromuscular Unit, Neuropediatrics Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu. CIBERER ISCIII. Barcelona 08950, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Neuropediatrics Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu. CIBERER ISCIII. Barcelona 08950, Spain
| | - Susana Quijano-Roy
- Garches Neuromuscular Reference Center, Child Neurology and ICU Department, APHP Raymond Poincare University Hospital (UVSQ Paris Saclay), Garches 92380, France
| | - Tanya Stojkovic
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Île-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris 75013, France
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Giacomo Comi
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monique Ryan
- Department of Neurology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Denise McDonald
- Department of Neurodisability, Children’s Health Ireland at Tallaght, Dublin 24 Ireland
| | - Pinki Munot
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London WC1N 1EH, UK
| | - Grace Yoon
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Edward Leung
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Erika Finanger
- Department of Pediatrics and Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Meganne E. Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
- Department of Pediatrics and Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - James Collins
- Divisions of Neurology and Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Cuixia Tian
- Divisions of Neurology and Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Sarah B. Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Dimah Saade
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Benjamin T. Cocanougher
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Mary-Lynn Chu
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Mena Scavina
- Division of Neurology, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA
| | - Carla Grosmann
- Department of Neurology, Rady Children’s Hospital University of California San Diego, San Diego, CA 92123, USA
| | - Randal Richardson
- Department of Neurology, Gillette Children’s Specialty Healthcare, St Paul, MN 55101, USA
| | - Brian D. Kossak
- Department of Neurology, Dartmouth Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Sidney M. Gospe
- Department of Neurology and Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Vikram Bhise
- Departments of Pediatrics and Neurology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gita Taurina
- Children’s Clinical University Hospital, Medical Genetics and Prenatal Diagnostic Clinic, Riga 1004, Latvia
| | - Baiba Lace
- Riga East Clinical University, Institute of Clinical and Preventive Medicine of the University of Latvia, Riga 1586, Latvia
| | - Monica Troncoso
- Pediatric Neuropsychiatry Service, Hospital Clínico San Borja Arriarán, Pediatric Department, Universidad de Chile, Santiago 1234, Chile
| | - Mordechai Shohat
- The Genomics Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Adel Shalata
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Sophelia H.S. Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Manu Jokela
- Clinical Neurosciences, University of Turku, Turku, Finland and Neurocenter, Turku University Hospital, Turku 20520, Finland
- Neuromuscular Research Center, Tampere University and Tampere University Hospital, Tampere 33101, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University and Tampere University Hospital, Tampere 33101, Finland
| | - Göknur Haliloğlu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Cristina Jou
- Pathology department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona 08950, Spain
| | - Corine Gartioux
- INSERM, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, Paris 75013, France
| | | | - Carolin D. Freiburg
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Alvise Schiavinato
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Haiyan Zhou
- National Institute of Health Research, Great Ormond Street Hospital Biomedical Research Centre, Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sara Aguti
- Neurodegenerative Disease Department, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Yoram Nevo
- Institute of Pediatric Neurology, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Cecilia Jimenez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Barcelona 08950, Spain
| | - Shireen R. Lamandé
- Department of Paediatrics, University of Melbourne, The Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Valérie Allamand
- INSERM, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, Paris 75013, France
| | - Francesca Gualandi
- Unit of Medical Genetics, Department of Medical Sciences and Department of Mother and Child, University Hospital S. Anna Ferrara, Ferrara 44121, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences and Department of Mother and Child, University Hospital S. Anna Ferrara, Ferrara 44121, Italy
| | | | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University; Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London WC1N 1EH, UK
- National Institute of Health Research, Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Di Martino A, Cescon M, D’Agostino C, Schilardi F, Sabatelli P, Merlini L, Faldini C. Collagen VI in the Musculoskeletal System. Int J Mol Sci 2023; 24:5095. [PMID: 36982167 PMCID: PMC10049728 DOI: 10.3390/ijms24065095] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Collagen VI exerts several functions in the tissues in which it is expressed, including mechanical roles, cytoprotective functions with the inhibition of apoptosis and oxidative damage, and the promotion of tumor growth and progression by the regulation of cell differentiation and autophagic mechanisms. Mutations in the genes encoding collagen VI main chains, COL6A1, COL6A2 and COL6A3, are responsible for a spectrum of congenital muscular disorders, namely Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM), which show a variable combination of muscle wasting and weakness, joint contractures, distal laxity, and respiratory compromise. No effective therapeutic strategy is available so far for these diseases; moreover, the effects of collagen VI mutations on other tissues is poorly investigated. The aim of this review is to outline the role of collagen VI in the musculoskeletal system and to give an update about the tissue-specific functions revealed by studies on animal models and from patients' derived samples in order to fill the knowledge gap between scientists and the clinicians who daily manage patients affected by collagen VI-related myopathies.
Collapse
Affiliation(s)
- Alberto Di Martino
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Claudio D’Agostino
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Francesco Schilardi
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Patrizia Sabatelli
- Unit of Bologna, CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Cesare Faldini
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| |
Collapse
|
3
|
Mereness JA, Mariani TJ. The critical role of collagen VI in lung development and chronic lung disease. Matrix Biol Plus 2021; 10:100058. [PMID: 34195595 PMCID: PMC8233475 DOI: 10.1016/j.mbplus.2021.100058] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
Type VI collagen (collagen VI) is an obligate extracellular matrix component found mainly in the basement membrane region of many mammalian tissues and organs, including skeletal muscle and throughout the respiratory system. Collagen VI is probably most recognized in medicine as the genetic cause of a spectrum of muscular dystrophies, including Ullrich Congenital Myopathy and Bethlem Myopathy. Collagen VI is thought to contribute to myopathy, at least in part, by mediating muscle fiber integrity by anchoring myoblasts to the muscle basement membrane. Interestingly, collagen VI myopathies present with restrictive respiratory insufficiency, thought to be due primarily to thoracic muscular weakening. Although it was recently recognized as one of the (if not the) most abundant collagens in the mammalian lung, there is a substantive knowledge gap concerning its role in respiratory system development and function. A few studies have suggested that collagen VI insufficiency is associated with airway epithelial cell survival and altered lung function. Our recent work suggested collagen VI may be a genomic risk factor for chronic lung disease in premature infants. Using this as motivation, we thoroughly assessed the role of collagen VI in lung development and in lung epithelial cell biology. Here, we describe the state-of-the-art for collagen VI cell and developmental biology within the respiratory system, and reveal its essential roles in normal developmental processes and airway epithelial cell phenotype and intracellular signaling.
Collapse
Affiliation(s)
- Jared A. Mereness
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Thomas J. Mariani
- Corresponding author. Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, 601 Elmwood Ave, Box 850, Rochester, NY 14642, USA.
| |
Collapse
|
4
|
Valk MJ, Loer SA, Schober P, Dettwiler S. Perioperative considerations in Walker-Warburg syndrome. Clin Case Rep 2015; 3:744-8. [PMID: 26401279 PMCID: PMC4574790 DOI: 10.1002/ccr3.334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/25/2015] [Accepted: 06/24/2015] [Indexed: 11/07/2022] Open
Abstract
Walker-Warburg syndrome is a rare congenital disorder. Several features, including muscular dystrophy, hydrocephalus, and oropharyngeal abnormalities, have important implications in the perioperative setting. We present a case of general anesthesia in an infant and discuss perioperative considerations to guide clinicians faced with the management of patients with this syndrome.
Collapse
Affiliation(s)
- Madelous Ja Valk
- Department of Anesthesiology, VU University Medical Center De Boelelaan 1117, 1007 MB, Amsterdam, The Netherlands
| | - Stephan A Loer
- Department of Anesthesiology, VU University Medical Center De Boelelaan 1117, 1007 MB, Amsterdam, The Netherlands
| | - Patrick Schober
- Department of Anesthesiology, VU University Medical Center De Boelelaan 1117, 1007 MB, Amsterdam, The Netherlands
| | - Saskia Dettwiler
- Department of Anesthesiology, VU University Medical Center De Boelelaan 1117, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Bönnemann CG, Wang CH, Quijano-Roy S, Deconinck N, Bertini E, Ferreiro A, Muntoni F, Sewry C, Béroud C, Mathews KD, Moore SA, Bellini J, Rutkowski A, North KN. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014; 24:289-311. [PMID: 24581957 PMCID: PMC5258110 DOI: 10.1016/j.nmd.2013.12.011] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/23/2013] [Accepted: 12/31/2013] [Indexed: 12/14/2022]
Abstract
Congenital muscular dystrophies (CMDs) are early onset disorders of muscle with histological features suggesting a dystrophic process. The congenital muscular dystrophies as a group encompass great clinical and genetic heterogeneity so that achieving an accurate genetic diagnosis has become increasingly challenging, even in the age of next generation sequencing. In this document we review the diagnostic features, differential diagnostic considerations and available diagnostic tools for the various CMD subtypes and provide a systematic guide to the use of these resources for achieving an accurate molecular diagnosis. An International Committee on the Standard of Care for Congenital Muscular Dystrophies composed of experts on various aspects relevant to the CMDs performed a review of the available literature as well as of the unpublished expertise represented by the members of the committee and their contacts. This process was refined by two rounds of online surveys and followed by a three-day meeting at which the conclusions were presented and further refined. The combined consensus summarized in this document allows the physician to recognize the presence of a CMD in a child with weakness based on history, clinical examination, muscle biopsy results, and imaging. It will be helpful in suspecting a specific CMD subtype in order to prioritize testing to arrive at a final genetic diagnosis.
Collapse
Affiliation(s)
- Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| | - Ching H Wang
- Driscoll Children's Hospital, Corpus Christi, TX, United States
| | - Susana Quijano-Roy
- Hôpital Raymond Poincaré, Garches, and UFR des sciences de la santé Simone Veil (UVSQ), France
| | - Nicolas Deconinck
- Hôpital Universitaire des Enfants Reine Fabiola, Brussels and Ghent University Hospital, Ghent, Belgium
| | | | - Ana Ferreiro
- UMR787 INSERM/UPMC and Reference Center for Neuromuscular Disorders, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Christophe Béroud
- INSERM U827, Laboratoire de Génétique Moleculaire, Montpellier, France
| | | | | | - Jonathan Bellini
- Stanford University School of Medicine, Stanford, CA, United States
| | | | - Kathryn N North
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Cirak S, Foley AR, Herrmann R, Willer T, Yau S, Stevens E, Torelli S, Brodd L, Kamynina A, Vondracek P, Roper H, Longman C, Korinthenberg R, Marrosu G, Nürnberg P, Michele DE, Plagnol V, Hurles M, Moore SA, Sewry CA, Campbell KP, Voit T, Muntoni F. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies. ACTA ACUST UNITED AC 2013; 136:269-81. [PMID: 23288328 PMCID: PMC3562076 DOI: 10.1093/brain/aws312] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dystroglycanopathies are a clinically and genetically diverse group of recessively inherited conditions ranging from the most severe of the congenital muscular dystrophies, Walker-Warburg syndrome, to mild forms of adult-onset limb-girdle muscular dystrophy. Their hallmark is a reduction in the functional glycosylation of α-dystroglycan, which can be detected in muscle biopsies. An important part of this glycosylation is a unique O-mannosylation, essential for the interaction of α-dystroglycan with extracellular matrix proteins such as laminin-α2. Mutations in eight genes coding for proteins in the glycosylation pathway are responsible for ∼50% of dystroglycanopathy cases. Despite multiple efforts using traditional positional cloning, the causative genes for unsolved dystroglycanopathy cases have escaped discovery for several years. In a recent collaborative study, we discovered that loss-of-function recessive mutations in a novel gene, called isoprenoid synthase domain containing (ISPD), are a relatively common cause of Walker-Warburg syndrome. In this article, we report the involvement of the ISPD gene in milder dystroglycanopathy phenotypes ranging from congenital muscular dystrophy to limb-girdle muscular dystrophy and identified allelic ISPD variants in nine cases belonging to seven families. In two ambulant cases, there was evidence of structural brain involvement, whereas in seven, the clinical manifestation was restricted to a dystrophic skeletal muscle phenotype. Although the function of ISPD in mammals is not yet known, mutations in this gene clearly lead to a reduction in the functional glycosylation of α-dystroglycan, which not only causes the severe Walker-Warburg syndrome but is also a common cause of the milder forms of dystroglycanopathy.
Collapse
Affiliation(s)
- Sebahattin Cirak
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The collagen VI-related myopathy known as Ullrich congenital muscular dystrophy is an early-onset disease that combines substantial muscle weakness with striking joint laxity and progressive contractures. Patients might learn to walk in early childhood; however, this ability is subsequently lost, concomitant with the development of frequent nocturnal respiratory failure. Patients with intermediate phenotypes of collagen VI-related myopathy display a lesser degree of weakness and a longer period of ambulation than do individuals with Ullrich congenital muscular dystrophy, and the spectrum of disease finally encompasses mild Bethlem myopathy, in which ambulation persists into adulthood. Dominant and recessive autosomal mutations in the three major collagen VI genes-COL6A1, COL6A2, and COL6A3-can underlie this entire clinical spectrum, and result in deficient or dysfunctional microfibrillar collagen VI in the extracellular matrix of muscle and other connective tissues, such as skin and tendons. The potential effects on muscle include progressive dystrophic changes, fibrosis and evidence for increased apoptosis, which potentially open avenues for pharmacological intervention. Optimized respiratory management, including noninvasive nocturnal ventilation together with careful orthopedic management, are the current mainstays of treatment and have already led to a considerable improvement in life expectancy for children with Ullrich congenital muscular dystrophy.
Collapse
|
8
|
Bönnemann CG. The collagen VI-related myopathies Ullrich congenital muscular dystrophy and Bethlem myopathy. HANDBOOK OF CLINICAL NEUROLOGY 2011; 101:81-96. [PMID: 21496625 DOI: 10.1016/b978-0-08-045031-5.00005-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mutations in the genes COL6A1, COL6A2, and COL6A3, coding for three α chains of collagen type VI, underlie a spectrum of myopathies, ranging from the severe congenital muscular dystrophy-type Ullrich (UCMD) to the milder Bethlem myopathy (BM), with disease manifestations of intermediate severity in between. UCMD is characterized by early-onset weakness, associated with pronounced distal joint hyperlaxity and the early onset or early progression of more proximal contractures. In the most severe cases ambulation is not achieved, or it may be achieved only for a limited period of time. BM may be of early or later onset, but is milder in its manifestations, typically allowing for ambulation well into adulthood, whereas typical joint contractures are frequently prominent. A genetic spectrum is emerging, with BM being caused mostly by dominantly acting mutations, although rarely recessive inheritance of BM is also possible, whereas both dominantly as well as recessively acting mutations underlie UCMD.
Collapse
Affiliation(s)
- Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke/NIH, Bethesda, MD 20892-3705, USA.
| |
Collapse
|
9
|
Siala O, Kammoun Feki F, Louhichi N, Hadj Salem I, Gribaa M, Elghzel H, Saad A, Triki C, Fakhfakh F. Molecular prenatal diagnosis of muscular dystrophies in Tunisia and postnatal follow-up role. ACTA ACUST UNITED AC 2009; 12:581-6. [PMID: 19072569 DOI: 10.1089/gte.2008.0061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We undertook in this study the first successful prenatal diagnoses of MDC1A and LGMD2C forms in Africa, with a subsequent postnatal clinical follow-up of the newborns. Genetic and molecular studies were performed on cultured amniotic fluid cells after exclusion of maternal cell contamination. Immunofluorescence on the patients' muscle biopsies was performed so as to study the expression of muscular laminins. Results showed that normal and affected fetuses were diagnosed according to the presence or the absence of the responsible mutation in LAMA2 or SGCG genes. Postnatal molecular and clinical outcome was concordant with all prenatal diagnoses. However, a patient with MDC1A form of congenital muscular dystrophy who was diagnosed as affected was normal at birth, and developed later clinical features different from those observed in his severely affected elder brother. This intrafamilial clinical variability in two siblings occurring with the same mutation in LAMA2 gene emphasizes the importance of the postnatal follow-up in the confirmation of prenatal diagnosis, and suggests that other genetic or epigenetic factors can monitor the course of the MDC1A form.
Collapse
Affiliation(s)
- Olfa Siala
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Sfax, Tunisia.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abdel Razek AAK, Kandell AY, Elsorogy LG, Elmongy A, Basett AA. Disorders of cortical formation: MR imaging features. AJNR Am J Neuroradiol 2009; 30:4-11. [PMID: 18687750 DOI: 10.3174/ajnr.a1223] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purpose of this article was to review the embryologic stages of the cerebral cortex, illustrate the classification of disorders of cortical formation, and finally describe the main MR imaging features of these disorders. Disorders of cortical formation are classified according to the embryologic stage of the cerebral cortex at which the abnormality occurred. MR imaging shows diminished cortical thickness and sulcation in microcephaly, enlarged dysplastic cortex in hemimegalencephaly, and ipsilateral focal cortical thickening with radial hyperintense bands in focal cortical dysplasia. MR imaging detects smooth brain in classic lissencephaly, the nodular cortex with cobblestone cortex with congenital muscular dystrophy, and the ectopic position of the gray matter with heterotopias. MR imaging can detect polymicrogyria and related syndromes as well as the types of schizencephaly. We concluded that MR imaging is essential to demonstrate the morphology, distribution, and extent of different disorders of cortical formation as well as the associated anomalies and related syndromes.
Collapse
Affiliation(s)
- A A K Abdel Razek
- Department of Diagnostic Radiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | | | | | | |
Collapse
|
11
|
Abdel Razek AAK, Kandell AY, Elsorogy LG, Elmongy A, Basett AA. Disorders of cortical formation: MR imaging features. AJNR Am J Neuroradiol 2008; 31:1623-30. [PMID: 18687750 DOI: 10.3174/ajnr.a2135] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The purpose of this article was to review the embryologic stages of the cerebral cortex, illustrate the classification of disorders of cortical formation, and finally describe the main MR imaging features of these disorders. Disorders of cortical formation are classified according to the embryologic stage of the cerebral cortex at which the abnormality occurred. MR imaging shows diminished cortical thickness and sulcation in microcephaly, enlarged dysplastic cortex in hemimegalencephaly, and ipsilateral focal cortical thickening with radial hyperintense bands in focal cortical dysplasia. MR imaging detects smooth brain in classic lissencephaly, the nodular cortex with cobblestone cortex with congenital muscular dystrophy, and the ectopic position of the gray matter with heterotopias. MR imaging can detect polymicrogyria and related syndromes as well as the types of schizencephaly. We concluded that MR imaging is essential to demonstrate the morphology, distribution, and extent of different disorders of cortical formation as well as the associated anomalies and related syndromes.
Collapse
Affiliation(s)
- A A K Abdel Razek
- Department of Diagnostic Radiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | | | | | | |
Collapse
|
12
|
Teber S, Sezer T, Kafali M, Manzini MC, Konuk Yüksel B, Tekin M, Fitöz S, Walsh CA, Deda G. Severe muscle-eye-brain disease is associated with a homozygous mutation in the POMGnT1 gene. Eur J Paediatr Neurol 2008; 12:133-6. [PMID: 17881266 DOI: 10.1016/j.ejpn.2007.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/18/2007] [Accepted: 06/25/2007] [Indexed: 11/29/2022]
Abstract
Muscle-eye-brain (MEB) disease is an autosomal recessive disorder characterized by a broad clinical spectrum including congenital muscular dystrophy, ocular abnormalities, and brain malformation (type-II lissencephaly). Herein, we report on two Turkish siblings with a homozygous mutation in the POMGnT1 gene. A 6-year-old sibling has a severe form of MEB disease, which in some aspects is more suitable with the diagnosis of Walker-Warburg syndrome. However, the same mutation resulted in a less severe form of MEB in the older sibling, who is 14 years old. These two cases suggest that POMGnT1 mutations may cause MEB disease with different phenotypes even in the same family.
Collapse
Affiliation(s)
- Serap Teber
- Department of Pediatric Neurology, Ankara University School of Medicine of Pediatrics, 06510 Ankara, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Brockmann K, Dechent P, Bönnemann C, Schreiber G, Frahm J, Hanefeld F. Quantitative proton MRS of cerebral metabolites in laminin alpha2 chain deficiency. Brain Dev 2007; 29:357-64. [PMID: 17174499 DOI: 10.1016/j.braindev.2006.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 10/24/2006] [Accepted: 11/05/2006] [Indexed: 11/23/2022]
Abstract
Congenital muscular dystrophy (CMD) due to merosin (laminin alpha2 chain) deficiency is an autosomal recessively inherited disorder characterized by severe muscular weakness and hypotonia from birth on. Brain involvement is the rule and characterized by variable T2 hyperintensities of white matter which appears swollen on cranial MRI. The pathophysiology of these white matter changes is not clear. In five patients with laminin alpha2 deficient CMD we performed short-echo time localized proton MRS with determination of absolute metabolite concentrations in grey and white matter. In affected white matter, a consistent pattern of metabolites was detected comprising reduced concentrations of N-acetylaspartate and N-acetylaspartylglutamate, creatine, and phosphocreatine, and to a milder degree of choline-containing compounds. In contrast, concentrations of myo-inositol were in the normal range. Spectra of cortical and subcortical grey matter were normal. The observed metabolite profile is consistent with white matter edema, that is reduced cellular density, and relative astrocytosis. This interpretation is in line with the hypothesis that laminin alpha2 deficiency results in leakage of fluids across the blood-brain barrier and a histopathological report of astrocytic proliferation in CMD.
Collapse
Affiliation(s)
- Knut Brockmann
- Department of Paediatrics and Paediatric Neurology, Georg August University, 37075 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Millino C, Bellin M, Fanin M, Romualdi C, Pegoraro E, Angelini C, Lanfranchi G. Expression profiling characterization of laminin alpha-2 positive MDC. Biochem Biophys Res Commun 2006; 350:345-51. [PMID: 17010933 DOI: 10.1016/j.bbrc.2006.09.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 11/28/2022]
Abstract
In the Caucasian population, patients affected by the most frequent forms of congenital muscular dystrophies (MDC) are commonly divided into two groups. The first is characterized by mutations of the gene for the laminin alpha-2 (LAMA2). The second is positive for this protein, highly heterogeneous, and has no specific genetic defect associated yet. We studied the skeletal muscle transcriptome of four LAMA2 deficient and six LAMA2 positive MDC patients by cDNA microarrays. The expression profiling defined two patients groups: one mild and one severe phenotype. This result was in agreement with histopathological features but only partially with the clinical classification. The mild phenotype is characterized by a delayed maturation from slow to fast muscle fibers. Other muscle transcripts, such as telethonin, myosin light-chains 3 and 1V, are underexpressed in this group. We suggest that expression profiling will provide important information to improve our understanding of the molecular basis of laminin alpha-2 positive MDC.
Collapse
Affiliation(s)
- Caterina Millino
- CRIBI Biotechnology Center and Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Mutations in the genes encoding collagen VI (COL6A1, COL6A2, and COL6A3) cause Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), two conditions which were previously believed to be completely separate entities. BM is a relatively mild dominantly inherited disorder characterised by proximal weakness and distal joint contractures. UCMD was originally described as an autosomal recessive condition causing severe muscle weakness with proximal joint contractures and distal hyperlaxity. Here we review the clinical phenotypes of BM and UCMD and their diagnosis and management, and provide an overview of the current knowledge of the pathogenesis of collagen VI related disorders.
Collapse
Affiliation(s)
- A K Lampe
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ.
| | | |
Collapse
|
16
|
Mendell JR, Boué DR, Martin PT. The congenital muscular dystrophies: recent advances and molecular insights. Pediatr Dev Pathol 2006; 9:427-43. [PMID: 17163796 PMCID: PMC2855646 DOI: 10.2350/06-07-0127.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 08/30/2006] [Indexed: 01/16/2023]
Abstract
Over the past decade, molecular understanding of the congenital muscular dystrophies (CMDs) has greatly expanded. The diseases can be classified into 3 major groups based on the affected genes and the location of their expressed protein: abnormalities of extracellular matrix proteins (LAMA2, COL6A1, COL6A2, COL6A3), abnormalities of membrane receptors for the extracellular matrix (fukutin, POMGnT1, POMT1, POMT2, FKRP, LARGE, and ITGA7), and abnormal endoplasmic reticulum protein (SEPN1). The diseases begin in the perinatal period or shortly thereafter. A specific diagnosis can be challenging because the muscle pathology is usually not distinctive. Immunostaining of muscle using a battery of antibodies can help define a disorder that will need confirmation by gene testing. In muscle diseases with overlapping pathological features, such as CMD, careful attention to the clinical clues (e.g., family history, central nervous system features) can help guide the battery of immunostains necessary to target an unequivocal diagnosis.
Collapse
Affiliation(s)
- Jerry R Mendell
- Department of Pediatrics, Columbus Children's Hospital and Research Institute and The Ohio State University, 700 Children's Drive, Columbus, OH 43205, USA.
| | | | | |
Collapse
|
17
|
Korematsu S, Imai K, Sato K, Maeda T, Suenobu S, Kojo M, Izumi T. Congenital neuromuscular disease with uniform type-1 fibers, presenting early stage dystrophic muscle pathology. Brain Dev 2006; 28:63-6. [PMID: 16168598 DOI: 10.1016/j.braindev.2005.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 04/15/2005] [Accepted: 04/15/2005] [Indexed: 11/29/2022]
Abstract
We report two male siblings presenting with severe hypotonia, generalized muscle atrophy, multiple joint contractures and respiratory failure. The serum creatine kinase levels were within normal limits, 75 IU/l in the younger boy and 123 IU/l in the older one. Muscle biopsies at the age of 28 days in the younger boy and 48 days in the older one revealed dystrophic pathology with increased interstitial fibrous tissue, scattered basophilic fibers and an increased number of undeveloped type-2C fibers. Although the elder brother died from respiratory failure at 4 months of age, the younger child has been sustained with mechanical ventilation, and has been exhibiting non-progressive muscle symptoms. Upon re-biopsy of the younger sibling at the age of 3 years, neither basophilic regenerating fibers nor degenerating fibers were found. All muscle fibers were found to be extremely atrophic and behaved mostly like type-1 fibers, displaying the features of congenital neuromuscular disease with uniform type-1 fibers. Since early biopsies in congenital myopathies reveal numerous undifferentiated immature muscle fibers, it is difficult to make a definite diagnosis, unless we recognize disease-specific cytoplastic abnormalities of nemaline body formation and abnormalities of core structure.
Collapse
Affiliation(s)
- Seigo Korematsu
- Division of Pediatrics and Child Neurology, Department of Brain and Nerve Science, Oita University Faculty of Medicine, Hasama, Oita 879-5593, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
van Lunteren E, Moyer M, Leahy P. Gene expression profiling of diaphragm muscle in alpha2-laminin (merosin)-deficient dy/dy dystrophic mice. Physiol Genomics 2005; 25:85-95. [PMID: 16368874 DOI: 10.1152/physiolgenomics.00226.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deficiency of alpha2-laminin (merosin) underlies classical congenital muscular dystrophy in humans and dy/dy muscular dystrophy in mice and causes severe muscle dysfunction in both species. To gain greater insight into the biochemical and molecular events that link alpha2-laminin deficiency with muscle fiber necrosis, and the associated compensatory responses, gene expression profiles were characterized in diaphragm muscle from 8-wk-old dy/dy mice using oligonucleotide microarrays. Compared with age-matched normal muscle, dystrophic diaphragm was characterized by predominantly augmented gene expression, irrespective of the fold-change threshold. Among the 69 genes with at least plus or minus twofold significantly altered expression, 30 belonged to statistically overrepresented Gene Ontology (GO) biological process groups. These covered four specific themes: development including muscle development, cell motility with an emphasis on muscle contraction, defense/immune response, and cell adhesion. An additional 11 gene transcripts were assigned to more general overrepresented GO biological process groups (e.g., cellular process, organismal physiological process); the remaining 28 did not belong to any overrepresented groups. GO cellular constituent assignment resulted in the highest degree of overrepresentation in extracellular and muscle fiber locations, whereas GO molecular function assignment was most notable for various types of binding. RT-PCR was performed on 38 of 41 genes with at least plus or minus twofold significantly altered expression that were assigned to overrepresented GO biological process groups, with expression changes verified for 36 of 38 genes. These results indicate that several specific groups of genes have altered expression in response to genetic alpha2-laminin deficiency, with both similarities and differences compared with data reported for dystrophin-deficient muscular dystrophies.
Collapse
Affiliation(s)
- Erik van Lunteren
- Pulmonary and Critical Care Division, Department of Medicine, Case Western Reserve University, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
19
|
Smith AS, Levine D, Barnes PD, Robertson RL. Magnetic resonance imaging of the kinked fetal brain stem: a sign of severe dysgenesis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2005; 24:1697-709. [PMID: 16301726 PMCID: PMC1698953 DOI: 10.7863/jum.2005.24.12.1697] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) allows visualization of the fetal brain stem in a manner not previously possible. A "kinked" brain stem is a sign of severe neurodysgenesis. The purpose of this series was to describe cases of a kinked brain stem detected on prenatal MRI and to discuss the possible genetic and syndromic etiologies. METHODS Seven cases of a kinked brain stem on fetal MRI (gestational age range, 18-34 weeks) were reviewed and correlated with other clinical, genetic, imaging, and autopsy findings. RESULTS In all cases, there was associated cerebellar hypogenesis. Additional findings were ventriculomegaly (4 cases), cerebral hypogenesis (3 cases), microcephaly (4 cases), schizencephaly (1 case), cephalocele (1 case), hypogenesis of the corpus callosum (1 case), and hydrocephalus (1 case). In 2 cases, prenatal sonography misidentified the kinked brain stem as the cerebellum. CONCLUSIONS A kinked brain stem is an indicator of severe neurodysgenesis arising early in gestation. Magnetic resonance imaging provides the necessary resolution to detect this sign and delineate any associated anomalies in utero to assist with further genetic evaluation, management, and counseling.
Collapse
Affiliation(s)
- Annemarie Stroustrup Smith
- Harvard Medical School and the Harvard-MIT Division of Health Sciences and Technology HMS TMEC 213 260 Longwood Avenue Boston, MA 02215
| | - Deborah Levine
- Department of Radiology Beth Israel Deaconess Medical Center 330 Brookline Avenue Boston, MA 02215
- Address correspondence to: Deborah Levine, MD, Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, Phone: 617-667-8901, Fax: 617-667-8212,
| | - Patrick D. Barnes
- Department of Radiology Lucile Packard Children’s Hospital 725 Welch Road Palo Alto, CA 94304
| | - Richard L. Robertson
- Department of Radiology Lucile Packard Children’s Hospital 725 Welch Road Palo Alto, CA 94304
| |
Collapse
|
20
|
Wu JY, Kuban KCK, Allred E, Shapiro F, Darras BT. Association of Duchenne muscular dystrophy with autism spectrum disorder. J Child Neurol 2005; 20:790-5. [PMID: 16417872 DOI: 10.1177/08830738050200100201] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We hypothesize that Duchenne muscular dystrophy and autism spectrum disorder/pervasive developmental disorder co-occur with a greater than random frequency. In this study, we set out to reject the hypothesis that Duchenne muscular dystrophy and autism spectrum disorder/pervasive developmental disorder co-occur no more often than expected by chance. Two index cases and six additional boys with concomitant Duchenne muscular dystrophy and autism spectrum disorder were identified in a muscular dystrophy clinic that approximates the total number of Duchenne muscular dystrophy boys (158) in the state of Massachusetts. The rate of prevalence (6 of 158) was compared with the prevalence rate of autism spectrum disorder in boys in the general population (1.6 in 1,000). We rejected the hypothesis that Duchenne muscular dystrophy and autism spectrum disorder co-occurrence was likely to be explained by chance (P = .006). We identify a previously unrecognized association of Duchenne muscular dystrophy with autism spectrum disorder. Further work might elucidate the level of association between these two conditions, either at the genetic or at the protein level, and might clarify, at least partially, the neurobiologic mechanisms associated with autism spectrum disorder.
Collapse
Affiliation(s)
- Joyce Y Wu
- Division of Pediatric Neurology, David Geffen School of Medicine, Mattel Children's Hospital at UCLA, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
21
|
Ferreira LG, Marie SK, Liu EC, Resende MBD, Carvalho MS, Scaff M, Reed UC. Dystrophin-glycoproteins associated in congenital muscular dystrophy: immunohistochemical analysis of 59 Brazilian cases. ARQUIVOS DE NEURO-PSIQUIATRIA 2005; 63:791-800. [PMID: 16258658 DOI: 10.1590/s0004-282x2005000500014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The congenital muscular dystrophies (CMD) are heterogeneous muscular diseases with early and dystrophic pattern on muscle biopsy. Many different subtypes have been genetically identified and most phenotypes not yet identified belong to the merosin-positive (MP) CMD subgroup. OBJECTIVE: To analyze the immunohistochemical expression of the main proteins of the dystrophin-glycoproteins associated complex in muscle biopsy of patients with different CMD phenotypes, for investigating a possible correlation with clinical and histopathological data. METHOD: Fifty-nine patients with CMD had clinical, histopathological and immunohistochemical data evaluated: 32 had MP-CMD, 23 CMD with merosin deficiency (MD-CMD), one Ullrich phenotype and three Walker-Warburg disease. RESULTS: Dystrophin and dysferlin were normal in all; among the patients with MD-CMD, merosin deficiency was partial in nine who showed the same clinical severity as those with total deficiency; the reduced expression of a-sarcoglycan (SG) and alpha-dystroglycan (DG) showed statistically significant correlation with severe MD-CMD phenotype. CONCLUSION: There is a greater relationship between merosin and the former proteins; among MP-CMD patients, no remarkable immunohistochemical/phenotypical correlations were found, although the reduced expression of beta-DG had showed statistically significant correlation with severe phenotype and marked fibrosis on muscular biopsy.
Collapse
Affiliation(s)
- Lucio Gobbo Ferreira
- Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Pediatricians and other healthcare professionals need to be alert to the presence and progression of cardiac involvement in patients with MD. The signs and symptoms of cardiac involvement may be minimal, necessitating careful interval history, physical examination, and noninvasive cardiac testing. Available treatment strategies may reduce disease morbidity and mortality. It is reasonable to expect that a child who has skeletal muscle weakness from MD may have cardiac involvement, even if it is subclinical. Treatment of the muscular dystrophies through genetic engineering is a future dream. However, the improvements in clinical care, evaluation and treatment standards, and multidisciplinary supportive care are able to benefit the current generation of children.
Collapse
Affiliation(s)
- Larry W Markham
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Pediatric Cardiology, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
23
|
Rocco FM, Luz FHG, Rossato AJ, Fernandes AC, Oliveira ASB, Betetas JT, Zanoteli E. Avaliação da função motora em crianças com distrofia muscular congênita com deficiência da merosina. ARQUIVOS DE NEURO-PSIQUIATRIA 2005; 63:298-306. [PMID: 16100978 DOI: 10.1590/s0004-282x2005000200018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A distrofia muscular congênita (DMC) compõe um grupo de miopatias caracterizadas por hipotonia e fraqueza muscular notadas até o primeiro ano de vida. Em torno de 40% a 50% dos casos são decorrentes de deficiência primária da proteína merosina (DM), os quais apresentam um fenótipo mais homogêneo, com grave comprometimento motor e respiratório. Foram avaliadas neste estudo onze crianças com diagnóstico clínico e histológico de DMC-DM, com idade de 3 a 15 anos, através de exame de força muscular ("Medical Research Council"), análise goniométrica, avaliação das habilidades motoras e das atividades de vida diária (AVDs) (indicador de Barthel), com o objetivo de caracterizar as principais limitações funcionais motoras. Os grupos musculares mais comprometidos foram os flexores cervicais, paravertebrais e proximais dos membros. Os grupos musculares dos membros superiores estavam tão comprometidos quanto os dos membros inferiores, enquanto que os extensores encontravam-se mais comprometidos que os flexores. Todas as crianças apresentavam importantes retrações musculares nos quadris, joelhos e cotovelos. Outras deformidades freqüentes foram escoliose e pés eqüino-varo. Nenhuma criança possuía a habilidade motora necessária para engatinhar, ficar de pé ou andar; e todas foram classificadas como dependentes ou semidependentes para a maioria das AVDs estudadas. Nossos achados confirmam o envolvimento difuso e intenso da musculatura esquelética na DMC-DM, acarretando graves limitações funcionais motoras e deformidades músculo-esqueléticas.
Collapse
Affiliation(s)
- Fernanda M Rocco
- Clínica de Doenças Neuromusculares da Associação de Assistência a Criança Deficiente (AACD), São Paulo SP, Brasil.
| | | | | | | | | | | | | |
Collapse
|
24
|
Yoshioka M, Higuchi Y. Long-term prognosis of epilepsies and related seizure disorders in Fukuyama-type congenital muscular dystrophy. J Child Neurol 2005; 20:385-91. [PMID: 15921243 DOI: 10.1177/08830738050200041901] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fukuyama-type congenital muscular dystrophy is an autosomal recessive disorder prevalent in Japan that is characterized by congenital muscular dystrophy, cobblestone lissencephaly, and eye anomalies. We examined 46 patients with Fukuyama-type congenital muscular dystrophy and followed their progress for more than 3 years, with special reference to long-term prognosis of seizure disorders and the relationship between seizures and neuropathologic abnormalities. Seizures were observed in 37 patients (80%). The average age at onset was 3 years, 1 month. Initial seizures usually occurred after a febrile episode, although one third of patients had afebrile seizures from the onset. All patients had generalized tonic-clonic convulsions at febrile disorders, and these were followed by complex partial seizures or secondary generalized seizures. Later these seizures developed into Lennox-Gastaut syndrome in three patients. Electroencephalography (EEG) showed paroxysmal discharges in 22 of 37 patients with seizures (59%). The main focus was in the frontal, temporal, or central region. Lesions with marked cortical dysplasia detected by computed tomography, magnetic resonance imaging, or autopsy showed focal paroxysmal discharges on EEG.
Collapse
Affiliation(s)
- Mieko Yoshioka
- Department of Pediatric Neurology, Kobe City Pediatric and General Rehabilitation Center for the Challenged, Kobe, Japan.
| | | |
Collapse
|
25
|
Abstract
Malformations of cortical development are important causes of developmental delay and epilepsy. They are classified by the presumed stage during which normal development is interrupted: neuronal proliferation and differentiation, neuronal migration, and late migration/cortical organization. This article discusses the important malformations in each of these groups, how and why the malformations develop, and their imaging findings. A better understanding of these disorders helps in genetic counseling of the parents and may help in the treatment of associated epilepsy.
Collapse
Affiliation(s)
- A James Barkovich
- Department of Radiology, University of California at San Francisco, 505 Parnassus Avenue, Box 0628, San Francisco, CA 94143, USA.
| | | |
Collapse
|
26
|
Abstract
Malformations of cortical development are an important cause of developmental delay and epilepsy. Proper identification of these malformations can greatly help in accurately counseling affected families and, in some cases, in the treatment of the epilepsy. Modem neuroimaging is an important tool in the diagnosis of these malformations.
Collapse
Affiliation(s)
- Anthony James Barkovich
- Neuroradiology Section, University of California-San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0628, USA.
| | | |
Collapse
|
27
|
van Lunteren E, Moyer M. Sternohyoid muscle fatigue properties of dy/dy dystrophic mice, an animal model of merosin-deficient congenital muscular dystrophy. Pediatr Res 2003; 54:547-53. [PMID: 12840158 DOI: 10.1203/01.pdr.0000081762.51546.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Humans with merosin-deficient congenital muscular dystrophy have both sucking problems during infancy and sleep-disordered breathing during childhood. We hypothesized that merosin-deficient pharyngeal muscles fatigue faster than normal muscles. This was tested in vitro using sternohyoid muscle from an animal model of this disease, the dy/dy dystrophic mouse. Isometric twitch contraction and half-relaxation times were similar for dy/dy and normal sternohyoid. However, rate of force loss during repetitive 25-Hz train stimulation was markedly diminished in dystrophic compared with normal sternohyoid muscle. Furthermore, force potentiation, which occurred during the early portion of the fatigue-inducing stimulation, had a longer duration in dystrophic compared with normal muscle (approximately 60 versus 20 s). As a result of these two processes, at the end of 2 min of stimulation, force of dystrophic muscle had decreased by 8 +/- 5% and that of normal muscle by 69 +/- 4% (p < 0.0001). The potassium-channel blocker, 3,4-diaminopyridine, increased force of dy/dy sternohyoid muscle during twitch and 25-Hz contractions by 148 +/- 20% (p < 0.00001) and 109 +/- 18% (p < 0.00002), respectively. During repetitive 25-Hz stimulation, force of 3,4-diaminopyridine-treated dystrophic muscle remained significantly higher than that of untreated muscle, despite the early force potentiation being eliminated and fatigue being accelerated. Thus, merosin deficiency reduces fatigue and prolongs the duration of force potentiation. The latter alterations may partially preserve the integrity of upper airway muscle function, without which the severity of pharyngeal complications (feeding problems, sleep-related respiratory dysfunction) might be even more pronounced in the human merosin-deficient congenital muscular dystrophies.
Collapse
Affiliation(s)
- Erik van Lunteren
- Department of Medicine, Cleveland VA Medical Center, Cleveland, OH 44106, USA.
| | | |
Collapse
|
28
|
Abstract
AIMS This study attempts to determine the type and relative frequency of muscle diseases contributing to floppy and hypotonic infants in Singapore. METHODS Eighty consecutive muscle biopsies in the Department of Pathology, National University of Singapore, in the period 1978-2000, in which a clinical diagnosis of floppy or hypotonic infant was made, were reviewed. RESULTS The commonest cause of severe hypotonia in infancy was spinal muscular atrophy, which accounted for 33% of cases followed by congenital muscular dystrophy (13%). Eight cases (10%) of infantile type II glycogenosis (Pompe's disease) were encountered. There were seven cases of congenital myopathy, of which four were centronuclear myopathy, and one each of central core myopathy, nemaline myopathy and congenital fibre type disproportion. One case of centronuclear myopathy was associated with type I fibre smallness. Type II atrophy, which is generally considered a non-specific change, was encountered in five cases. Of interest is the relatively large number of muscle biopsies (29%) in which no significant pathological features were encountered at the light microscopic, histochemical as well as ultra-structural level. CONCLUSIONS The study has revealed a great variety of pathology affecting the muscle of children presenting as floppy infants or with hypotonia. The muscle diseases included spinal muscular atrophy, congenital muscular dystrophies, congenital myopathies and metabolic myopathies. However, 23 (29%) cases showed no significant pathology. For this group of floppy and hypotonic infants further studies are needed.
Collapse
|
29
|
Mercuri E, Cini C, Pichiecchio A, Allsop J, Counsell S, Zolkipli Z, Messina S, Kinali M, Brown SC, Jimenez C, Brockington M, Yuva Y, Sewry CA, Muntoni F. Muscle magnetic resonance imaging in patients with congenital muscular dystrophy and Ullrich phenotype. Neuromuscul Disord 2003; 13:554-8. [PMID: 12921792 DOI: 10.1016/s0960-8966(03)00091-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of this study was to evaluate muscle magnetic resonance imaging findings in patients with congenital muscular dystrophy and Ullrich phenotype. Fifteen children with congenital muscular dystrophy and Ullrich phenotype were included in the study. All patients had collagen VI studies in muscle and, when family structure was informative, linkage studies to the collagen 6 loci. Three of the 15 patients had reduced collagen in muscle. One of the three was from an informative family and linked to one of the collagen 6 loci. Another patient was linked to one of the collagen 6 loci but had normal expression of collagen in muscle. The remaining 11 all had normal collagen expression in muscle. Only two of these 11 were from informative families and linkage to collagen 6 loci was excluded in them. All patients had muscle magnetic resonance imaging of their leg muscles using transverse T1 sequences. With the exception of the two patients in whom linkage to the collagen 6 loci was excluded, the other 13 patients showed the same pattern of selective involvement on magnetic resonance imaging of thigh muscles. This consisted of relative sparing of sartorius, gracilis, adductor longus and rectus. This pattern was also found in the case linked COL6A1/A2 locus but with normal collagen. This finding, and the striking clinical and magnetic resonance imaging concordance between patients with normal and reduced collagen VI in muscle suggest that collagen VI could still be the culprit in several cases with normal collagen expression, or alternatively a primary defect in a protein that closely interacts with collagen VI. Mutation analysis of the collagen 6 genes in cases with normal collagen VI expression is needed to resolve this issue.
Collapse
Affiliation(s)
- E Mercuri
- Dubowitz Neuromuscular Centre, Department of Paediatrics, Hammersmith Hospital Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Walker-Warburg syndrome (WWS) is a rare lethal autosomal recessive disorder manifested by characteristic central nervous system and eye malformations. We have not come across reports of general anaesthesia in a child with WWS in the English literature. We report a case of general anaesthesia in a 12-month-old male child with WWS. The child also had bilateral cleft lip, cleft palate, urogenital malformation and hydronephrosis. Despite many potential anaesthesia concerns, anaesthesia was uneventful in this child.
Collapse
Affiliation(s)
- H Sahajananda
- Department of Anaesthesiology, St John's Medical College and Hospital, Bangalore, Karnataka, India.
| | | |
Collapse
|
31
|
Pan TC, Zhang RZ, Sudano DG, Marie SK, Bönnemann CG, Chu ML. New molecular mechanism for Ullrich congenital muscular dystrophy: a heterozygous in-frame deletion in the COL6A1 gene causes a severe phenotype. Am J Hum Genet 2003; 73:355-69. [PMID: 12840783 PMCID: PMC1180372 DOI: 10.1086/377107] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2003] [Accepted: 05/21/2003] [Indexed: 02/05/2023] Open
Abstract
Recessive mutations in two of the three collagen VI genes, COL6A2 and COL6A3, have recently been shown to cause Ullrich congenital muscular dystrophy (UCMD), a frequently severe disorder characterized by congenital muscle weakness with joint contractures and coexisting distal joint hyperlaxity. Dominant mutations in all three collagen VI genes had previously been associated with the considerably milder Bethlem myopathy. Here we report that a de novo heterozygous deletion of the COL6A1 gene can also result in a severe phenotype of classical UCMD precluding ambulation. The internal gene deletion occurs near a minisatellite DNA sequence in intron 8 that removes 1.1 kb of genomic DNA encompassing exons 9 and 10. The resulting mutant chain contains a 33-amino acid deletion near the amino-terminus of the triple-helical domain but preserves a unique cysteine in the triple-helical domain important for dimer formation prior to secretion. Thus, dimer formation and secretion of abnormal tetramers can occur and exert a strong dominant negative effect on microfibrillar assembly, leading to a loss of normal localization of collagen VI in the basement membrane surrounding muscle fibers. Consistent with this mechanism was our analysis of a patient with a much milder phenotype, in whom we identified a previously described Bethlem myopathy heterozygous in-frame deletion of 18 amino acids somewhat downstream in the triple-helical domain, a result of exon 14 skipping in the COL6A1 gene. This deletion removes the crucial cysteine, so that dimer formation cannot occur and the abnormal molecule is not secreted, preventing the strong dominant negative effect. Our studies provide a biochemical insight into genotype-phenotype correlations in this group of disorders and establish that UCMD can be caused by dominantly acting mutations.
Collapse
Affiliation(s)
- Te-Cheng Pan
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, and Division of Neurology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia; and Department of Medicine, University of São Paulo, Brazil
| | - Rui-Zhu Zhang
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, and Division of Neurology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia; and Department of Medicine, University of São Paulo, Brazil
| | - Dominick G. Sudano
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, and Division of Neurology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia; and Department of Medicine, University of São Paulo, Brazil
| | - Suely K. Marie
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, and Division of Neurology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia; and Department of Medicine, University of São Paulo, Brazil
| | - Carsten G. Bönnemann
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, and Division of Neurology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia; and Department of Medicine, University of São Paulo, Brazil
| | - Mon-Li Chu
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, and Division of Neurology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia; and Department of Medicine, University of São Paulo, Brazil
| |
Collapse
|
32
|
Michele DE, Campbell KP. Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function. J Biol Chem 2003; 278:15457-60. [PMID: 12556455 DOI: 10.1074/jbc.r200031200] [Citation(s) in RCA: 340] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Daniel E Michele
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, 400 ERMB, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1101, USA
| | | |
Collapse
|
33
|
Guo LT, Zhang XU, Kuang W, Xu H, Liu LA, Vilquin JT, Miyagoe-Suzuki Y, Takeda S, Ruegg MA, Wewer UM, Engvall E. Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice. Neuromuscul Disord 2003; 13:207-15. [PMID: 12609502 DOI: 10.1016/s0960-8966(02)00266-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deficiency of laminin alpha2 is the cause of one of the most severe muscular dystrophies in humans and other species. It is not yet clear how particular mutations in the laminin alpha2 chain gene affect protein expression, and how abnormal levels or structure of the protein affect disease. Animal models may be valuable for such genotype-phenotype analysis and for determining mechanism of disease as well as function of laminin. Here, we have analyzed protein expression in three lines of mice with mutations in the laminin alpha2 chain gene and in two lines of transgenic mice overexpressing the human laminin alpha2 chain gene in skeletal muscle. The dy(3K)/dy(3K) experimental mutant mice are completely deficient in laminin alpha2; the dy/dy spontaneous mutant mice have small amounts of apparently normal laminin; and the dy(W)/dy(W) mice express even smaller amounts of a truncated laminin alpha2, lacking domain VI. Interestingly, all mutants lack laminin alpha2 in peripheral nerve. We have demonstrated previously, that overexpression of the human laminin alpha2 in skeletal muscle in dy(2J)/dy(2J) and dy(W)/dy(W) mice under the control of a striated muscle-specific creatine kinase promoter substantially prevented the muscular dystrophy in these mice. However, dy(W)/dy(W) mice, expressing the human laminin alpha2 under the control of the striated muscle-specific portion of the desmin promoter, still developed muscular dystrophy. This failure to rescue is apparently because of insufficient production of laminin alpha2. This study provides additional evidence that the amount of laminin alpha2 is most critical for the prevention of muscular dystrophy. These data may thus be of significance for attempts to treat congenital muscular dystrophy in human patients.
Collapse
Affiliation(s)
- L T Guo
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ceviz N, Alehan F, Alehan D, Ozme S, Akçören Z, Kale G, Topaloglu H. Assessment of left ventricular systolic and diastolic functions in children with merosin-positive congenital muscular dystrophy. Int J Cardiol 2003; 87:129-33; discussion 133-4. [PMID: 12559529 DOI: 10.1016/s0167-5273(02)00320-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cardiopathy is an expected finding in X-linked Duchenne and Becker muscular dystrophies. This holds true for some other forms such as autosomal recessive limb-girdle dystrophies. However, data on early-onset and usually severe congenital muscular dystrophies are limited. The purpose of this study was to investigate the presence of cardiac involvement in children with merosin-positive congenital muscular dystrophy. A total of 42 patients and 22 healthy subjects were evaluated by M-mode, 2D, and Doppler echocardiography. Cardiac anatomy, left ventricular dimensions, wall thickness and systolic and diastolic functions were investigated in patients and compared with those of healthy control subjects. Mean left ventricular ejection fraction and shortening fraction were significantly lower in the patient group (P<0.05 and P<0.001, respectively) and in three patients ejection fraction was below 55%. Although some impairments in left ventricular inflow indexes which were suggestive of left ventricular diastolic dysfunction were detected in patients with merosin-positive congenital muscular dystrophy they were not statistically significant. Our results suggest that left ventricular systolic abnormalities may occur in children with merosin-positive congenital muscular dystrophy.
Collapse
Affiliation(s)
- Naci Ceviz
- Cardiology Unit, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
35
|
Tezak Z, Prandini P, Boscaro M, Marin A, Devaney J, Marino M, Fanin M, Trevisan CP, Park J, Tyson W, Finkel R, Garcia C, Angelini C, Hoffman EP, Pegoraro E. Clinical and molecular study in congenital muscular dystrophy with partial laminin alpha 2 (LAMA2) deficiency. Hum Mutat 2003; 21:103-11. [PMID: 12552556 DOI: 10.1002/humu.10157] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Complete laminin alpha2 (LAMA2) deficiency causes approximately half of congenital muscular dystrophy (CMD) cases. Many loss-of-function mutations have been reported in these severe, neonatal-onset patients, but only single missense mutations have been found in milder CMD with partial laminin alpha2 deficiency. Here, we studied nine patients diagnosed with CMD who showed abnormal white-matter signal at brain MRI and partial deficiency of laminin alpha2 on immunofluorescence of muscle biopsy. We screened the entire 9.5 kb laminin alpha2 mRNA from patient muscle biopsy by direct capillary automated sequencing, single strand conformational polymorphism (SSCP), or denaturing high performance liquid chromatography (DHPLC) of overlapping RT-PCR products followed by direct sequencing of heteroduplexes. We identified laminin alpha2 sequence changes in six of nine CMD patients. Each of the gene changes identified, except one, was novel, including three missense changes and two splice-site mutations. The finding of partial laminin alpha2 deficiency by immunostaining is not specific for laminin alpha2 gene mutation carriers, with only two patients (22%) showing clear causative mutations, and an additional three patients (33%) showing possible mutations. The clinical presentation and disease progression was homogeneous in the laminin alpha2-mutation positive and negative CMD patients.
Collapse
Affiliation(s)
- Zivana Tezak
- Research Center for Genetic Medicine, Children's Research Hospital, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Triki C, Louhichi N, Méziou M, Choyakh F, Kéchaou MS, Jlidi R, Mhiri C, Fakhfakh F, Ayadi H. Merosin-deficient congenital muscular dystrophy with mental retardation and cerebellar cysts, unlinked to the LAMA2, FCMD, MEB and CMD1B loci, in three Tunisian patients. Neuromuscul Disord 2003; 13:4-12. [PMID: 12467726 DOI: 10.1016/s0960-8966(02)00188-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report three Tunisian patients affected by congenital muscular dystrophy with mental retardation and cerebellar cysts on cranial magnetic resonance imaging. The clinical features were characterized by hypotonia at birth, joint contractures associated with severe psychomotor retardation, absence of speech, inability to walk in three patients, but calf hypertrophy was noted only in two patients. Brain magnetic resonance imaging showed several cerebellar cysts and vermis hypoplasia in all of the patients. Abnormality of the white matter was present in two patients. The pattern of gyration was normal in all cases. Serum creatine kinase was elevated in all three cases and their muscle biopsy showed dystrophic changes compatible with congenital muscular dystrophy. The immunohistochemical analysis of the skeletal muscle revealed partial merosin deficiency, more pronounced for the N-terminal antibody. Linkage analysis excluded congenital muscular dystrophy loci on chromosomes 6q22, 9q31, 1p32 and 1q42. These patients constituted a particular form of congenital muscular dystrophy with a combination of severe motor delay, mental retardation, partial merosin deficiency and cerebellar cysts. Two patients showed white matter abnormalities on magnetic resonance imaging and hypertrophy of the calves. These cases, in addition to those reported previously, confirmed the large phenotypic variability in the group of secondary merosin deficiency congenital muscular dystrophy.
Collapse
Affiliation(s)
- Chahnez Triki
- Department of Neurology, CHU. HabibBourguiba, 3029, Sfax, Tunisia.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pepe G, Bertini E, Bonaldo P, Bushby K, Giusti B, de Visser M, Guicheney P, Lattanzi G, Merlini L, Muntoni F, Nishino I, Nonaka I, Yaou RB, Sabatelli P, Sewry C, Topaloglu H, van der Kooi A. Bethlem myopathy (BETHLEM) and Ullrich scleroatonic muscular dystrophy: 100th ENMC international workshop, 23-24 November 2001, Naarden, The Netherlands. Neuromuscul Disord 2002; 12:984-93. [PMID: 12467756 DOI: 10.1016/s0960-8966(02)00139-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Guglielmina Pepe
- Department of Internal Medicine, University of Rome 'Tor Vergata', Via Tor Vergata, 135 Torre E sud, 2 degrees piano, stanza E202, 00133, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang RZ, Sabatelli P, Pan TC, Squarzoni S, Mattioli E, Bertini E, Pepe G, Chu ML. Effects on collagen VI mRNA stability and microfibrillar assembly of three COL6A2 mutations in two families with Ullrich congenital muscular dystrophy. J Biol Chem 2002; 277:43557-64. [PMID: 12218063 DOI: 10.1074/jbc.m207696200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently reported a severe deficiency in collagen type VI, resulting from recessive mutations of the COL6A2 gene, in patients with Ullrich congenital muscular dystrophy. Their parents, who are all carriers of one mutant allele, are unaffected, although heterozygous mutations in collagen VI caused Bethlem myopathy. Here we investigated the consequences of three COL6A2 mutations in fibroblasts from patients and their parents in two Ullrich families. All three mutations lead to nonsense-mediated mRNA decay. However, very low levels of undegraded mutant mRNA remained in patient B with compound heterozygous mutations at the distal part of the triple-helical domain, resulting in deposition of abnormal microfibrils that cannot form extensive networks. This observation suggests that the C-terminal globular domain is not essential for triple-helix formation but is critical for microfibrillar assembly. In all parents, the COL6A2 mRNA levels are reduced to 57-73% of the control, but long term collagen VI matrix depositions are comparable with that of the control. The almost complete absence of abnormal protein and near-normal accumulation of microfibrils in the parents may account for their lack of myopathic symptoms.
Collapse
Affiliation(s)
- Rui-Zhu Zhang
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
A Turkish patient with cobblestone lissencephaly and eye involvement without characteristic muscular changes for congenital muscular dystrophy died at the age of 3 months presented with neonatal apneic periods and generalized seizures. Serum creatine kinase level, electromyography, chromosome analysis and blood biochemistry were normal. Unilateral microphthalmia, retinal dysplasia and internal strabismus were the ocular findings. Magnetic resonance imaging clearly demonstrated the thickened, irregular, nearly agyric cobblestone cerebral cortex with underlying unmyelinated white matter, hydrocephalus, hypoplastic corpus callosum, brain stem and cerebellum with retrocerebellar cyst and posterior cephalocele.
Collapse
Affiliation(s)
- Yüksel Pabuşçu
- Department of Radiology, Gülhane Military Medical Academy, 06010, Ankara, Turkey
| | | | | | | | | |
Collapse
|
40
|
Voit T, Parano E, Straub V, Schröder JM, Schaper J, Pavone P, Falsaperla R, Pavone L, Herrmann R. Congenital muscular dystrophy with adducted thumbs, ptosis, external ophthalmoplegia, mental retardation and cerebellar hypoplasia: a novel form of CMD. Neuromuscul Disord 2002; 12:623-30. [PMID: 12207929 DOI: 10.1016/s0960-8966(02)00018-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At least six different forms of congenital muscular dystrophy are associated with structural changes of the central nervous system, and three of these have been mapped: merosin-deficient congenital muscular dystrophy on chromosome 6q2, Fukuyama congenital muscular dystrophy on chromosome 9q31, and muscle eye brain disease on chromosome 1p32. Walker-Warburg syndrome, congenital muscular dystrophy with calf hypertrophy, pontocerebellar hypoplasia, and normal eyes, and congenital muscular dystrophy with severe mental retardation and cerebellar cysts are nosologically distinct and have been excluded from the known congenital muscular dystrophy loci with structural changes of the central nervous system. Here, we describe a novel congenital muscular dystrophy syndrome which is phenotypically distinct from the recognized forms of congenital muscular dystrophy with brain involvement. Two siblings, a boy and a girl, were born to consanguineous parents from Sicily. Both children were born with adducted thumbs and toe contractures. They were floppy from birth, walked late, showed profound generalized muscle weakness including facial muscles, elevated creatine kinase levels of 200-700U/l, and histological changes compatible with muscular dystrophy. In addition, both showed ptosis, external ophthalmoplegia, mild mental retardation, and mild cerebellar hypoplasia on MRI. Immunocytochemistry showed normal expression of muscle membrane proteins including laminin alpha 2, laminin beta 2, and alpha-dystroglycan. Linkage analysis excluded the candidate loci on chromosomes 6q2, 9q31, and 1q32. The gene locus for congenital muscular dystrophy 1B, MDC 1B, on chromosome 1q42 was also excluded. Adducted thumbs are a distinct clinical sign that has not been reported in congenital muscular dystrophy before and should facilitate recognition of further patients with this disorder.
Collapse
Affiliation(s)
- Th Voit
- Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Hufelandstrasse 55, D-45122, Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zervos A, Hunt KE, Tong HQ, Avallone J, Morales J, Friedman N, Cohen BH, Clark B, Guo S, Gazda H, Beggs AH, Traboulsi EI. Clinical, genetic and histopathologic findings in two siblings with muscle-eye-brain disease. Eur J Ophthalmol 2002; 12:253-61. [PMID: 12219993 DOI: 10.1177/112067210201200401] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE We present the clinical, genetic and histopathologic findings in two siblings with Muscle-Eye-Brain Disease (MEB-D), an autosomal recessive disease characterized by mental retardation, muscular dystrophy, retinal hypoplasia and brain abnormalities. METHODS Clinical, histopathologic and gene mapping studies of a family with two normal and two children with MEB-D. RESULTS Two siblings presented in the first few months of life with developmental delay, hypotonia, and strabismus. MRI of the brain showed colpocephaly, pontine and cerebellar atrophy, and diffuse white matter disease. Both patients were blind and had high myopia, strabismus, and retinal and optic nerve abnormalities. The older boy had glaucoma. Both children died from uncontrolled seizures. There was retinal, choroidal and RPE atrophy and optic nerve hypoplasia on ocular histopathology. Both patients shared the same parental haplotypes at the MEB locus on chromosome 1p, while an unaffected sibling did not, indicating possible linkage to the MEB locus. CONCLUSIONS Patients with MEB-D have severe visual impairment from retinal and optic nerve hypoplasia. High myopia appears to be a consistent finding. The ocular manifestations of MEB-D appear to be distinct from those of patients with Walker-Warburg syndrome.
Collapse
Affiliation(s)
- A Zervos
- Cole Eye institute, The Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Demir E, Sabatelli P, Allamand V, Ferreiro A, Moghadaszadeh B, Makrelouf M, Topaloglu H, Echenne B, Merlini L, Guicheney P. Mutations in COL6A3 cause severe and mild phenotypes of Ullrich congenital muscular dystrophy. Am J Hum Genet 2002; 70:1446-58. [PMID: 11992252 PMCID: PMC419991 DOI: 10.1086/340608] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2001] [Accepted: 03/06/2002] [Indexed: 11/04/2022] Open
Abstract
Ullrich congenital muscular dystrophy (UCMD) is an autosomal recessive disorder characterized by generalized muscular weakness, contractures of multiple joints, and distal hyperextensibility. Homozygous and compound heterozygous mutations of COL6A2 on chromosome 21q22 have recently been shown to cause UCMD. We performed a genomewide screening with microsatellite markers in a consanguineous family with three sibs affected with UCMD. Linkage of the disease to chromosome 2q37 was found in this family and in two others. We analyzed COL6A3, which encodes the alpha3 chain of collagen VI, and identified one homozygous mutation per family. In family I, the three sibs carried an A-->G transition in the splice-donor site of intron 29 (6930+5A-->G), leading to the skipping of exon 29, a partial reduction of collagen VI in muscle biopsy, and an intermediate phenotype. In family II, the patient had an unusual mild phenotype, despite a nonsense mutation, R465X, in exon 5. Analysis of the patient's COL6A3 transcripts showed the presence of various mRNA species-one of which lacked several exons, including the exon containing the nonsense mutation. The deleted splice variant encodes collagen molecules that have a shorter N-terminal domain but that may assemble with other chains and retain a functional role. This could explain the mild phenotype of the patient who was still ambulant at age 18 years and who showed an unusual combination of hyperlaxity and finger contractures. In family III, the patient had a nonsense mutation, R2342X, causing absence of collagen VI in muscle and fibroblasts, and a severe phenotype, as has been described in patients with UCMD. Mutations in COL6A3 are described in UCMD for the first time and illustrate the wide spectrum of phenotypes which can be caused by collagen VI deficiency.
Collapse
Affiliation(s)
- Ercan Demir
- INSERM U 523, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris; Istituto di Citomorfologia Normale e Patologica, Consiglio Nazionale delle Ricerche c/o Istituto Ortopedico Rizzoli, and Neuromuscular Unit, Rizzoli Orthopedic Institut, Bologna; Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara; and Service de Neuropédiatrie, Hôpital Saint Eloi, Montpellier, France
| | - Patrizia Sabatelli
- INSERM U 523, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris; Istituto di Citomorfologia Normale e Patologica, Consiglio Nazionale delle Ricerche c/o Istituto Ortopedico Rizzoli, and Neuromuscular Unit, Rizzoli Orthopedic Institut, Bologna; Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara; and Service de Neuropédiatrie, Hôpital Saint Eloi, Montpellier, France
| | - Valérie Allamand
- INSERM U 523, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris; Istituto di Citomorfologia Normale e Patologica, Consiglio Nazionale delle Ricerche c/o Istituto Ortopedico Rizzoli, and Neuromuscular Unit, Rizzoli Orthopedic Institut, Bologna; Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara; and Service de Neuropédiatrie, Hôpital Saint Eloi, Montpellier, France
| | - Ana Ferreiro
- INSERM U 523, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris; Istituto di Citomorfologia Normale e Patologica, Consiglio Nazionale delle Ricerche c/o Istituto Ortopedico Rizzoli, and Neuromuscular Unit, Rizzoli Orthopedic Institut, Bologna; Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara; and Service de Neuropédiatrie, Hôpital Saint Eloi, Montpellier, France
| | - Behzad Moghadaszadeh
- INSERM U 523, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris; Istituto di Citomorfologia Normale e Patologica, Consiglio Nazionale delle Ricerche c/o Istituto Ortopedico Rizzoli, and Neuromuscular Unit, Rizzoli Orthopedic Institut, Bologna; Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara; and Service de Neuropédiatrie, Hôpital Saint Eloi, Montpellier, France
| | - Mohamed Makrelouf
- INSERM U 523, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris; Istituto di Citomorfologia Normale e Patologica, Consiglio Nazionale delle Ricerche c/o Istituto Ortopedico Rizzoli, and Neuromuscular Unit, Rizzoli Orthopedic Institut, Bologna; Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara; and Service de Neuropédiatrie, Hôpital Saint Eloi, Montpellier, France
| | - Haluk Topaloglu
- INSERM U 523, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris; Istituto di Citomorfologia Normale e Patologica, Consiglio Nazionale delle Ricerche c/o Istituto Ortopedico Rizzoli, and Neuromuscular Unit, Rizzoli Orthopedic Institut, Bologna; Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara; and Service de Neuropédiatrie, Hôpital Saint Eloi, Montpellier, France
| | - Bernard Echenne
- INSERM U 523, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris; Istituto di Citomorfologia Normale e Patologica, Consiglio Nazionale delle Ricerche c/o Istituto Ortopedico Rizzoli, and Neuromuscular Unit, Rizzoli Orthopedic Institut, Bologna; Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara; and Service de Neuropédiatrie, Hôpital Saint Eloi, Montpellier, France
| | - Luciano Merlini
- INSERM U 523, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris; Istituto di Citomorfologia Normale e Patologica, Consiglio Nazionale delle Ricerche c/o Istituto Ortopedico Rizzoli, and Neuromuscular Unit, Rizzoli Orthopedic Institut, Bologna; Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara; and Service de Neuropédiatrie, Hôpital Saint Eloi, Montpellier, France
| | - Pascale Guicheney
- INSERM U 523, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris; Istituto di Citomorfologia Normale e Patologica, Consiglio Nazionale delle Ricerche c/o Istituto Ortopedico Rizzoli, and Neuromuscular Unit, Rizzoli Orthopedic Institut, Bologna; Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara; and Service de Neuropédiatrie, Hôpital Saint Eloi, Montpellier, France
| |
Collapse
|
43
|
Rachmiel M, Nevo Y, Lahat E, Kutai M, Harel S, Shahar E. Congenital muscular dystrophy in Israeli families. J Child Neurol 2002; 17:333-6. [PMID: 12150578 DOI: 10.1177/088307380201700504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Twelve patients from 11 Israeli families with congenital muscular dystrophy were evaluated between 1991 and 2001. There were six males and six females, of whom six were merosin negative and six were merosin positive. Serum creatine kinase levels were highly elevated in the merosin-negative group. Four of the children were cognitively normal but nonambulant. Two had unusual clinical findings of severe cognitive and motor developmental dysfunction. Four infants in the merosin-positive group who had normal serum creatine kinase levels had early-onset severe motor weakness and died within the first year of life owing to ventilatory insufficiency. The other two were ambulant and had normal cognitive development and elevated serum creatine kinase levels. Noteworthy, two of the six children with merosin-negative congenital muscular dystrophy had cognitive impairment, and four of the six children with merosin-positive congenital muscular dystrophy had a severe form of the disease with ventilatory insufficiency and death during infancy.
Collapse
Affiliation(s)
- Marianna Rachmiel
- Pediatric Neurology Unit, Asaf Harofe Medical Center, Zerifin, Israel
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
We analyzed three Japanese patients (two boys and a girl) from two families with congenital muscular dystrophy (CMD) and brain involvement. One of the two families had two affected siblings of different sexes. Parental consanguinity was not documented in either family. All patients showed generalized hypotonia and weakness from infancy, delayed psychomotor development, facial muscle involvement, and joint contractures. Serum creatine kinase levels were markedly elevated. The histological change seen on muscle biopsy was characteristic of a dystrophic process, although dystrophin and merosin staining were normal. On MR imaging, cortical dysplasia and cerebral white matter abnormalities were observed. Although these clinical, myopathological and neuroradiological findings were typical of Fukuyama-type CMD (FCMD), full mutational analysis of the fukutin gene revealed neither a 3 kb insertion (Japanese founder mutation) nor point mutations. RT-PCR analysis of RNA isolated from lymphoblasts of a patient revealed normal expression of the FCMD transcript. As classification of CMD should be based on genetic background, our present cases with typical clinical, myopathological and neuroradiological findings of FCMD without mutation of the fukutin gene may represent a new variant (or variants) of CMD that is different from FCMD.
Collapse
Affiliation(s)
- Mieko Yoshioka
- Section of Pediatric Neurology, Kobe City Pediatric and General Rehabilitation Center for the Challenged, 2-3-50 Maruyama-cho, Nagata-ku, Kobe 653-0875, Japan.
| | | | | | | | | |
Collapse
|
45
|
Camacho Vanegas O, Bertini E, Zhang RZ, Petrini S, Minosse C, Sabatelli P, Giusti B, Chu ML, Pepe G. Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc Natl Acad Sci U S A 2001; 98:7516-21. [PMID: 11381124 PMCID: PMC34700 DOI: 10.1073/pnas.121027598] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ullrich syndrome is a recessive congenital muscular dystrophy affecting connective tissue and muscle. The molecular basis is unknown. Reverse transcription-PCR amplification performed on RNA extracted from fibroblasts or muscle of three Ullrich patients followed by heteroduplex analysis displayed heteroduplexes in one of the three genes coding for collagen type VI (COL6). In patient A, we detected a homozygous insertion of a C leading to a premature termination codon in the triple-helical domain of COL6A2 mRNA. Both healthy consanguineous parents were carriers. In patient B, we found a deletion of 28 nucleotides because of an A --> G substitution at nucleotide -2 of intron 17 causing the activation of a cryptic acceptor site inside exon 18. The second mutation was an exon skipping because of a G --> A substitution at nucleotide -1 of intron 23. Both mutations are present in an affected brother. The first mutation is also present in the healthy mother, whereas the second mutation is carried by their healthy father. In patient C, we found only one mutation so far-the same deletion of 28 nucleotides found in patient B. In this case, it was a de novo mutation, as it is absent in her parents. mRNA and protein analysis of patient B showed very low amounts of COL6A2 mRNA and of COL6. A near total absence of COL6 was demonstrated by immunofluorescence in fibroblasts and muscle. Our results demonstrate that Ullrich syndrome is caused by recessive mutations leading to a severe reduction of COL6.
Collapse
Affiliation(s)
- O Camacho Vanegas
- Department of Internal Medicine, University of Rome Tor Vergata, Via Tor Vergata 135, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mercuri E, Rutherford M, De Vile C, Counsell S, Sewry C, Brown S, Bydder G, Dubowitz V, Muntoni F. Early white matter changes on brain magnetic resonance imaging in a newborn affected by merosin-deficient congenital muscular dystrophy. Neuromuscul Disord 2001; 11:297-9. [PMID: 11297945 DOI: 10.1016/s0960-8966(00)00190-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In 1996 we reported sequential magnetic resonance imaging study in an infant with merosin-deficient congenital muscular dystrophy with normal brain magnetic resonance imaging at 3 weeks and white matter changes by 6 months. We now report an infant with merosin-deficient congenital muscular dystrophy with a mild degree of white matter changes already present on brain magnetic resonance imaging at 5 days of age. The difference may be due to a difference in the T2 sequences used. The images in this present case were obtained with a fast spin echo sequence (echo time: 210 ms). The increased T2 weighted may be responsible for a better detection of the white matter changes at an early stage, when they can be missed on conventional, less weighting T2 sequences. These results suggest that, by using appropriate sequences, mild white matter changes may be detectable on brain magnetic resonance imaging in the first days of life in infants with merosin-deficient congenital muscular dystrophy.
Collapse
Affiliation(s)
- E Mercuri
- Dubowitz Neuromuscular Centre, Imperial College, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fahnehjelm KT, Ygge J, Engman ML, Mosskin M, Santavuori P, Malm G. A child with muscle-eye-brain disease. Ophthalmological and neurological characteristics. ACTA OPHTHALMOLOGICA SCANDINAVICA 2001; 79:72-5. [PMID: 11167293 DOI: 10.1034/j.1600-0420.2001.079001072.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE To describe a child with Muscle-Eye-Brain disease (MEB), one of three types of congenital muscular dystrophy associated with ocular abnormalities. METHODS Case report. RESULTS The child showed severe visual impairment due to progressive myopia and retinal degeneration, a pachygyria-type of migration disorder of the brain with a nodular cortical surface, i.e. cobblestone cortex, as well as muscular weakness and severe mental retardation. CONCLUSION Ophthalmological assessments are important to help to diagnose and follow children with congenital muscular dystrophy.
Collapse
Affiliation(s)
- K T Fahnehjelm
- Department of Clinical Science, Karolinska Institutet, Huddinge University Hospital, Sweden.
| | | | | | | | | | | |
Collapse
|
48
|
Avoni P, Monari L, Carelli V, Carcangiu R, Barboni P, Donati C, Badiali L, Baruzzi A, Montagna P. Congenital encephalomyopathy with epilepsy, chorioretinitis, basal ganglia involvement, and muscle minicores. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200003)47:3<395::aid-ana21>3.0.co;2-c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Talim B, Ferreiro A, Cormand B, Vignier N, Oto A, Göğüş S, Cila A, Lehesjoki AE, Pihko H, Guicheney P, Topaloğlu H. Merosin-deficient congenital muscular dystrophy with mental retardation and cerebellar cysts unlinked to the LAMA2, FCMD and MEB loci. Neuromuscul Disord 2000; 10:548-52. [PMID: 11053680 DOI: 10.1016/s0960-8966(00)00140-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report a case of congenital muscular dystrophy with secondary merosin deficiency, structural involvement of the central nervous system and mental retardation in an 8-year-old girl from a consanguineous family. She had early-onset hypotonia, generalized muscle wasting, with weakness especially of the neck muscles, joint contractures, mental retardation and high creatine kinase. Muscle biopsy showed dystrophic changes with partial deficiency of the laminin alpha(2) chain. Cranial magnetic resonance imaging revealed multiple small cysts in the cerebellum, without cerebral cortical dysplasia or white matter changes. The laminin alpha(2) chain (6q2), Fukuyama type congenital muscular dystrophy (9q31-q33) and muscle-eye-brain disease (1p32-p34) loci were all excluded by linkage analysis. We suggest that this case represents a new entity in the nosology of congenital muscular dystrophy.
Collapse
Affiliation(s)
- B Talim
- Department of Pediatric Pathology, Hacettepe Children's Hospital, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The laminin protein family has diverse tissue expression patterns and is involved in the pathology of a number of organs, including skin, muscle, and nerve. In the skin, laminins 5 and 6 contribute to dermal-epidermal cohesion, and mutations in the constituent chains result in the blistering phenotype observed in patients with junctional epidermolysis bullosa (JEB). Allelic heterogeneity is observed in patients with JEB: mutations that results in premature stop codons produce a more severe phenotype than do missense mutations. Gene therapy approaches are currently being studied in the treatment of this disease. A blistering phenotype is also observed in patients with acquired cicatricial pemphigoid (CP). Autoantibodies targeted against laminins 5 and 6 destabilize epithelial adhesion and are pathogenic. In muscle cells, laminin alpha 2 is a component of the bridge that links the actin cytoskeleton to the extracellular matrix. In patients with laminin alpha 2 mutations, the bridge is disrupted and mature muscle cells apoptose. Congenital muscular dystrophy (CMD) results. The role of laminin in diseases of the nervous system is less well defined, but the extracellular protein has been shown to serve an important role in peripheral nerve regeneration. The adhesive molecule influences neurite outgrowth, neural differentiation, and synapse formation. The broad spatial distribution of laminin gene products suggests that laminin may be involved in a number of diseases for which pathogenic mechanisms are still being unraveled.
Collapse
Affiliation(s)
- K A McGowan
- Department of Genetics, M-344, School of Medicine, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|