1
|
Loss of HtrA1 serine protease induces synthetic modulation of aortic vascular smooth muscle cells. PLoS One 2018; 13:e0196628. [PMID: 29768431 PMCID: PMC5955505 DOI: 10.1371/journal.pone.0196628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/15/2018] [Indexed: 01/01/2023] Open
Abstract
Homozygous mutations of human HTRA1 cause cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). HtrA1-/- mice were examined for arterial abnormalities. Although their cerebral arteries were normal, the thoracic aorta was affected in HtrA1-/- mice. The number of vascular smooth muscle cells (VSMCs) in the aorta was increased in HtrA1-/- mice of 40 weeks or younger, but decreased thereafter. The cross-sectional area of the aorta was increased in HtrA1-/- mice of 40 weeks or older. Aortic VSMCs isolated from HtrA1-/- mice rapidly proliferated and migrated, produced high MMP9 activity, and were prone to oxidative stress-induced cell death. HtrA1-/- VSMCs expressed less smooth muscle α-actin, and more vimentin and osteopontin, and responded to PDGF-BB more strongly than wild type VSMCs, indicating that HtrA1-/- VSMCs were in the synthetic phenotype. The elastic lamina was disrupted, and collagens were decreased in the aortic media. Calponin in the media was decreased, whereas vimentin and osteopontin were increased, suggesting a synthetic shift of VSMCs in vivo. Loss of HtrA1 therefore skews VSMCs toward the synthetic phenotype, induces MMP9 expression, and expedites cell death. We propose that the synthetic modulation is the primary event that leads to the vascular abnormalities caused by HtrA1 deficiency.
Collapse
|
2
|
Bochenek ML, Schütz E, Schäfer K. Endothelial cell senescence and thrombosis: Ageing clots. Thromb Res 2016; 147:36-45. [DOI: 10.1016/j.thromres.2016.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 01/28/2023]
|
3
|
Western diet consumption promotes vascular remodeling in non-senescent mice consistent with accelerated senescence, but does not modify vascular morphology in senescent ones. Exp Gerontol 2014; 55:1-11. [DOI: 10.1016/j.exger.2014.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/20/2014] [Accepted: 03/02/2014] [Indexed: 11/17/2022]
|
4
|
Jiménez-Altayó F, Onetti Y, Heras M, Dantas AP, Vila E. Western-style diet modulates contractile responses to phenylephrine differently in mesenteric arteries from senescence-accelerated prone (SAMP8) and resistant (SAMR1) mice. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1219-1234. [PMID: 22777652 PMCID: PMC3705122 DOI: 10.1007/s11357-012-9450-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/24/2012] [Indexed: 06/01/2023]
Abstract
The influence of two known cardiovascular risk factors, aging and consumption of a high-fat diet, on vascular mesenteric artery reactivity was examined in a mouse model of accelerated senescence (SAM). Five-month-old SAM prone (SAMP8) and resistant (SAMR1) female mice were fed a Western-type high-fat diet (WD; 8 weeks). Mesenteric arteries were dissected, and vascular reactivity, protein and messenger RNA expression, superoxide anion (O 2 (·-) ) and hydrogen peroxide formation were evaluated by wire myography, immunofluorescence, RT-qPCR, ethidium fluorescence and ferric-xylenol orange, respectively. Contraction to KCl and relaxation to acetylcholine remained unchanged irrespective of senescence and diet. Although similar contractions to phenylephrine were observed in SAMR1 and SAMP8, accelerated senescence was associated with decreased eNOS and nNOS and increased O 2 (·-) synthesis. Senescence-related alterations were compensated, at least partly, by the contribution of NO derived from iNOS and the enhanced endogenous antioxidant capacity of superoxide dismutase 1 to maintain vasoconstriction. Administration of a WD induced qualitatively different alterations in phenylephrine contractions of mesenteric arteries from SAMR1 and SAMP8. SAMR1 showed increased contractions partly as a result of decreased NO availability generated by decreased eNOS and nNOS and enhanced O 2 (·-) formation. In contrast, WD feeding in SAMP8 resulted in reduced contractions due to, at least in part, the increased functional participation of iNOS-derived NO. In conclusion, senescence-dependent intrinsic alterations during early stages of vascular senescence may promote vascular adaptation and predispose to further changes in response to high-fat intake, which may lead to the progression of aging-related cardiovascular disease, whereas young subjects lack the capacity for this adaptation.
Collapse
Affiliation(s)
- Francesc Jiménez-Altayó
- Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| | | | | | | | | |
Collapse
|
5
|
Tanisawa K, Mikami E, Fuku N, Honda Y, Honda S, Ohsawa I, Ito M, Endo S, Ihara K, Ohno K, Kishimoto Y, Ishigami A, Maruyama N, Sawabe M, Iseki H, Okazaki Y, Hasegawa-Ishii S, Takei S, Shimada A, Hosokawa M, Mori M, Higuchi K, Takeda T, Higuchi M, Tanaka M. Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes. BMC Genomics 2013; 14:248. [PMID: 23586671 PMCID: PMC3637625 DOI: 10.1186/1471-2164-14-248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/19/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Senescence-accelerated mice (SAM) are a series of mouse strains originally derived from unexpected crosses between AKR/J and unknown mice, from which phenotypically distinct senescence-prone (SAMP) and -resistant (SAMR) inbred strains were subsequently established. Although SAMP strains have been widely used for aging research focusing on their short life spans and various age-related phenotypes, such as immune dysfunction, osteoporosis, and brain atrophy, the responsible gene mutations have not yet been fully elucidated. RESULTS To identify mutations specific to SAMP strains, we performed whole exome sequencing of 6 SAMP and 3 SAMR strains. This analysis revealed 32,019 to 38,925 single-nucleotide variants in the coding region of each SAM strain. We detected Ogg1 p.R304W and Mbd4 p.D129N deleterious mutations in all 6 of the SAMP strains but not in the SAMR or AKR/J strains. Moreover, we extracted 31 SAMP-specific novel deleterious mutations. In all SAMP strains except SAMP8, we detected a p.R473W missense mutation in the Ldb3 gene, which has been associated with myofibrillar myopathy. In 3 SAMP strains (SAMP3, SAMP10, and SAMP11), we identified a p.R167C missense mutation in the Prx gene, in which mutations causing hereditary motor and sensory neuropathy (Dejerine-Sottas syndrome) have been identified. In SAMP6 we detected a p.S540fs frame-shift mutation in the Il4ra gene, a mutation potentially causative of ulcerative colitis and osteoporosis. CONCLUSIONS Our data indicate that different combinations of mutations in disease-causing genes may be responsible for the various phenotypes of SAMP strains.
Collapse
Affiliation(s)
- Kumpei Tanisawa
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Tokyo, Itabashi, 173-0015, Japan
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan
| | - Eri Mikami
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Tokyo, Itabashi, 173-0015, Japan
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan
- Japan Society for the Promotion of Science, Tokyo, 102-8472, Japan
| | - Noriyuki Fuku
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Tokyo, Itabashi, 173-0015, Japan
| | - Yoko Honda
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Tokyo, Itabashi, 173-0015, Japan
| | - Shuji Honda
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Tokyo, Itabashi, 173-0015, Japan
| | - Ikuro Ohsawa
- Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Masafumi Ito
- Department of Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Shogo Endo
- Aging Regulation Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Kinji Ohno
- Department of Neurogenetics and Bioinformatics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuki Kishimoto
- Department of Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Akihito Ishigami
- Department of Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Naoki Maruyama
- Department of Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Motoji Sawabe
- Department of Pathology and Bioresource Center for Geriatric Research, Tokyo Metropolitan Institute of Gerontology, Tokyo, 1730015, Japan
| | - Hiroyoshi Iseki
- Research Center for Genomic Medicine, Saitama Medical University, Hidaka, 350-1241, Japan
| | - Yasushi Okazaki
- Research Center for Genomic Medicine, Saitama Medical University, Hidaka, 350-1241, Japan
| | - Sanae Hasegawa-Ishii
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, 480-0392, Japan
| | - Shiro Takei
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, 480-0392, Japan
| | - Atsuyoshi Shimada
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, 480-0392, Japan
| | - Masanori Hosokawa
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, 480-0392, Japan
| | - Masayuki Mori
- Department of Aging Biology, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| | - Keiichi Higuchi
- Department of Aging Biology, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| | - Toshio Takeda
- The Council for SAM Research, Kyoto, 604-8856, Japan
| | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Tokyo, Itabashi, 173-0015, Japan
| |
Collapse
|
6
|
Biancari F, Lahtinen J, Heikkinen J. Impact of ascending aortic wall thickness and atherosclerosis on the intermediate survival after coronary artery bypass surgery. Eur J Cardiothorac Surg 2012; 41:e94-e99. [DOI: 10.1093/ejcts/ezs087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
7
|
Tsamis A, Rachev A, Stergiopulos N. A constituent-based model of age-related changes in conduit arteries. Am J Physiol Heart Circ Physiol 2011; 301:H1286-301. [PMID: 21724865 DOI: 10.1152/ajpheart.00570.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present report, a constituent-based theoretical model of age-related changes in geometry and mechanical properties of conduit arteries is proposed. The model was based on the premise that given the time course of the load on an artery and the accumulation of advanced glycation end-products in the arterial tissue, the initial geometric dimensions and properties of the arterial tissue can be predicted by a solution of a boundary value problem for the governing equations that follow from finite elasticity, structure-based constitutive modeling within the constrained mixture theory, continuum damage theory, and global growth approach for stress-induced structure-based remodeling. An illustrative example of the age-related changes in geometry, structure, composition, and mechanical properties of a human thoracic aorta is considered. Model predictions were in good qualitative agreement with available experimental data in the literature. Limitations and perspectives for refining the model are discussed.
Collapse
Affiliation(s)
- Alkiviadis Tsamis
- Laboratory of Hemodynamics and Cardiovascular Technology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
8
|
Forman K, Vara E, García C, Ariznavarreta C, Escames G, Tresguerres JAF. Cardiological aging in SAM model: effect of chronic treatment with growth hormone. Biogerontology 2010; 11:275-86. [PMID: 19731067 DOI: 10.1007/s10522-009-9245-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 08/13/2009] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to investigate the effect of aging on different parameters related to inflammation, oxidative stress and apoptosis in hearts from two types of male mice models: senescence-accelerated mice (SAM-P8) and senescence-accelerated-resistant (SAM-R1), and the influence of chronic administration of Growth Hormone (GH) on old SAM-P8 mice. Forty male mice were used. Animals were divided into five experimental groups: two 10 month old untreated groups (SAM-P8/SAM-R1), two 2 month old young groups (SAM-P8/SAM-R1) and one 10 month old group (SAM-P8) treated with GH for 30 days. The expression of tumor necrosis factor-alpha, interleukin 1, interleukin 10, heme oxygenases 1 and 2, endothelial and inducible nitric oxide synthases, NFkB, Bad, Bax and Bcl-2 were determined by real-time reverse transcription polymerase chain reaction (RT-PCR). Results were submitted to a two way ANOVA statistical evaluation using the Statgraphics program. Inflammation, as well as, oxidative stress and apoptosis markers were increased in the heart of old SAM-P8 males, as compared to young controls and this situation was not observed in the old SAM-R1 mice. Exogenous GH administration reverted the effect of aging in the described parameters of old SAM-P8 mice. Our results suggest that inflammation, apoptosis and oxidative stress could play an important role in the observed cardiovascular alterations related to aging of SAM-P8 mice and that GH may play a potential protective effect on the cardiovascular system of these animals.
Collapse
|
9
|
Wu C, Yan L, Depre C, Dhar SK, Shen YT, Sadoshima J, Vatner SF, Vatner DE. Cytochrome c oxidase III as a mechanism for apoptosis in heart failure following myocardial infarction. Am J Physiol Cell Physiol 2009; 297:C928-34. [PMID: 19625613 DOI: 10.1152/ajpcell.00045.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome c oxidase (COX) is composed of 13 subunits, of which COX I, II, and III are encoded by a mitochondrial gene. COX I and II function as the main catalytic components, but the function of COX III is unclear. Because myocardial ischemia affects mitochondrial oxidative metabolism, we hypothesized that COX activity and expression would be affected during postischemic cardiomyopathy. This hypothesis was tested in a monkey model following myocardial infarction (MI) and subsequent pacing-induced heart failure (HF). In this model, COX I protein expression was decreased threefold after MI and fourfold after HF (P < 0.05 vs. sham), whereas COX II expression remained unchanged. COX III protein expression increased 5-fold after MI and further increased 10-fold after HF compared with sham (P < 0.05 vs. sham). The physiological impact of COX III regulation was examined in vitro. Overexpression of COX III in mitochondria of HL-1 cells resulted in an 80% decrease in COX I, 60% decrease in global COX activity, 60% decrease in cell viability, and threefold increase in apoptosis (P < 0.05). Oxidative stress induced by H2O2 significantly (P < 0.05) increased COX III expression. H2O2 decreased cell viability by 47 +/- 3% upon overexpression of COX III, but only by 12 +/- 5% in control conditions (P < 0.05). We conclude that ischemic stress in vivo and oxidative stress in vitro lead to upregulation of COX III, followed by downregulation of COX I expression, impaired COX oxidative activity, and increased apoptosis. Therefore, upregulation of COX III may contribute to the increased susceptibility to apoptosis following MI and subsequent HF.
Collapse
Affiliation(s)
- Changgong Wu
- Department of Cell Biology and Molecular Medicine and Cardiovascular Research Institute, Univeristy of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Pezet M, Jacob MP, Escoubet B, Gheduzzi D, Tillet E, Perret P, Huber P, Quaglino D, Vranckx R, Li DY, Starcher B, Boyle WA, Mecham RP, Faury G. Elastin haploinsufficiency induces alternative aging processes in the aorta. Rejuvenation Res 2008; 11:97-112. [PMID: 18173368 DOI: 10.1089/rej.2007.0587] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Elastin, the main component of elastic fibers, is synthesized only in early life and provides the blood vessels with their elastic properties. With aging, elastin is progressively degraded, leading to arterial enlargement, stiffening, and dysfunction. Also, elastin is a key regulator of vascular smooth muscle cell proliferation and migration during development since heterozygous mutations in its gene (Eln) are responsible for a severe obstructive vascular disease, supravalvular aortic stenosis, isolated or associated to Williams syndrome. Here, we have studied whether early elastin synthesis could also influence the aging processes, by comparing the structure and function of ascending aorta from 6- and 24-month-old Eln+/- and Eln+/+ mice. Eln+/- animals have high blood pressure and arteries with smaller diameters and more rigid walls containing additional although thinner elastic lamellas. Nevertheless, longevity of these animals is unaffected. In young adult Eln+/- mice, some features resemble vascular aging of wild-type animals: cardiac hypertrophy, loss of elasticity of the arterial wall through enhanced fragmentation of the elastic fibers, and extracellular matrix accumulation in the aortic wall, in particular in the intima. In Eln+/- animals, we also observed an age-dependent alteration of endothelial vasorelaxant function. On the contrary, Eln+/- mice were protected from several classical consequences of aging visible in aged Eln+/+ mice, such as arterial wall thickening and alteration of alpha(1)-adrenoceptor-mediated vasoconstriction. Our results suggest that early elastin expression and organization modify arterial aging through their impact on both vascular cell physiology and structure and mechanics of blood vessels.
Collapse
Affiliation(s)
- Mylène Pezet
- Université Joseph Fourier, UFR de Biologie, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lloréns S, de Mera RMMF, Pascual A, Prieto-Martín A, Mendizábal Y, de Cabo C, Nava E, Jordán J. The senescence-accelerated mouse (SAM-P8) as a model for the study of vascular functional alterations during aging. Biogerontology 2007; 8:663-72. [PMID: 17786580 DOI: 10.1007/s10522-007-9108-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 08/16/2007] [Indexed: 11/26/2022]
Abstract
We studied vascular function in quiescent aortas from senescence-accelerated resistant (SAM-R1) and prone (SAM-P8) mice. Myographical studies of thoracic aorta segments from 6-7 month-old mice showed that the contractility of SAM-P8 aortas was markedly higher than that of SAM-R1 after KCl depolarization or phenylephrine addition. Acetylcholine dose-response relaxation curves revealed that SAM-R1 vessels were slightly more sensitive than those of SAM-P8. In the presence of the NO synthase inhibitor, L-NAME, all vessels displayed contractions to acetylcholine, but these were more distinct in the SAM-R1. Phenylephrine plus L-NAME displayed stronger contractions in both animal strains, but were markedly more pronounced in SAM-R1. The cyclooxygenase inhibitor, indomethacin did not change the vessel responses to acetylcholine or phenylephrine. These data indicate that NO synthase, not cyclooxygenase, was responsible for the differences in contractility. Standard histology and immunohistochemistry of endothelial NO synthase revealed no differences in the expression of this protein. In contrast, increased levels of malondialdehyde were found in SAM-P8 vessels. We conclude that SAM-P8 vessels exhibit higher contractility than those of SAM-R1. Furthermore, our results suggest that the endothelium of SAM-P8 vessels is dysfunctional and lacks normal capability to counteract smooth muscle contraction. Therefore, our findings support SAM-P8 as a suitable model for the study of vascular physiological changes during aging.
Collapse
Affiliation(s)
- Silvia Lloréns
- Departamento de Ciencias Médicas, Facultad de Medicina and Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Almansa, 14, 02006 Albacete, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hosokawa M. A higher oxidative status accelerates senescence and aggravates age-dependent disorders in SAMP strains of mice. Mech Ageing Dev 2002; 123:1553-61. [PMID: 12470893 DOI: 10.1016/s0047-6374(02)00091-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The SAM strain of mice is actually a group of related inbred strains consisting of series of SAMP (accelerated senescence-prone, short-lived) and SAMR (accelerated senescence-resistant, longer-lived) strains. Comparing with the SAMR strains, the SAMP strains of mice show a more accelerated senescence process, shorter lifespan, and an earlier onset and more rapid progress of age-associated pathological phenotypes similar to several geriatric disorders observed in humans, including senile osteoporosis, degenerative joint disease, age-related deficits in learning and memory, olfactory bulb and forebrain atrophy, presbycusis and retinal atrophy, senile amyloidosis, immunosenescence, senile lungs, and diffuse medial thickening of the aorta. The higher oxidative stress observed in the SAMP strains of mice are partly caused by mitochondrial dysfunction, and may be one cause of the senescence acceleration and age-dependent alterations in cell structure and function, including neuronal cell degeneration. This senescence acceleration is also observed during senescence/crisis in cultures of isolated fibroblast-like cells from SAMP strains of mice, and was associated with a hyperoxidative status. These observations suggest that the SAM strains are useful tools in the attempt to understand the mechanisms of age-dependent degeneration of cells and tissues, and their aggravation, and to develop clinical interventions.
Collapse
Affiliation(s)
- Masanori Hosokawa
- Field of Regeneration Control, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
13
|
Ueno M, Sakamoto H, Kanenishi K, Onodera M, Akiguchi I, Hosokawa M. Ultrastructural and permeability features of microvessels in the hippocampus, cerebellum and pons of senescence-accelerated mice (SAM). Neurobiol Aging 2001; 22:469-78. [PMID: 11378254 DOI: 10.1016/s0197-4580(01)00213-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We previously reported that the accumulation of blood-borne radiolabelled serum albumin in brain parenchyma increased with aging, especially in senescence-accelerated mice (SAMP8), which showed age-related deficits in learning and memory. In this study, in order to examine morphological events related to the age-related increase of the brain accumulation of serum albumin, the transvascular passage of blood-borne horseradish peroxidase (HRP) and ultrastructural features of microvessels were examined in the hippocampus, cerebellum and pons of SAMP8 and SAMR1 (control) mice. Ultrastructural examination of the hippocampus showed that the staining for HRP was occasionally spreading throughout the parajunctional cytoplasm of the endothelial cell of aged SAMP8 mice, but not in young SAMP8 mice nor in SAMR1 mice. The number of vessels showing the staining reaction for HRP in the parajunctional cytoplasm of the endothelial cells in aged SAMP8 mice increased significantly compared with that in the others. Electron microscopic morphometry showed that there were no significant differences among the number of HRP-positive vesicles per unit area of the endothelial cell cytoplasm in young and old mice of both strains. The staining reaction for HRP was not seen in the basal lamina of microvessels and the perivascular neuropil in all mice examined. Perivascular lipofuscin-like granules and collagen deposits, swelling of astroglial perivascular endfeet and perivascular cells containing foamy, lipid-like droplets were frequently found in several brain regions of aged SAMP8 mice. The perivascular cells with a few lipid-like droplets and more electron-homogeneous lysosomes were occasionally seen in SAMR1 and young SAMP8, while the other findings were scarcely observed in SAMR1 and young SAMP8 mice. These findings suggest that the blood-brain barrier to HRP was preserved in microvessels in three brain regions of SAM mice but the blood microvessels showed some age-related ultrastructural alterations in SAMP8 brains. Uncontrolled passage of HRP through the parajunctional cytoplasm of the endothelial cells may partly contribute to the age-related increase of accumulation of serum albumin in SAMP8 brains.
Collapse
Affiliation(s)
- M Ueno
- Second Department of Pathology, Kagawa Medical University, 1750-1 Ikenobe, Miki-cho, Kita-gun, 761-0793, Kagawa, Japan.
| | | | | | | | | | | |
Collapse
|