1
|
Liu C, Wu C, Zhang S, Lv Z. Contribution of impaired autophagy, mitochondrial dysfunction and abnormal lipolysis to epididymal aging in mice. Exp Gerontol 2024; 195:112528. [PMID: 39067197 DOI: 10.1016/j.exger.2024.112528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
With the increase of the aged population in modern society, research on aging and aging-related diseases has attracted increasing attention. Unlike women, men experience changes gradually in the reproductive system during aging. The epididymis is an important organ for sperm maturation and storage, but less study has been conducted to investigate cellular senescence in aging epididymis and the corresponding influences on sperm. This study aims to explore cellular and molecular mechanisms underlying aging changes in epididymal tissues. Cellular senescence in the epididymis of 18-month-old C57BL/6 J mice was evaluated with SA (senescence-associated)-β-galactosidase staining and molecular markers such as P21 and Lamin B, compared to the 2-month-old young group. Western blot analysis and immunofluorescence staining were performed to examine the proteins expressions involved in AMPKα/SIRT1 pathway, autophagy/mitophagy, mitochondrial dynamics and lipolysis. The results showed that in old mice AMPKα/ SIRT1 pathway was downregulated with increased acetylation in the epididymal tissues. Reduced expressions of autophagy related genes and PINK1/PARK2 were detected as well as increased P62 protein level and decreased colocalization of LC3 and LAMP2, which indicated deficient autophagy and mitophagy occurred in aging epididymal tissues. Significant decreased expressions of MFN1, MFN2, p-DRP1(Ser637) and FIS1 showed an imbalance in mitochondrial dynamics in aging epididymal tissues. Additionally, intracellular lipid droplets accumulation occurred in epididymal epithelial cells in old mice, with reduced expressions of the lipolysis enzymes ATGL, HSL and Ascl4. Lipophagy impairment was further detected by minimal colocalization of lipid droplets with either LC3 or LAMP2 in the epididymal ductal epithelial cells of old mice. Our study provides new insights into the molecular mechanisms of impaired autophagy, imbalanced mitochondrial dynamics and disrupted lipolysis, which together contribute to senescent changes and may be detrimental to the epididymal function during aging.
Collapse
Affiliation(s)
- Chao Liu
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Chongkang Wu
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Shoubing Zhang
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhengmei Lv
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
2
|
Fice HE, Robaire B. Aging affects gene expression in spermatids of Brown Norway rats. Exp Gerontol 2023; 173:112086. [PMID: 36626969 DOI: 10.1016/j.exger.2023.112086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
The effects of aging on the reproductive health of men and the consequences for their offspring are becoming more widely recognized. Correlative epidemiological studies examining paternal age and offspring health suggest there are more frequent occurrences of genetic disorders in the children of older fathers. Given the genetic basis for paternal age-related disorders, we aim to characterize gene expression in developing germ cells. Round spermatids (RS) were collected from young (mean = 5.3 months) and aged (mean = 19.5 months) Brown Norway rats, representative of humans aged 20-30 years and 55+ years, respectively. Gene expression data were obtained by mRNA sequencing (n = 5), and were analysed for differential expression. Sequencing data display 211 upregulated and 9 downregulated transcripts in RS of aged rats, compared to young (log2FC >1, p < 0.05). Transcripts with increased expression are involved in several processes including sperm motility/morphology, sperm-egg binding, capacitation, and epigenetic inheritance. In addition, there are numerous dysregulated transcripts that regulate germ cell epigenetic marks and Sertoli-germ cell binding and communication. These results show an overall increase in RS gene expression with age, with spermatogenic functions being perturbed. Taken together, these findings help identify the genetic origin of the fertility, germ cell niche, and epigenetic effects observed with advanced paternal aging.
Collapse
Affiliation(s)
- Heather E Fice
- McGill University, Department of Pharmacology and Therapeutics, Canada.
| | - Bernard Robaire
- McGill University, Department of Pharmacology and Therapeutics, Canada; McGill University, Department of Obstetrics and Gynaecology, Canada.
| |
Collapse
|
3
|
Abstract
Paternal age at conception has been increasing. In this review, we first present the results from the major mammalian animal models used to establish that increasing paternal age does affect progeny outcome. These models provide several major advantages including the possibility to assess multi- transgenerational effects of paternal age on progeny in a relatively short time window. We then present the clinical observations relating advanced paternal age to fertility and effects on offspring with respect to perinatal health, cancer risk, genetic diseases, and neurodevelopmental effects. An overview of the potential mechanism operating in altering germ cells in advanced age is presented. This is followed by an analysis of the current state of management of reproductive risks associated with advanced paternal age. The numerous challenges associated with developing effective, practical strategies to mitigate the impact of advanced paternal age are outlined along with an approach on how to move forward with this important clinical quandary.
Collapse
Affiliation(s)
- Peter T. K. Chan
- Department of Urology, McGill University Health Centre, Montreal, QC, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Huang Y, Li X, Sun X, Yao J, Gao F, Wang Z, Hu J, Wang Z, Ouyang B, Tu X, Zou X, Liu W, Lu M, Deng C, Yang Q, Xie Y. Anatomical Transcriptome Atlas of the Male Mouse Reproductive System During Aging. Front Cell Dev Biol 2022; 9:782824. [PMID: 35211476 PMCID: PMC8861499 DOI: 10.3389/fcell.2021.782824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The elderly males undergo degenerative fertility and testicular endocrine function that jeopardize the reproductive health and well-being. However, the mechanisms underlying reproductive aging are unclear. Here, we tried to address this by investigating the phenotypes and transcriptomes of seven regions of the male mouse reproductive tract: the testis, efferent ductules, initial segment, caput, corpus and cauda epididymidis, and vas deferens, in adult (3 months) and aged (21 months) mice. Quantitative PCR, immunohistochemistry, immunofluorescent staining, and enzyme-linked immunosorbent assay were performed for the analysis of gene expression in mice, human tissues, and semen samples. Aged male mice showed both systematic and reproductive changes, and remarkable histological changes were detected in the testis and proximal epididymis. Transcriptomes of the male reproductive tract were mapped, and a series of region-specific genes were identified and validated in mouse and/or human tissues, including Protamine 1 (Prm2), ADAM metallopeptidase domain 28 (Adam28), Ribonuclease A family member 13 (Rnase13), WAP four-disulfide core domain 13 (Wfdc13), and Wfdc9. Meanwhile, age-related transcriptome changes of different regions of the male reproductive tract were characterized. Notably, increased immune response was functionally related to the male reproductive aging, especially the T cell activation. An immune response-associated factor, phospholipase A2 group IID (Pla2g2d), was identified as a potential biomarker for reproductive aging in mice. And the PLA2G2D level in human seminal plasma surged at approximately 35 years of age. Furthermore, we highlighted Protein tyrosine phosphatase receptor type C (Ptprc), Lymphocyte protein tyrosine kinase (Lck), Microtubule associated protein tau (Mapt), and Interferon induced protein with tetratricopeptide repeats 3 (Ifit3) as critical molecules in the aging of initial segment, caput, caput, and cauda epididymidis, respectively. This study provides an RNA-seq resource for the male reproductive system during aging in mice, and is expected to improve our understanding of male reproductive aging and infertility.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangping Li
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengxin Gao
- Guangzhou Epibiotek Co., Ltd., Guangzhou, China
| | - Zhenqing Wang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaying Hu
- Department of Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhu Wang
- Department of Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bin Ouyang
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiangan Tu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Mujun Lu
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiyun Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Xie
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Zhao Y, Liu X, He Z, Niu X, Shi W, Ding JM, Zhang L, Yuan T, Li A, Yang W, Lu L. Essential role of proteasomes in maintaining self-renewal in neural progenitor cells. Sci Rep 2016; 6:19752. [PMID: 26804982 PMCID: PMC4726439 DOI: 10.1038/srep19752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022] Open
Abstract
Protein turnover and homeostasis are regulated by the proteasomal system, which is critical for cell function and viability. Pluripotency of stem cells also relies on normal proteasomal activity that mitigates senescent phenotypes induced by intensive cell replications, as previously demonstrated in human bone marrow stromal cells. In this study, we investigated the role of proteasomes in self-renewal of neural progenitor cells (NPCs). Through both in vivo and in vitro analyses, we found that the expression of proteasomes was progressively decreased during aging. Likewise, proliferation and self-renewal of NPCs were also impaired in aged mice, suggesting that the down-regulation of proteasomes might be responsible for this senescent phenotype. Lowering proteasomal activity by loss-of-function manipulations mimicked the senescence of NPCs both in vitro and in vivo; conversely, enhancing proteasomal activity restored and improved self-renewal in aged NPCs. These results collectively indicate that proteasomes work as a key regulator in promoting self-renewal of NPCs. This potentially provides a promising therapeutic target for age-dependent neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunhe Zhao
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, China
| | - Xueqin Liu
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, China
| | - Zebin He
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaojie Niu
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, China
| | - Weijun Shi
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, China
| | - Jian M. Ding
- Department of Physiology, East Carolina University Medical School, Greenville, 27834, USA
| | - Li Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, 510632, China
| | - Tifei Yuan
- School of Psychology, Nanjing Normal University, Nanjing, 210097, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, 510632, China
| | - Wulin Yang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
6
|
Ahsan U, Kamran Z, Raza I, Ahmad S, Babar W, Riaz MH, Iqbal Z. Role of selenium in male reproduction - a review. Anim Reprod Sci 2014; 146:55-62. [PMID: 24613013 DOI: 10.1016/j.anireprosci.2014.01.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 01/17/2023]
Abstract
The role of Se and various selenoproteins in male reproductive performance is reviewed. Development of male reproductive tissue requires an optimal level of Se in testis, and a small deviation, either deficiency or excess, leads to abnormal development. Selenium is a constituent of selenoproteins including GPx1, GPx3, mGPx4, cGPx4, and GPx5 that protect against oxidative damage to spermatozoa throughout the process of sperm maturation, whereas selenoproteins, such as mGPx4 and snGPx4, serve as structural components of mature spermatozoa. Thus Se and selenoproteins ensure viability of spermatozoa as well as providing protection against reactive oxygen species. Gene knock-out studies of selenoproteins revealed that their absence during spermatogenesis results in abnormal spermatozoa, which in turn affects semen quality and fertility. Deviation from the optimal quantities of dietary Se, both above or below, may cause multiple abnormalities of spermatozoa and affect motility and fertility. Libido may also be increased by Se. Dietary Se should be in optimal quantity to maintain reproductive function in males and to avoid infertility.
Collapse
Affiliation(s)
- U Ahsan
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Z Kamran
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - I Raza
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - S Ahmad
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - W Babar
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - M H Riaz
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Z Iqbal
- Institute of Animal Nutrition and Feed Technology, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
7
|
Hosseinpour E, Shahverdi A, Parivar K, Sedighi Gilani MA, Nasr-Esfahani MH, Salman Yazdi R, Sharbatoghli M, Tavalaee M, Chehrazi M. Sperm ubiquitination and DNA fragmentation in men with occupational exposure and varicocele. Andrologia 2013; 46:423-9. [PMID: 23594355 DOI: 10.1111/and.12098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2013] [Indexed: 11/30/2022] Open
Abstract
Assessment of sperm ubiquitination and DNA fragmentation as sperm functional markers are proposed to complement routine semen analysis. This study focuses on the evaluation of these markers in infertile men with varicocele or exposed to occupational background. The results were compared with normozoospermic men. Semen parameters in both groups were lower than those in the control group. Ubiquitination median, as a marker for functionality of the ubiquitin-proteasome system, was also lower in both groups. The ubiquitination median showed a significant positive correlation with motility in both groups, while it showed only a negative correlation with sperm morphology in the varicocele group. DNA fragmentation showed a significant correlation with semen parameters, in total varicocele and also total exposure groups. In conclusion, significant difference of sperm ubiquitination between normal and study groups further validates that sperm ubiquitination as a potential molecular marker for sperm evaluation in addition to routine semen analysis in clinical laboratories.
Collapse
Affiliation(s)
- E Hosseinpour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Belleannée C, Calvo E, Thimon V, Cyr DG, Légaré C, Garneau L, Sullivan R. Role of microRNAs in controlling gene expression in different segments of the human epididymis. PLoS One 2012; 7:e34996. [PMID: 22511979 PMCID: PMC3325285 DOI: 10.1371/journal.pone.0034996] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/08/2012] [Indexed: 12/01/2022] Open
Abstract
Background The molecular mechanisms implicated in regionalized gene expression in the human epididymis have not yet been fully elucidated. Interestingly, more than 200 microRNAs (miRNAs) have been identified in the human epididymis and could be involved in the regulation of mRNA stability and post-transcriptional expression in this organ. Methods Using a miRNA microarray approach, we investigated the correlation between miRNA signatures and gene expression profiles found in three distinct regions (caput, corpus and cauda) of human epididymides from 3 donors. In silico prediction of transcript miRNA targets was performed using TargetScan and Miranda software's. FHCE1 immortalized epididymal cell lines were cotransfected with mimic microRNAs and plasmid constructs containing the 3′UTR of predicted target genes downstream of the luciferase gene. Results We identified 35 miRNAs differentially expressed in the distinct segments of the epididymis (fold change ≥2, P-value≤0.01). Among these miRNAs, miR-890, miR-892a, miR-892b, miR-891a, miR-891b belonging to the same epididymis-enriched cluster located on the X chromosome, are significantly more expressed in the corpus and cauda regions than in the caput. Interestingly, a strong negative correlation (r = −0,89, P-value≤0.001) was found between the pattern of expression of miR-892b and its potential mRNA target Esrrg (Estrogen Related Receptor Gamma) and with miR-145 and Cldn10 mRNA (r = −0,92, P-value≤0.001). We confirmed that miR-145 and miR-892b inhibit the expression of the luciferase reporter via Cldn10 and Esrrg 3′ UTRs, respectively. Conclusion Our study shows that the expression of miRNAs is segmented along the human epididymis and correlates with the pattern of target gene expression in different regions. Therefore, epididymal miRNAs may be in control of the maintenance of gene expression profile in the epididymis, which dictates segment-specific secretion of proteins and establishes physiological compartments that directly or indirectly affect sperm maturation and fertility.
Collapse
Affiliation(s)
- Clémence Belleannée
- Centre de Recherche du CHUQ and Département d'Obstétrique-Gynécologie, Faculté de Médecine, Université Laval, Québec, Canada
- * E-mail: (RS); (CB)
| | - Ezéquiel Calvo
- Laboratory of Endocrinology and Genomics, CHUL Research Center and Department of Molecular Medicine, Université Laval, Québec, Canada
| | - Véronique Thimon
- Département de Biologie, Université de la Martinique, Martinique, France
| | - Daniel G. Cyr
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Christine Légaré
- Centre de Recherche du CHUQ and Département d'Obstétrique-Gynécologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Louis Garneau
- Centre de Recherche du CHUQ and Département d'Obstétrique-Gynécologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Robert Sullivan
- Centre de Recherche du CHUQ and Département d'Obstétrique-Gynécologie, Faculté de Médecine, Université Laval, Québec, Canada
- Laboratory of Endocrinology and Genomics, CHUL Research Center and Department of Molecular Medicine, Université Laval, Québec, Canada
- * E-mail: (RS); (CB)
| |
Collapse
|
9
|
Dube E, Hermo L, Chan PTK, Cyr DG. Alterations in the human blood-epididymis barrier in obstructive azoospermia and the development of novel epididymal cell lines from infertile men. Biol Reprod 2010; 83:584-96. [PMID: 20505168 DOI: 10.1095/biolreprod.110.084459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Post-testicular sperm maturation requires a specific luminal environment in the epididymis that is created, in part, by the blood-epididymis barrier. There is limited information on gene expression in the epididymis of infertile obstructive azoospermia (OA) patients due to the difficulty in obtaining tissues. The objectives of this study were to determine if epididymal tight junction proteins are altered in OA and to develop cell lines that could serve to elucidate alterations in the epididymis of infertile men. Epididymal claudin (CLDN) 1, CLDN4, and CLDN10 mRNA levels were altered in OA downstream from the obstruction site. Epithelial cell lines derived from the caput epididymidis of one OA patient were developed (infertile human caput epididymal cell line [IHCE]). IHCEs were composed of homogenous populations of diploid cells that ultrastructurally resembled in vivo principal cells. The cells expressed cytokeratin, SPAG11B, CLDN2, CLDN3, desmoplakin, and vimentin. However, the cells did not express several other epididymal markers (CRISP1, SPINLW1, NPC2, CD52, or DCXR) or junctional proteins (CDH1, CDH2, CLDN1, CLDN4, CLDN7, or CLDN8). Further studies using IHCE1 and transepithelial resistance indicated that the cells were unable to form tight junctions. Microarray analyses comparing gene expression in IHCE1 and a recently developed fertile human caput epididymal cell line revealed differential expression of genes encoding junctional proteins, cell junction regulators, and epididymal proteins. Together, these data indicate that epididymal cellular junctions appear to be altered in OA.
Collapse
Affiliation(s)
- Evemie Dube
- INRS-Institut Armand Frappier, University of Quebec, Laval, Quebec, Canada
| | | | | | | |
Collapse
|
10
|
Zhang J, Liu Q, Zhang W, Li J, Li Z, Tang Z, Li Y, Han C, Hall SH, Zhang Y. Comparative profiling of genes and miRNAs expressed in the newborn, young adult, and aged human epididymides. Acta Biochim Biophys Sin (Shanghai) 2010; 42:145-53. [PMID: 20119626 DOI: 10.1093/abbs/gmp116] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To understand roles of transcriptional factors and miRNAs in regulating gene expression in the epididymis from postnatal development through aging, systematic profiling of genes and miRNAs expressed in the newborn, young adult, and aged human epididymides was performed by cDNA array and miRNA array analysis, respectively. The newborn human epididymis expressed the fewest mRNAs but the largest number of miRNAs, whereas the adult and aged epididymides expressed the most mRNAs but the fewest miRNAs, a negative correlation between mRNAs and miRNA during aging. By integrative analysis, a set of miRNA targets were predicted based on the miRNA and cDNA arrays. In the newborn epididymis, 127 miRNAs were exclusively or preferentially expressed but only 3 and 2 miRNAs showed an age-enriched expression pattern in the adult and aged epididymides, respectively. This study provides a basic database as well as new insights and foundations for further studies on the complex regulation of gene expression in the epididymis.
Collapse
Affiliation(s)
- Jinsong Zhang
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Platts AE, Dix DJ, Chemes HE, Thompson KE, Goodrich R, Rockett JC, Rawe VY, Quintana S, Diamond MP, Strader LF, Krawetz SA. Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs. Hum Mol Genet 2007; 16:763-73. [PMID: 17327269 DOI: 10.1093/hmg/ddm012] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We are coming to appreciate that at fertilization human spermatozoa deliver the paternal genome alongside a suite of structures, proteins and RNAs. Although the role of some of the structures and proteins as requisite elements for early human development has been established, the function of the sperm-delivered RNAs remains a point for discussion. The presence of RNAs in transcriptionally quiescent spermatozoa can only be derived from transcription that precedes late spermiogenesis. A cross-platform microarray strategy was used to assess the profile of human spermatozoal transcripts from fertile males who had fathered at least one child compared to teratozoospermic individuals. Unsupervised clustering of the data followed by pathway and ontological analysis revealed the transcriptional perturbation common to the affected individuals. Transcripts encoding components of various cellular remodeling pathways, such as the ubiquitin-proteosome pathway, were severely disrupted. The origin of the perturbation could be traced as far back as the pachytene stage of spermatogenesis. It is anticipated that this diagnostic strategy will prove valuable for understanding male factor infertility.
Collapse
Affiliation(s)
- Adrian E Platts
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tengowski MW, Feng D, Sutovsky M, Sutovsky P. Differential Expression of Genes Encoding Constitutive and Inducible 20S Proteasomal Core Subunits in the Testis and Epididymis of Theophylline- or 1,3-Dinitrobenzene-Exposed Rats1. Biol Reprod 2007; 76:149-63. [PMID: 16988215 DOI: 10.1095/biolreprod.106.053173] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Theophylline (THP) and 1,3-dinitrobenzene (DNB) are thought to induce infertility by incapacitating the nurturing Sertoli cells and causing germ cell apoptosis in the testicular seminiferous epithelium, respectively. We hypothesized that THP and DNB exposure would alter the expression of the genes within the ubiquitin-proteasome pathway (UPP), implicated in spermatogenesis and epididymal sperm quality control. Rats were fed 0 or 8000 ppm of THP and necropsied on Days 18, 30, and 42 or administered 0, 2, or 6 mg/kg DNB via oral gavage and necropsied on Day 7. Tissues were collected from the testis and the caput, corpus, and cauda regions of the epididymis for transcriptional profiling by semiquantitative RT-PCR, real-time RT-PCR, and histopathology. Target UPP genes included those encoding for constitutive the 20S proteasomal core subunits Psmb1 (beta1), Psmb2 (beta2), and Psmb5 (beta5); the inducible 20S core subunits Psmb9 (LMP2), Psmb8 (LMP7), and Psmb10 (LMP10); and Ube1 (ubiquitin-activating enzyme E1), Ube2d3 (ubiquitin-conjugating enzyme E2), and Uchl1 (ubiquitin C-terminal hydrolase PGP9.5). Spermatozoa were collected from the cauda epididymis for analysis by light microscopy and flow cytometric evaluation of sperm surface ubiquitin. These data show that reprotoxic exposure alters the tissue-specific expression of UPP genes in the testis and epididymis, which may contribute to the aberrant spermatogenesis and epididymal processing of both normal and defective spermatozoa. Transcriptional profiling and flow cytometric analysis of the UPP thus captures the prodromal effects of reproductive toxicity not captured by conventional histology and functional cytology. Complementing seminal analysis with these measures may be useful in screening drug-induced toxicity or environmental infertility.
Collapse
Affiliation(s)
- Mark W Tengowski
- Pfizer Global Research and Development, Ann Arbor, Michigan 48105, USA.
| | | | | | | |
Collapse
|
13
|
Zhang JS, Liu Q, Li YM, Hall SH, French FS, Zhang YL. Genome-wide profiling of segmental-regulated transcriptomes in human epididymis using oligo microarray. Mol Cell Endocrinol 2006; 250:169-77. [PMID: 16412555 DOI: 10.1016/j.mce.2005.12.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sperm maturation during passage through the epididymis depends on regionalized gene expression which maintains the progressively changing environment within the epididymal tubule. Towards defining the genes that drive the sequential maturation of spermatozoa, we profiled regionally regulated gene expression pattern in the epididymis of a fertile young male donor using Affymetrix human genome U133 plus 2.0 microarray representing approximately the whole human genome. Over 15000 transcripts, almost one-third of the total on the array were identified in whole epididymis. Among them, 65% were detected in all three regions of the epididymis, 410 or 2.6% were present only in one region and the remaining 32.4% were distributed in two regions. Region-specific transcripts observed in caput (264), corpus (61) and cauda (81) epididymides were further classified as empirically determined reported genes or ESTs. This study revealed for the first time, the expression in human epididymis of a number of region-specific genes. The original data will be made publicly available on the Shanghai Science and Technology Database (http://www.scbit.org/human_epididymis_transcriptomes).
Collapse
Affiliation(s)
- Jin-Song Zhang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
14
|
Kwon J, Sekiguchi S, Wang YL, Setsuie R, Yoshikawa Y, Wada K. The region-specific functions of two ubiquitin C-terminal hydrolase isozymes along the epididymis. Exp Anim 2006; 55:35-43. [PMID: 16508210 DOI: 10.1538/expanim.55.35] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We previously showed that gad mice, which are deficient for ubiquitin C-terminal hydrolase L1 (UCH-L1), have a significantly increased number of defective spermatozoa, suggesting that UCH-L1 functions in sperm quality control during epididymal maturation. The epididymis is the site of spermatozoa maturation, transport and storage. Region-specific functions along the epididymis are essential for establishing the environment required for sperm maturation. We analyzed the region-specific expression of UCH-L1 and UCH-L3 along the epididymis, and also assessed the levels of ubiquitin, which has specificity for UCH-L1. In wild-type mice, western blot analysis demonstrated a high level of UCH-L1 expression in the caput epididymis, consistent with ubiquitin expression, whereas UCH-L3 expression was high in the cauda epididymis. We also investigated the function of UCH-L1 and UCH-L3 in epididymal apoptosis induced by efferent duct ligation. The caput epididymides of gad mice were resistant to apoptotic stress induced by efferent duct ligation, whereas Uchl3 knockout mice showed a marked increase in apoptotic cells following ligation. In conclusion, the response of gad and Uchl3 knockout mice to androgen withdrawal suggests a reciprocal function of the two UCH enzymes in the caput epididymis.
Collapse
Affiliation(s)
- Jungkee Kwon
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The epididymis is an androgen-responsive tissue where spermatozoa mature and gain motility. The three major regions of the epididymis, caput, corpus, and cauda, are known to have different functions and exhibit varied gene expression. Specific genes within the different regions of the epididymis have been identified to be under the influence of androgens. The goal of this study was to begin to elucidate the profile of androgen-responsive genes that may be important for sperm maturation using the Affymetrix MGU74Av2 GeneChip oligonucleotide microarray platform. Adult mice (B6/129 strain) were castrated and treated 6 days after castration with two injections of 5 mg of dihydrotestosterone (DHT) or oil over a 48-h period. The mice were killed 48 h later and total RNA was purified from the caput, corpus, and cauda regions of the epididymis. Using GeneSpring 5.0 (Silicon Genetics) software, transcripts were identified that were upregulated 2-fold or more by DHT in the caput (33 transcripts), the corpus (8 transcripts), and the cauda (9 transcripts).
Collapse
Affiliation(s)
- Theodore R Chauvin
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | | |
Collapse
|
16
|
Chen H. Gene expression by the anterior pituitary gland: effects of age and caloric restriction. Mol Cell Endocrinol 2004; 222:21-31. [PMID: 15249122 DOI: 10.1016/j.mce.2004.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Revised: 05/14/2004] [Accepted: 05/19/2004] [Indexed: 10/26/2022]
Abstract
Biological aging is associated with functional deficits at the cellular, organ, and system levels. The pituitary gland, the central organ of the neuroendocrine system, has been shown to play an important role in the aging process. To gain a better understanding of its functional changes with aging, we compared the gene expression profiles of the anterior pituitary of young and old Brown Norway rats, focusing on the major pituitary hormone genes. We also explored the effects of caloric restriction, an intervention shown to delay or inhibit age-associated pathologic and biologic changes in a number of systems and organisms, on the expression of these genes. Of the total of 1176 genes arrayed on each of the six membranes per group that we used, 542 (46%) were detectable in the anterior pituitary of young and old rats. Significance analysis of microarrays (SAM) of these 542 detectable genes revealed 28 genes that changed significantly with age, among which 24 decreased and 4 increased. Among the five major hormone genes on the membrane, growth hormone (GH) and prolactin decreased with age, the glycoprotein hormone common alpha subunit gene increased, and follicle-stimulating hormone-beta subunit (FSH-beta) and thyrotropin-beta (TSH-beta) subunit did not change. Among these genes, the three found to change by array analysis were confirmed to do so by Northern blot analysis. For the two genes among the five that were not selected (i.e. did not change) by array analysis, TSH-beta also showed no significant change by Northern blot; but the other, FSH-beta, showed significant increase. Thus, of the five genes checked by Northern blot analysis, the results were consistent with the array data in four cases. Short-term caloric restriction (5 weeks) of young adult animals resulted in 19 genes being significantly down-regulated, while no significantly up-regulated genes were identified. Among the genes that were down-regulated were GH, gonadotropin releasing hormone receptor (GnRH-R), three cytochrome c oxidase subunits and two heat shock proteins. With long-term (21 month) caloric restriction, about 30% of the genes that changed with aging (8/28) were prevented from doing so, and none of the age-related changes was enhanced with long-term caloric restriction. The genes that showed most significant rescue were neuropeptide Y, GnRH-R, DNA-binding protein inhibitor Id-3, and nerve growth factor-induced protein I-B. These results indicate that long-term caloric restriction can partially prevent some of the age-related changes in gene expression in the anterior pituitary of Brown Norway rats, suggesting a benefit of this regimen to be the slowing of the aging process. The fact that fewer than 30% genes derived benefit also suggests that the effect of caloric restriction is rather limit, which is consistent with the thesis that caloric restriction may slow, but not prevent, the aging process.
Collapse
Affiliation(s)
- Haolin Chen
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Gatti JL, Castella S, Dacheux F, Ecroyd H, Métayer S, Thimon V, Dacheux JL. Post-testicular sperm environment and fertility. Anim Reprod Sci 2004; 82-83:321-39. [PMID: 15271463 DOI: 10.1016/j.anireprosci.2004.05.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When mammalian spermatozoa exit the testis, they show a highly specialized morphology; however, they are not yet able to carry out their task: to fertilize an oocyte. This property, that includes the acquisition of motility and the ability to recognize and to fuse with the oocyte investments, is gained only after a transit through the epididymis during which the spermatozoa from the testis travel to the vas deferens. The exact molecular mechanisms that turn these cells into fertile gametes still remain mysterious, but surface-modifying events occurring in response to the external media are key steps in this process. Our laboratory has established cartographies of secreted (secretomes) and present proteins (proteomes) in the epididymal fluid of different mammals and have shown the regionalized variations in these fluid proteins along the epididymis. We have found that the main secreted proteins are common in different species and that enzymatic activities, capable of controlling the sperm surface changes, are present in the fluid. Our studies also indicate that the epididymal fluid is more complex than previously thought; it contains both soluble and particulate compartments such as exosome-like vesicles (epididymosomes) and certainly specific glycolipid-protein micelles. Understanding how these different compartments interplay to modify sperm components during their transit will be a necessary step if one wants to control and to ameliorate sperm quality and to obtain valuable fertility markers helpful to establish a male fertility based genetic selection.
Collapse
Affiliation(s)
- J-L Gatti
- Equipe "Gamète Male et Fertilité", UMR 6175 INRA-CNRS-Un. de Tours-Haras, Station de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Jervis KM, Robaire B. The effects of long-term vitamin E treatment on gene expression and oxidative stress damage in the aging Brown Norway rat epididymis. Biol Reprod 2004; 71:1088-95. [PMID: 15175234 DOI: 10.1095/biolreprod.104.028886] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The male reproductive tract of the Brown Norway rat is profoundly affected by aging. In the epididymis, the site of sperm maturation and storage, aging results in histological and biochemical changes that are suggestive of oxidative stress. Vitamin E is a potent lipid-soluble antioxidant that ameliorates the oxidative stress load associated with some chronic disease conditions. To determine the effects of long-term (18-mo) vitamin E deficiency and supplementation on aging in the epididymis, we assessed gene expression changes using cDNA microarrays and lipid peroxidation using immunohistochemical detection of 4-hydroxynonenal (4-HNE) in 24-mo-old rats. Plasma vitamin E levels were significantly lower in vitamin E-deficient animals and higher in vitamin E-supplemented animals compared with age-matched controls. Vitamin E deficiency resulted in increased expression of oxidative stress-related transcripts along the epididymis. This effect was most marked in the corpus epididymidis, where expression of glutathione S-transferases pi, 8, and mu, as well as superoxide dismutase, increased by over 50%. The effect of vitamin E supplementation on the expression of oxidative stress-related transcripts was primarily decreased expression; however, the magnitude of the gene expression changes was smaller than that observed for vitamin E deficiency. 4-HNE immunostaining was present throughout the epididymis in control animals. Vitamin E deficiency both increased the intensity and altered the distribution of 4-HNE staining, while vitamin E supplementation had no observable effect. In summary, we found that long-term vitamin E treatment alters the expression of oxidative stress-related transcripts. Moreover, long-term vitamin E deficiency exacerbates the effects of age on the accumulation of oxidative stress damage in the epididymis.
Collapse
Affiliation(s)
- Kathryn M Jervis
- Department of Pharmacology and Therapeutics and of Obstetrics and Gynecology, McGill University, Montreal, Canada H3G 1Y6
| | | |
Collapse
|
19
|
Chen H, Irizarry RA, Luo L, Zirkin BR. Leydig cell gene expression: effects of age and caloric restriction. Exp Gerontol 2004; 39:31-43. [PMID: 14724062 DOI: 10.1016/j.exger.2003.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In mammals, the concentration of testosterone in blood serum typically becomes reduced with aging. We have shown that, in rats, this results from reduced testosterone production by individual Leydig cells. To gain an understanding of the mechanisms by which Leydig cell steroidogenic function changes with aging, we compared the gene expression profiles in Leydig cells isolated from young and old Brown Norway rats, focusing on possible changes in genes involved in, or associated with, steroidogenesis. We also explored the effects of caloric restriction, an intervention shown to delay or inhibit age-associated pathologic and biologic changes in a number of systems and organisms, on the expression of these genes. Of the total of 1176 genes arrayed on each of the five membranes per group that we used, about 500 (45%) were detectable in Leydig cells isolated from young and old rat testes, with the same genes detectable in cells from both ages. An ANOVA model was applied to statistically analyze the 500 detectable genes in the four treatment groups. The primary criterion by which interesting genes were selected was a P value of </=0.05. With aging, a large number of genes were seen with fold changes of >1.5. However, when P</=0.05 was used as the selection criterion, only 45 genes were seen to change significantly with age. Most, but not all, of these genes also had fold changes of >1.5. Among the 500 genes, 17 were found to decrease in expression with aging, the most prominent among which were genes involved in steroidogenesis and stress response/free radical scavenging. Long-term caloric restriction had little effect on the 45 genes altered by age. In contrast to the effects of caloric restriction as seen in many other cell types and systems, the vast majority (44/45) of the Leydig cell genes that changed with age were not 'rescued' by this intervention.
Collapse
Affiliation(s)
- Haolin Chen
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
20
|
Jara M, Carballada R, Esponda P. Age-induced apoptosis in the male genital tract of the mouse. Reproduction 2004; 127:359-66. [PMID: 15016955 DOI: 10.1530/rep.1.00092] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have examined the effects of ageing on the increase in apoptotic cells numbers in the male genital tract of the house mouse (Mus musculus). We have found that not all organs have the same response. There is an induction of apoptosis in both the epididymis and ventral prostate. However, seminal vesicles and other prostatic lobes remain unaffected. Apoptosis was assessed by several methods: TUNEL, detection of the active fragment of caspase-3 and the pattern of DNA fragmentation on agarose gels. This increase in apoptosis is related to the fall in testosterone levels, although there is only a partial decrease in androgen receptor (AR). AR is still present in all tissues and only moderately reduced in the epididymis and ventral prostate. A more intense increase of lipofuscin granules, which may be indicative of oxidative stress, occurred in these tissues. Finally, testosterone supplementation reverses the changes (both in apoptosis and lipofuscin content in the tissue), suggesting a role of androgens in these processes.
Collapse
Affiliation(s)
- M Jara
- Centro de Investigaciones Biológicas, CSIC, Velázquez 144, 28006-Madrid, Spain
| | | | | |
Collapse
|
21
|
Chondrogianni N, Stratford FLL, Trougakos IP, Friguet B, Rivett AJ, Gonos ES. Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem 2003; 278:28026-37. [PMID: 12736271 DOI: 10.1074/jbc.m301048200] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Normal human fibroblasts undergo a limited number of divisions in culture and progressively they reach a state of irreversible growth arrest, a process termed as replicative senescence. The proteasome is the major cellular proteolytic machinery, the function of which is impaired during replicative senescence. However, the exact causes of its malfunction in these conditions are unknown. Using WI38 fibroblasts as a model for cellular senescence we have observed reduced levels of proteasomal peptidase activities coupled with increased levels of both oxidized and ubiquitinated proteins in senescent cells. We have found the catalytic subunits of the 20 S complex and subunits of the 19 S regulatory complex to be down-regulated in senescent cells. This is accompanied by a decrease in the level of both 20 S and 26 S complexes. Partial inhibition of proteasomes in young cells caused by treatment with specific inhibitors induced a senescence-like phenotype, thus demonstrating the fundamental importance of the proteasome for retaining cellular maintenance and homeostasis. Stable overexpression of beta1 and beta5 subunits in WI38 established cell lines was shown to induce elevated expression levels of beta1 subunit in beta5 transfectants and vice versa. Transfectants possess increased proteasome activities and most importantly, increased capacity to cope better with various stresses. In summary these data demonstrate the central role of the proteasome during cellular senescence and survival as well as provide insights toward a better understanding of proteasome regulation.
Collapse
Affiliation(s)
- Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biological Research and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | | | | | | | | | | |
Collapse
|
22
|
Kirschner M, Pujol G, Radu A. Oligonucleotide microarray data mining: search for age-dependent gene expression. Biochem Biophys Res Commun 2002; 298:772-8. [PMID: 12419321 DOI: 10.1016/s0006-291x(02)02563-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Information on gene expression in colon tumors versus normal human colon was recently generated by an oligonucleotide microarray study. We used the associated database to search for genes that display age-dependent variations in expression. Statistically significant evidence was obtained that such genes are present in both the tumor and normal tissue databases. Besides the analysis of all genes included in the database, three subsets of genes were analyzed separately: genes controlled by p53, and genes coding for ribosomal proteins and for nuclear-encoded mitochondrial proteins. Among the genes controlled by p53 some show an age-dependent change in expression in tumor tissues, in the sense compatible with an activation of p53 at higher age. A decreased expression of some ribosomal genes at advanced age was detected both in tumor and normal tissues. No significant age-dependent expression could be detected for genes encoding mitochondrial proteins.
Collapse
Affiliation(s)
- Marc Kirschner
- Carl C. Icahn Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|