1
|
Haduch A, Bromek E, Kuban W, Basińska-Ziobroń A, Danek PJ, Alenina N, Bader M, Daniel WA. The effect of brain serotonin deficit (TPH2-KO) on the expression and activity of liver cytochrome P450 enzymes in aging male Dark Agouti rats. Pharmacol Rep 2023; 75:1522-1532. [PMID: 37848703 PMCID: PMC10661807 DOI: 10.1007/s43440-023-00540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Liver cytochrome P450 (CYP) greatly contributes to the metabolism of endogenous substances and drugs. Recent studies have demonstrated that CYP expression in the liver is controlled by the central nervous system via hormonal pathways. In particular, the expression of hepatic CYPs is negatively regulated by the brain serotoninergic system. The present study aimed to investigate changes in the function of the main liver drug-metabolizing CYP enzymes as a result of serotonin depletion in the brain of aging rats, caused by knockout of brain tryptophan hydroxylase gene (TPH2-KO). METHODS The hepatic CYP mRNA (qRT-PCR), protein level (Western blotting) and activity (HPLC), and serum hormone levels (ELISA) were measured in Dark Agouti wild-type (WT) male rats (mature 3.5-month-old and senescent 21-month-old) and in TPH2-KO senescent animals. RESULTS The expression/activity of the studied CYPs decreased with age in the liver of wild-type rats. The deprivation of serotonin in the brain of aging males decreased the mRNA level of most of the studied CYPs (CYP1A/2A/2B/3A), and lowered the protein level of CYP2C11 and CYP3A. In contrast, the activities of CYP2C11, CYP3A and CYP2C6 were increased. The expression of cytochrome b5 decreased in aging rats, but increased in TPH2-deficient senescent animals. The serum concentration of growth hormone declined in the aged and further dropped down in TPH2-deficient senescent rats. CONCLUSIONS Rat liver cytochrome P450 functions deteriorate with age, which may impair drug metabolism. The TPH2 knockout, which deprives brain serotonin, affects cytochrome P450 expression and activity differently in mature and senescent male rats.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basińska-Ziobroń
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité University Medicine, Berlin, Germany
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
2
|
Tancheva L, Kalfin R, Minchev B, Uzunova D, Tasheva K, Tsvetanova E, Georgieva A, Alexandrova A, Stefanova M, Solak A, Lazarova M, Hodzhev Y, Grigorova V, Yarkov D, Petkova-Kirova P. Memory Recovery Effect of a New Bioactive Innovative Combination in Rats with Experimental Dementia. Antioxidants (Basel) 2023; 12:2050. [PMID: 38136170 PMCID: PMC10740861 DOI: 10.3390/antiox12122050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease manifests as a complex pathological condition, with neuroinflammation, oxidative stress and cholinergic dysfunction being a few of the many pathological changes. Due to the complexity of the disease, current therapeutic strategies aim at a multitargeted approach, often relying on a combination of substances with versatile and complementary effects. In the present study, a unique combination of α-lipoic acid, citicoline, extracts of leaves from olive tree and green tea, vitamin D3, selenium and an immune-supporting complex was tested in scopolamine-induced dementia in rats. Using behavioral and biochemical methods, we assessed the effects of the combination on learning and memory, and elucidated the mechanisms of these effects. Our results showed that, compared to its components, the experimental combination was most efficient in improving short- and long-term memory as assessed by the step-through method as well as spatial memory as assessed by T-maze and Barnes maze underlined by decreases in AChE activity (p < 0.05) and LPO (p < 0.001), increases in SOD activity in the cortex (p < 0.05) and increases in catalase (p < 0.05) and GPx (p < 0.01) activities and BDNF (p < 0.001) and pCREB (p < 0.05) levels in the hippocampus. No significant histopathological changes or blood parameter changes were detected, making the experimental combination an effective and safe candidate in a multitargeted treatment of AD.
Collapse
Affiliation(s)
- Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov Str. 66, 2700 Blagoevgrad, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 21, 1113 Sofia, Bulgaria;
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
- National Sports Academy, Department of Physiology and Biochemistry, Acad. S. Mladenov Str. 21, 1700 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Ayten Solak
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
- Institute of Cryobiology and Food Technologies, Cherni Vrah Blvd 53, 1407 Sofia, Bulgaria
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Yordan Hodzhev
- National Center of Infectious and Parasitic Diseases, Yanko Sakazov Blvd 26, 1504 Sofia, Bulgaria;
| | - Valya Grigorova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Dobri Yarkov
- Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| |
Collapse
|
3
|
Basile GA, Iannuzzo F, Xerra F, Genovese G, Pandolfo G, Cedro C, Muscatello MRA, Bruno A. Cognitive and Mood Effect of Alpha-Lipoic Acid Supplementation in a Nonclinical Elder Sample: An Open-Label Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2358. [PMID: 36767724 PMCID: PMC9916195 DOI: 10.3390/ijerph20032358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Memory disorders are common among elder people, and nonclinical cognitive decline is commonly experienced with age. Preclinical investigations have explored the possible role of alpha-lipoic acid (ALA), a known antioxidant compound abundant in vegetables and animal tissues, in reducing oxidative stress in the aging brain and preventing cognitive decline. However, clinical evidence is limited, and the few existing results are contrasting. In addition, while most of the existing trials have been focused on the effects of ALA administration in Alzheimer's disease (AD) or other types of dementia, studies evaluating its effects on nonclinical elder population are still missing. METHODS In the present open-label, pilot study, fifteen elder patients (mean age: 84.5 ± 5.77) received ALA at a daily dose of 600 mg/day for 12 weeks. General cognitive function, executive function, and mood symptom assessment were carried out at baseline and at the endpoint. RESULTS Overall, ALA administration was generally well-tolerated (only one dropout due to gastrointestinal side effects). However, no statistically significant effects either on cognitive function, executive function, or mood were found. CONCLUSIONS Despite several limitations, our study found no evidence of positive effects on cognition and mood after ALA administration in elder people without the diagnosis of AD or cognitive impairment. Further clinical trials are needed to better investigate ALA effectiveness on cognition and mood in elder subjects.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| | - Fiammetta Iannuzzo
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| | - Francesco Xerra
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| | - Giovanni Genovese
- Psychiatry Unit, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| | - Gianluca Pandolfo
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
- Psychiatry Unit, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| | - Clemente Cedro
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
- Psychiatry Unit, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| | - Maria Rosaria Anna Muscatello
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
- Psychiatry Unit, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| | - Antonio Bruno
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
- Psychiatry Unit, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125 Messina, Italy
| |
Collapse
|
4
|
Arisha SM. Alpha-lipoic acid-role in improving both reserpine toxicity and paroxetine treatment in the cerebral cortex of albino rats; histological, ultrastructural, immunohistohemical and biochemical studies. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Reserpine is a monoamine depletory drug cause oxidative damage and used to induce depression-like features in rodent model. Paroxetine is an antidepressant drug that exerts its effects by inhibiting dopaminergic neurons although it may exert much pathological damage. Alpha-lipoic acid (ALA) is an endogenous antioxidant co-factor of important enzymatic complexes. The present study was aimed to elucidate the possible protective effect of ALA in the improvement of the deleterious cerebral cortex injury after reserpine and paroxetine treatment. Forty adult male albino rats were equally divided into 5 groups. Group I served as control group orally treated with saline solution all the experiment period. Group II animals orally treated with ALA (200 mg/kg/day) for six weeks. The induction of depression-like features occurred when the rest of animals were intraperitoneally treated with 25 mg/kg of reserpine once daily for consecutive 14 day. Then these animals were divided into; Group III (reserpine group) animals in this group were sacrificed on 15th day. Group IV; reserpine-treated animals were treated with paroxetine (20 mg/kg) daily for 6 weeks. Group V, animals in this group were received paroxetine and ALA daily for 6 weeks.
Results
Reserpine-treated rats showed disorganized layers of cerebral cortex with degenerative, apoptotic and necrotic changes. Ultrastructure changes include both pyramidal and granule cells with severe degenerative, necrotic and apoptotic features. The nuclei appeared pyknotic; irregular with chromatin condensation as well as the cytoplasm of these cells contained many degenerated organelles. In addition, a significant increase in total oxidative stress and decrease in total antioxidant capacity, norepinephrine, dopamine and serotonin levels were recorded. The same treatment showed significant decrease in proliferating cell nuclear antigen (PCNA) expression and significant increase in caspase-3 expression in the granule and pyramidal cells. After paroxetine-treatment these parameters were more or less similar to those observed in reserpine-treated ones. While an obvious improvement was appeared when animal treated with both paroxetine and ALA and; all parameters restored its normal features.
Conclusions
This study concluded that; ALA treatment attenuated the cerebral injury induced by reserpine and improved the effects of paroxetine in rats due to its anti-inflammatory, anti-apoptotic and antioxidant activities.
Collapse
|
5
|
S-nitrosoglutathione alleviates hyperglycemia-induced neurobehavioral deficits involving nitro-oxidative stress and aberrant monaminergic system. Nitric Oxide 2022; 122-123:35-44. [DOI: 10.1016/j.niox.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/07/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
|
6
|
Haduch A, Danek PJ, Kuban W, Pukło R, Alenina N, Gołębiowska J, Popik P, Bader M, Daniel WA. Cytochrome P450 2D (CYP2D) enzyme dysfunction associated with aging and serotonin deficiency in the brain and liver of female Dark Agouti rats. Neurochem Int 2022; 152:105223. [PMID: 34780807 DOI: 10.1016/j.neuint.2021.105223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Among the enzymes that support brain metabolism, cytochrome P450 (CYP) enzymes occupy an important place. These enzymes catalyze the biotransformation pathways of neuroactive endogenous substrates (neurosteroids, neurotransmitters) and are necessary for the detoxification processes. The aim of the present study was to assess changes in the CYP2D activity and protein level during the aging process and as a result of serotonin deficiency in the female brain. The CYP2D activity was measured in brain and liver microsomes of Dark Agouti wild type (WT) female rats (mature 15-week-old and senescent 18-month-old rats) and in tryptophan hydroxylase 2 (TPH2)-deficient senescent female rats. The CYP2D activity in mature WT Dark Agouti females was independent of the changing phases of the estrous cycle. In senescent WT females rats, the CYP2D activity and protein level were decreased in the cerebral cortex, hippocampus, cerebellum and liver, but increased in the brain stem. In the other examined structures (frontal cortex, hypothalamus, thalamus, striatum), the enzyme activity did not change. In aging TPH2-deficient females, the CYP2D activity and protein levels were decreased in the frontal cortex, hypothalamus and brain stem (activity only), remaining unchanged in other brain structures and liver, relative to senescent WT females. In summary, the aging process and TPH2 deficit affect the CYP2D activity and protein level in female rats, which may have a negative impact on the compensatory capacity of CYP2D in the synthesis of serotonin and dopamine in cerebral structures involved in cognitive and emotional functions. In the liver, the CYP2D-catalyzed drug metabolism may be diminished in elderly females. The results in female rats are compared with those obtained previously in males. It is concluded that aging and serotonin deficiency exert sex-dependent effects on brain CYP2D, which seem to be less favorable in females concerning CYP2D-mediated neurotransmitter synthesis, but beneficial regarding slower neurosteroid metabolism.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Renata Pukło
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Joanna Gołębiowska
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Institute for Biology, University of Lübeck, Germany; Charité University Medicine, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
7
|
Panagiotou M, Michel S, Meijer JH, Deboer T. The aging brain: sleep, the circadian clock and exercise. Biochem Pharmacol 2021; 191:114563. [PMID: 33857490 DOI: 10.1016/j.bcp.2021.114563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022]
Abstract
Aging is a multifactorial process likely stemming from damage accumulation and/or a decline in maintenance and repair mechanisms in the organisms that eventually determine their lifespan. In our review, we focus on the morphological and functional alterations that the aging brain undergoes affecting sleep and the circadian clock in both human and rodent models. Although both species share mammalian features, differences have been identified on several experimental levels, which we outline in this review. Additionally, we delineate some challenges on the preferred analysis and we suggest that a uniform route is followed so that findings can be smoothly compared. We conclude by discussing potential interventions and highlight the influence of physical exercise as a beneficial lifestyle intervention, and its effect on healthy aging and longevity. We emphasize that even moderate age-matched exercise is able to ameliorate several aging characteristics as far as sleep and circadian rhythms are concerned, independent of the species studied.
Collapse
Affiliation(s)
- M Panagiotou
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands.
| | - S Michel
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | - J H Meijer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | - T Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| |
Collapse
|
8
|
Haduch A, Pukło R, Alenina N, Nikiforuk A, Popik P, Bader M, Daniel WA. The effect of ageing and cerebral serotonin deficit on the activity of cytochrome P450 2D (CYP2D) in the brain and liver of male rats. Neurochem Int 2020; 141:104884. [PMID: 33091481 DOI: 10.1016/j.neuint.2020.104884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022]
Abstract
Brain cytochrome P450 (CYP) contributes to the local metabolism of endogenous substrates and drugs. The aim of present study was to ascertain whether the cytochrome P450 2D (CYP2D) activity changes with ageing and in cerebral serotonin deficit. Kinetics of 5-methoxytryptamine O-demethylation to serotonin was studied and the CYP2D activity was measured in brain and liver microsomes of Dark Agouti wild type (WT) rats (mature 3.5-month-old and senescent 21-month-old rats) and in tryptophan hydroxylase 2 (TPH2)-deficient senescent rats. The CYP2D activity and protein level decreased in the frontal cortex of senescent WT rats, but increased in senescent TPH2-deficient rats (compared to senescent WT). In contrast, in the hippocampus, hypothalamus and striatum the CYP2D activity/protein level increased with ageing, but did not change in senescent TPH2-deficient animals (compared to senescent WT). The activity and protein level of liver CYP2D was lower in senescent WT rats than in the mature animals and further decreased in senescent TPH2-deficient rats. In conclusion, ageing and TPH2-deficit affect the CYP2D activity and protein level, which may have a positive impact on neurotransmitter synthesis in brain structures involved in cognitive, emotional or motor functions, but a negative effect on drug metabolism in the liver.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Renata Pukło
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany; Institute for Biology, University of Lübeck, Germany; Charité University Medicine, Berlin, Germany
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
9
|
Liu HX, Zhou XQ, Jiang WD, Wu P, Liu Y, Zeng YY, Jiang J, Kuang SY, Tang L, Feng L. Optimal α-lipoic acid strengthen immunity of young grass carp (Ctenopharyngodon idella) by enhancing immune function of head kidney, spleen and skin. FISH & SHELLFISH IMMUNOLOGY 2018; 80:600-617. [PMID: 30018021 DOI: 10.1016/j.fsi.2018.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/14/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
This study was for the first time to investigate the effects of α-lipoic acid (LA) on growth and immune function of head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella). A total of 540 healthy grass carp (with initial body weight at 216.59 ± 0.33 g) were randomly divided into six groups and fed six separate diets with graded dietary levels of LA for 70 days. Un-supplemented group did not find LA and its concentrations in the other five diets were 203.25, 403.82, 591.42, 781.25 and 953.18 mg kg-1, respectively. After the growth trial, fish were challenged with A. hydrophila for 14 days. The results showed that, compared with the un-supplemented group, optimal LA improved lysozyme (LZ) and acid phosphatase (ACP) activities, enhanced complement 3 (C3), C4 and immunoglobulin (Ig) M contents and up-regulated hepcidin, liver expressed antimicrobial peptide (LEAP)-2A, LEAP-2B and β-defensin-1 mRNA levels in the head kidney, spleen and skin of young grass carp; meanwhile, optimal LA up-regulated anti-inflammatory cytokines transforming growth factor (TGF)-β1, TGF-β2, interleukin (IL)-4/13A (not IL-4/13B), IL-10 and IL-11 mRNA levels partly related to target of rapamycin (TOR) signaling and down-regulated pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interferon (IFN)-γ2, IL-1β, IL-6, IL-8, IL-12p40 (not IL-12p35), IL-15 (not in the skin) and IL-17D mRNA levels partially associated with nuclear factor-kappa B (NF-κB) signaling in the head kidney, spleen and skin of young grass carp. Above results indicated that optimal LA enhanced the immune function of head kidney, spleen and skin in fish. Interestingly, excessive LA decreased the growth and impaired the immune function of head kidney, spleen and skin in fish. Finally, on the basis of the percent weight gain (PWG), the ability against skin hemorrhage and lesion, the IgM content in the head kidney and the LZ activity in the spleen, the optimal dietary LA levels were estimated to be 315.37, 382.33, 353.19 and 318.26 mg kg-1 diet, respectively.
Collapse
Affiliation(s)
- Hua-Xi Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
10
|
Molz P, Schröder N. Potential Therapeutic Effects of Lipoic Acid on Memory Deficits Related to Aging and Neurodegeneration. Front Pharmacol 2017; 8:849. [PMID: 29311912 PMCID: PMC5732919 DOI: 10.3389/fphar.2017.00849] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022] Open
Abstract
The aging process comprises a series of organic alterations, affecting multiple systems, including the nervous system. Aging has been considered the main risk factor for the advance of neurodegenerative diseases, many of which are accompanied by cognitive impairment. Aged individuals show cognitive decline, which has been associated with oxidative stress, as well as mitochondrial, and consequently energetic failure. Lipoic acid (LA), a natural compound present in food and used as a dietary supplement, has been considered a promising agent for the treatment and/or prevention of neurodegenerative disorders. In spite of a number of preclinical studies showing beneficial effects of LA in memory functioning, and pointing to its neuroprotective potential effect, to date only a few studies have examined its effects in humans. Investigations performed in animal models of memory loss associated to aging and neurodegenerative disorders have shown that LA improves memory in a variety of behavioral paradigms. Moreover, cell and molecular mechanisms underlying LA effects have also been investigated. Accordingly, LA displays antioxidant, antiapoptotic, and anti-inflammatory properties in both in vivo and in vitro studies. In addition, it has been shown that LA reverses age-associated loss of neurotransmitters and their receptors, which can underlie its effects on cognitive functions. The present review article aimed at summarizing and discussing the main studies investigating the effects of LA on cognition as well as its cell and molecular effects, in order to improve the understanding of the therapeutic potential of LA on memory loss during aging and in patients suffering from neurodegenerative disorders, supporting the development of clinical trials with LA.
Collapse
Affiliation(s)
- Patrícia Molz
- Graduate Program in Medicine and Health Sciences, Faculty of Medicine, Pontifical Catholic University, Porto Alegre, Brazil
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Porto Alegre, Brazil
| | - Nadja Schröder
- Graduate Program in Medicine and Health Sciences, Faculty of Medicine, Pontifical Catholic University, Porto Alegre, Brazil
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Porto Alegre, Brazil
| |
Collapse
|
11
|
Brecht EJ, Barsz K, Gross B, Walton JP. Increasing GABA reverses age-related alterations in excitatory receptive fields and intensity coding of auditory midbrain neurons in aged mice. Neurobiol Aging 2017; 56:87-99. [PMID: 28532644 DOI: 10.1016/j.neurobiolaging.2017.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 03/18/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022]
Abstract
A key feature of age-related hearing loss is a reduction in the expression of inhibitory neurotransmitters in the central auditory system. This loss is partially responsible for changes in central auditory processing, as inhibitory receptive fields play a critical role in shaping neural responses to sound stimuli. Vigabatrin (VGB), an antiepileptic agent that irreversibly inhibits γ-amino butyric acid (GABA) transaminase, leads to increased availability of GABA throughout the brain. This study used multi-channel electrophysiology measurements to assess the excitatory frequency response areas in old CBA mice to which VGB had been administered. We found a significant post-VGB reduction in the proportion of V-type shapes, and an increase in primary-like excitatory frequency response areas. There was also a significant increase in the mean maximum driven spike rates across the tonotopic frequency range of all treated animals, consistent with observations that GABA buildup within the central auditory system increases spike counts of neural receptive fields. This increased spiking is also seen in the rate-level functions and seems to explain the improved low-frequency thresholds.
Collapse
Affiliation(s)
- Elliott J Brecht
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, USA; Global Center of Speech and Hearing Research, University of South Florida, Tampa, FL, USA
| | - Kathy Barsz
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Benjamin Gross
- Global Center of Speech and Hearing Research, University of South Florida, Tampa, FL, USA; Department of Physics, University of South Florida, Tampa, FL, USA
| | - Joseph P Walton
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, USA; Global Center of Speech and Hearing Research, University of South Florida, Tampa, FL, USA; Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
12
|
DeKorver NW, Lichty D, van der Hart M, Rassoulpour A, Bonasera SJ. Increased whole cerebellar serotonin in aged C57BL/6 mice. ACTA ACUST UNITED AC 2017; 2017. [PMID: 28894740 DOI: 10.19185/matters.201702000011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mobility and locomotor impairments have high prevalence, morbidity, and significant mortality in older adult populations. Cerebellar functional changes have been implicated in the pathogenesis of these age-related mobility and gait deficits unrelated to stroke, Parkinson's disease, or degenerative joint disease. We thus examined total cerebellar glutamate, glutamine, GABA, glycine, dopamine, norepinephrine, tryptophan, serotonin, alanine, threonine, and asparagine content from male 2-3-month (young, n = 6) and 21-24-month-old (aged, n = 6) C57BL/6 mice. Neurotransmitter and amino acid concentrations were determined by high-performance liquid chromatography followed with mass spectroscopy. We found a significant increase in cerebellar serotonin in aged versus young mice, but otherwise no significant phenotypic differences in measured neurotransmitter concentrations. Applying current thought about cerebellar aging and cerebellar serotonergic systems, we consider how this age-related increase in cerebellar serotonin may contribute to gait ataxia.
Collapse
Affiliation(s)
- Nicholas W DeKorver
- Internal Medicine, University of Nebraska Medical Center; Microdialysis, Brains Online
| | - Dustin Lichty
- Internal Medicine, University of Nebraska Medical Center; Microdialysis, Brains Online
| | - Marieke van der Hart
- Internal Medicine, University of Nebraska Medical Center; Microdialysis, Brains Online
| | - Arash Rassoulpour
- Internal Medicine, University of Nebraska Medical Center; Microdialysis, Brains Online
| | - Stephen J Bonasera
- Internal Medicine, University of Nebraska Medical Center; Microdialysis, Brains Online
| |
Collapse
|
13
|
Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res 2016; 176:52-71. [PMID: 26589391 DOI: 10.1016/j.schres.2015.06.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a well-recognized participant in the pathophysiology of multiple brain disorders, particularly neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. While not a dementia, a wide body of evidence has also been accumulating for aberrant reactive oxygen species and inflammation in schizophrenia. Here we highlight roles for oxidative stress as a common mechanism by which varied genetic and epidemiologic risk factors impact upon neurodevelopmental processes that underlie the schizophrenia syndrome. While there is longstanding evidence that schizophrenia may not have a single causative lesion, a common pathway involving oxidative stress opens the possibility for intervention at susceptible phases.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Anthony V Serritella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA.
| |
Collapse
|
14
|
Are Anxiety Disorders Associated with Accelerated Aging? A Focus on Neuroprogression. Neural Plast 2015; 2016:8457612. [PMID: 26881136 PMCID: PMC4736204 DOI: 10.1155/2016/8457612] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 12/16/2022] Open
Abstract
Anxiety disorders (AnxDs) are highly prevalent throughout the lifespan, with detrimental effects on daily-life functioning, somatic health, and quality of life. An emerging perspective suggested that AnxDs may be associated with accelerated aging. In this paper, we explored the association between AnxDs and hallmarks of accelerated aging, with a specific focus on neuroprogression. We reviewed animal and human findings that suggest an overlap between processes of impaired neurogenesis, neurodegeneration, structural, functional, molecular, and cellular modifications in AnxDs, and aging. Although this research is at an early stage, our review suggests a link between anxiety and accelerated aging across multiple processes involved in neuroprogression. Brain structural and functional changes that accompany normal aging were more pronounced in subjects with AnxDs than in coevals without AnxDs, including reduced grey matter density, white matter alterations, impaired functional connectivity of large-scale brain networks, and poorer cognitive performance. Similarly, molecular correlates of brain aging, including telomere shortening, Aβ accumulation, and immune-inflammatory and oxidative/nitrosative stress, were overrepresented in anxious subjects. No conclusions about causality or directionality between anxiety and accelerated aging can be drawn. Potential mechanisms of this association, limitations of the current research, and implications for treatments and future studies are discussed.
Collapse
|
15
|
Mahmoud YI, Mahmoud AA, Nassar G. Alpha-lipoic acid treatment of acetaminophen-induced rat liver damage. Biotech Histochem 2015; 90:594-600. [PMID: 26179071 DOI: 10.3109/10520295.2015.1063005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acetaminophen (paracetamol) is a well-tolerated analgesic and antipyretic drug when used at therapeutic doses. Overdoses, however, cause oxidative stress, which leads to acute liver failure. Alpha lipoic acid is an antioxidant that has proven effective for ameliorating many pathological conditions caused by oxidative stress. We evaluated the effect of alpha lipoic acid on the histological and histochemical alterations of liver caused by an acute overdose of acetaminophen in rats. Livers of acetaminophen-intoxicated rats were congested and showed centrilobular necrosis, vacuolar degeneration and inflammatory cell infiltration. Necrotic hepatocytes lost most of their carbohydrates, lipids and structural proteins. Liver sections from rats pre-treated with lipoic acid showed fewer pathological changes; the hepatocytes appeared moderately vacuolated with moderate staining of carbohydrates and proteins. Nevertheless, alpha lipoic acid at the dose we used did not protect the liver fully from acetaminophen-induced acute toxicity.
Collapse
Affiliation(s)
- Y I Mahmoud
- a Zoology Department, Faculty of Science , Ain Shams University , Cairo , Egypt
| | - A A Mahmoud
- a Zoology Department, Faculty of Science , Ain Shams University , Cairo , Egypt
| | - G Nassar
- a Zoology Department, Faculty of Science , Ain Shams University , Cairo , Egypt
| |
Collapse
|
16
|
Environmental enrichment induces neuroplastic changes in middle age female BalbC mice and increases the hippocampal levels of BDNF, p-Akt and p-MAPK1/2. Neuroscience 2014; 260:158-70. [DOI: 10.1016/j.neuroscience.2013.12.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 12/21/2022]
|
17
|
Nowack K, van der Meer E. Are larks future-oriented and owls present-oriented? Age- and sex-related shifts in chronotype–time perspective associations. Chronobiol Int 2013; 30:1240-50. [DOI: 10.3109/07420528.2013.815197] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Jaatinen P, Sarviharju M, Raivio N, Eriksson CJP, Hervonen A, Kiianmaa K. Effects of Lifelong Ethanol Consumption on Brain Monoamine Transmitters in Alcohol-Preferring Alko Alcohol (AA) Rats. Brain Sci 2013; 3:790-9. [PMID: 24961425 PMCID: PMC4061851 DOI: 10.3390/brainsci3020790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/02/2013] [Accepted: 05/07/2013] [Indexed: 11/16/2022] Open
Abstract
The purpose of the present study was to examine the combined effects of aging and lifelong ethanol exposure on the levels of monoamine neurotransmitters in different regions of the brain. This work is part of a project addressing interactions of aging and lifelong ethanol consumption in alcohol-preferring AA (Alko Alcohol) line of rats, selected for high voluntary consumption of ethanol. Intake of ethanol on the level of 4.5–5 g/kg/day for about 20 months induced only limited changes in the neurotransmitter levels; the concentration of noradrenaline was significantly reduced in the frontal cortex. There was also a trend towards lower levels of dopamine and 5-hydroxytryptamine (5-HT) in the frontal cortex, and towards a lower noradrenaline level in the dorsal cortex. Aging was associated with a decreased concentration of dopamine in the dorsal cortex and with a declining trend in the striatum. The levels of 5-HT in the limbic forebrain were higher in the aged than in the young animals, and in the striatum, there was a trend towards higher levels in older animals. The data suggest that a continuous intake of moderate amounts of ethanol does not enhance the age-related alterations in brain monoamine neurotransmission, while the decline in the brain level of dopamine associated with aging may be a factor contributing to age-related neurological disorders.
Collapse
Affiliation(s)
- Pia Jaatinen
- School of Medicine, University of Tampere, Tampere 33014, Finland.
| | - Maija Sarviharju
- Department of Alcohol, Drugs and Addiction, National Institute for Health and Welfare, Helsinki 00271, Finland.
| | - Noora Raivio
- Department of Alcohol, Drugs and Addiction, National Institute for Health and Welfare, Helsinki 00271, Finland.
| | - C J Peter Eriksson
- Department of Alcohol, Drugs and Addiction, National Institute for Health and Welfare, Helsinki 00271, Finland.
| | - Antti Hervonen
- School of Health Sciences, University of Tampere, Tampere 33014, Finland.
| | - Kalervo Kiianmaa
- Department of Alcohol, Drugs and Addiction, National Institute for Health and Welfare, Helsinki 00271, Finland.
| |
Collapse
|
19
|
Serotonin: from top to bottom. Biogerontology 2012; 14:21-45. [PMID: 23100172 DOI: 10.1007/s10522-012-9406-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/08/2012] [Indexed: 01/13/2023]
Abstract
Serotonin is a monoamine neurotransmitter, which is phylogenetically conserved in a wide range of species from nematodes to humans. In mammals, age-related changes in serotonin systems are known risk factors of age-related diseases, such as diabetes, faecal incontinence and cardiovascular diseases. A decline in serotonin function with aging would be consistent with observations of age-related changes in behaviours, such as sleep, sexual behaviour and mood all of which are linked to serotonergic function. Despite this little is known about serotonin in relation to aging. This review aims to give a comprehensive analysis of the distribution, function and interactions of serotonin in the brain; gastrointestinal tract; skeletal; vascular and immune systems. It also aims to demonstrate how the function of serotonin is linked to aging and disease pathology in these systems. The regulation of serotonin via microRNAs is also discussed, as are possible applications of serotonergic drugs in aging research and age-related diseases. Furthermore, this review demonstrates that serotonin is potentially involved in whole organism aging through its links with multiple organs, the immune system and microRNA regulation. Methods to investigate these links are discussed.
Collapse
|
20
|
Esrefoglu M, Iraz M, Ates B, Gul M. Melatonin and CAPE are Able to Prevent the Liver from Oxidative Damage in Rats: An Ultrastructural and Biochemical Study. Ultrastruct Pathol 2012; 36:171-8. [DOI: 10.3109/01913123.2011.647262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Guirado R, Sanchez-Matarredona D, Varea E, Crespo C, Blasco-Ibáñez JM, Nacher J. Chronic fluoxetine treatment in middle-aged rats induces changes in the expression of plasticity-related molecules and in neurogenesis. BMC Neurosci 2012; 13:5. [PMID: 22221403 PMCID: PMC3278353 DOI: 10.1186/1471-2202-13-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/05/2012] [Indexed: 01/26/2023] Open
Abstract
Background Antidepressants promote neuronal structural plasticity in young-adult rodents, but little is known of their effects on older animals. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) may mediate these structural changes through its anti-adhesive properties. PSA-NCAM is expressed in immature neurons and in a subpopulation of mature interneurons and its expression is modulated by antidepressants in the telencephalon of young-adult rodents. Results We have analyzed the effects of 14 days of fluoxetine treatment on the density of puncta expressing PSA-NCAM and different presynaptic markers in the medial prefrontal cortex, hippocampus and amygdala of middle-aged (8 months old) rats. The density of puncta expressing PSA-NCAM increased in the dorsal cingulate cortex, as well as in different hippocampal and amygdaloid regions. In these later regions there were also increases in the density of puncta expressing glutamic acid decarboxylase 65/67 (GAD6), synaptophysin (SYN), PSA-NCAM/SYN and PSA-NCAM/GAD6, but a decrease of those expressing vesicular glutamate transporter 1 (VGluT1). Since there is controversy on the effects of antidepressants on neurogenesis during aging, we analyzed the number of proliferating cells expressing Ki67 and that of immature neurons expressing doublecortin or PSA-NCAM. No significant changes were found in the subgranular zone, but the number of proliferating cells decreased in the subventricular zone. Conclusions These results indicate that the effects of fluoxetine in middle-aged rats are different to those previously described in young-adult animals, being more restricted in the mPFC and even following an opposite direction in the amygdala or the subventricular zone.
Collapse
Affiliation(s)
- Ramon Guirado
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Dpt., Universitat de València, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Marini S, Bagnoli S, Bessi V, Tedde A, Bracco L, Sorbi S, Nacmias B. Implication of serotonin-transporter (5-HTT) gene polymorphism in subjective memory complaints and mild cognitive impairment (MCI). Arch Gerontol Geriatr 2011; 52:e71-4. [PMID: 20599283 DOI: 10.1016/j.archger.2010.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/28/2022]
Abstract
Serotonin-transporter-linked polymorphism (5-HTTLPR) is involved in neuropsychiatric diseases and recently the S-isoform has been correlated with a higher risk of developing emotion-induced retrograde amnesia. In order to better clarify the possible role of the 5-HTT S/L polymorphism and its effects on cognitive ability, especially on memory skills, we report here the distributions of the 5-HTT genetic variant and the Apolipoprotein E (ApoE) ɛ-4 allele and their association with neuropsychological measures in older adults reporting problems with everyday memory. Moreover, we verified the presence of a possible association between the S-allele with depression and the personal trait of neuroticism. Our results indicate an association between the 5-HTTLPR S-allele and the risk of developing MCI. No association was found in the other three groups. We found a positive dose-dependent association between the S-allele and the Rey-Osterrieth complex figure test (recall) score. Finally, our data did not find an association between the same allele and depression or neuroticism. This data, in our opinion shows a slight, non-established influence of 5-HTTLPR on memory skills exhibited in challenging memory tests but no influence on other extra-mnesic cognitive abilities.
Collapse
Affiliation(s)
- Sandro Marini
- Department of Neurological and Psychiatric Sciences, University of Florence, Viale Morgagni 85, I-50134 Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Dixit S, Dhar P, Mehra RD. Protective role of exogenous α-lipoic acid (ALA) on hippocampal antioxidant status and memory function in rat pups exposed to sodium arsenite during the early post-natal period. Toxicol Mech Methods 2010; 21:216-24. [PMID: 21158692 DOI: 10.3109/15376516.2010.538751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present work focussed on the effect of exogenous α-lipoic acid (ALA) administration on retention memory and oxidative stress markers in the hippocampus subsequent to early post-natal exposure of rat pups to sodium arsenite (NaAsO(2)). Wistar rat pups were divided into the control groups receiving either no treatment (Ia) or distilled water by intraperitoneal route (i.p.) (Ib) and the experimental groups receiving either NaAsO(2) alone (1.5 and 2.0 mg/kg body wt.) (IIa, IIb) or NaAsO(2) (1.5 and 2.0 mg/kg body wt.) followed by ALA (70 mg/kg body wt.) (IIIa, IIIb) (i.p.) from post-natal day (PND) 4-15. The initial and retention transfer latency (ITL and RTL) was determined on PND 14 and 15 using elevated plus maze. The animals were sacrificed by cervical decapitation (PND 16) and the brains were obtained. The dissected out hippocampus was processed for estimation of oxidative stress markers, glutathione (GSH), and superoxide dismutase (SOD). NaAsO(2) exposure resulted in longer RTL in animal groups IIa and IIb, thereby suggestive of arsenic-induced impairment in retention memory. RTL was significantly shorter in animal groups (IIIa, IIIb) receiving ALA following NaAsO(2), thereby suggestive of improvement in retention memory. GSH and SOD levels were significantly decreased in animals receiving NaAsO(2) alone as against group Ib and administration of ALA following NaAsO(2) increased the levels of hippocampal GSH and SOD. These observations are suggestive of the role of exogenous ALA in ameliorating the adverse effects induced by NaAsO(2) exposure of rat pups on retention memory and oxidative stress markers.
Collapse
Affiliation(s)
- Shilpi Dixit
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi-110029, India
| | | | | |
Collapse
|
24
|
Couillard-Despres S, Wuertinger C, Kandasamy M, Caioni M, Stadler K, Aigner R, Bogdahn U, Aigner L. Ageing abolishes the effects of fluoxetine on neurogenesis. Mol Psychiatry 2009; 14:856-864. [PMID: 19139747 DOI: 10.1038/mp.2008.147] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/26/2008] [Accepted: 12/15/2008] [Indexed: 11/09/2022]
|
25
|
Late-onset dietary restriction compensates for age-related increase in oxidative stress and alterations of HSP 70 and synapsin 1 protein levels in male Wistar rats. Biogerontology 2009; 11:197-209. [PMID: 19609710 DOI: 10.1007/s10522-009-9240-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Accepted: 06/30/2009] [Indexed: 12/17/2022]
Abstract
Numerous reports implicate increased oxidative stress in the functional and structural changes occurring in the brain and other organs as a part of the normal aging process. Dietary restriction (DR) has long been shown to be life-prolonging intervention in several species. This study was aimed to assess the potential efficacy of late-onset short term DR when initiated in 21 months old male wistar rats for 3 months on the antioxidant defense system and lipid peroxidation, cellular stress response protein HSP 70 and synaptic marker protein synapsin 1 in discrete brain regions such as cortex, hypothalamus, and hippocampus as well as liver, kidney and heart from 24 month old rats. Age-associated decline in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione, and elevated levels of lipid peroxidation was observed in brain and peripheral organ as well as increased expression of HSP 70 and reduction in synapsin 1 was observed in brain studied. Late-onset short term DR was effective in partially restoring the antioxidant status and in decreasing lipid peroxidation level as well as enhancing the expression of HSP 70 and synapsin 1 in aged rats. Late onset short term DR also prevented age-related neurodegeneration as revealed by Fluoro-Jade B staining in hippocampus and cortex regions of rat brain. Thus our current results suggest that DR initiated even in old age has the potential to improve age related decline in body functions.
Collapse
|
26
|
Hudes ML, McCann JC, Ames BN. Unusual clustering of coefficients of variation in published articles from a medical biochemistry department in India. FASEB J 2008; 23:689-703. [DOI: 10.1096/fj.08-108910] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mark L. Hudes
- Children's Hospital Oakland Research InstituteOaklandCaliforniaUSA
| | - Joyce C. McCann
- Children's Hospital Oakland Research InstituteOaklandCaliforniaUSA
| | - Bruce N. Ames
- Children's Hospital Oakland Research InstituteOaklandCaliforniaUSA
| |
Collapse
|
27
|
Effect of co-enzyme Q10 and alpha-lipoic acid on response of rabbit urinary bladder to repetitive stimulation and in vitro ischemia. Urology 2008; 72:214-9. [PMID: 18280551 DOI: 10.1016/j.urology.2007.11.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 11/05/2007] [Accepted: 11/15/2007] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To determine the efficacy of coenzyme Q10 (CoQ10) and alpha-lipoic acid (alpha-LA), either alone or in combination, to protect the contractile responses of the rabbit urinary bladder from damage caused by repetitive stimulation in the presence or absence of in vitro ischemia. METHODS Four groups of New Zealand white rabbits (4 per group) were treated with vehicle (group 1), CoQ10 (group 2), alpha-LA (group 3), or CoQ10 plus alpha-LA (group 4) for 2 weeks. At the end of the treatment period, eight longitudinal strips from each rabbit bladder body were placed in oxygenated Tyrode's solution with glucose (normal physiologic medium). The strips were stimulated by field stimulation, carbachol, and KCl, and the responses were recorded. One half of the strips were switched for 1 hour to Tyrode's solution with no glucose equilibrated with nitrogen (ischemia medium). Simultaneously, all strips were subjected to 1 h of repetitive field stimulation followed by 1 hour of recovery in normal physiologic medium, and the responses to all stimuli were recorded again. RESULTS CoQ10 showed no protective effect. Alpha-LA resulted in increased contractile responses of the control bladder and showed a moderate protective effect for all forms of stimulation. The combination, however, showed a significantly greater increase in the contraction of the control bladder and a greater protective effect than alpha-LA alone. CONCLUSIONS The combination of alpha-LA and CoQ10 treatment enhanced the contractile response in normal medium and diminished the contractile dysfunction induced by repetitive field stimulation and ischemia.
Collapse
|
28
|
Pardon MC. Stress and ageing interactions: A paradox in the context of shared etiological and physiopathological processes. ACTA ACUST UNITED AC 2007; 54:251-73. [PMID: 17408561 DOI: 10.1016/j.brainresrev.2007.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 02/15/2007] [Accepted: 02/22/2007] [Indexed: 12/18/2022]
Abstract
Gerontology has made considerable progress in the understanding of the mechanisms underlying the ageing process and age-related neurodegenerative disorders. However, ways to improve quality of life in the elderly remain to be elucidated. It is now clear that stress and the ageing process share a number of underlying mechanisms bound in a very close, if not indissociable, relationship. The ageing process is regulated by the factors underlying the ability to adjust to stress, whilst stress has an influence on the life span and the quality of ageing. In addition, the ability to cope with stress in adulthood predicts life expectancy and quality of life at senescence. The ageing process and stress also share several common mechanisms, particularly in relation to the energy factor. Stress consumes energy and ageing may be considered as a cost of the energy expended to deal with the stressors to which the body is exposed throughout its lifetime. This suggests that the ageing process is associated with and/or a consequence of a long-lasting activation of the major stress responsive systems. However, despite common features, the interaction between stress and the ageing process gives rise to some paradoxes. Stress can either diminish or exacerbate the ageing process just as the ageing process can worsen or counter the effects of stress. There has been little attempt to understand how ageing and stress might interact to promote "successful" or pathological ageing. A key factor in this respect is the individual's ability to adapt to stress. Viewed from this angle, the quality of life of aged subjects may be improved through therapy designed to improve the tolerance to stress.
Collapse
Affiliation(s)
- Marie-Christine Pardon
- Institute of Neuroscience, School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
29
|
Buddhan S, Sivakumar R, Dhandapani N, Ganesan B, Anandan R. Protective effect of dietary squalene supplementation on mitochondrial function in liver of aged rats. Prostaglandins Leukot Essent Fatty Acids 2007; 76:349-55. [PMID: 17574827 DOI: 10.1016/j.plefa.2007.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 05/01/2007] [Accepted: 05/01/2007] [Indexed: 01/10/2023]
Abstract
Mitochondria are an important intracellular source and target of reactive oxygen species. The life span of a species is thought to be determined, in part, by the rate of mitochondrial damage inflicted by oxygen free radicals during the course of normal cellular metabolism. In the present study, we have investigated the protective effect of squalene supplementation for 15 days and 30 days on energy status and antioxidant defense system in liver mitochondria of 18 young and 18 aged rats. The dietary supplementation of 2% squalene significantly minimized aging associated alterations in mitochondrial energy status by maintaining the activities of TCA cycle enzymes (isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase) and respiratory marker enzymes (NADH dehydrogenase and cytochrome-c-oxidase) at higher level in the liver mitochondria of aged rats compared with unsupplemented controls. It exerted an antioxidant effect by inhibiting mitochondrial lipid peroxidation (malondialdehyde) in liver of young and aged rats. Supplementation with squalene also maintained the mitochondrial antioxidant defense system at higher rate by increasing the level of reduced glutathione and the activities of glutathione-dependent antioxidant enzymes (glutathione peroxidase and glutathione-S-transferase) and antiperoxidative enzymes (superoxide dismutase and catalase) in the liver of young and aged rats. The results of this study provide evidence that dietary supplementation with squalene can improve liver mitochondrial function during aging and minimize the age-associated disorders in which reactive oxygen species are a major cause.
Collapse
Affiliation(s)
- S Buddhan
- Department of Biochemistry, Vinayaka Mission's Research Foundation (Deemed University), Ariyanoor, Salem-636308, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
30
|
Payton A, Gibbons L, Davidson Y, Ollier W, Rabbitt P, Worthington J, Pickles A, Pendleton N, Horan M. Influence of serotonin transporter gene polymorphisms on cognitive decline and cognitive abilities in a nondemented elderly population. Mol Psychiatry 2005; 10:1133-9. [PMID: 16103887 DOI: 10.1038/sj.mp.4001733] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dysfunction of the serotonergic pathway disrupts normal cognitive functioning and is believed to be the underlying basis for a variety of psychiatric disorders. Two functional polymorphisms within the serotonin transporter (SLC6A4) gene (promoter 44 bp insertion/deletion (HTTLPR) and an intron two 16 or 17 bp variable number tandem repeat (VNTR2)) have been extensively studied in psychiatric conditions but not in the cognitive functioning of normal individuals. We have investigated these two polymorphisms for association with both the level of cognitive abilities and their decline with age using a cohort consisting of over 750 elderly nondemented individuals with a follow-up of up to 15 years. We found that volunteers homozygous for the VNTR2 12 allele had a faster rate of decline for all cognitive tests. This reached significance for both tests of fluid intelligence (novel problem solving) (AH1 P=0.002, AH2 P=0.014), the test of semantic memory (P=0.010) and general cognitive ability (P=0.006). No association was observed between the HTTLPR polymorphism and the rate of cognitive decline when analysed either independently or in combination with the VNTR2 polymorphism based on their influence on expression in vitro. No associations were observed between the two polymorphisms and the baseline level of cognitive abilities. This is only the second gene that has been reported to regulate the rate of cognitive decline in nondemented individuals and may be a target for the treatment of cognitive impairment in the elderly.
Collapse
Affiliation(s)
- A Payton
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
BACKGROUND In this article, we review a diverse body of research and draw conclusions about the usefulness, or lack there-of, of specific antioxidants in the prevention of Alzheimer's disease (AD). METHODS The National Library of Medicine's database was searched for the years 1996-2004 using the search terms "Alzheimer's, anti-oxidants, antioxidants." RESULTS Over 300 articles were identified and 187 articles were selected for inclusion based on relevance to the topic. Agents that show promise in helping prevent AD include: 1) aged garlic extract, 2) curcumin, 3) melatonin, 4) resveratrol, 5) Ginkgo biloba extract, 6) green tea, 7) vitamin C and 8) vitamin E. CONCLUSIONS While the clinical value of antioxidants for the prevention of AD is often ambiguous, some can be recommended based upon: 1) epidemiological evidence, 2) known benefits for prevention of other maladies, and 3) benign nature of the substance. Long-term, prospective studies are recommended.
Collapse
Affiliation(s)
- Bradford Frank
- Department of Psychiatry, University of Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | | |
Collapse
|
32
|
Abstract
The size and frequency of meals are fundamental aspects of nutrition that can have profound effects on the health and longevity of laboratory animals. In humans, excessive energy intake is associated with increased incidence of cardiovascular disease, diabetes, and certain cancers and is a major cause of disability and death in industrialized countries. On the other hand, the influence of meal frequency on human health and longevity is unclear. Both caloric (energy) restriction (CR) and reduced meal frequency/intermittent fasting can suppress the development of various diseases and can increase life span in rodents by mechanisms involving reduced oxidative damage and increased stress resistance. Many of the beneficial effects of CR and fasting appear to be mediated by the nervous system. For example, intermittent fasting results in increased production of brain-derived neurotrophic factor (BDNF), which increases the resistance of neurons in the brain to dysfunction and degeneration in animal models of neurodegenerative disorders; BDNF signaling may also mediate beneficial effects of intermittent fasting on glucose regulation and cardiovascular function. A better understanding of the neurobiological mechanisms by which meal size and frequency affect human health may lead to novel approaches for disease prevention and treatment.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
33
|
Mattson MP, Maudsley S, Martin B. A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1, BDNF and serotonin. Ageing Res Rev 2004; 3:445-64. [PMID: 15541711 DOI: 10.1016/j.arr.2004.08.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 08/06/2004] [Indexed: 12/24/2022]
Abstract
The ageing process and its associated diseases all involve perturbed energy metabolism, oxidative damage, and an impaired ability of the organism and its cells to cope with adversity. We propose that some specific signaling pathways in the brain may be important determinants of health during ageing. Among such specific signaling modalities are those activated in neurons by insulin-like growth factors (IGFs), brain-derived neurotrophic factor (BDNF) and serotonin. This triumvirate may be particularly important because of their cooperative influence on energy metabolism, food intake, stress responses and cardiovascular function. The health benefits to the periphery and central nervous system of dietary restriction and exercise may be mediated by this triumvirate of signals in the brain. At the molecular level, BDNF, serotonin and IGFs can all stimulate the production of proteins involved in cellular stress adaptation, growth and repair, neurogenesis, learning and memory and cell survival. The importance of this triumvirate is emphasized when it is seen that their general roles in energy metabolism, stress adaptation and disease resistance are conserved among diverse organisms consistent with important roles in the ageing process.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.
| | | | | |
Collapse
|
34
|
Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2004; 27:589-94. [DOI: 10.1016/j.tins.2004.08.001] [Citation(s) in RCA: 671] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Pardon MC, Hanoun N, Perez-Diaz F, Joubert C, Launay JM, Christen Y, Hamon M, Cohen-Salmon C. Long-term treatment with the antioxidant drug EGb 761 at senescence restored some neurobehavioral effects of chronic ultramild stress exposure seen in young mice. Neurobiol Aging 2004; 25:1067-83. [PMID: 15212832 DOI: 10.1016/j.neurobiolaging.2003.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 10/24/2003] [Indexed: 11/25/2022]
Abstract
In this study, we compared the effects of chronic ultramild stress (CUMS) exposure on decision-making behavior in a validated test, and on the stress responsive serotoninergic and dopaminergic systems in four age groups of B6D2F1 female mice (5-6, 11-12, 17-18 and 23-24 months old). The levels of serotonin (5-HT) and its metabolite 5-hydroxyindolacetic acid (5-HIAA) were measured in the brain stem, the cortex, the striatum and the hippocampus; the levels of dopamine (DA) and its metabolite dihydroxyphenylacetic acid (DOPAC) were measured in the brain stem and the striatum. The influence of a long-term treatment with the extract of Ginkgo biloba leaves EGb 761 (Tanakan) on age- and stress-related changes was also investigated in the two oldest age groups. In the absence of drug treatment, middle-age mice were the least efficient in making a decision, and senescent mice exhibited reduced levels of both 5-HT and DA and their metabolites in all the brain areas examined. CUMS facilitated evaluation and choice behavior in all age groups, but induced age-dependent reduction of hesitation, acceleration of information processing and reduction in serotoninergic neurotransmission. In senescent mice, EGb 761 reduced the impact of stress on evaluation and hesitation, and restored some stress-related neurobehavioral changes that were only seen in young mice, i.e. acceleration of information processing and reduction in brain 5-HIAA levels. Restoration of some plasticity of the serotoninergic systems might contribute to the stress alleviating influence of EGb 761 in old age.
Collapse
Affiliation(s)
- M-C Pardon
- IFR 70 des Neurosciences, CNRS UMR 7593, Hôpital de La Salpêtrière, Pavillon Clérambault, 47 Bd de l'hôpital, 75651 Paris Cedex 13, France.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Arivazhagan P, Panneerselvam C. Alpha-Lipoic Acid Increases Na+K+ATPase Activity and Reduces Lipofuscin Accumulation in Discrete Brain Regions of Aged Rats. Ann N Y Acad Sci 2004; 1019:350-4. [PMID: 15247042 DOI: 10.1196/annals.1297.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A convincing link between oxidative stress and neurodegenerative diseases has been found with the knowledge that it actually damages neuronal cells in culture. We analyzed the effect of DL-alpha-lipoic acid on lipofuscin and Na(+)K(+) ATPase in discrete brain regions of young and aged rats. In aged rats, the level of lipofuscin was increased, and the activity of Na(+)K(+)ATPase was decreased. Intraperitoneal administration of lipoic acid to aged rats led to a duration-dependent reduction and elevation in lipofuscin and enzyme activity, respectively, in the cortex, cerebellum, striatum, hippocampus, and hypothalamus of the brain. These results suggest that lipoic acid, a natural metabolic antioxidant, should be useful as a therapeutic tool in preventing neuronal dysfunction in aged individuals.
Collapse
Affiliation(s)
- P Arivazhagan
- Department of Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, 600 113, India
| | | |
Collapse
|