1
|
Role of myeloid-derived suppressor cells in tumor recurrence. Cancer Metastasis Rev 2023; 42:113-142. [PMID: 36640224 PMCID: PMC9840433 DOI: 10.1007/s10555-023-10079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The establishment of primary tumor cells in distant organs, termed metastasis, is the principal cause of cancer mortality and is a crucial therapeutic target in oncology. Thus, it is critical to establish a better understanding of metastatic progression for the future development of improved therapeutic approaches. Indeed, such development requires insight into the timing of tumor cell dissemination and seeding of distant organs resulting in occult lesions. Following dissemination of tumor cells from the primary tumor, they can reside in niches in distant organs for years or decades, following which they can emerge as an overt metastasis. This timeline of metastatic dormancy is regulated by interactions between the tumor, its microenvironment, angiogenesis, and tumor antigen-specific T-cell responses. An improved understanding of the mechanisms and interactions responsible for immune evasion and tumor cell release from dormancy would help identify and aid in the development of novel targeted therapeutics. One such mediator of dormancy is myeloid derived suppressor cells (MDSC), whose number in the peripheral blood (PB) or infiltrating tumors has been associated with cancer stage, grade, patient survival, and metastasis in a broad range of tumor pathologies. Thus, extensive studies have revealed a role for MDSCs in tumor escape from adoptive and innate immune responses, facilitating tumor progression and metastasis; however, few studies have considered their role in dormancy. We have posited that MDSCs may regulate disseminated tumor cells resulting in resurgence of senescent tumor cells. In this review, we discuss clinical studies that address mechanisms of tumor recurrence including from dormancy, the role of MDSCs in their escape from dormancy during recurrence, the development of occult metastases, and the potential for MDSC inhibition as an approach to prolong the survival of patients with advanced malignancies. We stress that assessing the impact of therapies on MDSCs versus other cellular targets is challenging within the multimodality interventions required clinically.
Collapse
|
2
|
NO news: S-(de)nitrosylation of cathepsins and their relationship with cancer. Anal Biochem 2022; 655:114872. [PMID: 36027970 DOI: 10.1016/j.ab.2022.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Tumor formation and progression have been much of a study over the last two centuries. Recent studies have seen different developments for the early diagnosis and treatment of the disease; some of which even promise survival of the patient. Cysteine proteases, mainly cathepsins have been unequivocally identified as putative worthy players of redox imbalance that contribute to the premonition and further progression of cancer by interfering in the normal extracellular and intracellular proteolysis and initiating a proteolytic cascade. The present review article focuses on the study of cancer so far, while establishing facts on how future studies focused on the cellular interrelation between nitric oxide (NO) and cancer, can direct their focus on cathepsins. For a tumor cell to thrive and synergize a cancerous environment, different mutations in the proteolytic and signaling pathways and the proto-oncogenes, oncogenes, and the tumor suppressor genes are made possible through cellular biochemistry and some cancer-stimulating environmental factors. The accumulated findings show that S-nitrosylation of cathepsins under the influence of NO-donors can prevent the invasion of cancer and cause cancer cell death by blocking the activity of cathepsins as well as the major denitrosylase systems using a multi-way approach. Faced with a conundrum of how to fill the gap between the dodging of established cancer hallmarks with cathepsin activity and gaining appropriate research/clinical accreditation using our hypothesis, the scope of this review also explores the interplay and crosstalk between S-nitrosylation and S-(de)nitrosylation of this protease and highlights the utility of charging thioredoxin (Trx) reductase inhibitors, low-molecular-weight dithiols, and Trx mimetics using efficient drug delivery system to prevent the denitrosylation or regaining of cathepsin activity in vivo. In foresight, this raises the prospect that drugs or novel compounds that target cathepsins taking all these factors into consideration could be deployed as alternative or even better treatments for cancer, though further research is needed to ascertain the safety, efficiency and effectiveness of this approach.
Collapse
|
3
|
Abu-Alghayth M, Vanhatalo A, Wylie LJ, McDonagh ST, Thompson C, Kadach S, Kerr P, Smallwood MJ, Jones AM, Winyard PG. S-nitrosothiols, and other products of nitrate metabolism, are increased in multiple human blood compartments following ingestion of beetroot juice. Redox Biol 2021; 43:101974. [PMID: 33940546 PMCID: PMC8111767 DOI: 10.1016/j.redox.2021.101974] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022] Open
Abstract
Ingested inorganic nitrate (NO3⁻) has multiple effects in the human body including vasodilation, inhibition of platelet aggregation, and improved skeletal muscle function. The functional effects of oral NO3⁻ involve the in vivo reduction of NO3⁻ to nitrite (NO2⁻) and thence to nitric oxide (NO). However, the potential involvement of S-nitrosothiol (RSNO) formation is unclear. We hypothesised that the RSNO concentration ([RSNO]) in red blood cells (RBCs) and plasma is increased by NO3⁻-rich beetroot juice ingestion. In healthy human volunteers, we tested the effect of dietary supplementation with NO3⁻-rich beetroot juice (BR) or NO3⁻-depleted beetroot juice (placebo; PL) on [RSNO], [NO3⁻] and [NO2⁻] in RBCs, whole blood and plasma, as measured by ozone-based chemiluminescence. The median basal [RSNO] in plasma samples (n = 22) was 10 (5–13) nM (interquartile range in brackets). In comparison, the median values for basal [RSNO] in the corresponding RBC preparations (n = 19) and whole blood samples (n = 19) were higher (p < 0.001) than in plasma, being 40 (30–60) nM and 35 (25–80) nM, respectively. The median RBC [RSNO] in a separate cohort of healthy subjects (n = 5) was increased to 110 (93–125) nM after ingesting BR (12.8 mmol NO3⁻) compared to a corresponding baseline value of 25 (21–31) nM (Mann-Whitney test, p < 0.01). The median plasma [RSNO] in another cohort of healthy subjects (n = 14) was increased almost ten-fold to 104 (58–151) nM after BR supplementation (7 × 6.4 mmol of NO3⁻ over two days, p < 0.01) compared to PL. In conclusion, RBC and plasma [RSNO] are increased by BR ingestion. In addition to NO2⁻, RSNO may be involved in dietary NO3⁻ metabolism/actions. Human ingestion of NO3⁻-rich beetroot juice caused increased plasma S-nitrosothiol levels compared with baseline. Beetroot juice ingestion also caused increased S-nitrosothiol and NO2⁻ levels in red blood cells compared with baseline. RSNO formation may contribute to the physiological effects of dietary NO3⁻.
Collapse
Affiliation(s)
- Mohammed Abu-Alghayth
- University of Exeter Medical School, College of Medicine and Health, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Lee J Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Sinead Tj McDonagh
- University of Exeter Medical School, College of Medicine and Health, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Christopher Thompson
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Stefan Kadach
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Paul Kerr
- Royal Devon and Exeter NHS Foundation Trust, Exeter, EX1 2PD, UK
| | - Miranda J Smallwood
- University of Exeter Medical School, College of Medicine and Health, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Paul G Winyard
- University of Exeter Medical School, College of Medicine and Health, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK.
| |
Collapse
|
4
|
Role of myeloid-derived suppressor cells in metastasis. Cancer Metastasis Rev 2021; 40:391-411. [PMID: 33411082 DOI: 10.1007/s10555-020-09947-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
The spread of primary tumor cells to distant organs, termed metastasis, is the principal cause of cancer mortality and is a critical therapeutic target in oncology. Thus, a better understanding of metastatic progression is critical for improved therapeutic approaches requiring insight into the timing of tumor cell dissemination and seeding of distant organs, which can lead to the formation of occult lesions. However, due to limitations in imaging techniques, primary tumors can only be detected when they reach a relatively large size (e.g., > 1 cm3), which, based on our understanding of tumor evolution, is 10 to 20 years (30 doubling times) following tumor initiation. Recent insights into the timing of metastasis are based on the genomic profiling of paired primary tumors and metastases, suggesting that tumor cell seeding of secondary sites occurs early during tumor progression and years prior to diagnosis. Following seeding, tumor cells may remain in a dormant state as single cells or micrometastases before emerging as overt lesions. This timeline and the role of metastatic dormancy are regulated by interactions between the tumor, its microenvironment, and tumor-specific T cell responses. An improved understanding of the mechanisms and interactions responsible for immune evasion and tumor cell release from dormancy would support the development of novel targeted therapeutics. We posit herein that the immunosuppressive mechanisms mediated by myeloid-derived suppressor cells (MDSCs) are a major contributor to tumor progression, and that these mechanisms promote tumor cell escape from dormancy. Thus, while extensive studies have demonstrated a role for MDSCs in the escape from adoptive and innate immune responses (T-, natural killer (NK)-, and B cell responses), facilitating tumor progression and metastasis, few studies have considered their role in dormancy. In this review, we discuss the role of MDSC expansion, driven by tumor burden, and its role in escape from dormancy, resulting in occult metastases, and the potential for MDSC inhibition as an approach to prolong the survival of patients with advanced malignancies.
Collapse
|
5
|
Reginato MM, Paiva DR, Sensato FR, Monteiro HP, Reis AKCA. Conformational study of the electronic interactions and nitric oxide release potential of new S‑nitrosothiols esters derivatives of ibuprofen, naproxen and phenyl acids substituted (SNO-ESTERS): Synthesis, infrared spectroscopy analysis and theoretical calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:132-142. [PMID: 30223247 DOI: 10.1016/j.saa.2018.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
The conformational study on the new S‑nitrosothiols esters (SNO-ESTERS): para-substituted (X = H, OMe, Cl and NO2) S‑nitrosothiol derivatives 2‑methyl‑2‑(sulfanyl)propyl phenylacetates (R1), 2‑(4‑isobutylphenyl)propanoate (ibuprofen, R2), and 2‑(4‑isobutylphenyl)propanoate of 2‑methyl‑2‑(nitrososulfanyl)propyl (naproxen, R3) was performed using infrared spectroscopy (IR) in solvents with increasing polarity (CCl4, CH3Cl, and CH3CN), and theoretical calculations, to determine the preferential conformer and the potential of these compounds to release nitric oxide (NO). S‑Nitrosothiols were synthesized by esterification reactions, using chlorides of the corresponding carboxylic acids, with good yields (~60%). IR results showed that these compounds presented only one conformation, and the experimental data were supported by the theoretical results obtained by density functional theory (DFT) calculations using the 6311+G (2df, 2p) basis set. The calculations revealed that all S‑nitrosothiols presented one preferential anticlinal (ac) geometric conformation, which agrees with the data obtained experimentally in CCl4. These conformers are stabilized by intramolecular hydrogen bonds. Examination of the geometry with regard to the RSNO group revealed that these compounds are preferentially in the trans (anti) conformation. The calculation of the orbital interactions using the Natural Bond Orbital (NBO) method showed that the nO(NO) → σ(SN)∗ hyper-conjugative interaction increases the SN bond length. The strong nS → π(NO)∗ interaction and electronic delocalization induces a partial π character to the SN bond. The weak σSN bond indicates strong delocalization of the electron pair in O (NO) by the nO(NO) → σ(SN)∗ interaction, thereby increasing the capacity of NO release from SNO-ESTERS.
Collapse
Affiliation(s)
- Marcelo Mota Reginato
- Department of Chemistry, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo - Campus Diadema, Brazil
| | - Derisvaldo Rosa Paiva
- Department of Chemistry, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo - Campus Diadema, Brazil
| | - Fabrício Ronil Sensato
- Department of Chemistry, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo - Campus Diadema, Brazil
| | - Hugo Pequeno Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy, Universidade Federal de São Paulo - Campus São Paulo, Brazil
| | - Adriana Karla Cardoso Amorim Reis
- Department of Chemistry, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo - Campus Diadema, Brazil.
| |
Collapse
|
6
|
Roos J, Peters M, Maucher IV, Kühn B, Fettel J, Hellmuth N, Brat C, Sommer B, Urbschat A, Piesche M, Vogel A, Proschak E, Blöcher R, Buscató E, Häfner AK, Matrone C, Werz O, Heidler J, Wittig I, Angioni C, Geisslinger G, Parnham MJ, Zacharowski K, Steinhilber D, Maier TJ. Drug-Mediated Intracellular Donation of Nitric Oxide Potently Inhibits 5-Lipoxygenase: A Possible Key to Future Antileukotriene Therapy. Antioxid Redox Signal 2018; 28:1265-1285. [PMID: 28699354 DOI: 10.1089/ars.2017.7155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIMS 5-Lipoxygenase (5-LO) is the key enzyme of leukotriene (LT) biosynthesis and is critically involved in a number of inflammatory diseases such as arthritis, gout, bronchial asthma, atherosclerosis, and cancer. Because 5-LO contains critical nucleophilic amino acids, which are sensitive to electrophilic modifications, we determined the consequences of a drug-mediated intracellular release of nitric oxide (NO) on 5-LO product formation by human granulocytes and on 5-LO-dependent pulmonary inflammation in vivo. RESULTS Clinically relevant concentrations of NO-releasing nonsteroidal anti-inflammatory drugs and other agents releasing NO intracellularly suppress 5-LO product synthesis in isolated human granulocytes via direct S-nitrosylation of 5-LO at the catalytically important cysteines 416 and 418. Furthermore, suppression of 5-LO product formation was observed in ionophore-stimulated human whole blood and in an animal model of pulmonary inflammation. INNOVATION Here, we report for the first time that drugs releasing NO intracellularly are efficient 5-LO inhibitors in vitro and in vivo at least equivalent to approved 5-LO inhibitors. CONCLUSION Our findings provide a novel mechanistic strategy for the development of a new class of drugs suppressing LT biosynthesis by site-directed nitrosylation. The results may also help to better understand the well-recognized anti-inflammatory clinically relevant actions of NO-releasing drugs. Furthermore, our study describes in detail a novel molecular mode of action of NO. Rebound Track: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Angel Lanas, Hartmut Kühn, Joan Clària, Orina Belton. Antioxid. Redox Signal. 28, 1265-1285.
Collapse
Affiliation(s)
- Jessica Roos
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany .,2 Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt , Frankfurt, Germany
| | - Marcus Peters
- 3 Department of Experimental Pneumology, Ruhr University Bochum , Bochum, Germany
| | - Isabelle V Maucher
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Benjamin Kühn
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Jasmin Fettel
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Nadine Hellmuth
- 2 Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt , Frankfurt, Germany
| | - Camilla Brat
- 2 Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt , Frankfurt, Germany
| | - Benita Sommer
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Anja Urbschat
- 4 Department of Urology and Pediatric Urology, University Hospital Marburg, Philipps-University Marburg , Marburg, Germany .,5 Department of Biomedicine, Aarhus University , Aarhus C, Denmark
| | - Matthias Piesche
- 5 Department of Biomedicine, Aarhus University , Aarhus C, Denmark .,6 Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule , Talca, Chile
| | - Anja Vogel
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany .,7 Project Group for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Frankfurt, Germany
| | - Ewgenij Proschak
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - René Blöcher
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Estella Buscató
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Ann-Kathrin Häfner
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Carmela Matrone
- 5 Department of Biomedicine, Aarhus University , Aarhus C, Denmark
| | - Oliver Werz
- 8 Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Friedrich Schiller University Jena , Jena, Germany
| | - Juliana Heidler
- 9 Department of Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University , Frankfurt, Germany
| | - Ilka Wittig
- 9 Department of Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University , Frankfurt, Germany
| | - Carlo Angioni
- 10 Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University , Frankfurt, Germany
| | - Gerd Geisslinger
- 7 Project Group for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Frankfurt, Germany .,10 Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University , Frankfurt, Germany
| | - Michael J Parnham
- 7 Project Group for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Frankfurt, Germany
| | - Kai Zacharowski
- 2 Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt , Frankfurt, Germany
| | - Dieter Steinhilber
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Thorsten J Maier
- 2 Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt , Frankfurt, Germany .,5 Department of Biomedicine, Aarhus University , Aarhus C, Denmark
| |
Collapse
|
7
|
Broniowska KA, Diers AR, Hogg N. S-nitrosoglutathione. Biochim Biophys Acta Gen Subj 2013; 1830:3173-81. [PMID: 23416062 DOI: 10.1016/j.bbagen.2013.02.004] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND S-Nitrosoglutathione (GSNO) is the S-nitrosated derivative of glutathione and is thought to be a critical mediator of the down stream signaling effects of nitric oxide (NO). GSNO has also been implicated as a contributor to various disease states. SCOPE OF REVIEW This review focuses on the chemical nature of GSNO, its biological activities, the evidence that it is an endogenous mediator of NO action, and implications for therapeutic use. MAJOR CONCLUSIONS GSNO clearly exerts its cellular actions through both NO- and S-nitrosation-dependent mechanisms; however, the chemical and biological aspects of this compound should be placed in the context of S-nitrosation as a whole. GENERAL SIGNIFICANCE GSNO is a central intermediate in formation and degradation of cellular S-nitrosothiols with potential therapeutic applications; thus, it remains an important molecule of study. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
|
8
|
Dunlap T, Piyankarage SC, Wijewickrama GT, Abdul-Hay S, Vanni M, Litosh V, Luo J, Thatcher GRJ. Quinone-induced activation of Keap1/Nrf2 signaling by aspirin prodrugs masquerading as nitric oxide. Chem Res Toxicol 2012; 25:2725-36. [PMID: 23035985 DOI: 10.1021/tx3003609] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The promising therapeutic potential of the NO-donating hybrid aspirin prodrugs (NO-ASA) includes induction of chemopreventive mechanisms and has been reported in almost 100 publications. One example, NCX-4040 (pNO-ASA), is bioactivated by esterase to a quinone methide (QM) electrophile. In cell cultures, pNO-ASA and QM-donating X-ASA prodrugs that cannot release NO rapidly depleted intracellular GSH and caused DNA damage; however, induction of Nrf2 signaling elicited cellular defense mechanisms including upregulation of NAD(P)H:quinone oxidoreductase-1 (NQO1) and glutamate-cysteine ligase (GCL). In HepG2 cells, the "NO-specific" 4,5-diaminofluorescein reporter, DAF-DA, responded to NO-ASA and X-ASA, with QM-induced oxidative stress masquerading as NO. LC-MS/MS analysis demonstrated efficient alkylation of Cys residues of proteins including glutathione-S-transferase-P1 (GST-P1) and Kelch-like ECH-associated protein 1 (Keap1). Evidence was obtained for alkylation of Keap1 Cys residues associated with Nrf2 translocation to the nucleus, nuclear translocation of Nrf2, activation of antioxidant response element (ARE), and upregulation of cytoprotective target genes. At least in cell culture, pNO-ASA acts as a QM donor, bioactivated by cellular esterase activity to release salicylates, NO(3)(-), and an electrophilic QM. Finally, two novel aspirin prodrugs were synthesized, both potent activators of ARE, designed to release only the QM and salicylates on bioactivation. Current interest in electrophilic drugs acting via Nrf2 signaling suggests that QM-donating hybrid drugs can be designed as informative chemical probes in drug discovery.
Collapse
Affiliation(s)
- Tareisha Dunlap
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois College of Pharmacy, 833 South Wood Street, Chicago, Illinois 60612, United States
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gresele P, Marzotti S, Guglielmini G, Momi S, Giannini S, Minuz P, Lucidi P, Bolli GB. Hyperglycemia-induced platelet activation in type 2 diabetes is resistant to aspirin but not to a nitric oxide-donating agent. Diabetes Care 2010; 33:1262-8. [PMID: 20299485 PMCID: PMC2875435 DOI: 10.2337/dc09-2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Acute, short-term hyperglycemia enhances high shear stress-induced platelet activation in type 2 diabetes. Several observations suggest that platelets in type 2 diabetes are resistant to inhibition by aspirin. Our aim was to assess comparatively the effect of aspirin, a nitric oxide-donating agent (NCX 4016), their combination, or placebo on platelet activation induced by acute hyperglycemia in type 2 diabetes. RESEARCH DESIGN AND METHODS In a double-blind, placebo-controlled, randomized trial, 40 type 2 diabetic patients were allocated to 100 mg aspirin once daily, 800 mg NCX 4016 b.i.d., both of them, or placebo for 15 days. On day 15, 1 h after the morning dose, a 4-h hyperglycemic clamp (plasma glucose 13.9 mmol/l) was performed, and blood samples were collected before and immediately after it for platelet activation and cyclooxygenase-1 (COX-1) inhibition studies. RESULTS Acute hyperglycemia enhanced shear stress-induced platelet activation in placebo-treated patients (basal closure time 63 +/- 7.1 s, after hyperglycemia 49.5 +/- 1.4 s, -13.5 +/- 6.3 s, P < 0.048). Pretreatment with aspirin, despite full inhibition of platelet COX-1, did not prevent it (-12.7 +/- 6.9 s, NS vs. placebo). On the contrary, pretreatment with the NO donor NCX 4016, alone or in combination with aspirin, suppressed platelet activation induced by acute hyperglycemia (NCX 4016 +10.5 +/- 8.3 s; NCX 4016 plus aspirin: +12.0 +/- 10.7 s, P < 0.05 vs. placebo for both). Other parameters of shear stress-dependent platelet activation were also more inhibited by NCX 4016 than by aspirin, despite lesser inhibition of COX-1. CONCLUSIONS Acute hyperglycemia-induced enhancement of platelet activation is resistant to aspirin; a NO-donating agent suppresses it. Therapeutic approaches aiming at a wider platelet inhibitory action than that exerted by aspirin may prove useful in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Paolo Gresele
- Section of Internal and Cardiovascular Medicine, Department of Internal Medicine, University of Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sengupta R, Billiar TR, Atkins JL, Kagan VE, Stoyanovsky DA. Nitric oxide and dihydrolipoic acid modulate the activity of caspase 3 in HepG2 cells. FEBS Lett 2009; 583:3525-30. [PMID: 19822150 DOI: 10.1016/j.febslet.2009.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/25/2009] [Accepted: 10/05/2009] [Indexed: 01/05/2023]
Abstract
Herein, we report that dihydrolipoic acid and lipoic acid (LA) plus lipoamide dehydrogenase and NADH denitrosate S-nitrosocaspase 3 (CASP-SNO). In HepG2 cells, S-nitroso-L-cysteine ethyl ester (SNCEE) impeded the activity of caspase 3 (CASP-SH), while a subsequent incubation of the cells in SNCEE-free medium resulted in endogenous denitrosation and reactivation of CASP-SH. The latter process was inhibited in thioredoxin reductase-deficient HepG2 cells, in which, however, LA markedly reactivated CASP-SH. The data obtained are discussed with focus on low molecular mass dithiols that mimic the activity of thioredoxin in reactions of protein S-denitrosation.
Collapse
Affiliation(s)
- Rajib Sengupta
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
11
|
Rao CV, Joseph S, Gao L, Patlolla JMR, Choi CI, Kopelovich L, Steele VE, Rigas B. Pharmacokinetic and pharmacodynamic study of NO-donating aspirin in F344 rats. Int J Oncol 2008; 33:799-805. [PMID: 18813794 PMCID: PMC2579329 DOI: 10.3892/ijo_00000067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Nitric oxide-donating aspirin (NO-ASA) represents class of promising chemopreventive NO-NSAIDs. NO-ASA combines the beneficial effects of ASA and the gut-sparing effect of the NO moiety. There is, however, limited information on its pharmacokinetic and pharmacodynamic effects in vivo. Herein, experiments were designed to identify the optimal dose, the effective route of administration, and targeted markers in plasma and colonic tissues of male F344 rats. Seven weeks old male F344 rats were randomized into 9 groups (16/group) and fed the control diet. At eight weeks of age, groups 2-5 were each administered one of four different doses of NO-ASA by gavage (33, 66, 132 and 264 mg/kg) and each of groups 6-9 were fed diets containing NO-ASA (35, 700, 1,400 and 2,800 ppm) for two weeks. Rats were sacrificed 2 and 10 h after completion of the two weeks of treatment with NO-ASA and plasma and colonic mucosa were collected and analyzed for NO-ASA, its metabolites, and PGE2 and TXB2 levels. Our results indicate that NO-ASA is rapidly metabolized, predominantly to salicylic acid; no intact NO-ASA was detected in plasma. Compared to diet-fed NO-ASA, gavaging generated much higher salicylic acid levels over a wide range of doses and a relatively broad time period (10 h). Regardless of its route of administration, NO-ASA lowered the levels of PGE2 in colonic tissues and plasma, as well as TxB2 in plasma in a dose- and time-dependent manner. These findings may have practical utility for the administration of NO-ASA to humans.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Department of Medicine, Hematology-Oncology Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Rigas B, Williams JL. NO-donating NSAIDs and cancer: an overview with a note on whether NO is required for their action. Nitric Oxide 2008; 19:199-204. [PMID: 18486630 DOI: 10.1016/j.niox.2008.04.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/18/2008] [Indexed: 12/11/2022]
Abstract
Nitric oxide-donating nonsteroidal anti-inflammatory drugs (NO-NSAIDs) consist of a conventional NSAID to which an NO-releasing moiety is attached covalently, often via a spacer molecule. NO-NSAIDs represent an emerging class of compounds with chemopreventive properties against a variety of cancers, demonstrated in preclinical models including cell culture systems and animal tumor models; their potential efficacy in humans has not been assessed. Their mechanism of action appears complex and involves the generation of reactive oxygen species, suppression of microsatellite instability in mismatch repair-deficient cells, and modulation of several signaling cascades that culminate in inhibited cell renewal and enhanced apoptosis. NO, long appreciated to be able to protect from and also promote cancer, is released form NO-NSAIDs and constitutes their defining property. Existing data are consistent with the notion that NO may mediate their anticancer effect. In addition there is evidence that long-term administration of NO-donating compounds is not associated with increased incidence of colon cancer. Whether NO release is required for the anticancer effect of NO-NSAIDs has being questioned by recent data indicating that, at least in the case of NO-aspirin, the NO-releasing moiety may serve as a leaving group while the spacer actually being the moiety responsible for its pharmacological action. Regardless of mechanistic issues, these compounds promise to contribute to the control of cancer.
Collapse
Affiliation(s)
- Basil Rigas
- Division of Cancer Prevention, Stony Brook University, Life Sciences Building, Stony Brook, NY 11794-5200, USA.
| | | |
Collapse
|
13
|
|
14
|
Fu Y, Wang Z, Chen WL, Moore PK, Zhu YZ. Cardioprotective effects of nitric oxide-aspirin in myocardial ischemia-reperfused rats. Am J Physiol Heart Circ Physiol 2007; 293:H1545-52. [PMID: 17526656 DOI: 10.1152/ajpheart.00064.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the cardioprotective effects of nitric oxide (NO)-aspirin, the nitroderivative of aspirin, were compared with those of aspirin in an anesthetized rat model of myocardial ischemia-reperfusion. Rats were given aspirin or NO-aspirin orally for 7 consecutive days preceding 25 min of myocardial ischemia followed by 48 h of reperfusion (MI/R). Treatment groups included vehicle (Tween 80), aspirin (30 mg·kg−1·day−1), and NO-aspirin (56 mg·kg−1·day−1). NO-aspirin, compared with aspirin, displayed remarkable cardioprotection in rats subjected to MI/R as determined by the mortality rate and infarct size. Mortality rates for vehicle ( n = 23), aspirin ( n = 22), and NO-aspirin groups ( n = 22) were 34.8, 27.3, and 18.2%, respectively. Infarct size of the vehicle group was 44.5 ± 2.7% of the left ventricle (LV). In contrast, infarct size of the LV decreased in the aspirin- and NO-aspirin-pretreated groups, 36.7 ± 1.8 and 22.9 ± 4.3%, respectively (both P < 0.05 compared with vehicle group; P < 0.05, NO-aspirin vs. aspirin ). Moreover, NO-aspirin also improved ischemiareperfusion-induced myocardial contractile dysfunction on postischemic LV developed pressure. In addition, NO-aspirin downregulated inducible NO synthase (iNOS; 0.37-fold, P < 0.01) and cyclooxygenase-2 (COX-2; 0.61-fold, P < 0.05) gene expression compared with the vehicle group after 48 h of reperfusion. Treatment with NG-nitro-l-arginine methyl ester (l-NAME; 20 mg/kg), a nonselective NOS inhibitor, aggravated myocardial damage in terms of mortality and infarct size but attenuated effects when coadministered with NO-aspirin. l-NAME administration did not alter the increase in iNOS and COX-2 expression but did reverse the NO-aspirin-induced inhibition of expression of the two genes. The beneficial effects of NO-aspirin appeared to be derived largely from the NO moiety, which attenuated myocardial injury to limit infarct size and better recovery of LV function following ischemia and reperfusion.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Aspirin/analogs & derivatives
- Aspirin/pharmacology
- Aspirin/therapeutic use
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cyclooxygenase 1/genetics
- Cyclooxygenase 1/metabolism
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Enzyme Inhibitors/pharmacology
- Heart Rate/drug effects
- Heart Rate/physiology
- Male
- Myocardial Infarction/pathology
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/prevention & control
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Random Allocation
- Rats
- Rats, Wistar
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left/drug effects
- Ventricular Function, Left/physiology
Collapse
Affiliation(s)
- Yilong Fu
- Cardiovascular Biology Research Group, National University of Singapore
| | | | | | | | | |
Collapse
|
15
|
Andrews P, Zhao X, Allen J, Li F, Chang M. A comparison of the effectiveness of selected non-steroidal anti-inflammatory drugs and their derivatives against cancer cells in vitro. Cancer Chemother Pharmacol 2007; 61:203-14. [PMID: 17447067 DOI: 10.1007/s00280-007-0462-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 03/06/2007] [Indexed: 12/21/2022]
Abstract
PURPOSE Previously, we reported in vitro observations suggesting that ibuprofen is an effective non-prescription non-steroidal anti-inflammatory drug (NSAID) to reduce the survival of human prostate cancer cells (Andrews et al. in Cancer Chemother Pharmacol 502:77-284, 2002), and that this observed effectiveness is mediated by an up-regulation of the p75 NTR tumor suppressor (Khwaja et al. in Cancer Res 646:207-6213, 2004). However, other NSAIDs and their derivatives have received significant attention with regard to their anti-cancer effectiveness and have been selected for clinical trials to treat a variety of human cancers. In this investigation, we compared celecoxib, sulindac sulfone, nitric oxide linked NSAIDs, and R-flurbiprofen with ibuprofen in their ability to inhibit the growth of a variety of human cancer cells lines including cells lines with multi-drug resistance. We also evaluated whether, like ibuprofen, an up-regulation of p75 NTR is a molecular mechanism that mediates the anti-growth effectiveness of these drugs. MATERIALS AND METHODS Selected dosages for each drug were evaluated for their ability to reduce the growth (MTT analysis) and induce apoptosis (Hoechst staining) of a variety of different cancer cell lines, including an ovarian cell line expressing multidrug resistance-1 glycoprotein (MDR-1). The drugs were then analyzed using immunoblot, RT-PCR and siRNA to study the role of p75 NTR in their anti-growth effectiveness. RESULTS Our study revealed consistency in the drug dosages that inhibit the survival of different human cancer cell lines. While NO-linked aspirin and celecoxib were most effective in decreasing cell growth and inducing apoptosis at the lowest dosages, R-flurbiprofen and ibuprofen were most effective at clinically relevant dosages. A multidrug resistant ovarian cell line is more resistant to growth inhibition by the drugs tested than its non-drug resistant parental counterpart. There was no correlation between the expression of cyclooxygenase-2 (COX-2) and the ability of the drugs to reduce cancer cell survival. All the drugs tested induced an up-regulation in p75 NTR tumor suppressor gene expression in concert with their observed growth inhibiting ability. Inhibition of p75 NTR expression with siRNA reduced the cell growth inhibiting effects of all the drugs tested. CONCLUSIONS The method of chemotherapy (i.e., intravascular, intrathecal, oral) might dictate the choice of NSAID/NSAID derivative used to treat/prevent a given type of cancer. Also, the p75 NTR tumor suppressor appears to be a common molecular mechanism that mediates the growth inhibiting effectiveness of these drugs.
Collapse
Affiliation(s)
- Peter Andrews
- Department of Cell Biology, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington, DC 20007, USA.
| | | | | | | | | |
Collapse
|
16
|
Gresele P, Momi S. Pharmacologic Profile and Therapeutic Potential of NCX 4016, a Nitric Oxide-releasing Aspirin, for Cardiovascular Disorders. ACTA ACUST UNITED AC 2006; 24:148-68. [PMID: 16961726 DOI: 10.1111/j.1527-3466.2006.00148.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
NCX 4016, 2-(acetyloxy)benzoic acid 3-[(nitrooxy)methyl]phenyl ester, is a new molecule in which a nitric oxide (NO)-releasing moiety is covalently linked to aspirin. After enzymatic metabolism, NCX 4016 releases both components. In vitro and in some animal models, these components exert their pharmacologic effects simultaneously. Nitric oxide (NO) is a small gaseous molecule that exerts several activities which may prevent atherothrombotic disorders. Moreover, it displays a protective activity on the gastric mucosa. NCX 4016 has been shown to inhibit platelet activation in vitro more effectively than aspirin, to inhibit smooth muscle cell proliferation, to exert an endothelial cell protective activity and to suppress the function of several inflammatory cells potentially involved in atherothrombosis. In animal models, NCX 4016 protected from platelet thromboembolism, prevented restenosis in atherosclerosis-prone animals, protected the heart from ischemia/reperfusion injury, and induced neoangiogenesis in critically ischemic limbs. Moreover, it displayed little or no gastric toxicity and appeared to protect stomach from noxious stimuli, including aspirin. NCX 4016 has been evaluated in healthy volunteers and found to inhibit platelet cyclo-oxygenase-1 (COX-1) similarly to or slightly less than aspirin, to raise the circulating levels of NO-degradation products, and to have little or no gastric toxicity in short term studies. In particular, in phase II studies, NCX 4016 had favorable effects on effort-induced endothelial dysfunction in intermittent claudication and on platelet-activation parameters elicited by short-term hyperglycemia in type II diabetics. In patients with type II diabetes the effects of NCX 4016 on microalbuminuria and on some hemodynamic parameters were promising. The pharmacokinetics of in vivo aspirin- and NO- released by NCX 4016, as well as the bioavailability of the two molecules, were not yet adequately studied. Also, the long-term tolerability of NCX 4016, as well as its possible effectiveness in preventing ischemic cardiovascular events and progression of atherosclerosis, should be explored.
Collapse
Affiliation(s)
- Paolo Gresele
- Department of Internal Medicine, Division of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy.
| | | |
Collapse
|
17
|
Bolla M, Momi S, Gresele P, Del Soldato P. Nitric oxide-donating aspirin (NCX 4016): an overview of its pharmacological properties and clinical perspectives. Eur J Clin Pharmacol 2005. [DOI: 10.1007/s00228-005-0026-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Dhawan V, Schwalb DJ, Shumway MJ, Warren MC, Wexler RS, Zemtseva IS, Zifcak BM, Janero DR. Selective nitros(yl)ation induced in vivo by a nitric oxide-donating cyclooxygenase-2 inhibitor: a NObonomic analysis. Free Radic Biol Med 2005; 39:1191-207. [PMID: 16214035 DOI: 10.1016/j.freeradbiomed.2005.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 06/14/2005] [Accepted: 06/20/2005] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) enhances anti-inflammatory drug action. Through a metabonomics approach termed "NObonomics," the effects of a prototypic NO donor (organic nitrate)-cyclooxygenase-2 inhibitor hybrid (NO-coxib), NMI-1093, on the NO metabolite status of the circulation and major organs have been profiled in vivo in the rat. An oral anti-inflammatory NMI-1093 bolus elicited acute tissue-, time-, and dose-dependent changes in oxidative and nitroso/nitrosyl NO metabolites. Gastric N-nitrosation and hepatic S-nitrosation and heme nitrosylation emerged as sensitive indices of this NO-coxib's metabolism. Acute NMI-1093-induced nitros(yl)ation correlated positively as a function of nitrate plus nitrite formation across all organs examined, suggesting a unifying in vivo mechanism consequent to NMI-1093 biotransformation that links oxidative and nitros(yl)ative routes of NO chemical biology and thereby may support downstream NO signaling. NMI-1093 depressed erythrocyte nitros(yl)ation, likely by inhibiting cellular carbonic anhydrase and shifting the intracellular balance between nitrogen oxides and carbonates. Glutathione-S-transferase or cytochrome P450 inhibitors also attenuated NMI-1093's NO metabolism in a compartment-selective fashion. Although not itself a NO donor, the des-nitro coxib analog of NMI-1093 influenced basal NO metabolite profiles, implicating a cyclooxygenase-NO synthase interaction in physiological NO regulation. By detailing the global NO metrics of a unique coxib bearing a popular NO-donor pharmacophore (i.e., a nitrate moiety) and defining some critical mechanistic determinants, this study demonstrates how NObonomics can serve as valuable tool in helping elucidate NO systems biology and the effect of NO-donor and non-NO-donating therapeutics thereon.
Collapse
Affiliation(s)
- Vijay Dhawan
- NitroMed, Inc., 125 Spring Street, Lexington, MA 02421-7801, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Corazzi T, Leone M, Maucci R, Corazzi L, Gresele P. Direct and irreversible inhibition of cyclooxygenase-1 by nitroaspirin (NCX 4016). J Pharmacol Exp Ther 2005; 315:1331-7. [PMID: 16144976 DOI: 10.1124/jpet.105.089896] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Benzoic acid, 2-(acetyl-oxy)-3-[(nitrooxy)methyl]phenyl ester (NCX 4016), a new drug made by an aspirin molecule linked, through a spacer, to a nitric oxide (NO)-donating moiety, is now under clinical testing for the treatment of atherothrombotic conditions. Aspirin exerts its antithrombotic activity by irreversibly inactivating platelet cyclooxygenase (COX)-1. NCX 4016 in vivo undergoes metabolism into deacetylated and/or denitrated metabolites, and it is not known whether NCX 4016 needs to liberate aspirin to inhibit COX-1, or whether it can block it as a whole molecule. The aim of our study was to evaluate the effects of NCX 4016 and its analog or metabolites on platelet COX-1 and whole blood COX-2 and on purified ovine COX (oCOX)-1 and oCOX-2. In particular, we have compared the mechanism by which NCX 4016 inhibits purified oCOX enzymes with that of aspirin using a spectrophotometric assay. All the NCX 4016 derivatives containing acetylsalicylic acid inhibited the activity of oCOX-1 and oCOX-2, whereas the deacetylated metabolites and the nitric oxide-donating moiety were inactive. Dialysis experiments showed that oCOX-1 inhibition by NCX 4016, similar to aspirin, is irreversible. Reversible COX inhibitors (indomethacin) or salicylic acid incubated with the enzyme before NCX 4016 prevent the irreversible inhibition of oCOX-1 by NCX 4016 as well as by aspirin. In conclusion, our data show that NCX 4016 acts as a direct and irreversible inhibitor of COX-1 and that the presence of a spacer and NO-donating moiety in the molecule slows the kinetics of COX-1 inhibition by NCX 4016, compared with aspirin.
Collapse
Affiliation(s)
- Teresa Corazzi
- Department of Internal Medicine, Division of Internal and Cardiovascular Medicine, University of Perugia, Via Enrico dal Pozzo, 06126, Perugia, Italy
| | | | | | | | | |
Collapse
|