1
|
Silva-Rodrigues G, de Castro IM, Borges PHG, Suzukawa HT, de Souza JM, Bartolomeu-Gonçalves G, Pelisson M, Medeiros CIS, Bispo MDLF, de Almeida RSC, Ishida K, Tavares ER, Yamauchi LM, Yamada-Ogatta SF. Geraniol Potentiates the Effect of Fluconazole against Planktonic and Sessile Cells of Azole-Resistant Candida tropicalis: In Vitro and In Vivo Analyses. Pharmaceutics 2024; 16:1053. [PMID: 39204397 PMCID: PMC11360560 DOI: 10.3390/pharmaceutics16081053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Candida tropicalis is regarded as an opportunistic pathogen, causing diseases ranging from superficial infections to life-threatening disseminated infections. The ability of this yeast to form biofilms and develop resistance to antifungals represents a significant therapeutic challenge. Herein, the effect of geraniol (GER), alone and combined with fluconazole (FLZ), was evaluated in the planktonic and sessile cells of azole-resistant C. tropicalis. GER showed a time-dependent fungicidal effect on the planktonic cells, impairing the cell membrane integrity. Additionally, GER inhibited the rhodamine 6G efflux, and the molecular docking analyzes supported the binding affinity of GER to the C. tropicalis Cdr1 protein. GER exhibited a synergism with FLZ against the planktonic and sessile cells, inhibiting the adhesion of the yeast cells and the viability of the 48-h biofilms formed on abiotic surfaces. C. tropicalis biofilms treated with GER, alone or combined with FLZ, displayed morphological and ultrastructural alterations, including a decrease in the stacking layers and the presence of wilted cells. Moreover, neither GER alone nor combined with FLZ caused toxicity, and both treatments prolonged the survival of the Galleria mellonella larvae infected with azole-resistant C. tropicalis. These findings indicate that the combination of GER and FLZ may be a promising strategy to control azole-resistant C. tropicalis infections.
Collapse
Affiliation(s)
- Gislaine Silva-Rodrigues
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Isabela Madeira de Castro
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Paulo Henrique Guilherme Borges
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Helena Tiemi Suzukawa
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Joyce Marinho de Souza
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Guilherme Bartolomeu-Gonçalves
- Postgraduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil
| | - Marsileni Pelisson
- Postgraduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil
| | | | - Marcelle de Lima Ferreira Bispo
- Synthesis of Medicinal Molecules Laboratory, Department of Chemistry, State University of Londrina, Londrina 86057-970, Brazil;
| | - Ricardo Sérgio Couto de Almeida
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil;
| | - Eliandro Reis Tavares
- Department of Medicine, Pontifical Catholic University of Paraná, Campus Londrina, Londrina 86067-000, Brazil;
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil
| | - Lucy Megumi Yamauchi
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
- Postgraduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
2
|
Owotade FJ, Gulube Z, Patel M. Oral Candida albicans strain diversity and maintenance in HIV positive women in South Africa. Arch Oral Biol 2024; 164:106007. [PMID: 38795522 DOI: 10.1016/j.archoralbio.2024.106007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVE This study investigated C. albicans strain diversity and maintenance in the oral cavity of HIV positive women over a 6 month period. STUDY DESIGN C. albicans strains were isolated from 17 HIV positive women at Charlotte Maxeke Academic Hospital, Johannesburg at 3 intervals over a 6 month period. Strains were genotyped using ABC and Multilocus Sequence Typing (MLST) techniques. In the MLST technique, for each strain, a Diploid Sequence Type (DST) number was obtained. Using cluster analysis, an Unweighted Pair Group Method with Arithmetic Mean (UPGMA) dendrogram and a matrix of strain similarities were generated. Strains were also compared to the previous South African isolates documented in the MLST database. RESULTS Ninety four percent of women carried the same ABC genotype for 6 months. MLST technique, showed that ten women (58.8%) carried the same DST at 2 visits, while seven (41.2%) carried different DST at all visits. Further analysis showed that 64.7% of women were recolonised with different strains and 35.3% carried the same strains of C. albicans with heterozygosity. A total of 40 diploid sequence types were identified of which 27 DSTs were unique to this study group that were added to the MLST database. Most of the strains were closely related to previously isolated strains from South Africa. CONCLUSION Recolonization of the oral cavity with different strains and microevolution of the original strains of C. albicans can occur, which can be a potential problem for HIV patients, in whom highly virulent and drug resistant strains can emerge.
Collapse
Affiliation(s)
- F J Owotade
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, South Africa; Faculty of Dentistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Z Gulube
- Department of Oral Biological Sciences School of Oral Health Sciences, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa
| | - M Patel
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, South Africa.
| |
Collapse
|
3
|
Genetic Diversity of Candida spp. Isolates Colonizing Twins and Their Family Members. Pathogens 2022; 11:pathogens11121532. [PMID: 36558865 PMCID: PMC9783311 DOI: 10.3390/pathogens11121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
A wide range of options for studying Candida species are available through genetic methods. Twins, particularly monozygotic ones and their families may be fitting subjects for studying those microorganisms. The question is: How specific can yeast flora be in an individual? The study aimed to analyze the strain relatedness among commensal yeasts isolated from various parts of the bodies of healthy people and to compare correlations between the genotypes of the isolates. Yeasts were isolated from 63 twins and their family members (n = 25) from the oral cavity, anus, interdigital space and navel. After species identification, Candida albicans (n = 139), C. parapsilosis (n = 39), C. guilliermondii (n = 25), C. dubliniensis (n = 11) and C. krusei (n = 9) isolates were analyzed using the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) optimization method. The similarities between the strains were calculated based on the Dice (Sab) coefficient and are displayed graphically as dendrograms. Using cluster analysis, the following relatedness was distinguished: 13 genotypes and three unique (Un) patterns among C. albicans; 10 genotypes and four Un patterns among C. parapsilosis; three genotypes and one Un pattern among C. guilliermondii and C. dubliniensis; and three genotypes among C. krusei isolates. The presence of identical, similar or both genotypes among the strains isolated from family members shows the transmission of yeasts between ontocenoses in the same person and between individuals. The similarity between the genotypes of C. albicans, C. guilliermondii, C. dubliniensis and C. krusei was more remarkable than between the genotypes of C. parapsilosis in the strains isolated from ontocenoses of the same individual and their family members. The degrees of genetic similarity between Candida spp. strains isolated from monozygotic twins and those obtained from their relatives did not differ.
Collapse
|
4
|
Begum N, Lee S, Portlock TJ, Pellon A, Nasab SDS, Nielsen J, Uhlen M, Moyes DL, Shoaie S. Integrative functional analysis uncovers metabolic differences between Candida species. Commun Biol 2022; 5:1013. [PMID: 36163459 PMCID: PMC9512779 DOI: 10.1038/s42003-022-03955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Candida species are a dominant constituent of the human mycobiome and associated with the development of several diseases. Understanding the Candida species metabolism could provide key insights into their ability to cause pathogenesis. Here, we have developed the BioFung database, providing an efficient annotation of protein-encoding genes. Along, with BioFung, using carbohydrate-active enzyme (CAZymes) analysis, we have uncovered core and accessory features across Candida species demonstrating plasticity, adaption to the environment and acquired features. We show a greater importance of amino acid metabolism, as functional analysis revealed that all Candida species can employ amino acid metabolism. However, metabolomics revealed that only a specific cluster of species (AGAu species—C. albicans, C. glabrata and C. auris) utilised amino acid metabolism including arginine, cysteine, and methionine metabolism potentially improving their competitive fitness in pathogenesis. We further identified critical metabolic pathways in the AGAu cluster with biomarkers and anti-fungal target potential in the CAZyme profile, polyamine, choline and fatty acid biosynthesis pathways. This study, combining genomic analysis, and validation with gene expression and metabolomics, highlights the metabolic diversity with AGAu species that underlies their remarkable ability to dominate they mycobiome and cause disease. Metabolic differences between Candida species are uncovered using the BioFung database alongside genomic and metabolic analysis.
Collapse
Affiliation(s)
- Neelu Begum
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Sunjae Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Theo John Portlock
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Shervin Dokht Sadeghi Nasab
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.,BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen N, Denmark
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK.
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK. .,Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden.
| |
Collapse
|
5
|
Lima R, Ribeiro FC, Colombo AL, de Almeida JN. The emerging threat antifungal-resistant Candida tropicalis in humans, animals, and environment. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:957021. [PMID: 37746212 PMCID: PMC10512401 DOI: 10.3389/ffunb.2022.957021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/28/2022] [Indexed: 09/26/2023]
Abstract
Antifungal resistance in humans, animals, and the environment is an emerging problem. Among the different fungal species that can develop resistance, Candida tropicalis is ubiquitous and causes infections in animals and humans. In Asia and some Latin American countries, C. tropicalis is among the most common species related to candidemia, and mortality rates are usually above 40%. Fluconazole resistance is especially reported in Asian countries and clonal spread in humans and the environment has been investigated in some studies. In Brazil, high rates of azole resistance have been found in animals and the environment. Multidrug resistance is still rare, but recent reports of clinical multidrug-resistant isolates are worrisome. The molecular apparatus of antifungal resistance has been majorly investigated in clinical C. tropicalis isolates, revealing that this species can develop resistance through the conjunction of different adaptative mechanisms. In this review article, we summarize the main findings regarding antifungal resistance and Candida tropicalis through an "One Health" approach.
Collapse
Affiliation(s)
- Ricardo Lima
- Special Mycology Laboratory, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Felipe C. Ribeiro
- Special Mycology Laboratory, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arnaldo L. Colombo
- Special Mycology Laboratory, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Joăo N. de Almeida
- Special Mycology Laboratory, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Clinical Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
6
|
Yeasts Associated with the Small-Intestinal Contents and Epithelium of Pon Yang Kham (Charolais Crossbred) Fattening Beef Cattle. Microorganisms 2021; 9:microorganisms9071444. [PMID: 34361880 PMCID: PMC8305955 DOI: 10.3390/microorganisms9071444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022] Open
Abstract
Yeast diversity in the pia and small-intestinal epithelium of Pon Yang Kham fattening cattle in Thailand was studied using a culture-dependent method. A total of 701 yeasts were isolated from the pia of the duodenum, jejunum, and ileum of the small intestine, while 425 isolates were obtained from the epithelium of all three parts of the small intestine. Yeast identification was performed and ascomycetous yeasts were found at levels of 96.9% and 86.8% in the pia and small intestine, respectively, whereas basidiomycetous yeasts were found at levels of 2.3% and 12.7%. Candida parapsilosis was the species with the highest occurrence in the duodenal and jejunal pia, with an 83.3% and 77.8% frequency of occurrence (FO), respectively. Both C. parapsilosis and C. tropicalis were species with the highest occurrence in the ileum, with a 61.1% FO. Moreover, C. parapsilosis was the species with the highest occurrence in the epithelium of the duodenum, jejunum, and ileum, with FOs of 88.2%, 87.5%, and 87.2%, respectively. Principal coordinate analysis revealed no marked differences in yeast communities from either the pia or epithelium of all three parts of the small intestine. An estimation of the expected richness of the species showed that the observed species richness was lower than the predicted richness.
Collapse
|
7
|
Genome-wide piggyBac transposon-based mutagenesis and quantitative insertion-site analysis in haploid Candida species. Nat Protoc 2020; 15:2705-2727. [PMID: 32681154 DOI: 10.1038/s41596-020-0351-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/30/2020] [Indexed: 11/08/2022]
Abstract
Invasive fungal infections caused by Candida species are life threatening with high mortality, posing a severe public health threat. New technologies for rapid, genome-wide identification of virulence genes and therapeutic targets are urgently needed. Our recent engineering of a piggyBac (PB) transposon-mediated mutagenesis system in haploid Candida albicans provides a powerful discovery tool, which we anticipate should be adaptable to other haploid Candida species. In this protocol, we use haploid C. albicans as an example to present an improved version of the mutagenesis system and provide a detailed description of the protocol for constructing high-quality mutant libraries. We also describe a method for quantitative PB insertion site sequencing, PBISeq. The PBISeq library preparation procedure exploits tagmentation to quickly and efficiently construct sequencing libraries. Finally, we present a pipeline to analyze PB insertion sites in a de novo assembled genome of our engineered haploid C. albicans strain. The entire protocol takes ~7 d from transposition induction to having a final library ready for sequencing. This protocol is highly efficient and less labor intensive than alternative approaches and significantly accelerates genetic studies of Candida.
Collapse
|
8
|
Leong C, Schmid B, Toi MJ, Wang J, Irudayaswamy AS, Goh JPZ, Bosshard PP, Glatz M, Dawson TL. Geographical and Ethnic Differences Influence Culturable Commensal Yeast Diversity on Healthy Skin. Front Microbiol 2019; 10:1891. [PMID: 31551938 PMCID: PMC6736582 DOI: 10.3389/fmicb.2019.01891] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/31/2019] [Indexed: 01/26/2023] Open
Abstract
Commensal fungi such as Malassezia, Candida, and Rhodotorula are common on healthy skin but are also associated with opportunistic invasive and superficial infections. Skin microbial community characterization has been extensively performed worldwide, with a focus on the 16S bacterial community. These studies have focused on geographically distinct or targeted cohorts with variable reported species distributions of commensal yeast species. To determine the effects of extrinsic environmental factors such as geography, climate, and ethnicity on detected healthy skin commensal yeast diversity, we compared cohorts from Singapore and Zürich, Switzerland, representative of two geographically and climatically distinct regions comprising multi-ethnic (Chinese, Malay, Indian, Caucasian) and predominantly white Caucasian cohorts, respectively, using identical skin sampling and culture methods. We chose to use a culture-based approach as cultures isolated from patients are still required for studies of pathogenicity and antifungal susceptibility. Detection of yeast species by culture-dependent and independent sequencing-based methods suggest healthy skin diversity reflects a species distribution representative of the geography, climate and ethnic background of their local populations. Culture success and species diversity was also found to be dependent on climate, with warm tropical climates favoring high positive culture rates and greater species diversity. Multilocus sequence typing data suggests some strains are geographically distinct and may be used to segregate potential disease-causing commensals. For accurate collection and characterization of skin microbial communities, it remains recommended to employ a combination of culture-dependent and sequence-based culture-independent methods. Characterization of healthy mycobiomes in geographically distinct local populations will be useful in defining the role of commensal fungi in health and disease.
Collapse
Affiliation(s)
- Cheryl Leong
- Agency for Science, Technology and Research (A∗STAR), Skin Research Institute of Singapore, Singapore, Singapore
| | - Bettina Schmid
- Department of Dermatology, University Hospital Zürich, Zurich, Switzerland.,Faculty of Medicine, University of Zürich, Zurich, Switzerland
| | - Min Jet Toi
- Agency for Science, Technology and Research (A∗STAR), Skin Research Institute of Singapore, Singapore, Singapore
| | - Joyce Wang
- Agency for Science, Technology and Research (A∗STAR), Skin Research Institute of Singapore, Singapore, Singapore
| | | | - Joleen Peh Zhen Goh
- Agency for Science, Technology and Research (A∗STAR), Skin Research Institute of Singapore, Singapore, Singapore
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zürich, Zurich, Switzerland.,Faculty of Medicine, University of Zürich, Zurich, Switzerland
| | - Martin Glatz
- Department of Dermatology, University Hospital Zürich, Zurich, Switzerland.,Faculty of Medicine, University of Zürich, Zurich, Switzerland
| | - Thomas L Dawson
- Agency for Science, Technology and Research (A∗STAR), Skin Research Institute of Singapore, Singapore, Singapore.,Center for Cell Death, Injury & Regeneration, Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
9
|
Regulation of Candida albicans Hyphal Morphogenesis by Endogenous Signals. J Fungi (Basel) 2019; 5:jof5010021. [PMID: 30823468 PMCID: PMC6463138 DOI: 10.3390/jof5010021] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a human commensal fungus that is able to assume several morphologies, including yeast, hyphal, and pseudohyphal. Under a range of conditions, C. albicans performs a regulated switch to the filamentous morphology, characterized by the emergence of a germ tube from the yeast cell, followed by a mold-like growth of branching hyphae. This transition from yeast to hyphal growth has attracted particular attention, as it has been linked to the virulence of C. albicans as an opportunistic human pathogen. Signal transduction pathways that mediate the induction of the hyphal transcription program upon the imposition of external stimuli have been extensively investigated. However, the hyphal morphogenesis transcription program can also be induced by internal cellular signals, such as inhibition of cell cycle progression, and conversely, the inhibition of hyphal extension can repress hyphal-specific gene expression, suggesting that endogenous cellular signals are able to modulate hyphal gene expression as well. Here we review recent developments in the regulation of the hyphal morphogenesis of C. albicans, with emphasis on endogenous morphogenetic signals.
Collapse
|
10
|
Lackner A, Stammberger H, Buzina W, Freudenschuss K, Panzitt T, Schosteritsch S, Braun H. Fungi: A Normal Content of Human Nasal Mucus. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/194589240501900203] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background In recent studies, we showed that 91.3% of both CRS patients and healthy controls grew positive fungal cultures out of their nasal mucus, which therefore appears to be a common finding within the adult population. However, it still was unknown as of when fungi could be cultured from nasal mucus in human beings. We attempted to ascertain this point of time in the nasal mucus of neonates. Methods We examined nasal mucus from 30 neonates immediately after birth, on the 1st and 4th day postpartum and after 2 and 4 months of life. The samples obtained with sterile cotton swabs were cultured on agar plates. Fungal cultures were identified either conventionally by microscopy or with molecular techniques. To prove possible contamination during birth, mucus of the maternal birth canal was examined as well. Results In 6 of 30 (20%) of our neonates we found positive fungal cultures immediately after birth in (3 of them Candida albicans) most likely because of contamination passing the maternal birth canal. In 2 of 29 (7%) of our neonates, positive fungal cultures were obtained on the 1st day postpartum, and in 4 of 26 (15%) positive fungal cultures were obtained on the 4th day, all limited to 1 day only and without clinical symptoms of colonization. After the 2nd month of life, examination of nasal mucus yielded positive fungal cultures in 8 of 11 (72%), and after 4 months examination of nasal mucus yielded positive fungal cultures in 17 of 18 (94%) of our babies, with a wide array of different species. Conclusions Fungi can be cultured from nasal mucus as soon as contact with the environmental air exists but they are not persistent in the 1st day of life. However, after 4 months, the situation is similar to the one in adults: fungal cultures can be obtained from almost everyone's nose. Therefore, fungi must be considered a normal content of nasal mucus.
Collapse
Affiliation(s)
- Andreas Lackner
- Departments of Otolaryngology, Head and Neck Surgery, Austria
| | | | - Walter Buzina
- Departments of Otolaryngology, Head and Neck Surgery, Austria
| | | | - Thomas Panzitt
- Departments of Gynaecology and Maternity, Medical University Graz, Austria
| | | | - Hannes Braun
- Departments of Otolaryngology, Head and Neck Surgery, Austria
| |
Collapse
|
11
|
Bacterial and fungal biodeterioration of discolored building paints in Lagos, Nigeria. World J Microbiol Biotechnol 2017; 33:196. [DOI: 10.1007/s11274-017-2362-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/27/2017] [Indexed: 02/05/2023]
|
12
|
Lozano Moraga CP, Rodríguez Martínez GA, Lefimil Puente CA, Morales Bozo IC, Urzúa Orellana BR. Prevalence of Candida albicans and carriage of Candida non-albicans in the saliva of preschool children, according to their caries status. Acta Odontol Scand 2017; 75:30-35. [PMID: 27796162 DOI: 10.1080/00016357.2016.1244560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study was conducted to establish associations among the Candida carriage rate, the diversity of Candida species carried and the different caries status of preschool children. MATERIALS AND METHODS Sixty-one children between 2 and 5 years of age were examined by a single expert examiner and were divided into three groups, the caries-free, moderate caries and severe caries groups, according to the criteria of the International Caries Detection and Assessment System II (ICDAS). Saliva samples were obtained from the members of each group and were plated on Sabouraud agar plates to assess the Candida carriage rates. CHROMagar Candida medium was used for the preliminary screening. Biochemical testing or PCR/sequencing was conducted to identify the different Candida species in the samples. The differences observed were considered significant if the p value was <0.05. RESULTS The Candida carriage rate and the number of species of this fungus carried were higher in the group with the highest level of caries severity (p < 0.05). Whereas Candida albicans was the most predominant Candida species in the saliva of all of the children, C. dubliniensis was identified only in the most caries-affected group in addition to other rare species of Candida non-albicans. CONCLUSIONS A high salivary Candida carriage rate and the presence of specific species of this fungus (such as C. albicans and C. dubliniensis) appear to be related to the severity of caries experienced by preschool children.
Collapse
|
13
|
Simone GDDO, Rafael GL, Claudio MPDP, Evandro P. Anti-candida and anti-enzyme activity and cytotoxicity of 2-phenyl-4H-chromen-4-one. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajmr2012.7626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Sartelli M, Weber DG, Ruppé E, Bassetti M, Wright BJ, Ansaloni L, Catena F, Coccolini F, Abu-Zidan FM, Coimbra R, Moore EE, Moore FA, Maier RV, De Waele JJ, Kirkpatrick AW, Griffiths EA, Eckmann C, Brink AJ, Mazuski JE, May AK, Sawyer RG, Mertz D, Montravers P, Kumar A, Roberts JA, Vincent JL, Watkins RR, Lowman W, Spellberg B, Abbott IJ, Adesunkanmi AK, Al-Dahir S, Al-Hasan MN, Agresta F, Althani AA, Ansari S, Ansumana R, Augustin G, Bala M, Balogh ZJ, Baraket O, Bhangu A, Beltrán MA, Bernhard M, Biffl WL, Boermeester MA, Brecher SM, Cherry-Bukowiec JR, Buyne OR, Cainzos MA, Cairns KA, Camacho-Ortiz A, Chandy SJ, Che Jusoh A, Chichom-Mefire A, Colijn C, Corcione F, Cui Y, Curcio D, Delibegovic S, Demetrashvili Z, De Simone B, Dhingra S, Diaz JJ, Di Carlo I, Dillip A, Di Saverio S, Doyle MP, Dorj G, Dogjani A, Dupont H, Eachempati SR, Enani MA, Egiev VN, Elmangory MM, Ferrada P, Fitchett JR, Fraga GP, Guessennd N, Giamarellou H, Ghnnam W, Gkiokas G, Goldberg SR, Gomes CA, Gomi H, Guzmán-Blanco M, Haque M, Hansen S, Hecker A, Heizmann WR, Herzog T, Hodonou AM, Hong SK, Kafka-Ritsch R, Kaplan LJ, Kapoor G, Karamarkovic A, Kees MG, Kenig J, Kiguba R, Kim PK, Kluger Y, Khokha V, Koike K, Kok KYY, Kong V, Knox MC, Inaba K, Isik A, Iskandar K, Ivatury RR, Labbate M, Labricciosa FM, Laterre PF, Latifi R, Lee JG, Lee YR, Leone M, Leppaniemi A, Li Y, Liang SY, Loho T, Maegele M, Malama S, Marei HE, Martin-Loeches I, Marwah S, Massele A, McFarlane M, Melo RB, Negoi I, Nicolau DP, Nord CE, Ofori-Asenso R, Omari AH, Ordonez CA, Ouadii M, Pereira Júnior GA, Piazza D, Pupelis G, Rawson TM, Rems M, Rizoli S, Rocha C, Sakakhushev B, Sanchez-Garcia M, Sato N, Segovia Lohse HA, Sganga G, Siribumrungwong B, Shelat VG, Soreide K, Soto R, Talving P, Tilsed JV, Timsit JF, Trueba G, Trung NT, Ulrych J, van Goor H, Vereczkei A, Vohra RS, Wani I, Uhl W, Xiao Y, Yuan KC, Zachariah SK, Zahar JR, Zakrison TL, Corcione A, Melotti RM, Viscoli C, Viale P. Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA). World J Emerg Surg 2016; 11:33. [PMID: 27429642 PMCID: PMC4946132 DOI: 10.1186/s13017-016-0089-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/04/2016] [Indexed: 02/08/2023] Open
Abstract
Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs.
Collapse
Affiliation(s)
- Massimo Sartelli
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Dieter G. Weber
- Department of Trauma Surgery, Royal Perth Hospital, Perth, Australia
| | - Etienne Ruppé
- Genomic Research Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | - Matteo Bassetti
- Infectious Diseases Division, Santa Maria Misericordia University Hospital, Udine, Italy
| | - Brian J. Wright
- Department of Emergency Medicine and Surgery, Stony Brook University School of Medicine, Stony Brook, NY USA
| | - Luca Ansaloni
- General Surgery Department, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Fausto Catena
- Department of General, Maggiore Hospital, Parma, Italy
| | | | - Fikri M. Abu-Zidan
- Department of Surgery, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Raul Coimbra
- Department of Surgery, UC San Diego Medical Center, San Diego, USA
| | - Ernest E. Moore
- Department of Surgery, University of Colorado, Denver Health Medical Center, Denver, CO USA
| | - Frederick A. Moore
- Department of Surgery, Division of Acute Care Surgery, and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL USA
| | - Ronald V. Maier
- Department of Surgery, University of Washington, Seattle, WA USA
| | - Jan J. De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Andrew W. Kirkpatrick
- General, Acute Care, and Trauma Surgery, Foothills Medical Centre, Calgary, AB Canada
| | - Ewen A. Griffiths
- General and Upper GI Surgery, Queen Elizabeth Hospital, Birmingham, UK
| | - Christian Eckmann
- Department of General, Visceral, and Thoracic Surgery, Klinikum Peine, Academic Hospital of Medical University Hannover, Peine, Germany
| | - Adrian J. Brink
- Department of Clinical microbiology, Ampath National Laboratory Services, Milpark Hospital, Johannesburg, South Africa
| | - John E. Mazuski
- Department of Surgery, School of Medicine, Washington University in Saint Louis, Missouri, USA
| | - Addison K. May
- Departments of Surgery and Anesthesiology, Division of Trauma and Surgical Critical Care, Vanderbilt University Medical Center, Nashville, TN USA
| | - Rob G. Sawyer
- Department of Surgery, University of Virginia Health System, Charlottesville, VA USA
| | - Dominik Mertz
- Departments of Medicine, Clinical Epidemiology and Biostatistics, and Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada
| | - Philippe Montravers
- Département d’Anesthésie-Réanimation, CHU Bichat Claude-Bernard-HUPNVS, Assistance Publique-Hôpitaux de Paris, University Denis Diderot, Paris, France
| | - Anand Kumar
- Section of Critical Care Medicine and Section of Infectious Diseases, Department of Medicine, Medical Microbiology and Pharmacology/Therapeutics, University of Manitoba, Winnipeg, MB Canada
| | - Jason A. Roberts
- Australia Pharmacy Department, Royal Brisbane and Womens’ Hospital; Burns, Trauma, and Critical Care Research Centre, Australia School of Pharmacy, The University of Queensland, Brisbane, QLD Australia
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Richard R. Watkins
- Department of Internal Medicine, Division of Infectious Diseases, Akron General Medical Center, Northeast Ohio Medical University, Akron, OH USA
| | - Warren Lowman
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Brad Spellberg
- Division of Infectious Diseases, Los Angeles County-University of Southern California (USC) Medical Center, Keck School of Medicine at USC, Los Angeles, CA USA
| | - Iain J. Abbott
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC Australia
| | | | - Sara Al-Dahir
- Division of Clinical and Administrative Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA USA
| | - Majdi N. Al-Hasan
- Department of Medicine, Division of Infectious Diseases, University of South Carolina School of Medicine, Columbia, SC USA
| | | | | | - Shamshul Ansari
- Department of Microbiology, Chitwan Medical College, and Department of Environmental and Preventive Medicine, Oita University, Oita, Japan
| | - Rashid Ansumana
- Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, University of Liverpool, and Mercy Hospital Research Laboratory, Njala University, Bo, Sierra Leone
| | - Goran Augustin
- Department of Surgery, University Hospital Center, Zagreb, Croatia
| | - Miklosh Bala
- Trauma and Acute Care Surgery Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Zsolt J. Balogh
- Department of Traumatology, John Hunter Hospital and University of Newcastle, Newcastle, NSW Australia
| | | | - Aneel Bhangu
- Academic Department of Surgery, Queen Elizabeth Hospital, Birmingham, UK
| | - Marcelo A. Beltrán
- Department of General Surgery, Hospital San Juan de Dios de La Serena, La Serena, Chile
| | | | - Walter L. Biffl
- Department of Surgery, University of Colorado, Denver, CO USA
| | | | - Stephen M. Brecher
- Department of Pathology and Laboratory Medicine, VA Boston HealthCare System, and Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA USA
| | - Jill R. Cherry-Bukowiec
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI USA
| | - Otmar R. Buyne
- Department of Surgery, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Miguel A. Cainzos
- Department of Surgery, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Kelly A. Cairns
- Pharmacy Department, Alfred Health, Melbourne, VIC Australia
| | - Adrian Camacho-Ortiz
- Hospital Epidemiology and Infectious Diseases, Hospital Universitario Dr Jose Eleuterio Gonzalez, Monterrey, Mexico
| | - Sujith J. Chandy
- Department of Pharmacology, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, Kerala India
| | - Asri Che Jusoh
- Department of General Surgery, Kuala Krai Hospital, Kuala Krai, Kelantan Malaysia
| | - Alain Chichom-Mefire
- Department of Surgery and Obstetrics/Gynaecology, Regional Hospital, Limbe, Cameroon
| | - Caroline Colijn
- Department of Mathematics, Imperial College London, London, UK
| | - Francesco Corcione
- Department of Laparoscopic and Robotic Surgery, Colli-Monaldi Hospital, Naples, Italy
| | - Yunfeng Cui
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, Tianjin, China
| | - Daniel Curcio
- Infectología Institucional SRL, Hospital Municipal Chivilcoy, Buenos Aires, Argentina
| | - Samir Delibegovic
- Department of Surgery, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Zaza Demetrashvili
- Department General Surgery, Kipshidze Central University Hospital, Tbilisi, Georgia
| | | | - Sameer Dhingra
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Eric Williams Medical Sciences Complex, Uriah Butler Highway, Champ Fleurs, Trinidad and Tobago
| | - José J. Diaz
- Division of Acute Care Surgery, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, MD USA
| | - Isidoro Di Carlo
- Department of Surgical Sciences, Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Angel Dillip
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | - Michael P. Doyle
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA USA
| | - Gereltuya Dorj
- School of Pharmacy and Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Agron Dogjani
- Department of Surgery, University Hospital of Trauma, Tirana, Albania
| | - Hervé Dupont
- Département d’Anesthésie-Réanimation, CHU Amiens-Picardie, and INSERM U1088, Université de Picardie Jules Verne, Amiens, France
| | - Soumitra R. Eachempati
- Department of Surgery, Division of Burn, Critical Care, and Trauma Surgery (K.P.S., S.R.E.), Weill Cornell Medical College/New York-Presbyterian Hospital, New York, USA
| | - Mushira Abdulaziz Enani
- Department of Medicine, Infectious Disease Division, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Valery N. Egiev
- Department of Surgery, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Mutasim M. Elmangory
- Sudan National Public Health Laboratory, Federal Ministry of Health, Khartoum, Sudan
| | - Paula Ferrada
- Department of Surgery, Virginia Commonwealth University, Richmond, VA USA
| | - Joseph R. Fitchett
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Gustavo P. Fraga
- Division of Trauma Surgery, Department of Surgery, School of Medical Sciences, University of Campinas (Unicamp), Campinas, SP Brazil
| | | | - Helen Giamarellou
- 6th Department of Internal Medicine, Hygeia General Hospital, Athens, Greece
| | - Wagih Ghnnam
- Department of General Surgery, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - George Gkiokas
- 2nd Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Carlos Augusto Gomes
- Department of Surgery, Hospital Universitário Terezinha de Jesus, Faculdade de Ciências Médicas e da Saúde de Juiz de Fora, Juiz de Fora, Brazil
| | - Harumi Gomi
- Center for Global Health, Mito Kyodo General Hospital, University of Tsukuba, Mito, Ibaraki Japan
| | - Manuel Guzmán-Blanco
- Hospital Privado Centro Médico de Caracas and Hospital Vargas de Caracas, Caracas, Venezuela
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defense Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Sonja Hansen
- Institute of Hygiene, Charité-Universitätsmedizin Berlin, Hindenburgdamm 27, 12203 Berlin, Germany
| | - Andreas Hecker
- Department of General and Thoracic Surgery, University Hospital Giessen, Giessen, Germany
| | | | - Torsten Herzog
- Department of Surgery, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Adrien Montcho Hodonou
- Department of Surgery, Faculté de médecine, Université de Parakou, BP 123 Parakou, Bénin
| | - Suk-Kyung Hong
- Division of Trauma and Surgical Critical Care, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Reinhold Kafka-Ritsch
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Lewis J. Kaplan
- Department of Surgery Philadelphia VA Medical Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Garima Kapoor
- Department of Microbiology, Gandhi Medical College, Bhopal, India
| | | | - Martin G. Kees
- Department of Anesthesiology and Intensive Care, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Jakub Kenig
- 3rd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Ronald Kiguba
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Peter K. Kim
- Department of Surgery, Albert Einstein College of Medicine and Jacobi Medical Center, Bronx, NY USA
| | - Yoram Kluger
- Department of General Surgery, Division of Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Vladimir Khokha
- Department of Emergency Surgery, City Hospital, Mozyr, Belarus
| | - Kaoru Koike
- Department of Primary Care and Emergency Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenneth Y. Y. Kok
- Department of Surgery, The Brunei Cancer Centre, Jerudong Park, Brunei
| | - Victory Kong
- Department of Surgery, Edendale Hospital, Pietermaritzburg, South Africa
| | - Matthew C. Knox
- School of Medicine, Western Sydney University, Campbelltown, NSW Australia
| | - Kenji Inaba
- Division of Acute Care Surgery and Surgical Critical Care, Department of Surgery, Los Angeles County and University of Southern California Medical Center, University of Southern California, Los Angeles, CA USA
| | - Arda Isik
- Department of General Surgery, Erzincan University, Faculty of Medicine, Erzincan, Turkey
| | - Katia Iskandar
- Department of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Rao R. Ivatury
- Department of Surgery, Virginia Commonwealth University, Richmond, VA USA
| | - Maurizio Labbate
- School of Life Science and The ithree Institute, University of Technology, Sydney, NSW Australia
| | - Francesco M. Labricciosa
- Department of Biomedical Sciences and Public Health, Unit of Hygiene, Preventive Medicine and Public Health, UNIVMP, Ancona, Italy
| | - Pierre-François Laterre
- Department of Critical Care Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Rifat Latifi
- Department of Surgery, Division of Trauma, University of Arizona, Tucson, AZ USA
| | - Jae Gil Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Ran Lee
- Texas Tech University Health Sciences Center School of Pharmacy, Abilene, TX USA
| | - Marc Leone
- Department of Anaesthesiology and Critical Care, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Aix Marseille Université, Marseille, France
| | - Ari Leppaniemi
- Abdominal Center, University Hospital Meilahti, Helsinki, Finland
| | - Yousheng Li
- Department of Surgery, Inling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Stephen Y. Liang
- Division of Infectious Diseases, Division of Emergency Medicine, Washington University School of Medicine, St. Louis, MO USA
| | - Tonny Loho
- Division of Infectious Diseases, Department of Clinical Pathology, Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Marc Maegele
- Department for Traumatology and Orthopedic Surgery, Cologne Merheim Medical Center (CMMC), University of Witten/Herdecke (UW/H), Cologne, Germany
| | - Sydney Malama
- Health Research Program, Institute of Economic and Social Research, University of Zambia, Lusaka, Zambia
| | - Hany E. Marei
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), Wellcome Trust-HRB Clinical Research, Department of Clinical Medicine, Trinity Centre for Health Sciences, St James’ University Hospital, Dublin, Ireland
| | - Sanjay Marwah
- Department of Surgery, Post-Graduate Institute of Medical Sciences, Rohtak, India
| | - Amos Massele
- Department of Clinical Pharmacology, School of Medicine, University of Botswana, Gaborone, Botswana
| | - Michael McFarlane
- Department of Surgery, Radiology, University Hospital of the West Indies, Kingston, Jamaica
| | - Renato Bessa Melo
- General Surgery Department, Centro Hospitalar de São João, Porto, Portugal
| | - Ionut Negoi
- Department of Surgery, Emergency Hospital of Bucharest, Bucharest, Romania
| | - David P. Nicolau
- Center of Anti-Infective Research and Development, Hartford, CT USA
| | - Carl Erik Nord
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | - Carlos A. Ordonez
- Department of Surgery and Critical Care, Universidad del Valle, Fundación Valle del Lili, Cali, Colombia
| | - Mouaqit Ouadii
- Department of Surgery, Hassan II University Hospital, Medical School of Fez, Sidi Mohamed Benabdellah University, Fez, Morocco
| | | | - Diego Piazza
- Division of Surgery, Vittorio Emanuele Hospital, Catania, Italy
| | - Guntars Pupelis
- Department of General and Emergency Surgery, Riga East University Hospital ‘Gailezers’, Riga, Latvia
| | - Timothy Miles Rawson
- National Institute for Health Research, Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, London, UK
| | - Miran Rems
- Department of General Surgery, Jesenice General Hospital, Jesenice, Slovenia
| | - Sandro Rizoli
- Trauma and Acute Care Service, St Michael’s Hospital, University of Toronto, Toronto, Canada
| | | | - Boris Sakakhushev
- General Surgery Department, Medical University, University Hospital St George, Plovdiv, Bulgaria
| | | | - Norio Sato
- Department of Primary Care and Emergency Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Helmut A. Segovia Lohse
- II Cátedra de Clínica Quirúrgica, Hospital de Clínicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Gabriele Sganga
- Department of Surgery, Catholic University of Sacred Heart, Policlinico A Gemelli, Rome, Italy
| | - Boonying Siribumrungwong
- Department of Surgery, Faculty of Medicine, Thammasat University Hospital, Thammasat University, Pathum Thani, Thailand
| | - Vishal G. Shelat
- Department of General Surgery, Tan Tock Seng Hospital, Tan Tock Seng, Singapore
| | - Kjetil Soreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Rodolfo Soto
- Department of Emergency Surgery and Critical Care, Centro Medico Imbanaco, Cali, Colombia
| | - Peep Talving
- Department of Surgery, North Estonia Medical Center, Tallinn, Estonia
| | - Jonathan V. Tilsed
- Surgery Health Care Group, Hull and East Yorkshire Hospitals NHS Trust, Hull, UK
| | | | - Gabriel Trueba
- Institute of Microbiology, Biological and Environmental Sciences College, University San Francisco de Quito, Quito, Ecuador
| | - Ngo Tat Trung
- Department of Molecular Biology, Tran Hung Dao Hospital, No 1, Tran Hung Dao Street, Hai Ba Trung Dist, Hanoi, Vietnam
| | - Jan Ulrych
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, General University Hospital, Prague, Czech Republic
| | - Harry van Goor
- Department of Surgery, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Andras Vereczkei
- Department of Surgery, Medical School University of Pécs, Pécs, Hungary
| | - Ravinder S. Vohra
- Nottingham Oesophago-Gastric Unit, Nottingham University Hospitals, Nottingham, UK
| | - Imtiaz Wani
- Department of Surgery, Sheri-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Waldemar Uhl
- Department of Surgery, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affilliated Hospital, Zhejiang University, Zhejiang, China
| | - Kuo-Ching Yuan
- Trauma and Emergency Surgery Department, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | | | - Jean-Ralph Zahar
- Infection Control Unit, Angers University, CHU d’Angers, Angers, France
| | - Tanya L. Zakrison
- Division of Trauma and Surgical Critical Care, DeWitt Daughtry Family Department of Surgry, University of Miami, Miami, FL USA
| | - Antonio Corcione
- Anesthesia and Intensive Care Unit, AORN dei Colli Vincenzo Monaldi Hospital, Naples, Italy
| | - Rita M. Melotti
- Anesthesiology and Intensive Care Unit, Sant’Orsola University Hospital, Bologna, Italy
| | - Claudio Viscoli
- Infectious Diseases Unit, University of Genoa (DISSAL) and IRCCS San Martino-IST, Genoa, Italy
| | - Perluigi Viale
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Sant’ Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Lopez-Medina E, Fan D, Coughlin LA, Ho EX, Lamont IL, Reimmann C, Hooper LV, Koh AY. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis. PLoS Pathog 2015; 11:e1005129. [PMID: 26313907 PMCID: PMC4552174 DOI: 10.1371/journal.ppat.1005129] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/04/2015] [Indexed: 01/09/2023] Open
Abstract
Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa’s ability to colonize the GI tract but does decrease P. aeruginosa’s cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. Pseudomonas aeruginosa and Candida albicans are two medically important human pathogens that often co-infect or co-colonize the same human niches, such as the gut. In a normal healthy host, P. aeruginosa and C. albicans can colonize the gut without any significant pathologic sequelae. But in immunocompromised hosts, both pathogens can escape the gut and cause life-threatening disseminated infections. Yet the mechanisms and pathogenic consequences of interactions between these two pathogens within a living mammalian host are not well understood. Here, we use a mouse model of P. aeruginosa and C. albicans gut co-infection to better understand the mechanisms by which C. albicans inhibits P. aeruginosa infection. C. albicans inhibits the expression of P. aeruginosa genes that are vital for iron acquisition. Accordingly, deleting these iron acquisition genes in P. aeruginosa prevents infection. Understanding how microbes interact and antagonize each other may help us identify new potential therapeutic targets for preventing or treating infections.
Collapse
Affiliation(s)
- Eduardo Lopez-Medina
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Di Fan
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Laura A. Coughlin
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Evi X. Ho
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Cornelia Reimmann
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Lora V. Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Andrew Y. Koh
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med 2015; 21:808-14. [PMID: 26053625 PMCID: PMC4496259 DOI: 10.1038/nm.3871] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Candida albicans colonization is required for invasive disease1-3. Unlike humans, adult mice with mature intact gut microbiota are resistant to C. albicans gastrointestinal (GI) colonization2,4. But the factors that promote C. albicans colonization resistance are unknown. Here we demonstrate that commensal anaerobic bacteria – specifically Clostridial Firmicutes (Clusters IV and XIVa) and Bacteroidetes – are critical for maintaining C. albicans colonization resistance in mice. Using Bacteroides thetaiotamicron as a model organism, we find that HIF-1α, a transcription factor important for activating innate immune effectors, and the antimicrobial peptide LL37-CRAMP are key determinants of C. albicans colonization resistance. While antibiotic treatment enables C. albicans colonization, pharmacologic activation of colonic Hif1a induces CRAMP expression and results in a significant reduction of C. albicans GI colonization and a 50% decrease in mortality from invasive disease. In the setting of antibiotics, Hif1a and Cramp are required for B. thetaiotamicron-induced protection against CA colonization of the gut. Thus, C. albicans GI colonization modulation by activation of gut mucosal immune effectors may represent a novel therapeutic approach for preventing invasive fungal disease in humans.
Collapse
|
17
|
Merseguel KB, Nishikaku AS, Rodrigues AM, Padovan AC, e Ferreira RC, de Azevedo Melo AS, Briones MRDS, Colombo AL. Genetic diversity of medically important and emerging Candida species causing invasive infection. BMC Infect Dis 2015; 15:57. [PMID: 25887032 PMCID: PMC4339437 DOI: 10.1186/s12879-015-0793-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/30/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Genetic variation in the ribosomal DNA (rDNA) internal transcribed spacer (ITS) region has been studied among fungi. However, the numbers of ITS sequence polymorphisms in the various Candida species and their associations with sources of invasive fungal infections remain poorly investigated. Here, we characterized the intraspecific and interspecific ITS diversity of Candida spp. strains collected from patients with bloodstream or oroesophageal candidiasis. METHODS We selected cultures of representative medically important species of Candida as well as some rare and emerging pathogens. Identification was performed by micromorphology and by biochemical testing using an ID32C system, as well as by the sequencing of rDNA ITS. The presence of intraspecific ITS polymorphisms was characterized based on haplotype networks, and interspecific diversity was characterized based on Bayesian phylogenetic analysis. RESULTS Among 300 Candida strains, we identified 76 C. albicans, 14 C. dubliniensis, 40 C. tropicalis, 47 C. glabrata, 34 C. parapsilosis (sensu stricto), 31 C. orthopsilosis, 3 C. metapsilosis, 21 Meyerozyma guilliermondii (C. guilliermondii), 12 Pichia kudriavzevii (C. krusei), 6 Clavispora lusitaniae (C. lusitaniae), 3 C. intermedia, 6 Wickerhamomyces anomalus (C. pelliculosa), and 2 C. haemulonii strains, and 1 C. duobushaemulonii, 1 Kluyveromyces marxianus (C. kefyr), 1 Meyerozyma caribbica (C. fermentati), 1 Pichia norvegensis (C. norvegensis), and 1 Lodderomyces elongisporus strain. Out of a total of seven isolates with inconsistent ID32C profiles, ITS sequencing identified one C. lusitaniae strain, three C. intermedia strains, two C. haemulonii strains and one C. duobushaemulonii strain. Analysis of ITS variability revealed a greater number of haplotypes among C. albicans, C. tropicalis, C. glabrata and C. lusitaniae, which are predominantly related to endogenous sources of acquisition. Bayesian analysis confirmed the major phylogenetic relationships among the isolates and the molecular identification of the different Candida spp. CONCLUSIONS Molecular studies based on ITS sequencing are necessary to identify closely related and emerging species. Polymorphism analysis of the ITS rDNA region demonstrated its utility as a genetic marker for species identification and phylogenetic relationships as well as for drawing inferences concerning the natural history of hematogenous infections caused by medically important and emerging Candida species.
Collapse
Affiliation(s)
- Karina Bellinghausen Merseguel
- Laboratório Especial de Micologia (LEMI), Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Rua Pedro de Toledo, 669, quinto andar, Edifício de Pesquisas II, Zipcode 04039-032, São Paulo, SP, Brazil.
| | - Angela Satie Nishikaku
- Laboratório Especial de Micologia (LEMI), Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Rua Pedro de Toledo, 669, quinto andar, Edifício de Pesquisas II, Zipcode 04039-032, São Paulo, SP, Brazil.
| | - Anderson Messias Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Biologia Celular, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Ana Carolina Padovan
- Laboratório Especial de Micologia (LEMI), Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Rua Pedro de Toledo, 669, quinto andar, Edifício de Pesquisas II, Zipcode 04039-032, São Paulo, SP, Brazil.
- Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil.
| | - Renata Carmona e Ferreira
- Laboratório de Genômica Evolutiva e Biocomplexidade, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Analy Salles de Azevedo Melo
- Laboratório Especial de Micologia (LEMI), Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Rua Pedro de Toledo, 669, quinto andar, Edifício de Pesquisas II, Zipcode 04039-032, São Paulo, SP, Brazil.
| | - Marcelo Ribeiro da Silva Briones
- Laboratório de Genômica Evolutiva e Biocomplexidade, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Arnaldo Lopes Colombo
- Laboratório Especial de Micologia (LEMI), Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Rua Pedro de Toledo, 669, quinto andar, Edifício de Pesquisas II, Zipcode 04039-032, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Seghir A, Boucherit-Otmani Z, Belkherroubi-Sari L, Boucherit K. Cathétérisme et risque infectieux fongique au centre hospitalo-universitaire de Tlemcen : épidémiologie et sensibilité aux antifongiques. J Mycol Med 2014; 24:e179-84. [DOI: 10.1016/j.mycmed.2014.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 08/09/2014] [Accepted: 08/15/2014] [Indexed: 12/12/2022]
|
19
|
Abstract
Few among the millions of fungal species fulfill four basic conditions necessary to infect humans: high temperature tolerance, ability to invade the human host, lysis and absorption of human tissue, and resistance to the human immune system. In previously healthy individuals, invasive fungal disease is rare because animals' sophisticated immune systems evolved in constant response to fungal challenges. In contrast, fungal diseases occur frequently in immunocompromised patients. Paradoxically, successes of modern medicine have put increasing numbers of patients at risk for invasive fungal infections. Uncontrolled HIV infection additionally makes millions vulnerable to lethal fungal diseases. A concerted scientific and social effort is needed to meet these challenges.
Collapse
Affiliation(s)
- Julia R Köhler
- Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Arturo Casadevall
- Departments of Microbiology and Immunology and Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, New York, New York 10461
| | - John Perfect
- Division of Infectious Diseases, Duke Medical Center, Durham, North Carolina 27710
| |
Collapse
|
20
|
|
21
|
Romi W, Keisam S, Ahmed G, Jeyaram K. Reliable differentiation of Meyerozyma guilliermondii from Meyerozyma caribbica by internal transcribed spacer restriction fingerprinting. BMC Microbiol 2014; 14:52. [PMID: 24575831 PMCID: PMC3946169 DOI: 10.1186/1471-2180-14-52] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 02/24/2014] [Indexed: 11/10/2022] Open
Abstract
Background Meyerozyma guilliermondii (anamorph Candida guilliermondii) and Meyerozyma caribbica (anamorph Candida fermentati) are closely related species of the genetically heterogenous M. guilliermondii complex. Conventional phenotypic methods frequently misidentify the species within this complex and also with other species of the Saccharomycotina CTG clade. Even the long-established sequencing of large subunit (LSU) rRNA gene remains ambiguous. We also faced similar problem during identification of yeast isolates of M. guilliermondii complex from indigenous bamboo shoot fermentation in North East India. There is a need for development of reliable and accurate identification methods for these closely related species because of their increasing importance as emerging infectious yeasts and associated biotechnological attributes. Results We targeted the highly variable internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) and identified seven restriction enzymes through in silico analysis for differentiating M. guilliermondii from M. caribbica. Fifty five isolates of M. guilliermondii complex which could not be delineated into species-specific taxonomic ranks by API 20 C AUX and LSU rRNA gene D1/D2 sequencing were subjected to ITS-restriction fragment length polymorphism (ITS-RFLP) analysis. TaqI ITS-RFLP distinctly differentiated the isolates into M. guilliermondii (47 isolates) and M. caribbica (08 isolates) with reproducible species-specific patterns similar to the in silico prediction. The reliability of this method was validated by ITS1-5.8S-ITS2 sequencing, mitochondrial DNA RFLP and electrophoretic karyotyping. Conclusions We herein described a reliable ITS-RFLP method for distinct differentiation of frequently misidentified M. guilliermondii from M. caribbica. Even though in silico analysis differentiated other closely related species of M. guilliermondii complex from the above two species, it is yet to be confirmed by in vitro analysis using reference strains. This method can be used as a reliable tool for rapid and accurate identification of closely related species of M. guilliermondii complex and for differentiating emerging infectious yeasts of the Saccharomycotina CTG clade.
Collapse
Affiliation(s)
| | | | | | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal 795001, Manipur, India.
| |
Collapse
|
22
|
Patterns of human oral yeast species distribution on Hainan Island in China. Mycopathologia 2013; 176:359-68. [PMID: 24085613 DOI: 10.1007/s11046-013-9703-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
Infections by yeast strains of the genus Candida are among the most prevalent fungal infections of humans. These yeasts are common residents of the oral mucosa and other body surfaces. Since most yeast infections are due to endogenous strains and that species of Candida differ in virulence properties and in intrinsic susceptibilities to antifungal drugs, understanding the human commensal yeast flora can help designing effective treatment and prevention strategies against yeast infections. Here, we report the patterns of yeast species distributions in the oral cavities of 1,799 people from Hainan Island in southern China. Based on sequence information at the fungal barcode locus ITS regions, 368 of the 415 obtained oral yeast strains were identified as belonging to 26 yeast species, while the remaining 47 strains all showed significant sequence divergence to the currently described species. The four most common yeast species were C. albicans (42 %), C. tropicalis (20 %), C. glabrata (5.5 %), and C. parapsilosis (4.1 %) and 10 of the 26 yeast species were represented by only one strain each. Our analyses identified that the gender of hosts and ethnical background showed no contribution to oral yeast species distributions. However, the health status, place of birth, current residency, and the age of hosts all showed significant contributions to the distributions of the four dominant yeast species. We compared our results with those reported previously and discussed the potential mechanisms for the observed differences in oral yeast species distributions.
Collapse
|
23
|
Angebault C, Djossou F, Abélanet S, Permal E, Ben Soltana M, Diancourt L, Bouchier C, Woerther PL, Catzeflis F, Andremont A, d'Enfert C, Bougnoux ME. Candida albicans Is Not Always the Preferential Yeast Colonizing Humans: A Study in Wayampi Amerindians. J Infect Dis 2013; 208:1705-16. [DOI: 10.1093/infdis/jit389] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Chaves GM, Santos FP, Colombo AL. The persistence of multifocal colonisation by a single ABC genotype of Candida albicans may predict the transition from commensalism to infection. Mem Inst Oswaldo Cruz 2013; 107:198-204. [PMID: 22415258 DOI: 10.1590/s0074-02762012000200008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 10/27/2011] [Indexed: 11/22/2022] Open
Abstract
Candida albicans is a common member of the human microbiota and may cause invasive disease in susceptible populations. Several risk factors have been proposed for candidaemia acquisition. Previous Candida multifocal colonisation among hospitalised patients may be crucial for the successful establishment of candidaemia. Nevertheless, it is still not clear whether the persistence or replacement of a single clone of C. albicans in multiple anatomical sites of the organism may represent an additional risk for candidaemia acquisition. Therefore, we prospectively evaluated the dynamics of the colonising strains of C. albicans for two groups of seven critically ill patients: group I included patients colonised by C. albicans in multiple sites who did not develop candidaemia and group II included patients who were colonised and who developed candidaemia. ABC and microsatellite genotyping of 51 strains of C. albicans revealed that patients who did not develop candidaemia were multiply colonised by at least two ABC genotypes of C. albicans, whereas candidaemic patients had highly related microsatellites and the same ABC genotype in colonising and bloodstream isolates that were probably present in different body sites before the onset of candidaemia.
Collapse
Affiliation(s)
- Guilherme Maranhão Chaves
- Laboratório de Micologia Médica e Molecular, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | | | | |
Collapse
|
25
|
Saghrouni F, Ben Abdeljelil J, Boukadida J, Ben Said M. Molecular methods for strain typing of Candida albicans
: a review. J Appl Microbiol 2013; 114:1559-74. [DOI: 10.1111/jam.12132] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 01/03/2013] [Accepted: 01/06/2013] [Indexed: 11/28/2022]
Affiliation(s)
- F. Saghrouni
- UR02SP13 Research Unit; Ministry of Public Health; Tunisia Tunisia
| | | | - J. Boukadida
- UR02SP13 Research Unit; Ministry of Public Health; Tunisia Tunisia
| | - M. Ben Said
- UR02SP13 Research Unit; Ministry of Public Health; Tunisia Tunisia
| |
Collapse
|
26
|
Beyda ND, Chuang SH, Alam MJ, Shah DN, Ng TM, McCaskey L, Garey KW. Treatment of Candida famata bloodstream infections: case series and review of the literature. J Antimicrob Chemother 2012; 68:438-43. [PMID: 23085777 DOI: 10.1093/jac/dks388] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Candida famata (also known as Debaryomyces hansenii and Torulopsis candida) is a commensal yeast found in cheese, dairy products and the environment. C. famata accounts for 0.2%-2% of invasive candidiasis. The purpose of this study was to provide an overview of the treatment of C. famata bloodstream infections. METHODS The clinical course of two hospitalized patients who developed C. famata fungaemia within 2 weeks of each other was summarized along with available data regarding in vitro susceptibility patterns, genotyping and clinical outcomes of these cases compared with the published literature. RESULTS AND CONCLUSIONS C. famata appears to exhibit reduced susceptibility to echinocandins and azoles, particularly in the setting of prior antifungal exposure. The removal of indwelling central venous catheters and prompt initiation of therapy with liposomal amphotericin B is recommended for successful treatment of C. famata fungaemia, particularly in immunocompromised patients. These cases also help provide justification for routine antifungal susceptibility testing in patients with candidaemia to guide optimal antifungal therapy.
Collapse
Affiliation(s)
- Nicholas D Beyda
- University of Houston College of Pharmacy, 1441 Moursund Street, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Gammelsrud KW, Lindstad BL, Gaustad P, Ingebretsen A, Høiby EA, Brandtzaeg P, Sandven P. Multilocus sequence typing of serial Candida albicans isolates from children with cancer, children with cystic fibrosis and healthy controls. Med Mycol 2012; 50:619-26. [DOI: 10.3109/13693786.2012.675088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Ben Abdeljelil J, Saghrouni F, Khammari I, Gheith S, Fathallah A, Ben Said M, Boukadida J. Investigation of a cluster of Candida albicans invasive Candidiasis in a neonatal intensive care unit by pulsed-field gel electrophoresis. ScientificWorldJournal 2012; 2012:138989. [PMID: 22547975 PMCID: PMC3322649 DOI: 10.1100/2012/138989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/01/2011] [Indexed: 11/28/2022] Open
Abstract
Nosocomial invasive candidiasis (IC) has emerged as a major problem in neonatal intensive care units (NICUs). We investigated herein the temporal clustering of six cases of neonatal IC due to Candida albicans in an NICU. Eighteen isolates obtained from the six neonates and two isolates from two health care workers (HCWs) working at the same unit and suffering from fingers' onychomycosis were genotyped by electrophoretic karyotyping (EK) and restriction endonuclease analysis of genomic DNA by using Sfi I (PFGE-Sfi I). PFGE-Sfi I was more effective in discriminating between temporally related isolates. It showed that (i) both HCWs had specific strains excluding them as a source of infections in neonates. (ii) Isolates collected from three neonates were identical providing evidence of their clonal origin and the occurrence of a horizontal transmission of C. albicans in the unit. (iii) The three remaining neonates had specific strains confirming that the IC cases were coincidental. (iv) Microevolution occurred in one catheter-related candidemia case.
Our results illustrate the relevance of the molecular approach to investigate suspected outbreaks in hospital surveys and the effectiveness of PFGE-Sfi I for typing of epidemiologically related C. albicans isolates.
Collapse
|
29
|
Berman J, Hadany L. Does stress induce (para)sex? Implications for Candida albicans evolution. Trends Genet 2012; 28:197-203. [PMID: 22364928 DOI: 10.1016/j.tig.2012.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 01/09/2023]
Abstract
Theory predicts that stress is a key factor in explaining the evolutionary role of sex in facultatively sexual organisms, including microorganisms. Organisms capable of reproducing both sexually and asexually are expected to mate more frequently when stressed, and such stress-induced mating is predicted to facilitate adaptation. Here, we propose that stress has an analogous effect on the parasexual cycle in Candida albicans, which involves alternation of generations between diploid and tetraploid cells. The parasexual cycle can generate high levels of diversity, including aneuploidy, yet it apparently occurs only rarely in nature. We review the evidence that stress facilitates four major steps in the parasexual cycle and suggest that parasex occurs much more frequently under stress conditions. This may explain both the evolutionary significance of parasex and its apparent rarity.
Collapse
Affiliation(s)
- Judith Berman
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
30
|
Sardi JCO, Almeida AMF, Mendes Giannini MJS. New antimicrobial therapies used against fungi present in subgingival sites--a brief review. Arch Oral Biol 2011; 56:951-9. [PMID: 21676377 DOI: 10.1016/j.archoralbio.2011.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 01/14/2023]
Abstract
Although the main reservoir of Candida spp. is believed to be the buccal mucosa, these microorganisms can coaggregate with bacteria in subgingival biofilm and adhere to epithelial cells. The treatment of periodontal disease includes scaling and root planning (SRP) associated with proper oral hygiene. However, some patients may have negative responses to different therapeutic procedures, with a continuous loss of insertion, so the use of antimicrobials is needed as an adjuvant to SRP treatment. The use of a broad-spectrum antibiotic, such as tetracycline and metronidazole, as an aid in periodontal treatment has also been a factor for the development of superinfections by resistant bacteria and Candida species, even in patients with HIV. In the dental practice, the most commonly used antifungals are nystatin and fluconazole. However, the introduction of new drugs like the next generation of azoles is essential before the onset of emergent species in periodontal disease. Plants are good options for obtaining a wide variety of drugs. This alternative could benefit a large population that uses plants as a first treatment option. Plants have been used in medicine for a long time and are extensively used in folk medicine, because they represent an economic alternative, are easily accessible and are applicable to various diseases. Herein, we briefly review the literature pertaining the presence of Candida sp. in periodontal pockets, the conventional antifungal resistance and new therapies that include natural antifungal agents are reviewed.
Collapse
Affiliation(s)
- Janaina Cássia Orlandi Sardi
- Faculty of Pharmaceutical Sciences of Araraquara, Department of Clinical Analysis, Laboratory of Clinical Mycology, Univ Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | | | | |
Collapse
|
31
|
Messier C, Grenier D. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses 2011; 54:e801-6. [DOI: 10.1111/j.1439-0507.2011.02028.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Abstract
Candida tropicalis is one of the more common Candida causing human disease in tropical countries; the frequency of invasive disease varies by geography causing 3--66% of candidaemia. C. tropicalis is taxonomically close to C. albicans and shares many pathogenic traits. C. tropicalis is particularly virulent in neutropenic hosts commonly with hematogenous seeding to peripheral organs. For candidaemia and invasive candidiasis amphotericin B or an echinocandin are recommended as first-line treatment, with extended-spectrum triazoles acceptable alternatives. Primary fluconazole resistance is uncommon but may be induced on exposure. Physicians in regions where C. tropicalis is common need to be mindful of this lesser-described pathogen.
Collapse
|
33
|
Abstract
Candida albicans, a diploid yeast commensal and opportunist pathogen, has evolved unusual mechanisms for maintenance of genetic diversity in the absence of a complete sexual cycle. These include chromosomal polymorphisms, mitotic recombination events, and gains and losses of heterozygosity, superimposed on a fundamentally clonal mode of reproduction. Molecular typing of C. albicans strains shows geographical evolutionary associations but these have become partially blurred, probably as a result of extensive human travel. Individual patients usually carry a single C. albicans strain type, but this may undergo microvariation leading to detection of mixtures of closely related types. Associations have been found between clade 1, the most common multilocus sequence typing cluster of related C. albicans strains, and resistance to flucytosine and terbinafine. There are also clade-related associations with lengths of tandem repeats in some cell-surface proteins, but not with virulence or type of infection.
Collapse
Affiliation(s)
- Frank C Odds
- Aberdeen Fungal Group, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
34
|
Diogo D, Bouchier C, d'Enfert C, Bougnoux ME. Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans. Fungal Genet Biol 2008; 46:159-68. [PMID: 19059493 DOI: 10.1016/j.fgb.2008.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/06/2008] [Accepted: 11/10/2008] [Indexed: 12/21/2022]
Abstract
Candida albicans is a commensal and the most frequent fungal pathogen of humans. One mechanism of genetic variation in this diploid asexual yeast involves loss of heterozygosity (LOH). LOH events occur upon infection and contribute to the acquisition of antifungal resistance in patients. In contrast, little is known about the nature and extent of LOH events during commensalism. Using a combination of single nucleotide polymorphism typing, positional transcript profiling and karyotyping, we have characterized related C. albicans commensal isolates that differ by LOH events. Most of these LOH events encompassed the entirety of the chromosome or a large region extending to the telomere, suggesting chromosome loss or mitotic recombination/break-induced replication events, respectively. They were frequently accompanied by karyotype alterations such as chromosome length polymorphism and copy number variations at other chromosomes. These results demonstrate the high plasticity of the C. albicans genome during commensalism.
Collapse
Affiliation(s)
- Dorothée Diogo
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Département Génomes et Génétique, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
35
|
Scanlan PD, Marchesi JR. Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISME JOURNAL 2008; 2:1183-93. [PMID: 18670396 DOI: 10.1038/ismej.2008.76] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular ecological surveys of the human gut microbiota to date have focused on the prokaryotic fraction of the community and have revealed a remarkable degree of bacterial diversity and functionality. However, there is a dearth of information on the eukaryotic composition of the microbiota, and no culture-independent sequence-based surveys of human faeces are available. Culture-independent analyses based on DNA extraction and polymerase chain reaction targeting both the total eukaryotic 18S rRNA genes and fungal internal transcribed regions (ITS), together with culture-dependent analyses of fungi, were performed on a group of healthy volunteers. Temporal analysis was also included wherever possible. Collectively, the data presented in this study indicate that eukaryotic diversity of the human gut is low, largely temporally stable and predominated by different subtypes of Blastocystis. Specific analyses of the fungal populations indicate that a disparity exists between the cultivable fraction, which is dominated by Candida sp, and culture-independent analysis, where sequences identical to members of the genera Gloeotinia/Paecilomyces and Galactomyces were most frequently retrieved from both fungal ITS profiles and subsequent clone libraries. Collectively, these results highlight the presence of unprecedented intestinal eukaryotic inhabitants whose functional roles are as yet unknown in healthy individuals. Furthermore, differences between results obtained from traditionally employed culture-based methods and those obtained from culture-independent techniques highlight similar anomalies to that encountered when first analysing the bacterial diversity of the human faecal microbiota using culture-independent surveys.
Collapse
Affiliation(s)
- Pauline D Scanlan
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Cork, Ireland.
| | | |
Collapse
|
36
|
Weigand MA, Lichtenstern C, Böttiger BW. Antifungal Therapy in Surgical ICU Patients. Intensive Care Med 2007. [DOI: 10.1007/0-387-35096-9_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Wang H, Wang Y, Chen J, Zhan Z, Li Y, Xu J. Oral yeast flora and its ITS sequence diversity among a large cohort of medical students in Hainan, China. Mycopathologia 2007; 164:65-72. [PMID: 17551847 DOI: 10.1007/s11046-007-9028-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
The most prevalent fungal infection of humans is candidiasis which is caused by species of Candida that are typical members of the commensal microbial flora of the oral mucosa and other body surfaces. Since species of Candida differ in virulence properties and susceptibilities to anti-fungal drugs, understanding the human commensal yeast flora will have a significant impact on designing treatment and prevention strategies against yeast infections. However, although there is a global interest in Candida species, the global distributions of Candida species remain largely unknown, especially among healthy hosts. Here we report the oral yeast flora from the surveys of over 1,000 medical students in China. Our results showed that this population had a yeast carriage rate (4.5%) much lower than other population samples reported previously from Mainland China (40-70%). In addition, C. albicans was isolated at a much higher frequency than those from other Chinese samples, with a frequency (80.9%) more similar to those in developed regions such as North America. The oral yeast carriage rates and yeast species compositions were similar between male and female students and between the hosts borne and raised on Hainan Island and those borne and raised on Mainland China. Furthermore, the sequence variation at the internal transcribed spacer (ITS) regions of the nuclear ribosomal RNA gene cluster was analyzed for strains of the dominant species, C. albicans. Our analysis identified 14 ITS types among the 41 Hainan isolates of C. albicans. However, only four of the 14 ITS types were identical to those in reference strains from Europe and North America. Taken together, our analyses suggest that the oral yeast flora among host populations in China is highly heterogeneous and that there is a high ITS sequence diversity in the Hainan population of C. albicans.
Collapse
Affiliation(s)
- Huamin Wang
- Department of Laboratory Medicine, Hainan Medical College, Haikou, Hainan, China
| | | | | | | | | | | |
Collapse
|
38
|
Odds FC, Davidson AD, Jacobsen MD, Tavanti A, Whyte JA, Kibbler CC, Ellis DH, Maiden MCJ, Shaw DJ, Gow NAR. Candida albicans strain maintenance, replacement, and microvariation demonstrated by multilocus sequence typing. J Clin Microbiol 2006; 44:3647-58. [PMID: 17021093 PMCID: PMC1594753 DOI: 10.1128/jcm.00934-06] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 05/18/2006] [Accepted: 07/24/2006] [Indexed: 11/20/2022] Open
Abstract
We typed 165 Candida albicans isolates from 44 different sources by multilocus sequence typing (MLST) and ABC typing of rRNA genes and determined their homozygosity or heterozygosity at the mating-type-like locus (MTL). The isolates represented pairs or larger sets from individual sources, which allowed the determination of strain diversity within patients. A comparison of replicate sequence data determined a reproducibility threshold for regarding isolates as MLST indistinguishable. For 36 isolate sets, MLST and ABC typing showed indistinguishable or highly related strain types among isolates from different sites or from the same site at different times from each patient. This observation included 11 sets with at least one isolate from a blood culture and a nonsterile site from the same patient. For one patient, strain replacement was evidenced in the form of two sets of isolates from different hospital admissions where the strain types within each set were nearly identical but where the two sets differed both by MLST and ABC typing. MLST therefore confirms the existing view of C. albicans strain carriage. Microvariation, evidenced as small differences between MLST types, resulted in most instances from a loss of heterozygosity at one or more of the sequenced loci. Among isolate sets that showed major strain type differences, some isolates could be excluded as likely examples of handling errors during storage. However, for a minority of isolates, intermittent differences in ABC type for tightly clustered MLST types and intermittent appearances of MTL homozygosity lead us to propose that some C. albicans isolates, or all isolates under yet-to-be-determined conditions, maintain a high level of genetic diversity by mechanisms such as recombination, gene conversion, or chromosomal ploidy change.
Collapse
Affiliation(s)
- F C Odds
- Aberdeen Fungal Group, Institute of Medical Sciences, Aberdeen AB25 2ZD, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lan L, Xu J. Multiple gene genealogical analyses suggest divergence and recent clonal dispersal in the opportunistic human pathogen Candida guilliermondii. MICROBIOLOGY-SGM 2006; 152:1539-1549. [PMID: 16622071 DOI: 10.1099/mic.0.28626-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida guilliermondii is a haploid opportunistic pathogen accounting for about 2 % of human blood yeast infections. Recent analyses using multilocus enzyme electrophoresis and karyotyping suggest that strains from human sources traditionally designated C. guilliermondii in fact include at least two species, C. guilliermondii and Candida fermentati. However, the patterns of molecular variation within and between these two species remain largely unknown. In this study, DNA fragments were sequenced from five genes for each of 37 strains collected from Canada, China, the Philippines and Tanzania. The analyses identified significant sequence differences between C. guilliermondii and C. fermentati. The five gene genealogies showed no apparent incongruence, suggesting a predominantly clonal reproductive structure for both species in nature. Indeed, two large clones of C. guilliermondii were identified, with one from Ontario, Canada, and the other from China. Interestingly, the results indicate that strains currently designated C. guilliermondii may contain additional divergent lineages. On the practical side, the results revealed several diagnostic molecular markers that can be used in clinical microbiology laboratories to distinguish C. guilliermondii and C. fermentati. The multiple gene genealogical analyses conducted here revealed significant divergence and clonal dispersal in this important pathogenic yeast complex.
Collapse
Affiliation(s)
- Lisa Lan
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
40
|
Bougnoux ME, Diogo D, François N, Sendid B, Veirmeire S, Colombel JF, Bouchier C, Van Kruiningen H, d'Enfert C, Poulain D. Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J Clin Microbiol 2006; 44:1810-20. [PMID: 16672411 PMCID: PMC1479199 DOI: 10.1128/jcm.44.5.1810-1820.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a human commensal that is also responsible for superficial and systemic infections. Little is known about the carriage of C. albicans in the digestive tract and the genome dynamics that occur during commensalisms of this diploid species. The aim of this study was to evaluate the prevalence, diversity, and genetic relationships among C. albicans isolates recovered during natural colonization of the digestive tract of humans, with emphasis on Crohn's disease patients who produce anti-yeast antibodies and may have altered Candida sp. carriage. Candida sp. isolates were recovered from 234 subjects within 25 families with multiple cases of Crohn's disease and 10 control families, sampled at the oral and fecal sites. Prevalences of Candida sp. and C. albicans carriage were 53.4% and 46.5%, respectively, indicating frequent commensal carriage. No differences in prevalence of carriage could be observed between Crohn's disease patients and healthy subjects. Multilocus sequence typing (MLST) of C. albicans isolates revealed frequent colonization of a subject or several members of the same family by genetically indistinguishable or genetically close isolates. These latter isolates differed by loss-of-heterozygosity events at one or several of the MLST loci. These loss-of-heterozygosity events could be due to either chromosome loss followed by duplication or large mitotic recombination events between complementary chromosomes. This study was the first to jointly assess commensal carriage of C. albicans, intrafamilial transmission, and microevolution. The high frequency of each of these events suggests that the digestive tract provides an important and natural niche for microevolutions of diploid C. albicans through the loss of heterozygosity.
Collapse
Affiliation(s)
- M-E Bougnoux
- Unité Postulante Biologie et Pathogénicité Fongiques, INRA USC 2019, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Carrasco L, Ramos M, Galisteo R, Pisa D, Fresno M, González ME. Isolation of Candida famata from a patient with acute zonal occult outer retinopathy. J Clin Microbiol 2005; 43:635-40. [PMID: 15695657 PMCID: PMC548119 DOI: 10.1128/jcm.43.2.635-640.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The etiology of a number of retinopathies, such as acute zonal occult outer retinopathy (AZOOR), remains undetermined. Candida famata was isolated from conjunctival exudates of a patient diagnosed with AZOOR. This yeast was very abundant, particularly in the more affected eye, while no other pathogens or fungal species were in evidence. Immunological tests revealed the presence of antigen-specific T lymphocytes by using C. famata as a challenge. Moreover, enzyme-linked immunosorbent assay analysis showed the presence of specific antibodies against this yeast in the patient's blood. Delayed hypersensitivity by use of a skin test was also positive. Finally, antifungal treatments led to improvements in several clinical symptoms, including funduscopic analysis. However, despite prolonged treatment with fluconazole and itraconazole, C. famata still appeared in the conjunctival exudates. The new antifungal voriconazole may represent a better choice for treatment.
Collapse
Affiliation(s)
- Luis Carrasco
- Centro de Biología Molecular (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
42
|
Lian C, Zhao J, Zhang Z, Liu W. Genotype of Candida species associated with different conditions of vulvovaginal candidosis. Mycoses 2004; 47:495-502. [PMID: 15601456 DOI: 10.1111/j.1439-0507.2004.01049.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is unknown whether strains isolated from recurrent vulvovaginal candidosis (RVVC), vulvovaginal candidosis (VVC) and asymptomatic carriers are varying or not in genotyping. Candida isolates were genotyped to determine whether specific types were associated with RVVC and VVC. A total of 97 Candida isolates from RVVC patients (n = 43), from VVC patients (n = 47) and asymptomatic carriers (n = 7) were identified by germ tube test, chlamydospore test, CHROMagar Candida and API20 system and were genotyped by polymerase chain reaction (PCR) fingerprinting employing random amplification of polymorphic DNA (RAPD) assay with nine random primers screened. The RAPD identified distinct genotypes that were shared among isolates from most different individuals. Most of the 85 C. albicans strains failed to corroborate any obvious differences in the genotypic variability in the VVC, RVVC patient groups and carriers by clustering analysis. Only a few individuals were found to harbor a distinct genotype of C. albicans isolates associated with a specific disease condition.
Collapse
Affiliation(s)
- C Lian
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing City, China
| | | | | | | |
Collapse
|
43
|
Swoboda SM, Merz WG, Lipsetta PA. Candidemia: The Impact of Antifungal Prophylaxis in a Surgical Intensive Care Unit. Surg Infect (Larchmt) 2003; 4:345-54. [PMID: 15012861 DOI: 10.1089/109629603322761409] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Candidemia is fourfold more common in 1990 compared to 1980. In addition, a shift to non-albicans species has occurred in some institutions. Antifungal prophylaxis (AP) is effective in high-risk patients including critically ill surgical patients, but its use has been attributed to a resultant shift to non-albicans candida species. We hypothesized that the use of fluconazole prophylaxis would lead to a decreased incidence of candidemia but a possible increased incidence of resistant species of Candida, especially Candida glabrata (CG). METHODS From 1990 to 2002, all patients with candidemia (C) in the surgical intensive care unit (SICU) of a large tertiary care hospital were identified and reviewed retrospectively. Antifungal prophylaxis began in 2000 for high-risk patients. The periods were separated into PRE (1990-2000), and POST prophylaxis (2000-2002). RESULTS Excluding the year of the trial studying prophylaxis, (1998; five cases of C) a total of 83 patients developed candidemia: 69 PRE (83%) (1.94/1000 patient days) and 14 POST (17%) (0.76/1000 patient days) (OR 0.44; 95% CI 0.25, 0.78; p = 0.004). In the PRE period C. albicans (45%) and CG (30%) were predominant, whereas in the POST period, CG (9/14, 64%) (p = 0.05), and C. albicans (3/14, 21%) were common. Non-albicans species were 38/69 (55%) PRE and 11/14 (79%) POST, p = 0.14. Mortality in the group was 43/83 (52%) and did not differ PRE/POST or based on treatment. Predictors of SICU mortality (model r2 = 0.61) included hospital length of stay (LOS) (OR 1.14, CI 1.04, 1.25), fever (OR 51.2, CI 2.46, 1064), and broad-spectrum antibiotics (OR 69.7, CI 2.08, 2351), whereas post-transplantation status (OR 0.005, CI 0.00, 0.56), blood sugar <180 mg/dL (OR 0.03, CI 0.01, 0.81), and fungal prophylaxis (OR 0.03, CI 0.01, 0.58) were associated with a decreased risk of mortality. CONCLUSIONS Unfortunately, the mortality of candidemia remains high in SICU patients (52%). In the SICU, risk factors for candidemia and mortality are common. However, antifungal prophylaxis has significantly decreased the annual incidence of candidemia without a statistically significant shift to non-albicans pathogens.
Collapse
Affiliation(s)
- Sandra M Swoboda
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
44
|
Montour L, Tey R, Xu J. Isolation of Candida dubliniensis in an aboriginal community in Ontario, Canada. J Clin Microbiol 2003; 41:3423-6. [PMID: 12843110 PMCID: PMC165287 DOI: 10.1128/jcm.41.7.3423-3426.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study reports the first isolation of Candida dubliniensis from North American Indians. Of 39 healthy human hosts sampled, two had C. dubliniensis. Genotypic analysis identified polymorphisms in these strains and differences from two reference strains. Our results suggest that yeast populations from indigenous communities in North America may be unique.
Collapse
Affiliation(s)
- Laura Montour
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | | |
Collapse
|
45
|
Xu J, Mitchell TG. Geographical differences in human oral yeast flora. Clin Infect Dis 2003; 36:221-4. [PMID: 12522756 DOI: 10.1086/345672] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2002] [Accepted: 10/08/2002] [Indexed: 11/04/2022] Open
Abstract
The oral yeast flora of healthy humans from eastern North America and China were sampled and compared. Chinese persons harbored a greater number and diversity of yeast species in the mouth. Furthermore, Candida albicans, which is the predominant commensal and etiologic species of candidiasis in Europe and the Western Hemisphere, was relatively rare in China.
Collapse
Affiliation(s)
- Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
46
|
Current awareness on yeast. Yeast 2002; 19:1277-84. [PMID: 12400546 DOI: 10.1002/yea.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|