1
|
Güney Z, Kurgan Ş, Önder C, Tayman MA, Günhan Ö, Kantarci A, Serdar MA, Günhan M. Wnt signaling in periodontitis. Clin Oral Investig 2023; 27:6801-6812. [PMID: 37814163 DOI: 10.1007/s00784-023-05294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE This study aimed to evaluate the Wnt/β-catenin signaling pathway activity in gingival samples obtained from patients with periodontitis. MATERIALS AND METHODS Fifteen patients with stage III grade B (SIIIGB) and eleven with stage III grade C (SIIIGC) periodontitis were included and compared to 15 control subjects. β-Catenin, Wnt 3a, Wnt 5a, and Wnt 10b expressions were evaluated by Q-PCR. Topographic localization of tissue β-catenin, Wnt 5a, and Wnt 10b was measured by immunohistochemical analysis. TNF-α was used to assess the inflammatory state of the tissues, while Runx2 was used as a mediator of active destruction. RESULTS Wnt 3a, Wnt 5a, and Wnt 10b were significantly higher in gingival tissues in both grades of stage 3 periodontitis compared to the control group (p < 0.05). β-Catenin showed intranuclear staining in connective tissue in periodontitis, while it was confined to intracytoplasmic staining in epithelial tissue and the cell walls in the control group. Wnt5a protein expression was elevated in periodontitis, with the most intense staining observed in the connective tissue of SIIIGC samples. Wnt10b showed the highest density in the connective tissue of patients with periodontitis. CONCLUSIONS Our findings suggested that periodontal inflammation disrupts the Wnt/β-catenin signaling pathway. CLINICAL RELEVANCE Periodontitis disrupts Wnt signaling in periodontal tissues in parallel with tissue inflammation and changes in morphology. This change in Wnt-related signaling pathways that regulate tissue homeostasis in the immunoinflammatory response may shed light on host-induced tissue destruction in the pathogenesis of the periodontal disease.
Collapse
Affiliation(s)
- Zeliha Güney
- Faculty of Dentistry Department of Periodontology, Ankara University, 06500-Cankaya, Ankara, Turkey
- Faculty of Dentistry Department of Periodontology, Ankara Medipol University, Ankara, Turkey
| | - Şivge Kurgan
- Faculty of Dentistry Department of Periodontology, Ankara University, 06500-Cankaya, Ankara, Turkey.
| | - Canan Önder
- Faculty of Dentistry Department of Periodontology, Ankara University, 06500-Cankaya, Ankara, Turkey
| | - Mahmure Ayşe Tayman
- Faculty of Dentistry Department of Periodontology, Yildirim Beyazit University, Ankara, Turkey
| | - Ömer Günhan
- Faculty of Medicine Department of Pathology, TOBB University, Ankara, Turkey
| | | | | | - Meral Günhan
- Faculty of Dentistry Department of Periodontology, Ankara University, 06500-Cankaya, Ankara, Turkey
| |
Collapse
|
2
|
Kebschull M, Kroeger AT, Papapanou PN. Genome-Wide Analysis of Periodontal and Peri-implant Cells and Tissues. Methods Mol Biol 2023; 2588:295-315. [PMID: 36418695 DOI: 10.1007/978-1-0716-2780-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
-Omics analyses, including the systematic cataloging of messenger RNA and microRNA sequences or DNA methylation patterns in a cell population, organ, or tissue sample, are powerful means of generating comprehensive genome-level data sets on complex diseases. We have systematically assessed the transcriptome, microbiome, miRNome, and methylome of gingival and peri-implant tissues from human subjects and further studied the transcriptome of primary cells ex vivo, or in vitro after infection with periodontal pathogens.Our data offer new insight on the pathophysiology underlying periodontal and peri-implant diseases, a possible route to a better and earlier diagnosis of these highly prevalent chronic inflammatory diseases and thus, to a personalized and efficient treatment approach.Herein, we outline the laboratory steps required for the processing of periodontal cells and tissues for -omics analyses using current microarrays or next-generation sequencing technology.
Collapse
Affiliation(s)
- Moritz Kebschull
- Periodontal Research Group, Institute of Clinical Sciences, College of Medical & Dental Sciences, The University of Birmingham, Birmingham, UK. .,Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA. .,Birmingham Community Healthcare NHS Trust, Birmingham, UK.
| | - Annika Therese Kroeger
- Birmingham Community Healthcare NHS Trust, Birmingham, UK.,Department of Oral Surgery, School of Dentistry, University of Birmingham, Birmingham, UK
| | - Panos N Papapanou
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA
| |
Collapse
|
3
|
Boehler JF, Ricotti V, Gonzalez JP, Soustek-Kramer M, Such L, Brown KJ, Schneider JS, Morris CA. Membrane recruitment of nNOSµ in microdystrophin gene transfer to enhance durability. Neuromuscul Disord 2019; 29:735-741. [PMID: 31521486 DOI: 10.1016/j.nmd.2019.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
Abstract
Several gene transfer clinical trials are currently ongoing with the common aim of delivering a shortened version of dystrophin, termed a microdystrophin, for the treatment of Duchenne muscular dystrophy (DMD). However, one of the main differences between these trials is the microdystrophin protein produced following treatment. Each gene transfer product is based on different selections of dystrophin domain combinations to assemble microdystrophin transgenes that maintain functional dystrophin domains and fit within the packaging limits of an adeno-associated virus (AAV) vector. While domains involved in mechanical function, such as the actin-binding domain and β-dystroglycan binding domain, have been identified for many years and included in microdystrophin constructs, more recently the neuronal nitric oxide synthase (nNOS) domain has also been identified due to its role in enhancing nNOS membrane localization. As nNOS membrane localization has been established as an important requirement for prevention of functional ischemia in skeletal muscle, inclusion of the nNOS domain into a microdystrophin construct represents an important consideration. The aim of this mini review is to highlight what is currently known about the nNOS domain of dystrophin and to describe potential implications of this domain in a microdystrophin gene transfer clinical trial.
Collapse
Affiliation(s)
- Jessica F Boehler
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Valeria Ricotti
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - J Patrick Gonzalez
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | | | - Lauren Such
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Kristy J Brown
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Joel S Schneider
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Carl A Morris
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States.
| |
Collapse
|
4
|
Kebschull M, Hülsmann C, Hoffmann P, Papapanou PN. Genome-Wide Analysis of Periodontal and Peri-Implant Cells and Tissues. Methods Mol Biol 2017; 1537:307-326. [PMID: 27924602 PMCID: PMC6554644 DOI: 10.1007/978-1-4939-6685-1_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Omics analyses, including the systematic cataloging of messenger RNA and microRNA sequences or DNA methylation patterns in a cell population, organ or tissue sample, are powerful means of generating comprehensive genome-level data sets on complex diseases. We have systematically assessed the transcriptome, miRNome and methylome of gingival tissues from subjects with different diagnostic entities of periodontal disease, and studied the transcriptome of primary cells ex vivo, or in vitro after infection with periodontal pathogens. Our data further our understanding of the pathobiology of periodontal diseases and indicate that the gingival -omes translate into discernible phenotypic characteristics and possibly support an alternative, "molecular" classification of periodontitis.Here, we outline the laboratory steps required for the processing of periodontal cells and tissues for -omics analyses using current microarrays or next-generation sequencing technology.
Collapse
Affiliation(s)
- Moritz Kebschull
- Department of Periodontology, Operative and Preventive Dentistry, Faculty of Medicine, University of Bonn, Welschnonnenstr. 17, Bonn, D-53111, Germany.
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA.
| | - Claudia Hülsmann
- Department of Periodontology, Operative and Preventive Dentistry, Faculty of Medicine, University of Bonn, Welschnonnenstr. 17, Bonn, D-53111, Germany
| | - Per Hoffmann
- Department of Genomics, Institute of Human Genetics, University of Bonn, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Panos N Papapanou
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA
| |
Collapse
|
5
|
Almeida CF, Martins PC, Vainzof M. Comparative transcriptome analysis of muscular dystrophy models Large(myd), Dmd(mdx)/Large(myd) and Dmd(mdx): what makes them different? Eur J Hum Genet 2016; 24:1301-9. [PMID: 26932192 DOI: 10.1038/ejhg.2016.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 11/09/2022] Open
Abstract
Muscular dystrophies (MD) are a clinically and genetically heterogeneous group of Mendelian diseases. The underlying pathophysiology and phenotypic variability in each form are much more complex, suggesting the involvement of many other genes. Thus, here we studied the whole genome expression profile in muscles from three mice models for MD, at different time points: Dmd(mdx) (mutation in dystrophin gene), Large(myd-/-) (mutation in Large) and Dmd(mdx)/Large(myd-/-) (both mutations). The identification of altered biological functions can contribute to understand diseases and to find prognostic biomarkers and points for therapeutic intervention. We identified a substantial number of differentially expressed genes (DEGs) in each model, reflecting diseases' complexity. The main biological process affected in the three strains was immune system, accounting for the majority of enriched functional categories, followed by degeneration/regeneration and extracellular matrix remodeling processes. The most notable differences were in 21-day-old Dmd(mdx), with a high proportion of DEGs related to its regenerative capacity. A higher number of positive embryonic myosin heavy chain (eMyHC) fibers confirmed this. The new Dmd(mdx)/Large(myd-/-) model did not show a highly different transcriptome from the parental lineages, with a profile closer to Large(myd-/-), but not bearing the same regenerative potential as Dmd(mdx). This is the first report about transcriptome profile of a mouse model for congenital MD and Dmd(mdx)/Large(myd). By comparing the studied profiles, we conclude that alterations in biological functions due to the dystrophic process are very similar, and that the intense regeneration in Dmd(mdx) involves a large number of activated genes, not differentially expressed in the other two strains.
Collapse
Affiliation(s)
- Camila F Almeida
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Poliana Cm Martins
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mariz Vainzof
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Differential isoform expression and selective muscle involvement in muscular dystrophies. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2833-42. [PMID: 26269091 DOI: 10.1016/j.ajpath.2015.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/23/2022]
Abstract
Despite the expression of the mutated gene in all muscles, selective muscles are involved in genetic muscular dystrophies. Different muscular dystrophies show characteristic patterns of fatty degenerative changes by muscle imaging, even to the extent that the patterns have been used for diagnostic purposes. However, the underlying molecular mechanisms explaining the selective involvement of muscles are not known. To test the hypothesis that different muscles may express variable amounts of different isoforms of muscle genes, we applied a custom-designed exon microarray containing probes for 57 muscle-specific genes to assay the transcriptional profiles in sets of human adult lower limb skeletal muscles. Quantitative real-time PCR and whole transcriptome sequencing were used to further analyze the results. Our results demonstrate significant variations in isoform and gene expression levels in anatomically different muscles. Comparison of the known patterns of selective involvement of certain muscles in two autosomal dominant titinopathies and one autosomal dominant myosinopathy, with the isoform and gene expression results, shows a correlation between the specific muscles involved and significant differences in the level of expression of the affected gene and exons in these same muscles compared with some other selected muscles. Our results suggest that differential expression levels of muscle genes and isoforms are one determinant in the selectivity of muscle involvement in muscular dystrophies.
Collapse
|
7
|
|
8
|
Overview of micro- and nano-technology tools for stem cell applications: micropatterned and microelectronic devices. SENSORS 2012. [PMID: 23202240 PMCID: PMC3522993 DOI: 10.3390/s121115947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element.
Collapse
|
9
|
Nalbandian A, Ghimbovschi S, Radom-Aizik S, Dec E, Vesa J, Martin B, Knoblach S, Smith C, Hoffman E, Kimonis VE. Global gene profiling of VCP-associated inclusion body myopathy. Clin Transl Sci 2012; 5:226-34. [PMID: 22686199 DOI: 10.1111/j.1752-8062.2012.00407.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD) is an autosomal dominant disorder caused by mutations in the Valosin-containing protein (VCP) gene on chromosome 9p12-13. Patients demonstrate limb girdle muscle weakness, which eventually progresses to involve respiratory muscles, and death from respiratory and cardiac failure. This is the first investigation to analyze key molecular mediators and signaling cascades in skeletal muscle causing myopathy by global gene microarray in hopes of understanding the dysregulated genes and molecular mechanisms underlying IBMPFD and the hope of finding novel therapeutic targets. We determined expression profiles using Human Genome Array microarray technology in Vastus lateralis muscles from patients and their first-degree relatives. We analyzed gene annotations by Database for Annotation, Visualization and Integration Discovery and identified differentially dysregulated genes with roles in several novel biological pathways, including regulation of actin cytoskeleton, ErbB signaling, cancer, in addition to regulation of autophagy, and lysosomal signaling, known disrupted pathways in VCP disease. In this report, we present data from the first global microarray analyzing IBMPFD patient muscles and elucidating dysregulated pathways to further understand the pathogenesis of the disease and discover potential therapeutics.
Collapse
Affiliation(s)
- Angèle Nalbandian
- Department of Pediatrics, Division of Genetics and Metabolism, University of California, Irvine, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mu X, Xiang G, Rathbone CR, Pan H, Bellayr IH, Walters TJ, Li Y. Slow-adhering stem cells derived from injured skeletal muscle have improved regenerative capacity. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:931-41. [PMID: 21684246 DOI: 10.1016/j.ajpath.2011.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 04/07/2011] [Accepted: 05/02/2011] [Indexed: 11/17/2022]
Abstract
A wide variety of myogenic cell sources have been used for repair of injured and diseased muscle including muscle stem cells, which can be isolated from skeletal muscle as a group of slow-adhering cells on a collagen-coated surface. The therapeutic use of muscle stem cells for improving muscle regeneration is promising; however, the effect of injury on their characteristics and engraftment potential has yet to be described. In the present study, slow-adhering stem cells (SASCs) from both laceration-injured and control noninjured skeletal muscles in mice were isolated and studied. Migration and proliferation rates, multidifferentiation potentials, and differences in gene expression in both groups of cells were compared in vitro. Results demonstrated that a larger population of SASCs could be isolated from injured muscle than from control noninjured muscle. In addition, SASCs derived from injured muscle demonstrated improved migration, a higher rate of proliferation and multidifferentiation, and increased expression of Notch1, STAT3, Msx1, and MMP2. Moreover, when transplanted into dystrophic muscle in MDX/SCID mice, SASCs from injured muscle generated greater engraftments with a higher capillary density than did SASCs from control noninjured muscle. These data suggest that traumatic injury may modify stem cell characteristics through trophic factors and improve the transplantation potential of SASCs in alleviating skeletal muscle injuries and diseases.
Collapse
Affiliation(s)
- Xiaodong Mu
- Laboratory of Molecular Pathology, Stem Cell Research Center, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Chemello F, Bean C, Cancellara P, Laveder P, Reggiani C, Lanfranchi G. Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers. PLoS One 2011; 6:e16807. [PMID: 21364935 PMCID: PMC3043066 DOI: 10.1371/journal.pone.0016807] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/30/2010] [Indexed: 11/18/2022] Open
Abstract
Background Skeletal muscle is a complex, versatile tissue composed of a variety of functionally diverse fiber types. Although the biochemical, structural and functional properties of myofibers have been the subject of intense investigation for the last decades, understanding molecular processes regulating fiber type diversity is still complicated by the heterogeneity of cell types present in the whole muscle organ. Methodology/Principal Findings We have produced a first catalogue of genes expressed in mouse slow-oxidative (type 1) and fast-glycolytic (type 2B) fibers through transcriptome analysis at the single fiber level (microgenomics). Individual fibers were obtained from murine soleus and EDL muscles and initially classified by myosin heavy chain isoform content. Gene expression profiling on high density DNA oligonucleotide microarrays showed that both qualitative and quantitative improvements were achieved, compared to results with standard muscle homogenate. First, myofiber profiles were virtually free from non-muscle transcriptional activity. Second, thousands of muscle-specific genes were identified, leading to a better definition of gene signatures in the two fiber types as well as the detection of metabolic and signaling pathways that are differentially activated in specific fiber types. Several regulatory proteins showed preferential expression in slow myofibers. Discriminant analysis revealed novel genes that could be useful for fiber type functional classification. Conclusions/Significance As gene expression analyses at the single fiber level significantly increased the resolution power, this innovative approach would allow a better understanding of the adaptive transcriptomic transitions occurring in myofibers under physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesco Chemello
- Department of Biology and CRIBI Biotechnology Center, University of Padova, Padova, Italy
| | - Camilla Bean
- Department of Biology and CRIBI Biotechnology Center, University of Padova, Padova, Italy
| | - Pasqua Cancellara
- Department of Anatomy and Physiology, University of Padova, Padova, Italy
| | - Paolo Laveder
- Department of Biology and CRIBI Biotechnology Center, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Department of Anatomy and Physiology, University of Padova, Padova, Italy
| | - Gerolamo Lanfranchi
- Department of Biology and CRIBI Biotechnology Center, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
12
|
Baron D, Dubois E, Bihouée A, Teusan R, Steenman M, Jourdon P, Magot A, Péréon Y, Veitia R, Savagner F, Ramstein G, Houlgatte R. Meta-analysis of muscle transcriptome data using the MADMuscle database reveals biologically relevant gene patterns. BMC Genomics 2011; 12:113. [PMID: 21324190 PMCID: PMC3049149 DOI: 10.1186/1471-2164-12-113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 02/16/2011] [Indexed: 12/12/2022] Open
Abstract
Background DNA microarray technology has had a great impact on muscle research and microarray gene expression data has been widely used to identify gene signatures characteristic of the studied conditions. With the rapid accumulation of muscle microarray data, it is of great interest to understand how to compare and combine data across multiple studies. Meta-analysis of transcriptome data is a valuable method to achieve it. It enables to highlight conserved gene signatures between multiple independent studies. However, using it is made difficult by the diversity of the available data: different microarray platforms, different gene nomenclature, different species studied, etc. Description We have developed a system tool dedicated to muscle transcriptome data. This system comprises a collection of microarray data as well as a query tool. This latter allows the user to extract similar clusters of co-expressed genes from the database, using an input gene list. Common and relevant gene signatures can thus be searched more easily. The dedicated database consists in a large compendium of public data (more than 500 data sets) related to muscle (skeletal and heart). These studies included seven different animal species from invertebrates (Drosophila melanogaster, Caenorhabditis elegans) and vertebrates (Homo sapiens, Mus musculus, Rattus norvegicus, Canis familiaris, Gallus gallus). After a renormalization step, clusters of co-expressed genes were identified in each dataset. The lists of co-expressed genes were annotated using a unified re-annotation procedure. These gene lists were compared to find significant overlaps between studies. Conclusions Applied to this large compendium of data sets, meta-analyses demonstrated that conserved patterns between species could be identified. Focusing on a specific pathology (Duchenne Muscular Dystrophy) we validated results across independent studies and revealed robust biomarkers and new pathways of interest. The meta-analyses performed with MADMuscle show the usefulness of this approach. Our method can be applied to all public transcriptome data.
Collapse
|
13
|
Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice. Proc Natl Acad Sci U S A 2010; 108:762-7. [PMID: 21187385 DOI: 10.1073/pnas.1013067108] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in dystrophin and the subsequent disruption of the dystrophin-associated protein complex (DAPC). Utrophin is a dystrophin homolog expressed at high levels in developing muscle that is an attractive target for DMD therapy. Here we show that the extracellular matrix protein biglycan regulates utrophin expression in immature muscle and that recombinant human biglycan (rhBGN) increases utrophin expression in cultured myotubes. Systemically delivered rhBGN up-regulates utrophin at the sarcolemma and reduces muscle pathology in the mdx mouse model of DMD. RhBGN treatment also improves muscle function as judged by reduced susceptibility to eccentric contraction-induced injury. Utrophin is required for the rhBGN therapeutic effect. Several lines of evidence indicate that biglycan acts by recruiting utrophin protein to the muscle membrane. RhBGN is well tolerated in animals dosed for as long as 3 months. We propose that rhBGN could be a therapy for DMD.
Collapse
|
14
|
Gambardella S, Rinaldi F, Lepore SM, Viola A, Loro E, Angelini C, Vergani L, Novelli G, Botta A. Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients. J Transl Med 2010; 8:48. [PMID: 20487562 PMCID: PMC2880982 DOI: 10.1186/1479-5876-8-48] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 05/20/2010] [Indexed: 01/11/2023] Open
Abstract
Background MicroRNAs are highly conserved, noncoding RNAs involved in post-transcriptional gene silencing. They have been shown to participate in a wide range of biological processes, including myogenesis and muscle regeneration. The goal of this study is to test the hypothesis that myo-miRs (myo = muscle + miR = miRNA) expression is altered in muscle from patients affected by myotonic dystrophy type 1 (DM1), the most frequently inherited neuromuscular disease in adults. In order to gain better insights about the role of miRNAs in the DM1 pathogenesis, we have also analyzed the muscular expression of miR-103 and miR-107, which have been identified in silico as attractive candidates for binding to the DMPK mRNA. Methods To this aim, we have profiled the expression of miR-133 (miR-133a, miR-133b), miR-1, miR-181 (miR-181a, miR-181b, miR-181c) and miR-206, that are specifically induced during myogenesis in cardiac and skeletal muscle tissues. miR-103 and miR-107, highly expressed in brain, heart and muscle have also been included in this study. QRT-PCR experiments have been performed on RNA from vastus lateralis biopsies of DM1 patients (n = 7) and control subjects (n = 4). Results of miRNAs expression have been confirmed by Northern blot, whereas in situ hybridization technique have been performed to localize misexpressed miRNAs on muscle sections from DM1 and control individuals. Results Only miR-206 showed an over-expression in 5 of 7 DM1 patients (threshold = 2, fold change between 1.20 and 13.22, average = 5.37) compared to the control group. This result has been further confirmed by Northern blot analysis (3.37-fold overexpression, R2 = 0.89). In situ hybridization localized miR-206 to nuclear site both in normal and DM1 tissues. Cellular distribution in DM1 tissues includes also the nuclear regions of centralized nuclei, with a strong signal corresponding to nuclear clumps. Conclusions This work provides, for the first time, evidences about miRNAs misexpression in DM1 muscle tissues, adding a new element in the pathogenesis of this complex genetic disease.
Collapse
|
15
|
Kebschull M, Papapanou PN. The use of gene arrays in deciphering the pathobiology of periodontal diseases. Methods Mol Biol 2010; 666:385-393. [PMID: 20717797 DOI: 10.1007/978-1-60761-820-1_24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Gene expression profiling, i.e., the systematic cataloging of messenger RNA sequences in a cell population, organ, or tissue sample, is a powerful means of generating comprehensive genome-level data sets on complex diseases. We have recently applied a systematic transcriptome-based approach in the study of healthy and diseased gingival tissues, as well in the response of peripheral blood mononuclear cells after periodontal therapy. Our data indicate that both the gingival and the circulating transcriptomes correlate with discernible phenotypic characteristics and may further our understanding of the pathobiology of periodontitis. In this chapter, we outline the laboratory steps required for the processing of gingival tissue and blood samples in view of hybridization with whole-genome microarrays.
Collapse
Affiliation(s)
- Moritz Kebschull
- Division of Periodontics, Section of Oral and Diagnostic Sciences, College of Dental Medicine, Columbia University, New York, NY, USA
| | | |
Collapse
|
16
|
Vasu VT, Ott S, Hobson B, Rashidi V, Oommen S, Cross CE, Gohil K. Sarcolipin and ubiquitin carboxy-terminal hydrolase 1 mRNAs are over-expressed in skeletal muscles of alpha-tocopherol deficient mice. Free Radic Res 2009; 43:106-16. [PMID: 19204867 DOI: 10.1080/10715760802616676] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The transcriptome of ataxic muscles from alpha-tocopherol transfer protein deficient (ATTP-KO), 23-month old, mice was compared with that of their normal littermates. Genes encoding sarcolipin (sln) and ubiquitin carboxyl-terminal hydrolase (uchl1) were over-expressed (> or =10-fold) in ataxic muscles. SLN is a 3.2 kDa membrane protein that binds to sarcoplasmic reticulum calcium ATPase, regulates Ca(+ +) transport and muscle relaxation-contraction cycles. UCHL1 is a 24.8 kDa member of proteosome proteins; it is over-expressed in myofibrillar myopathy and is associated with neurodegenerative diseases. Furthermore, six additional transcripts, three encoding thin-filament proteins and three encoding Ca(+ +) sensing proteins that participate in contraction-relaxation cycle, and eight transcripts that encode members of lysosomal proteins were also over-expressed in ataxic muscles. These observations suggest that chronic alpha-tocopherol (AT) deficiency activates critical genes of muscle contractility and protein degradation pathways, simultaneously. The magnitude of induction of sln and uchl1 was lower in asymptomatic, 8-month old, ATTP-KO mice and in 8-month old mice fed an AT-depleted diet. These studies suggest sln and uchl1 genes as novel targets of AT deficiency and may offer molecular correlates of well documented descriptions of neuromuscular dysfunctions in AT-deficient rodents. Since the neuromuscular deficits of ATTP-KO mice appear to be similar to those of patients with ATTP mutations, it is suggested that over-expression of sln and uchl1 may also contribute to AT-sensitive ataxia in humans.
Collapse
Affiliation(s)
- Vihas T Vasu
- Department of Internal Medicine, University of California, Davis, 95616, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Analysis of growth factor expression in affected and unaffected muscles of oculo-pharyngeal muscular dystrophy (OPMD) patients: A pilot study. Neuromuscul Disord 2009; 19:199-206. [DOI: 10.1016/j.nmd.2008.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/27/2008] [Accepted: 12/07/2008] [Indexed: 11/20/2022]
|
18
|
Demmer RT, Behle JH, Wolf DL, Handfield M, Kebschull M, Celenti R, Pavlidis P, Papapanou PN. Transcriptomes in healthy and diseased gingival tissues. J Periodontol 2009; 79:2112-24. [PMID: 18980520 DOI: 10.1902/jop.2008.080139] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Clinical and radiographic measures are gold standards for diagnosing periodontitis but offer little information regarding the pathogenesis of the disease. We hypothesized that a comparison of gene expression signatures between healthy and diseased gingival tissues would provide novel insights in the pathobiology of periodontitis and would inform the design of future studies. METHODS Ninety systemically healthy non-smokers with moderate to advanced periodontitis (63 with chronic periodontitis and 27 with aggressive periodontitis) each contributed at least two diseased interproximal papillae (with bleeding on probing [BOP], probing depth [PD] > or =4 mm, and attachment loss [AL] > or =3 mm) and a healthy papilla, if available (no BOP, PD < or =4 mm, and AL < or =2 mm). RNA was extracted, amplified, reverse-transcribed, labeled, and hybridized with whole genome microarrays. Differential expression was assayed in 247 individual tissue samples (183 from diseased sites and 64 from healthy sites) using a standard mixed-effects linear model approach, with patient effects considered random with a normal distribution and gingival tissue status considered a two-level fixed effect. Gene ontology analysis classified the expression patterns into biologically relevant categories. RESULTS Transcriptome analysis revealed that 12,744 probe sets were differentially expressed after adjusting for multiple comparisons (P <9.15 x 10(7)). Of those, 5,295 were upregulated and 7,449 were downregulated in disease compared to health. Gene ontology analysis identified 61 differentially expressed groups (adjusted P <0.05), including apoptosis, antimicrobial humoral response, antigen presentation, regulation of metabolic processes, signal transduction, and angiogenesis. CONCLUSION Gingival tissue transcriptomes provide a valuable scientific tool for further hypothesis-driven studies of the pathobiology of periodontitis.
Collapse
Affiliation(s)
- Ryan T Demmer
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Adaptations that are the result of exercise require a multitude of changes at the level of gene expression. The mechanisms involved in regulating these changes are many, and can occur at various points in the pathways that affect gene expression. The completion of the human genome sequence, along with the genomes of related species, has provided an enormous amount of information to help dissect and understand these pathways. High-throughput methods, such as DNA microarrays, were the first on the scene to take advantage of this wealth of information. A new generation of microarrays has now taken the next step in revealing the mechanisms controlling gene expression. Analysis of the regulation of gene expression can now be profiled in a high-throughput fashion. However, the application of this technology has yet to be fully realized in the exercise physiology community. This review will highlight some of the latest advances in microarrays and briefly discuss some potential applications to the field of exercise physiology.
Collapse
Affiliation(s)
- Carl Virtanen
- Microarray Centre, University Health Network, MaRS Centre, Toronto Discovery Tower, 101 College St., Toronto, ON M5G 1L7, Canada
| | | |
Collapse
|
20
|
Grounds MD, Radley HG, Lynch GS, Nagaraju K, De Luca A. Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy. Neurobiol Dis 2008; 31:1-19. [PMID: 18499465 DOI: 10.1016/j.nbd.2008.03.008] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/20/2008] [Accepted: 03/24/2008] [Indexed: 11/19/2022] Open
Abstract
This review discusses various issues to consider when developing standard operating procedures for pre-clinical studies in the mdx mouse model of Duchenne muscular dystrophy (DMD). The review describes and evaluates a wide range of techniques used to measure parameters of muscle pathology in mdx mice and identifies some basic techniques that might comprise standardised approaches for evaluation. While the central aim is to provide a basis for the development of standardised procedures to evaluate efficacy of a drug or a therapeutic strategy, a further aim is to gain insight into pathophysiological mechanisms in order to identify other therapeutic targets. The desired outcome is to enable easier and more rigorous comparison of pre-clinical data from different laboratories around the world, in order to accelerate identification of the best pre-clinical therapies in the mdx mouse that will fast-track translation into effective clinical treatments for DMD.
Collapse
Affiliation(s)
- Miranda D Grounds
- School of Anatomy and Human Biology, the University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
21
|
Lin CS, Hsu CW. Differentially transcribed genes in skeletal muscle of Duroc and Taoyuan pigs. J Anim Sci 2008; 83:2075-86. [PMID: 16100062 DOI: 10.2527/2005.8392075x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to compare gene transcription profiles of LM between two pig breeds, Duroc and Taoyuan, which display dramatically different postnatal muscle growth. We isolated LM from neonatal pigs, and the Duroc muscle length and mass were greater (P < 0.01) than for Taoyuan pigs; however, insignificant differences in the muscle fiber area and the percentage of fiber types were found. A human high-density complementary DNA (cDNA) microarray consisting of 9,182 probes was used to compare gene transcription profiles of LM between the two breeds. The results showed that the transcription level of 73 genes and 44 genes in Duroc LM were upregulated and down-regulated by at least 1.75-fold (P < 0.05) compared with Taoyuan, respectively. The strongly upregulated genes in Duroc pigs included those encoding the complex of myofibrillar proteins (e.g., myosin light and heavy chains, and troponin), ribosomal proteins, transcription regulatory proteins (e.g., skeletal muscle LIM protein 1 [SLIM1] and high-mobility group proteins), and energy metabolic enzymes (e.g., electron-transferring flavo-protein dehydrogenase, NADH dehydrogenase, malate dehydrogenase, and ATP synthases). The highly transcribed genes that encode energy metabolic enzymes indicate a more glycolytic metabolism in Duroc LM, thereby favoring carbohydrates rather than lipids for use as energy substrates in this tissue. The over-transcribed genes that encode skeletal muscle-predominant proteins or transcription regulators that control myogenesis and/or muscle growth suggest a general mechanism for the observed higher rate of postnatal muscle growth in Duroc pigs. The transcription of one such gene, SLIM1, was more highly transcribed (P < 0.01) in Duroc LM at birth and at postnatal d 7 than in Taoyuan. The transcription of SLIM1 increased (P < 0.05) in Duroc LM from neonate through 7 d of age, whereas its transcription remained essentially constant in Taoyuan during this period. These results suggest that SLIM1 may be useful for the development of markers associated with the postnatal muscle growth of pigs.
Collapse
Affiliation(s)
- C S Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan, Republic of China.
| | | |
Collapse
|
22
|
Marotta M, Sarria Y, Ruiz-Roig C, Munell F, Roig-Quilis M. Laser microdissection-based expression analysis of key genes involved in muscle regeneration in mdx mice. Neuromuscul Disord 2007; 17:707-18. [PMID: 17611107 DOI: 10.1016/j.nmd.2007.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 05/03/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
We have used the mdx mice strain (C57BL/10ScSn-mdx) as an experimental subject for the study of reiterative skeletal muscle necrosis-regeneration with basement membrane preservation. In young mdx muscle, by means of Hematoxylin-Eosin staining, different types of degenerative-regenerative groups (DRG) can be recognized and assigned to a defined muscle regeneration phase. To evaluate the expression of known key-regulatory genes in muscle regeneration, we have applied Laser Capture Microdissection technique to obtain tissue from different DRGs encompassing the complete skeletal muscle regenerative process. The expression of MyoD, Myf-5 and Myogenin showed a rapid increase in the first two days post-necrosis, which were followed by MRF4 expression, when newly regenerating fibers started to appear (3-5days post-necrosis). MHCd mRNA levels, undetectable in mature non-injured fibers, increased progressively from the first day post-necrosis and reached its maximum level of expression in DRGs showing basophilic regenerating fibers. TGFbeta-1 mRNA expression showed a prompt and strong increase following fiber necrosis that persisted during the inflammatory phase, and progressively decreased when new regenerating fibers began to appear. In contrast, IGF-2 mRNA expression decreased during the first days post-necrosis but was followed by a progressive rise in its expression coinciding with the appearance of the newly formed myofibers, reaching the maximum expression levels in DRGs composed of medium caliber basophilic regenerating myofibers (5-7 days post-necrosis). mdx degenerative-regenerative group typing, in conjunction with laser microdissection-based gene expression analysis, opens up a new approach to the molecular study of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Mario Marotta
- Laboratori de Neurología Infantil, Institut de Recerca Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
23
|
McCarthy JJ, Esser KA, Andrade FH. MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol 2007; 293:C451-7. [PMID: 17459947 DOI: 10.1152/ajpcell.00077.2007] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MicroRNAs are highly conserved, noncoding RNAs involved in posttranscriptional gene silencing. MicroRNAs have been shown to be involved in a range of biological processes, including myogenesis and muscle regeneration. The objective of this study was to test the hypothesis that microRNA expression is altered in dystrophic muscle, with the greatest change occurring, of the muscles examined, in the diaphragm. The expression of the muscle-enriched microRNAs was determined in the soleus, plantaris, and diaphragm muscles of control and dystrophin-deficient ( mdx) mice by semiquantitative PCR. In the soleus and plantaris, expression of the mature microRNA 133a (miR-133a) and miR-206, respectively, was decreased by ∼25%, whereas in the diaphragm, miR-206 expression increased by 4.5-fold relative to control. The increased expression of miR-206 in the mdx diaphragm was paralleled by a 4.4-fold increase in primary miRNA-206 (pri-miRNA-206) transcript level. Expression of Myod1 was elevated 2.7-fold only in the mdx diaphragm, consistent with an earlier finding demonstrating Myod1 can activate pri-miRNA-206 transcription. Transcript levels of Drosha and Dicer, major components of microRNA biogenesis pathway, were unchanged in mdx muscle, suggesting the pathway is not altered under dystrophic conditions. Previous in vitro analysis found miR-206 was capable of repressing utrophin expression; however, under dystrophic conditions, both utrophin transcript and protein levels were significantly increased by 69% and 3.9-fold, respectively, a finding inconsistent with microRNA regulation. These results are the first to report alterations in expression of muscle-enriched microRNAs in skeletal muscle of the mdx mouse, suggesting microRNAs may have a role in the pathophysiology of muscular dystrophy.
Collapse
Affiliation(s)
- John J McCarthy
- Dept. of Physiology, University of Kentucky Medical Center, 800 Rose St., Lexington, KY 40536-0298, USA.
| | | | | |
Collapse
|
24
|
McClure WC, Rabon RE, Ogawa H, Tseng BS. Upregulation of the creatine synthetic pathway in skeletal muscles of mature mdx mice. Neuromuscul Disord 2007; 17:639-50. [PMID: 17588756 PMCID: PMC2706264 DOI: 10.1016/j.nmd.2007.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 03/23/2007] [Accepted: 04/02/2007] [Indexed: 11/24/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular human disease caused by dystrophin deficiency. The mdx mouse lacks dystrophin protein, yet does not exhibit the debilitating DMD phenotype. Investigating compensatory mechanisms in the mdx mouse may shed new insights into modifying DMD pathogenesis. This study targets two metabolic genes, guanidinoacetate methyltransferase (GAMT) and arginine:glycine amidinotransferase (AGAT) which are required for creatine synthesis. We show that GAMT and AGAT mRNA are up-regulated 5.4- and 1.9-fold respectively in adult mdx muscle compared to C57. In addition, GAMT protein expression is up-regulated at least 2.5-fold in five different muscles of mdx vs. control. Furthermore, we find GAMT immunoreactivity in up to 80% of mature mdx muscle fibers in addition to small regenerating fibers and rare revertants; while GAMT immunoreactivity is equal to background levels in all muscle fibers of mature C57 mice. The up-regulation of the creatine synthetic pathway may help maintain muscle creatine levels and limit cellular energy failure in leaky mdx skeletal muscles. These results may help better understand the mild phenotype of the mdx mouse and may offer new treatment horizons for DMD.
Collapse
Affiliation(s)
- Warren C McClure
- Department of Pediatrics, University of Colorado-Denver Health Science Center, The Children's Hospital Fitzsimons Campus, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
25
|
Turk R, Sterrenburg E, van der Wees CGC, de Meijer EJ, de Menezes RX, Groh S, Campbell KP, Noguchi S, van Ommen GJB, den Dunnen JT, 't Hoen PAC. Common pathological mechanisms in mouse models for muscular dystrophies. FASEB J 2005; 20:127-9. [PMID: 16306063 DOI: 10.1096/fj.05-4678fje] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Duchenne/Becker and limb-girdle muscular dystrophies share clinical symptoms like muscle weakness and wasting but differ in clinical presentation and severity. To get a closer view on the differentiating molecular events responsible for the muscular dystrophies, we have carried out a comparative gene expression profiling of hindlimb muscles of the following mouse models: dystrophin-deficient (mdx, mdx(3cv)), sarcoglycan-deficient (Sgca null, Sgcb null, Sgcg null, Sgcd null), dysferlin-deficient (Dysf null, SJL(Dysf)), sarcospan-deficient (Sspn null), and wild-type (C57Bl/6, C57Bl/10) mice. The expression profiles clearly discriminated between severely affected (dystrophinopathies and sarcoglycanopathies) and mildly or nonaffected models (dysferlinopathies, sarcospan-deficiency, wild-type). Dystrophin-deficient and sarcoglycan-deficient profiles were remarkably similar, sharing inflammatory and structural remodeling processes. These processes were also ongoing in dysferlin-deficient animals, albeit at lower levels, in agreement with the later age of onset of this muscular dystrophy. The inflammatory proteins Spp1 and S100a9 were up-regulated in all models, including sarcospan-deficient mice, which points, for the first time, at a subtle phenotype for Sspn null mice. In conclusion, we identified biomarker genes for which expression correlates with the severity of the disease, which can be used for monitoring disease progression. This comparative study is an integrating step toward the development of an expression profiling-based diagnostic approach for muscular dystrophies in humans.
Collapse
Affiliation(s)
- R Turk
- Leiden University Medical Center, Center for Human and Clinical Genetics, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
von der Hagen M, Laval SH, Cree LM, Haldane F, Pocock M, Wappler I, Peters H, Reitsamer HA, Hoger H, Wiedner M, Oberndorfer F, Anderson LVB, Straub V, Bittner RE, Bushby KMD. The differential gene expression profiles of proximal and distal muscle groups are altered in pre-pathological dysferlin-deficient mice. Neuromuscul Disord 2005; 15:863-77. [PMID: 16288871 DOI: 10.1016/j.nmd.2005.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 08/23/2005] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
The selective pattern of muscle involvement is a key feature of muscular dystrophies. Dysferlinopathy is a good model for studying this process since it shows variable muscle involvement that can be highly selective even in individual patients. The transcriptomes of proximal and distal muscles from wildtype C57BL/10 and dysferlin deficient C57BL/10.SJL-Dysf mice at a prepathological stage were assessed using the Affymetrix oligonucleotide-microarray system. We detected significant variation in gene expression between proximal and distal muscle in wildtype mice. Dysferlin defiency, even in the absence of pathological changes, altered this proximal distal difference but with little specific overlap with previous microarray analyses of dysferlinopathy. In conclusion, proximal and distal muscle groups show distinct patterns of gene expression and respond differently to dysferlin deficiency. This has implications for the selection of muscles for future microarray analyses, and also offers new routes for investigating the selectivity of muscle involvement in muscular dystrophies.
Collapse
|
27
|
Haslett JN, Kang PB, Han M, Kho AT, Sanoudou D, Volinski JM, Beggs AH, Kohane IS, Kunkel LM. The influence of muscle type and dystrophin deficiency on murine expression profiles. Mamm Genome 2005; 16:739-48. [PMID: 16261416 DOI: 10.1007/s00335-005-0053-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 06/16/2005] [Indexed: 11/24/2022]
Abstract
The phenotypic differences among Duchenne muscular dystrophy patients, mdx mice, and mdx(5cv) mice suggest that despite the common etiology of dystrophin deficiency, secondary mechanisms have a substantial influence on phenotypic severity. The differential response of various skeletal muscles to dystrophin deficiency supports this hypothesis. To explore these differences, gene expression profiles were generated from duplicate RNA targets extracted from six different skeletal muscles (diaphragm, soleus, gastrocnemius, quadriceps, tibialis anterior, and extensor digitorum longus) from wild-type, mdx, and mdx(5cv) mice, resulting in 36 data sets for 18 muscle samples. The data sets were compared in three different ways: (1) among wild-type samples only, (2) among all 36 data sets, and (3) between strains for each muscle type. The molecular profiles of soleus and diaphragm separate significantly from the other four muscle types and from each other. Fiber-type proportions can explain some of these differences. These variations in wild-type gene expression profiles may also reflect biomechanical differences known to exist among skeletal muscles. Further exploration of the genes that most distinguish these muscles may help explain the origins of the biomechanical differences and the reasons why some muscles are more resistant than others to dystrophin deficiency.
Collapse
Affiliation(s)
- Judith N Haslett
- Division of Genetics and Genomics Program, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Flück M, Däpp C, Schmutz S, Wit E, Hoppeler H. Transcriptional profiling of tissue plasticity: role of shifts in gene expression and technical limitations. J Appl Physiol (1985) 2005; 99:397-413. [PMID: 16020435 DOI: 10.1152/japplphysiol.00050.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Reprogramming of gene expression has been recognized as a main instructive modality for the adjustments of tissues to various kinds of stress. The recent application of gene expression profiling has provided a powerful tool to elucidate the molecular pathways underlying such tissue remodeling. However, the biological interpretations of expression profiling results critically depend on normalization of transcript signals to mRNA standards before statistical evaluation. A hypothesis is proposed whereby the “fluctuating nature” of gene expression represents an inherent limitation of the test system used to quantify RNA levels. Misinterpretation of gene expression data occurs when RNA quantities are normalized to a subset of mRNAs that are subject to strong regulation. The contention of contradictory biological outcomes using different RNA-normalization schemes is demonstrated in two models of skeletal muscle plasticity with data from custom-designed microarrays and biochemical and ultrastructural evidence for correspondingly altered RNA content and nucleolar activity. The prevalence of these biological constraints is underlined by a literature survey in different models of tissue plasticity with emphasis on the unique malleability of skeletal muscle. Finally, recommendations on the optimal experimental layout are given to control biological and technical variability in microarray and RT-PCR studies. It is proposed to approach normalization of transcript signals by measuring total RNA and DNA content per sample weight and by correcting for concurrently estimated endogenous standards such as major ribosomal RNAs and spiked RNA and DNA species. This allows for later conversion to diverse tissue-relevant references and should improve the physiological interpretations of phenotypic plasticity.
Collapse
Affiliation(s)
- Martin Flück
- Dept. of Anatomy, Baltzerstrasse 2, 3000 Bern 9, Switzerland.
| | | | | | | | | |
Collapse
|
29
|
Papapanou PN, Abron A, Verbitsky M, Picolos D, Yang J, Qin J, Fine JB, Pavlidis P. Gene expression signatures in chronic and aggressive periodontitis: a pilot study. Eur J Oral Sci 2004; 112:216-23. [PMID: 15154918 DOI: 10.1111/j.1600-0722.2004.00124.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This pilot study examined gene expression signatures in pathological gingival tissues of subjects with chronic or aggressive periodontitis, and explored whether new subclasses of periodontitis can be identified based on gene expression profiles. A total of 14 patients, seven with chronic and seven with aggressive periodontitis, were examined with respect to clinical periodontal status, composition of subgingival bacterial plaque assessed by checkerboard hybridizations, and levels of serum IgG antibodies to periodontal bacteria assayed by checkerboard immunoblotting. In addition, at least two pathological pockets/patient were biopsied, processed for RNA extraction, amplification and labeling, and used to study gene expression using Affymetrix U-133 A arrays. Based on a total of 35 microarrays, no significantly different gene expression profiles appeared to emerge between chronic and aggressive periodontitis. However, a de novo grouping of the 14 subjects into two fairly robust clusters was possible based on similarities in gene expression. These two groups had similar clinical periodontal status and subgingival bacterial profiles, but differed significantly with respect to serum IgG levels against the important periodontal pathogens Porphyromonas gingivalis, Tannerella forsythensis and Campylobacter rectus. These early data point to the usefulness of gene expression profiling techniques in the identification of subclasses of periodontitis with common pathobiology.
Collapse
Affiliation(s)
- Panos N Papapanou
- Division of Periodontics, Section of Oral and Diagnostic Sciences, School of Dental and Oral Surgery, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lennon NJ, Kho A, Bacskai BJ, Perlmutter SL, Hyman BT, Brown RH. Dysferlin Interacts with Annexins A1 and A2 and Mediates Sarcolemmal Wound-healing. J Biol Chem 2003; 278:50466-73. [PMID: 14506282 DOI: 10.1074/jbc.m307247200] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the dysferlin gene cause limb girdle muscular dystrophy type 2B and Miyoshi myopathy. We report here the results of expression profile analyses and in vitro investigations that point to an interaction between dysferlin and the Ca2+ and lipid-binding proteins, annexins A1 and A2, and define a role for dysferlin in Ca2+-dependent repair of sarcolemmal injury through a process of vesicle fusion. Expression profiling identified a network of genes that are co-regulated in dysferlinopathic mice. Co-immunofluorescence, co-immunoprecipitation, and fluorescence lifetime imaging microscopy revealed that dysferlin normally associates with both annexins A1 and A2 in a Ca2+ and membrane injury-dependent manner. The distribution of the annexins and the efficiency of sarcolemmal wound-healing are significantly disrupted in dysferlin-deficient muscle. We propose a model of muscle membrane healing mediated by dysferlin that is relevant to both normal and dystrophic muscle and defines the annexins as potential muscular dystrophy genes.
Collapse
Affiliation(s)
- Niall J Lennon
- Day Neuromuscular Research Laboratory, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
31
|
Naro F, De Arcangelis V, Sette C, Ambrosio C, Komati H, Molinaro M, Adamo S, Nemoz G. A bimodal modulation of the cAMP pathway is involved in the control of myogenic differentiation in l6 cells. J Biol Chem 2003; 278:49308-15. [PMID: 14506285 DOI: 10.1074/jbc.m306941200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that myogenesis induction by Arg8-vasopressin (AVP) in L6 rat myoblasts involves a sustained stimulation of type 4 cAMP-phosphodiesterase. In this model, we observed that a transient cAMP generation occurs in the minutes following AVP addition. Evidence suggests that cAMP generation is due to the prostaglandins produced in response to AVP binding to V1a receptors and subsequent activation of phospholipase A2. The early cAMP increase was effective in activating cAMP-dependent protein kinase (PKA) and increasing phosphorylation of CREB transcription factor. Inhibition of PKA by compound H89 prior to AVP addition led to a significant reduction of expression of the differentiation marker creatine kinase, whereas H89 added 1-5 h after AVP had no significant effect. Furthermore, PKA inhibition 24 h after the beginning of AVP treatment potentiated differentiation. This shows that both an early activation and a later down-regulation of the cAMP pathway are required for AVP induction of myogenesis. Because phosphodiesterase PDE4D3 overexpressed in L6 cells lost its ability to potentiate AVP-induced differentiation when mutated and rendered insensitive to PKA phosphorylation and activation, we hypothesize that the early cAMP increase is required to trigger the down-regulation of cAMP pathway through stimulation of phosphodiesterase.
Collapse
Affiliation(s)
- Fabio Naro
- Dipartimento di Istologia ed Embriologia Medica, Università "La Sapienza," 00161 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Porter JD, Merriam AP, Leahy P, Gong B, Khanna S. Dissection of temporal gene expression signatures of affected and spared muscle groups in dystrophin-deficient (mdx) mice. Hum Mol Genet 2003; 12:1813-21. [PMID: 12874102 DOI: 10.1093/hmg/ddg197] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although dystrophin mutations are the proximate cause of Duchenne muscular dystrophy (DMD), interactions among heterogeneous downstream mechanisms may be key phenotypic determinants. Temporal gene expression profiling was used to identify and correlate diverse transcriptional patterns to one another and to the disease course, for both affected and spared muscle groups, in postnatal day 7-112 dystrophin-deficient (mdx) mice. While 719 transcripts were differentially expressed at one or more ages in leg muscle, only 56 genes were altered in the spared extraocular muscles (EOM). Contrasting molecular signatures of affected versus spared muscles provide compelling evidence that the absence of dystrophin alone is necessary but not sufficient to cause the patterned fibrosis, inflammation and failure of muscle regeneration characteristic of dystrophinopathy. Dystrophic and adaptive changes in the microarray profiles were further quantified using an aggregate disease load index (DLI) to measure stage-dependent transcriptional impact in both muscles. DLI analysis highlighted the divergent responses of EOM and leg muscle groups. Cellular process-specific DLIs in leg muscle identified positively correlated temporal expression profiles for some gene classes, and the independence of others, that are linked to major disease components. Data also showed a previously unrecognized transient and selective developmental delay in pre-necrotic mdx skeletal muscle that was confirmed by qPCR. Taken together, validation and targeting of signaling pathways responsible for the coordination of the fibrotic, proteolytic and inflammatory mechanisms shown here for mdx muscle may yield new therapeutic means of mitigating the devastating consequences of DMD.
Collapse
Affiliation(s)
- John D Porter
- Department of Ophthalmology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
33
|
Khanna S, Merriam AP, Gong B, Leahy P, Porter JD. Comprehensive expression profiling by muscle tissue class and identification of the molecular niche of extraocular muscle. FASEB J 2003; 17:1370-2. [PMID: 12832294 DOI: 10.1096/fj.02-1108fje] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Muscle tissue is an elegant model for biologic integration of structure with function and is frequently affected by a variety of inherited diseases. Traditional muscle classes--skeletal, cardiac, and smooth--share basic aspects of contractile and energetics mechanisms but also have distinctive role-specific adaptations. We used large-scale oligonucleotide microarrays to broaden knowledge of the adaptive expression patterns underlying muscle tissue differences and to identify transcript subsets that are most likely to represent candidate disease genes. Using stringent analysis criteria, we found >or=95 transcripts, which were preferentially expressed by each muscle class and were validated by inclusion of known muscle class-specific and inherited disease-related genes. Differentially expressed transcripts not previously identified as class-specific extend understanding of muscle class transcriptomes and may represent novel muscle-specific disease genes. We also analyzed the expression profile of extraocular muscle, which is divergent from other skeletal muscles, in the broader context of all major muscle classes. Data show that the extraocular muscle phenotype results from the combination of tissue-specific transcripts, novel expression levels of skeletal muscle transcripts, and partial sharing of gene expression patterns with cardiac and smooth muscle. These, and additional proteomic data, establish that extraocular muscle does not constitute a distinctive muscle class but that it does occupy a novel niche within the skeletal muscle class.
Collapse
Affiliation(s)
- Sangeeta Khanna
- Department of Ophthalmology, Case Western Reserve University and The Research Institute of University Hospitals of Cleveland, Cleveland, OH 44106-5068, USA.
| | | | | | | | | |
Collapse
|
34
|
Yan Z, Choi S, Liu X, Zhang M, Schageman JJ, Lee SY, Hart R, Lin L, Thurmond FA, Williams RS. Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 2003; 278:8826-36. [PMID: 12477723 DOI: 10.1074/jbc.m209879200] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mammalian skeletal muscles are capable of regeneration after injury. Quiescent satellite cells are activated to reenter the cell cycle and to differentiate for repair, recapitulating features of myogenesis during embryonic development. To understand better the molecular mechanism involved in this process in vivo, we employed high density cDNA microarrays for gene expression profiling in mouse tibialis anterior muscles after a cardiotoxin injection. Among 16,267 gene elements surveyed, 3,532 elements showed at least a 2.5-fold change at one or more time points during a 14-day time course. Hierarchical cluster analysis and semiquantitative reverse transcription-PCR showed induction of genes important for cell cycle control and DNA replication during the early phase of muscle regeneration. Subsequently, genes for myogenic regulatory factors, a group of imprinted genes and genes with functions to inhibit cell cycle progression and promote myogenic differentiation, were induced when myogenic stem cells started to differentiate. Induction of a majority of these genes, including E2f1 and E2f2, was abolished in muscles lacking satellite cell activity after gamma radiation. Regeneration was severely compromised in E2f1 null mice but not affected in E2f2 null mice. This study identifies novel genes potentially important for muscle regeneration and reveals highly coordinated myogenic cell proliferation and differentiation programs in adult skeletal muscle regeneration in vivo.
Collapse
Affiliation(s)
- Zhen Yan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Haslett JN, Sanoudou D, Kho AT, Bennett RR, Greenberg SA, Kohane IS, Beggs AH, Kunkel LM. Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proc Natl Acad Sci U S A 2002; 99:15000-5. [PMID: 12415109 PMCID: PMC137534 DOI: 10.1073/pnas.192571199] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The primary cause of Duchenne muscular dystrophy (DMD) is a mutation in the dystrophin gene leading to the absence of the corresponding RNA transcript and protein. Absence of dystrophin leads to disruption of the dystrophin-associated protein complex and substantial changes in skeletal muscle pathology. Although the histological pathology of dystrophic tissue has been well documented, the underlying molecular pathways remain poorly understood. To examine the pathogenic pathways and identify new or modifying factors involved in muscular dystrophy, expression microarrays were used to compare individual gene expression profiles of skeletal muscle biopsies from 12 DMD patients and 12 unaffected control patients. Two separate statistical analysis methods were used to interpret the resulting data: t test analysis to determine the statistical significance of differential expression and geometric fold change analysis to determine the extent of differential expression. These analyses identified 105 genes that differ significantly in expression level between unaffected and DMD muscle. Many of the differentially expressed genes reflect changes in histological pathology. For instance, immune response signals and extracellular matrix genes are overexpressed in DMD muscle, an indication of the infiltration of inflammatory cells and connective tissue. Significantly more genes are overexpressed than are underexpressed in dystrophic muscle, with dystrophin underexpressed, whereas other genes encoding muscle structure and regeneration processes are overexpressed, reflecting the regenerative nature of the disease.
Collapse
Affiliation(s)
- Judith N Haslett
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|