1
|
Tai NC, Shinmyo Y, Kawasaki H. Astrocyte diversity in the ferret cerebrum revealed with astrocyte-specific genetic manipulation. Glia 2024; 72:1862-1873. [PMID: 38884631 DOI: 10.1002/glia.24587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Astrocytes in the cerebrum play important roles such as the regulation of synaptic functions, homeostasis, water transport, and the blood-brain barrier. It has been proposed that astrocytes in the cerebrum acquired diversity and developed functionally during evolution. Here, we show that like human astrocytes, ferret astrocytes in the cerebrum exhibit various morphological subtypes which mice do not have. We found that layer 1 of the ferret cerebrum contained not only protoplasmic astrocytes but also pial interlaminar astrocytes and subpial interlaminar astrocytes. Morphologically polarized astrocytes, which have a long unbranched process, were found in layer 6. Like human white matter, ferret white matter exhibited four subtypes of astrocytes. Furthermore, our quantification showed that ferret astrocytes had a larger territory size and a longer radius length than mouse astrocytes. Thus, our results indicate that, similar to the human cerebrum, the ferret cerebrum has a well-developed diversity of astrocytes. Ferrets should be useful for investigating the molecular and cellular mechanisms leading to astrocyte diversity, the functions of each astrocyte subtype and the involvement of different astrocyte subtypes in various neurological diseases.
Collapse
Affiliation(s)
- Nguyen Chi Tai
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Neurophysiology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
2
|
Falcone C. Evolution of astrocytes: From invertebrates to vertebrates. Front Cell Dev Biol 2022; 10:931311. [PMID: 36046339 PMCID: PMC9423676 DOI: 10.3389/fcell.2022.931311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
The central nervous system (CNS) shows incredible diversity across evolution at the anatomical, cellular, molecular, and functional levels. Over the past decades, neuronal cell number and heterogeneity, together with differences in the number and types of neuro-active substances, axonal conduction, velocity, and modes of synaptic transmission, have been rigorously investigated in comparative neuroscience studies. However, astrocytes, a specific type of glial cell in the CNS, play pivotal roles in regulating these features and thus are crucial for the brain's development and evolution. While special attention has been paid to mammalian astrocytes, we still do not have a clear definition of what an astrocyte is from a broader evolutionary perspective, and there are very few studies on astroglia-like structures across all vertebrates. Here, I elucidate what we know thus far about astrocytes and astrocyte-like cells across vertebrates. This information expands our understanding of how astrocytes evolved to become more complex and extremely specialized cells in mammals and how they are relevant to the structure and function of the vertebrate brain.
Collapse
Affiliation(s)
- Carmen Falcone
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
3
|
Falcone C, Penna E, Hong T, Tarantal AF, Hof PR, Hopkins WD, Sherwood CC, Noctor SC, Martínez-Cerdeño V. Cortical Interlaminar Astrocytes Are Generated Prenatally, Mature Postnatally, and Express Unique Markers in Human and Nonhuman Primates. Cereb Cortex 2020; 31:379-395. [PMID: 32930323 DOI: 10.1093/cercor/bhaa231] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Interlaminar astrocytes (ILAs) are a subset of cortical astrocytes that reside in layer I, express GFAP, have a soma contacting the pia, and contain long interlaminar processes that extend through several cortical layers. We studied the prenatal and postnatal development of ILAs in three species of primates (rhesus macaque, chimpanzee, and human). We found that ILAs are generated prenatally likely from radial glial (RG) cells, that ILAs proliferate locally during gestation, and that ILAs extend interlaminar processes during postnatal stages of development. We showed that the density and morphological complexity of ILAs increase with age, and that ILAs express multiple markers that are expressed by RG cells (Pax6, Sox2, and Nestin), specific to inner and outer RG cells (Cryab and Hopx), and astrocyte markers (S100β, Aqp4, and GLAST) in prenatal stages and in adult. Finally, we demonstrated that rudimentary ILAs in mouse also express the RG markers Pax6, Sox2, and Nestin, but do not express S100β, Cryab, or Hopx, and that the density and morphological complexity of ILAs differ between primate species and mouse. Together these findings contribute new information on astrogenesis of this unique class of cells and suggest a lineal relationship between RG cells and ILAs.
Collapse
Affiliation(s)
- Carmen Falcone
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals, Sacramento, CA 95817, USA
| | - Elisa Penna
- MIND Institute, UC Davis School of Medicine, Sacramento, CA 95817, USA.,Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Tiffany Hong
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals, Sacramento, CA 95817, USA
| | - Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, and California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William D Hopkins
- Department of Comparative Medicine, Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Stephen C Noctor
- MIND Institute, UC Davis School of Medicine, Sacramento, CA 95817, USA.,Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals, Sacramento, CA 95817, USA.,MIND Institute, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Padmashri R, Ren B, Oldham B, Jung Y, Gough R, Dunaevsky A. Modeling human-specific interlaminar astrocytes in the mouse cerebral cortex. J Comp Neurol 2020; 529:802-810. [PMID: 32639590 PMCID: PMC7818222 DOI: 10.1002/cne.24979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 02/05/2023]
Abstract
Astrocytes, a highly heterogeneous population of glial cells, serve as essential regulators of brain development and homeostasis. The heterogeneity of astrocyte populations underlies the diversity in their functions. In addition to the typical mammalian astrocyte architecture, the cerebral cortex of humans exhibits a radial distribution of interlaminar astrocytes in the supragranular layers. These primate‐specific interlaminar astrocytes are located in the superficial layer and project long processes traversing multiple layers of the cerebral cortex. However, due to the lack of accessible experimental models, their functional properties and their role in regulating neuronal circuits remain unclear. Here we modeled human interlaminar astrocytes in humanized glial chimeric mice by engrafting astrocytes differentiated from human‐induced pluripotent stem cells into the mouse cortex. This model provides a novel platform for understanding neuron‐glial interaction and its alterations in neurological diseases.
Collapse
Affiliation(s)
- Ragunathan Padmashri
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Baiyan Ren
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Braden Oldham
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yoosun Jung
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ryan Gough
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anna Dunaevsky
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
5
|
Peteri UK, Niukkanen M, Castrén ML. Astrocytes in Neuropathologies Affecting the Frontal Cortex. Front Cell Neurosci 2019; 13:44. [PMID: 30809131 PMCID: PMC6379461 DOI: 10.3389/fncel.2019.00044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/28/2019] [Indexed: 01/15/2023] Open
Abstract
To an increasing extent, astrocytes are connected with various neuropathologies. Astrocytes comprise of a heterogeneous population of cells with region- and species-specific properties. The frontal cortex exhibits high levels of plasticity that is required for high cognitive functions and memory making this region especially susceptible to damage. Aberrations in the frontal cortex are involved with several cognitive disorders, including Alzheimer’s disease, Huntington’s disease and frontotemporal dementia. Human induced pluripotent stem cells (iPSCs) provide an alternative for disease modeling and offer possibilities for studies to investigate pathological mechanisms in a cell type-specific manner. Patient-specific iPSC-derived astrocytes have been shown to recapitulate several disease phenotypes. Addressing astrocyte heterogeneity may provide an improved understanding of the mechanisms underlying neurodegenerative diseases.
Collapse
Affiliation(s)
- Ulla-Kaisa Peteri
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Niukkanen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Falcone C, Wolf-Ochoa M, Amina S, Hong T, Vakilzadeh G, Hopkins WD, Hof PR, Sherwood CC, Manger PR, Noctor SC, Martínez-Cerdeño V. Cortical interlaminar astrocytes across the therian mammal radiation. J Comp Neurol 2019; 527:1654-1674. [PMID: 30552685 DOI: 10.1002/cne.24605] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/21/2023]
Abstract
Interlaminar astrocytes (ILA) in the cerebral cortex possess a soma in layer I and extend an interlaminar process that runs perpendicular to the pia into deeper cortical layers. We examined cerebral cortex from 46 species that encompassed most orders of therian mammalians, including 22 primate species. We described two distinct cell types with interlaminar processes that have been referred to as ILA, that we termed pial ILA and supial ILA. ILA subtypes differ in somatic morphology, position in layer I, and presence across species. We further described rudimentary ILA that have short GFAP+ processes that do not exit layer I, and "typical" ILA with longer GFAP+ processes that exit layer I. Pial ILA were present in all mammalian species analyzed, with typical ILA observed in Primates, Scandentia, Chiroptera, Carnivora, Artiodactyla, Hyracoidea, and Proboscidea. Subpial ILA were absent in Marsupialia, and typical subpial ILA were only found in Primate. We focused on the properties of pial ILA by investigating the molecular properties of pial ILA and confirming their astrocytic nature. We found that while the density of pial ILA somata only varied slightly, the complexity of ILA processes varied greatly across species. Primates, specifically bonobo, chimpanzee, orangutan, and human, exhibited pial ILA with the highest complexity. We showed that interlaminar processes contact neurons, pia, and capillaries, suggesting a potential role for ILA in the blood-brain barrier and facilitating communication among cortical neurons, astrocytes, capillaries, meninges, and cerebrospinal fluid.
Collapse
Affiliation(s)
- Carmen Falcone
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Marisol Wolf-Ochoa
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Sarwat Amina
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California.,UC Davis Medical Center, MIND Institute, Sacramento, California
| | - Tiffany Hong
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Gelareh Vakilzadeh
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California
| | - William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, Georgia
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephen C Noctor
- UC Davis Medical Center, MIND Institute, Sacramento, California.,Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, California
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California.,UC Davis Medical Center, MIND Institute, Sacramento, California
| |
Collapse
|
7
|
Interlaminar Glia and Other Glial Themes Revisited: Pending Answers Following Three Decades of Glial Research. ACTA ACUST UNITED AC 2018. [DOI: 10.3390/neuroglia1010003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review aims to highlight the various significant matters in glial research stemming from personal work by the author and associates at the Unit of Applied Neurobiology (UNA, CEMIC-CONICET), and some of the pending questions. A reassessment and further comments on interlaminar astrocytes—an astroglial cell type that is specific to humans and other non-human primates, and is not found in rodents, is presented. Tentative hypothesis regarding their function and future possible research lines that could contribute to further the analysis of their development and possible role(s), are suggested. The possibility that they function as a separate entity from the “territorial” astrocytes, is also considered. In addition, the potential significance of our observations on interspecies differences in in vitro glial cell dye coupling, on glial diffusible factors affecting the induction of this glial phenotype, and on their interference with the cellular toxic effects of cerebrospinal fluid obtained from l-DOPA treated patients with Parkinson´s disease, is also considered. The major differences oberved in the cerebral cortex glial layout between human and rodents—the main model for studying glial function and pathology—calls for a careful assessment of known and potential species differences in all aspects of glial cell biology. This is essential to provide a better understanding of the organization and function of human and non-human primate brain, and of the neurobiological basis of their behavior.
Collapse
|
8
|
Krencik R, Seo K, van Asperen JV, Basu N, Cvetkovic C, Barlas S, Chen R, Ludwig C, Wang C, Ward ME, Gan L, Horner PJ, Rowitch DH, Ullian EM. Systematic Three-Dimensional Coculture Rapidly Recapitulates Interactions between Human Neurons and Astrocytes. Stem Cell Reports 2017; 9:1745-1753. [PMID: 29198827 PMCID: PMC5785708 DOI: 10.1016/j.stemcr.2017.10.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/19/2022] Open
Abstract
Human astrocytes network with neurons in dynamic ways that are still poorly defined. Our ability to model this relationship is hampered by the lack of relevant and convenient tools to recapitulate this complex interaction. To address this barrier, we have devised efficient coculture systems utilizing 3D organoid-like spheres, termed asteroids, containing pre-differentiated human pluripotent stem cell (hPSC)-derived astrocytes (hAstros) combined with neurons generated from hPSC-derived neural stem cells (hNeurons) or directly induced via Neurogenin 2 overexpression (iNeurons). Our systematic methods rapidly produce structurally complex hAstros and synapses in high-density coculture with iNeurons in precise numbers, allowing for improved studies of neural circuit function, disease modeling, and drug screening. We conclude that these bioengineered neural circuit model systems are reliable and scalable tools to accurately study aspects of human astrocyte-neuron functional properties while being easily accessible for cell-type-specific manipulations and observations.
Collapse
Affiliation(s)
- Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Ophthalmology, University of California, San Francisco, CA 94143, USA.
| | - Kyounghee Seo
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA
| | - Jessy V van Asperen
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA
| | - Nupur Basu
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Caroline Cvetkovic
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Saba Barlas
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Robert Chen
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Connor Ludwig
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Chao Wang
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Michael E Ward
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Gan
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - David H Rowitch
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA; Department of Physiology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Colombo JA. The interlaminar glia: from serendipity to hypothesis. Brain Struct Funct 2016; 222:1109-1129. [DOI: 10.1007/s00429-016-1332-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/21/2016] [Indexed: 11/24/2022]
|
10
|
Krencik R, van Asperen JV, Ullian EM. Human astrocytes are distinct contributors to the complexity of synaptic function. Brain Res Bull 2016; 129:66-73. [PMID: 27570101 DOI: 10.1016/j.brainresbull.2016.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/07/2016] [Accepted: 08/22/2016] [Indexed: 01/03/2023]
Abstract
Cellular components of synaptic circuits have been adjusted for increased human brain size, neural cell density, energy consumption and developmental duration. How does the human brain make these accommodations? There is evidence that astrocytes are one of the most divergent neural cell types in primate brain evolution and it is now becoming clear that they have critical roles in controlling synaptic development, function and plasticity. Yet, we still do not know how the precise developmental appearance of these cells and subsequent astrocyte-derived signals modulate diverse neuronal circuit subtypes. Here, we discuss what is currently known about the influence of glial factors on synaptic maturation and focus on unique features of human astrocytes including their potential roles in regenerative and translational medicine. Human astrocyte distinctiveness may be a major contributor to high level neuronal processing of the human brain and act in novel ways during various neuropathies ranging from autism spectrum disorders, viral infection, injury and neurodegenerative conditions.
Collapse
Affiliation(s)
- Robert Krencik
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States.
| | - Jessy V van Asperen
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States
| | - Erik M Ullian
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States
| |
Collapse
|
11
|
Abstract
In all vertebrate species studied thus far, the adult central nervous system harbors neural stem cells that sustain constitutive neurogenesis, as well as latent neural progenitors that can be awakened in lesional contexts. In spite of this common theme, many species differ dramatically in their ability to recruit constitutive progenitors, to awaken latent progenitors, or to enhance or bias neural progenitor fate to achieve successful neuronal repair. This Review summarizes the striking similarities in the essential molecular and cellular properties of adult neural stem cells between different vertebrate species, both under physiological and reparative conditions. It also emphasizes the differences in the reparative process across evolution and how the study of non-mammalian models can provide insights into both basic neural stem cell properties and stimulatory cues shared between vertebrates, and subsequent neurogenic events, which are abortive under reparative conditions in mammals. Summary: This Review article provides a comparative view of neuronal repair across vertebrate species, with a particular focus on the molecular pathways that enable repair in some, but not all animals.
Collapse
Affiliation(s)
- Alessandro Alunni
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Université Paris-Saclay, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| | - Laure Bally-Cuif
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Université Paris-Saclay, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| |
Collapse
|
12
|
Mohn TC, Koob AO. Adult Astrogenesis and the Etiology of Cortical Neurodegeneration. J Exp Neurosci 2015; 9:25-34. [PMID: 26568684 PMCID: PMC4634839 DOI: 10.4137/jen.s25520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/09/2023] Open
Abstract
As more evidence points to a clear role for astrocytes in synaptic processing, synaptogenesis and cognition, continuing research on astrocytic function could lead to strategies for neurodegenerative disease prevention. Reactive astrogliosis results in astrocyte proliferation early in injury and disease states and is considered neuroprotective, indicating a role for astrocytes in disease etiology. This review describes the different types of human cortical astrocytes and the current evidence regarding adult cortical astrogenesis in injury and degenerative disease. A role for disrupted astrogenesis as a cause of cortical degeneration, with a focus on the tauopathies and synucleinopathies, will also be considered.
Collapse
Affiliation(s)
- Tal C. Mohn
- Biology Department, University of Wisconsin—River Falls, River Falls, Wisconsin, USA
| | - Andrew O. Koob
- Biology Department, University of Wisconsin—River Falls, River Falls, Wisconsin, USA
| |
Collapse
|
13
|
Tabata H. Diverse subtypes of astrocytes and their development during corticogenesis. Front Neurosci 2015; 9:114. [PMID: 25904839 PMCID: PMC4387540 DOI: 10.3389/fnins.2015.00114] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/18/2015] [Indexed: 12/29/2022] Open
Abstract
Astrocytes are one of the most abundant cell types in the mammalian central nervous system, and are known to have a wide variety of physiological functions, including maintenance of neurons, formation of the blood brain barrier, and regulation of synapse functions. Although the migration and positioning of neurons has been extensively studied over the last several decades and many aspects have been uncovered, the process underlying glial development was largely unknown until recently due to the existence of multiple subtypes of glia and the sustained proliferative ability of these cells through adulthood. To overcome these difficulties, new gene transfer techniques and genetically modified mice were developed, and have been gradually revealing when and how astrocytes develop during corticogenesis. In this paper, I review the diversity of astrocytes and summarize our knowledge about their production and migration.
Collapse
Affiliation(s)
- Hidenori Tabata
- Department of Molecular Neurobiology, Aichi Human Service Center, Institute for Developmental Research Kasugai, Japan
| |
Collapse
|
14
|
Local and remote cellular responses following a surgical lesion in the Cebus apella cerebral cortex. Brain Struct Funct 2011; 217:485-501. [DOI: 10.1007/s00429-011-0356-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
|
15
|
Lanosa XA, Reisin HD, Santacroce I, Colombo JA. Astroglial dye-coupling: An in vitro analysis of regional and interspecies differences in rodents and primates. Brain Res 2008; 1240:82-6. [DOI: 10.1016/j.brainres.2008.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/08/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
|
16
|
Casanova MF, Switala AE, Trippe J. A Comparison Study of the Vertical Bias of Pyramidal Cells in the Hippocampus and Neocortex. Dev Neurosci 2006; 29:193-200. [PMID: 17148961 DOI: 10.1159/000096223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 04/19/2006] [Indexed: 11/19/2022] Open
Abstract
In this study, we employed morphometric image analysis of the hippocampus proper and temporal lobe neocortex in postmortem tissue to determine vertical bias quantified as Deltatheta, angular dispersion, as well asan index of alignment of cellular elements relative to the radial plane. The radial alignment of cellular elements was consistent with a minicolumnar organization of the cortex. Photomicrographs were taken of the left-hemisphere hippocampal CA3/1 subfields of 13 fetal subjects ranging in gestational age from 19 weeks to 36 weeks and 19 normal individuals aged 4 months to 98 years. For comparison, micrographs from the temporal lobe (Brodmann areas 21 and 22) were similarly processed for layers III and V, where the x-axes of the transformed coordinate system were taken to be the layer III/IV and IV/V borders, respectively. Computerized image analysis measurements of the angular dispersion for the temporal lobe region and hippocampus proper differed significantly within the same brains (p < 0.001). The neocortical layer III exhibited the highest values for Deltatheta, indicating a high degree of columnar organization. Values for Deltatheta in the hippocampal CA subfields were lower but demonstrated significance for the radial alignment of neurons in this area. Values for Deltathetain layer V were intermediate between those of layer III and the hippocampus, consistent with increasing degrees of radial columnar organization of infragranular layers of the neocortex in comparison with the hippocampus and of supragranular in comparison with infragranular neocortical layers. Pyramidal cell arrays within allocortical areas and the neocortex constitute different modular arrangements. This morphological variability may be the expression of evolutionary differences in cortical development.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Psychiatry, University of Louisville, Louisville, KY 40292, USA.
| | | | | |
Collapse
|
17
|
Oberheim NA, Wang X, Goldman S, Nedergaard M. Astrocytic complexity distinguishes the human brain. Trends Neurosci 2006; 29:547-53. [PMID: 16938356 DOI: 10.1016/j.tins.2006.08.004] [Citation(s) in RCA: 493] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 06/12/2006] [Accepted: 08/14/2006] [Indexed: 12/23/2022]
Abstract
One of the most distinguishing features of the adult human brain is the complexity and diversity of its cortical astrocytes. Human protoplasmic astrocytes manifest a threefold larger diameter and have tenfold more primary processes than those of rodents. In all mammals, protoplasmic astrocytes are organized into spatially non-overlapping domains that encompass both neurons and vasculature. Yet unique to humans and primates are additional populations of layer 1 interlaminar astrocytes that extend long (millimeter) fibers, and layer 5-6 polarized astrocytes that also project distinctive long processes. We propose that human cortical evolution has been accompanied by increasing complexity in the form and function of astrocytes, which reflects an expansion of their functional roles in synaptic modulation and cortical circuitry.
Collapse
Affiliation(s)
- Nancy Ann Oberheim
- Center for Aging and Developmental Biology, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
18
|
Colombo JA, Reisin HD, Jones M, Bentham C. Development of interlaminar astroglial processes in the cerebral cortex of control and Down's syndrome human cases. Exp Neurol 2005; 193:207-17. [PMID: 15817279 DOI: 10.1016/j.expneurol.2004.11.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 10/08/2004] [Accepted: 11/29/2004] [Indexed: 11/30/2022]
Abstract
Glial cytoarchitecture in human cerebral cortex is constituted by two overlapping layouts: the (general mammalian) "glial syncytium" and the (primate-specific) "interlaminar glial palisade" (IGP) composed by astroglial cells, with long, radial processes that traverse several supragranular layers. In this study, the emergence and early organization of the IGP was analyzed using immunocytochemical procedures in postmortem infantile human control and age matched, Down's syndrome (DS) cases. In control cases, first signs of a radial array of unbranched astroglial processes were apparent at the end of the period of "physiological astrocytosis" (20-40 days of postnatal life), and its general profile (except perhaps the density of cell processes) reached the adult-like configuration by the second month of life. The initial organization of the IGP was similar in control and DS cases, although a breakdown in DS became manifest by the first year of age, or earlier, albeit with individual variations. These changes tended to evolve in a "mosaic" fashion and included partial disruption of the palisade, or persistence of the "physiological astrocytosis". These observations were compared against samples from elder DS cases with an Alzheimer's type of dementia (AtD). Collectively, results suggest that DS also involves astroglial alterations during early stages of brain development, and that those changes progress with age, until an AtD ensues during adult life.
Collapse
Affiliation(s)
- Jorge A Colombo
- Unidad de Neurobiología Aplicada (CEMIC-CONICET), Av. Galván 4102, 1431 Cdad. Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
19
|
Colombo JA, Reisin HD. Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res 2004; 1006:126-31. [PMID: 15047031 DOI: 10.1016/j.brainres.2004.02.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 11/17/2022]
Abstract
Evidence for "cable-like" processes stemming from astroglial cells in the supragranular cerebral cortex has been recently presented. In addition to what could be called the "general mammalian-like" astroglial architecture (the so-called "panglial syncytium") of the cerebral cortex, composed of typical stellate astrocytes (intralaminar astrocytes), the anthropoid species, mostly catarrhines, show a manifest vertical, radial distribution of long (interlaminar) astroglial processes. It can be tentatively proposed that evolutionary pressures resulted in the progressive appearance, in primates, of a new type of glial cell. Its soma has a superficial location and unusually long cellular processes that invade, in a predominant radial fashion, the supragranular region of the cerebral cortex. Their existence has been ignored for more than a century. On the neuronal side, modular (columnar) organization of the cerebral cortex may represent an evolutionary acquisition that could optimize communication and information processing, with the least volume compromise in terms of wiring. Yet, for such columns to be functionally operative, adequate isolation from neighboring units would be required. A "mass" operation of the astroglial architecture would tend to compromise spatial definition and the degrees of freedom of such columnar modules. It is proposed that the presence of a "palisade" of interlaminar glial processes represents a relatively recent evolutionary event, instrumental for the optimization of the modular (columnar) organization of the cerebral cortex. It is interesting that the supragranular cortical region has undergone the largest growth among mammalian species during brain evolution, and has been associated with a crucial role in cortico-cortical interactions.
Collapse
Affiliation(s)
- Jorge A Colombo
- Unidad de Neurobiología Aplicada (CEMIC-CONICET), Av. Galván 4102, 1431 Buenos Aires, Argentina.
| | | |
Collapse
|
20
|
Colombo JA, Quinn B, Puissant V. Disruption of astroglial interlaminar processes in Alzheimer's disease. Brain Res Bull 2002; 58:235-42. [PMID: 12127023 DOI: 10.1016/s0361-9230(02)00785-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A palisade of long, interlaminar astroglial processes in supragranular layers of the cerebral cortex is characteristic of adult individuals of anthropoid species. In the present study, this distinctive cytoarchitectonic feature was analyzed in tissue deriving from the neocortex of cases affected by Alzheimer's disease (n=14) and age-matched control cases (n=10). Samples of different cortical areas, and in particular prefrontal, temporal and striate fields, were analyzed. Astroglia was labeled by glial fibrillary acidic protein immunoreactivity, that allowed a clear distinction between the classical, stellate intralaminar astroglia and the interlaminar glial processes. The occurrence and relative density of neuritic plaques were ascertained in the same specimens with Bielchowsky staining. In most cortical regions of cases diagnosed as severe Alzheimer's disease by the donor institutions, interlaminar astroglia was found to be markedly altered or absent, and replaced by hypertrophic intralaminar astrocytes. Cases diagnosed as milder or uncertain Alzheimer's disease showed a less consistent involvement of the interlaminar glial palisade. Alterations of the interlaminar palisade in the cortex affected by Alzheimer's disease did not strictly correlate with the density of neuritic plaques in the examined specimens. The findings indicate that loss/severe disruption of the interlaminar palisade of astroglial processes is part of the array of neuropathological changes occurring in the cerebral cortex during Alzheimer's disease. In addition, our data indicate that different types of neocortical astrocytes (namely intralaminar and interlaminar astrocytes) respond differently to the pathobiology of Alzheimer's disease in the neocortex, inasmuch as interlaminar processes tend to disappear while intralaminar processes become reactive.
Collapse
Affiliation(s)
- J A Colombo
- Unidad de Neurobiología Aplicada (UNA), Buenos Aires, Argentina.
| | | | | |
Collapse
|
21
|
Davies DL, Niesman IR, Boop FA, Phelan KD. Heterogeneity of astroglia cultured from adult human temporal lobe. Int J Dev Neurosci 2000; 18:151-60. [PMID: 10715569 DOI: 10.1016/s0736-5748(99)00083-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
This study characterized the morphological and electrophysiological diversity of astroglia cultured from adult human cerebral temporal lobe, and explored the influence of the cytokine interleukin-1beta on these cells. The cultures contained astroglia positive for glial fibrillary acidic protein which were flat, bipolar or multipolar in shape and variable in size. A subpopulation of the bipolar and multipolar cells was positive for S100 protein. The most striking feature of these cultures was the presence of glia with long (600 micrometer) processes with few branches or only terminal branches. Patch clamp recordings of the non-stellate process bearing cells revealed prominent inward Na(+) and transient and sustained outward K(+) conductances. Distinct differences in the relative proportion of these conductances were evident among cells but did not appear to be correlated with cell morphology. Treatment of cultures with interleukin-1beta for 96 h did not change total protein content, but increased the content of S100beta protein and decreased the content of glial fibrillary acidic protein. The findings indicate that cultures of adult human cerebrum contain subpopulations of morphologically and electrophysiologically pleomorphic glial fibrillary acidic protein positive astroglia, exhibit increased levels of the neurotrophic factor S100beta when exposed to interleukin-1beta, and may serve as a useful model for investigation of glial involvement in neuropathology.
Collapse
Affiliation(s)
- D L Davies
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|