1
|
Peng K, Fan X, Li Q, Wang Y, Chen X, Xiao P, Passerini AG, Simon SI, Sun C. IRF-1 mediates the suppressive effects of mTOR inhibition on arterial endothelium. J Mol Cell Cardiol 2020; 140:30-41. [PMID: 32087218 DOI: 10.1016/j.yjmcc.2020.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/16/2020] [Accepted: 02/18/2020] [Indexed: 12/29/2022]
Abstract
AIMS Mammalian target of rapamycin (mTOR) inhibitors used in drug-eluting stents (DES) to control restenosis have been found to delay endothelialization and increase incidence of late-stent thrombosis through mechanisms not completely understood. We revealed that mTOR inhibition (mTORi) upregulated the expression of cell growth suppressor IRF-1 in primary human arterial endothelial cells (HAEC). This study aimed to examine how mTOR-regulated IRF-1 expression contributes to the suppressive effect of mTORi on arterial endothelial proliferation. METHODS AND RESULTS Western blotting, quantitative PCR, and a dual-luciferase reporter assay indicated that mTOR inhibitors rapamycin and torin 1 upregulated IRF-1 expression and increased its transcriptional activity. IRF-1 in turn contributed to the suppressive effect of mTORi by mediating HAEC apoptosis and cell cycle arrest in part through upregulation of caspase 1 and downregulation of cyclin D3, as revealed by CCK-8 assay, Annexin V binding assay, measurement of activated caspase 3, BrdU incorporation assay, and matrigel tube formation assay. In a mouse model of femoral artery wire injury, administration of rapamycin inhibited EC recovery, an effect alleviated by EC deficiency of IRF-1. Chromatin immunoprecipitation assay with HAEC and rescue expression of wild type or dominant-negative IRF-1 in EC isolated from Irf1-/- mice confirmed transcriptional regulation of IRF-1 on the expression of CASP1 and CCND3. Furthermore, mTORi activated multiple PKC members, among which PKCζ was responsible for the growth-inhibitory effect on HAEC. Activated PKCζ increased IRF1 transcription through JAK/STAT-1 and NF-κB signaling. Finally, overexpression of wild type or mutant raptor incapable of binding mTOR indicated that mTOR-free raptor contributed to PKCζ activation in mTOR-inhibited HAEC. CONCLUSIONS The study reveals an IRF-1-mediated mechanism that contributes to the suppressive effects of mTORi on HAEC proliferation. Further study may facilitate the development of effective strategies to reduce the side effects of DES used in coronary interventions.
Collapse
Affiliation(s)
- Kai Peng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China; Key laboratory of Human Functional Genomics of Jiang Province, Nanjing, China
| | - Xing Fan
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China; Key laboratory of Human Functional Genomics of Jiang Province, Nanjing, China
| | - Qiannan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China; Key laboratory of Human Functional Genomics of Jiang Province, Nanjing, China
| | - Yiying Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China; Key laboratory of Human Functional Genomics of Jiang Province, Nanjing, China
| | - Xiaolin Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China; Key laboratory of Human Functional Genomics of Jiang Province, Nanjing, China
| | - Pingxi Xiao
- Department of Cardiology, The affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Anthony G Passerini
- Department of Biomedical Engineering, University of California Davis, Davis, CA, United States of America
| | - Scott I Simon
- Department of Biomedical Engineering, University of California Davis, Davis, CA, United States of America
| | - ChongXiu Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China; Key laboratory of Human Functional Genomics of Jiang Province, Nanjing, China.
| |
Collapse
|
2
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
4
|
Ding RQ, Tsao J, Chai H, Mochly-Rosen D, Zhou W. Therapeutic potential for protein kinase C inhibitor in vascular restenosis. J Cardiovasc Pharmacol Ther 2010; 16:160-7. [PMID: 21183728 DOI: 10.1177/1074248410382106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vascular restenosis, an overreaction of biological response to injury, is initialized by thrombosis and inflammation. This response is characterized by increased smooth muscle cell migration and proliferation. Available pharmacological treatments include anticoagulants, antiplatelet agents, immunosuppressants, and antiproliferation agents. Protein kinase C (PKC), a large family of serine/threonine kinases, has been shown to participate in various pathological stages of restenosis. Consequently, PKC inhibitors are expected to exert a wide range of pharmacological activities therapeutically beneficial for restenosis. In this review, the roles of PKC isozymes in platelets, leukocytes, endothelial cells, and smooth muscle cells are discussed, with emphasis given to smooth muscle cells. We will describe cellular and animal studies assessing prevention of restenosis with PKC inhibitors, particularly targeting -α, -β, -δ, and -ζ isozymes. The delivery strategy, efficacy, and safety of such PKC regulators will also be discussed.
Collapse
Affiliation(s)
- Richard Qinxue Ding
- Division of Vascular and Endovascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94350, USA
| | | | | | | | | |
Collapse
|
5
|
Korzick DH, Laughlin MH, Bowles DK. Alterations in PKC signaling underlie enhanced myogenic tone in exercise-trained porcine coronary resistance arteries. J Appl Physiol (1985) 2004; 96:1425-32. [PMID: 14672961 DOI: 10.1152/japplphysiol.01077.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The intracellular mechanisms underlying enhanced myogenic contraction (MC) in coronary resistance arteries (CRAs) from exercise-trained (EX) pigs have not been established. The purpose of this study was to test the hypothesis that exercise-induced alterations in protein kinase C (PKC) signaling underlie enhanced MC. Furthermore, we sought to determine whether modulation of intracellular Ca2+signaling by PKC underlies enhanced MC in EX animals. Male Yucatan miniature swine were treadmill trained ( n = 7) at ∼75% of maximal O2uptake for 16 wk (6 miles/h, 60 min) or remained sedentary (SED, n = 6). Diameter measurements in response to intraluminal pressure (60, 75, and 90 cmH2O) or 60 mM KCl were determined in single, cannulated CRAs (∼100 μm ID) with and without the PKC inhibitor chelerythrine (CE, 1 μM). Confocal imaging of Ca2+signaling [myogenic Ca2+(Cam)] was also performed in CRAs of similar internal diameter after abluminal loading of the Ca2+indicator dye fluo 4 (1 μM, 37°C, 30 min). We observed significantly greater MC in CRAs isolated from EX than from SED animals at 90 cmH2O, as well as greater reductions in MC after CE at all pressures studied. At intraluminal pressures of 75 and 90 cmH2O, CE produced greater decreases in Camin CRAs from EX than from SED animals (64% vs. 25%, P < 0.05). Inhibition of KCl constriction and Camby CE was also greater in EX animals ( P < 0.05). Western blotting revealed significant increases in Ca2+-dependent PKC-α (∼50%) but not Ca2+-independent PKC-ϵ levels in CRAs isolated from EX animals ( P < 0.05). We also observed significant group differences in phosphorylated PKC-α levels. Finally, voltage-gated Ca2+current (VGCC) was effectively blocked by CE, bisindolylmaleimide, and staurosporine in isolated smooth muscle cells from CRAs, providing evidence for a mechanistic link between VGCCs and PKC in our experimental paradigm. These results suggest that enhanced MC in CRAs from EX animals involves PKC-dependent modulation of intracellular Ca2+, including regulation of VGCCs.
Collapse
Affiliation(s)
- D H Korzick
- Department of Biomedical Sciences,University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
6
|
Abstract
Our laboratory has previously reported that the exposure of smooth muscle cells (SMC) to the cyclic strain results in significant stimulation of protein kinase C (PKC) activity by translocating the enzyme from the cytosol to the particulate fraction. We now sought to examine the strain-induced translocation of individual PKC isoforms in SMC. Confluent bovine aortic SMC grown on collagen type I-coated plates were exposed to cyclic strain for up to 100 s at average 10% strain with 60 cycles/min. Immunoblotting analysis demonstrates that SMC express PKC-alpha, -beta and -zeta in both cytosolic and particulate fractions. Especially, PKC-alpha and -zeta were predominantly expressed in the cytosolic fraction. However, cyclic strain significantly (P < 0.05) increased PKC-alpha and -zeta in the particulate fraction and decreased in the cytosolic fraction. Thus, the cyclic strain-mediated stimulation of PKC activity in SMC may be due to the translocation of PKC-alpha and -zeta from the cytosolic to the particulate fraction. These results demonstrate that mechanical deformation causes rapid translocation of PKC isoforms, which may initiate a cascade of proliferation responses of SMC since NF-kappaB, which is involved in the cellular proliferation has been known to be activated by these PKC isoforms.
Collapse
Affiliation(s)
- O Han
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Abnormal vascular responsiveness to ligands has been frequently observed in cirrhosis and portal hypertension, but its existence is not proven. The signaling pathways in vascular smooth muscle cells (VSMCs) have been studied only in animal models of cirrhosis and portal hypertension. Emerging evidence suggests that active relaxation, expressed as augmented content or activity of effectors within the cyclic AMP signaling pathway and suppressed content or activity of effectors in the inositol 1,4,5-trisphosphate/1,2-diacylglycerol signaling pathway, may be occurring in VSMCs of the splanchnic circulation in portal hypertension. The evidence supporting the existence of this phenomenon in the VSMCs of extrasplanchnic circulations in portal hypertension, as well as in the splanchnic circulation when chronic cellular damage is present, is very limited. The status of the other signaling pathways associated with contractile functions of the VSMCs, viz., cyclic GMP and tyrosine kinase-linked pathways, is unknown. The status of all the signaling pathways in non-contractile functions of VSMCs, such as growth and remodeling, has not been studied. As our overall understanding on the signaling pathways in VSMCs is only emerging, it is premature to implicate altered activity of the signaling pathways as the underlying basis of vascular hyporesponsiveness in cirrhosis and portal hypertension, and to extrapolate these limited observations to the human condition.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic GMP/metabolism
- Disease Models, Animal
- Hypertension, Portal/physiopathology
- In Vitro Techniques
- Liver/blood supply
- Liver/physiopathology
- Liver Cirrhosis/physiopathology
- Models, Chemical
- Muscle Development
- Muscle, Smooth, Vascular/growth & development
- Muscle, Smooth, Vascular/physiology
- Phosphatidylinositols/metabolism
- Protein Kinases/metabolism
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Signal Transduction/physiology
- Splanchnic Circulation/physiology
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- A Bomzon
- Department of Pharmacology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel.
| | | |
Collapse
|
8
|
Mamputu JC, Levesque L, Renier G. Proliferative effect of lipoprotein lipase on human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2000; 20:2212-9. [PMID: 11031206 DOI: 10.1161/01.atv.20.10.2212] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vascular smooth muscle cell (VSMC) proliferation is a key event in the development and progression of atherosclerotic lesions. Accumulating evidence suggests that lipoprotein lipase (LPL) produced in the vascular wall may exert proatherogenic effects. The aim of the present study was to examine the effect of LPL on VSMC proliferation. Incubation of growth-arrested human VSMCs with purified endotoxin-free bovine LPL for 48 and 72 hours, in the absence of any added exogenous lipoproteins, resulted in a dose-dependent increase in VSMC growth. Addition of VLDLs to the culture media did not further enhance the LPL effect. Treatment of growth-arrested VSMCs with purified human or murine LPL (1 microg/mL) led to a similar increase in cell proliferation. Neutralization of bovine LPL by the monoclonal 5D2 antibody, irreversible inhibition, or heat inactivation of the lipase suppressed the LPL stimulatory effect on VSMC growth. Moreover, preincubation of VSMCs with the specific protein kinase C inhibitors calphostin C and chelerythrine totally abolished LPL-induced VSMC proliferation. In LPL-treated VSMCs, a significant increase in protein kinase C activity was observed. Treatment of VSMCs with heparinase III (1 U/mL) totally inhibited LPL-induced human VSMC proliferation. Taken together, these data indicate that LPL stimulates VSMC proliferation. LPL enzymatic activity, protein kinase C activation, and LPL binding to heparan sulfate proteoglycans expressed on VSMC surfaces are required for this effect. The stimulatory effect of LPL on VSMC proliferation may represent an additional mechanism through which the enzyme contributes to the progression of atherosclerosis.
Collapse
Affiliation(s)
- J C Mamputu
- CHUM Research Center, Notre-Dame Hospital, Department of Nutrition, Laboratory of Molecular Cardiology, University of Montreal, Quebec, Canada
| | | | | |
Collapse
|