1
|
Bahi A, Dreyer JL. Lentiviral-mediated up-regulation of let-7d microRNA decreases alcohol intake through down-regulating the dopamine D3 receptor. Eur Neuropsychopharmacol 2020; 37:70-81. [PMID: 32646740 DOI: 10.1016/j.euroneuro.2020.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 01/02/2023]
Abstract
Recent studies have shown that Lethal-7 (let-7) microRNA (miRNA) is involved in a wide range of psychiatric disorders such as anxiety, depression, schizophrenia, and cocaine addiction. However, the exact role of let-7d miRNA in regulating ethanol intake and preference remains to be elucidated. The aim of the present study was to clarify the role of accumbal let-7d in controlling ethanol-related behaviors in adult rats. For this purpose, stereotaxic injections of let-7d-overexpressing lentiviral vectors (LV) were administered bilaterally into the nucleus accumbens (Nacc) of Wistar rats. The ethanol-related behaviors were investigated using the two-bottle choice (TBC) access paradigm, in which the rats had access to 2.5, 5, and 10% ethanol solutions, the grid hanging test (GHT) and ethanol-induced loss-of-righting-reflex (LORR) test. The results showed that intra-accumbally administered let-7d-overexpressing LV significantly decreased ethanol intake and preference without having significant effects on body weight, consumption or preference for tastants (saccharin and quinine) or ethanol metabolism. Furthermore, accumbal let-7d increased resistance to ethanol-induced sedation in the GHT and LORR test. Most importantly, the data showed that the dopamine D3 receptor (D3R) was a candidate target of let-7d In fact, and using real time PCR, let-7d was found to directly target D3R mRNA to decrease its expression. Further analyses proved that D3R expression was negatively correlated with the levels of let-7d and ethanol-related behaviors parameters. Taken together, the data indicating that let-7d impaired ethanol-related behaviors by targeting D3R will open up new exciting possibilities and might provide potential therapeutic evidence for alcoholism.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, UAE; Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, UAE.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
2
|
Targeting the intracellular signaling "STOP" and "GO" pathways for the treatment of alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1727-1743. [PMID: 29654346 PMCID: PMC5949137 DOI: 10.1007/s00213-018-4882-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
In recent years, research has identified the molecular and neural substrates underlying the transition of moderate "social" consumption of alcohol to the characteristic alcohol use disorder (AUD) phenotypes including excessive and compulsive alcohol use which we define in the review as the GO signaling pathways. In addition, growing evidence points to the existence of molecular mechanisms that keep alcohol consumption in check and that confer resilience for the development of AUD which we define herein as the STOP signaling pathways. In this review, we focus on examples of the GO and the STOP intracellular signaling pathways and discuss our current knowledge of how manipulations of these pathways may be used for the treatment of AUD.
Collapse
|
3
|
Sokoloff P, Le Foll B. The dopamine D3 receptor, a quarter century later. Eur J Neurosci 2016; 45:2-19. [DOI: 10.1111/ejn.13390] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/23/2016] [Accepted: 08/28/2016] [Indexed: 12/16/2022]
Affiliation(s)
| | - Bernard Le Foll
- Centre for Addiction and Mental Health; Toronto ON Canada
- University of Toronto; Toronto ON Canada
| |
Collapse
|
4
|
Stimulant and motivational effects of alcohol: Lessons from rodent and primate models. Pharmacol Biochem Behav 2014; 122:37-52. [DOI: 10.1016/j.pbb.2014.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 11/22/2022]
|
5
|
Camarini R, Marcourakis T, Teodorov E, Yonamine M, Calil HM. Ethanol-induced sensitization depends preferentially on D1 rather than D2 dopamine receptors. Pharmacol Biochem Behav 2010; 98:173-80. [PMID: 21184775 DOI: 10.1016/j.pbb.2010.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 02/06/2023]
Abstract
Behavioral sensitization, defined as a progressive increase in the locomotor stimulant effects elicited by repeated exposure to drugs of abuse, has been used as an animal model for drug craving in humans. The mesoaccumbens dopaminergic system has been proposed to be critically involved in this phenomenon; however, few studies have been designed to systematically investigate the effects of dopaminergic antagonists on development and expression of behavioral sensitization to ethanol in Swiss mice. We first tested the effects of D(1) antagonist SCH-23390 (0-0.03 mg/kg) or D(2) antagonist Sulpiride (0-30 mg/kg) on the locomotor responses to an acute injection of ethanol (2.0 g/kg). Results showed that all tested doses of the antagonists were effective in blocking ethanol's stimulant effects. In another set of experiments, mice were pretreated intraperitoneally with SCH-23390 (0.01 mg/kg) or Sulpiride (10 mg/kg) 30 min before saline or ethanol injection, for 21 days. Locomotor activity was measured weekly for 20 min. Four days following this pretreatment, all mice were challenged with ethanol. Both antagonists attenuated the development of ethanol sensitization, but only SCH-23390 blocked the expression of ethanol sensitization according to this protocol. When we tested a single dose (30 min before tests) of either antagonist in mice treated chronically with ethanol, both antagonists attenuated ethanol-induced effects. The present findings demonstrate that the concomitant administration of ethanol with D(1) but not D(2) antagonist prevented the expression of ethanol sensitization, suggesting that the neuroadaptations underlying ethanol behavioral sensitization depend preferentially on D(1) receptor actions.
Collapse
Affiliation(s)
- Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
6
|
Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007; 12:227-462. [PMID: 17678505 DOI: 10.1111/j.1369-1600.2007.00070.x] [Citation(s) in RCA: 1021] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conditioned place preference (CPP) continues to be one of the most popular models to study the motivational effects of drugs and non-drug treatments in experimental animals. This is obvious from a steady year-to-year increase in the number of publications reporting the use this model. Since the compilation of the preceding review in 1998, more than 1000 new studies using place conditioning have been published, and the aim of the present review is to provide an overview of these recent publications. There are a number of trends and developments that are obvious in the literature of the last decade. First, as more and more knockout and transgenic animals become available, place conditioning is increasingly used to assess the motivational effects of drugs or non-drug rewards in genetically modified animals. Second, there is a still small but growing literature on the use of place conditioning to study the motivational aspects of pain, a field of pre-clinical research that has so far received little attention, because of the lack of appropriate animal models. Third, place conditioning continues to be widely used to study tolerance and sensitization to the rewarding effects of drugs induced by pre-treatment regimens. Fourth, extinction/reinstatement procedures in place conditioning are becoming increasingly popular. This interesting approach is thought to model certain aspects of relapse to addictive behavior and has previously almost exclusively been studied in drug self-administration paradigms. It has now also become established in the place conditioning literature and provides an additional and technically easy approach to this important phenomenon. The enormous number of studies to be covered in this review prevented in-depth discussion of many methodological, pharmacological or neurobiological aspects; to a large extent, the presentation of data had to be limited to a short and condensed summary of the most relevant findings.
Collapse
Affiliation(s)
- Thomas M Tzschentke
- Grünenthal GmbH, Preclinical Research and Development, Department of Pharmacology, Aachen, Germany.
| |
Collapse
|
7
|
Abstract
Fueled by anatomical, electrophysiological, and pharmacological analyses of endogenous brain reward systems, norepinephrine (NE) was identified as a key mediator of both natural and drug-induced reward in the late 1960s and early 1970s. However, reward experiments from the mid-1970s that could distinguish between the noradrenergic and dopaminergic systems resulted in the prevailing view that dopamine (DA) was the primary 'reward transmitter' (a belief holding some sway still today), thereby pushing NE into the background. Most damaging to the NE hypothesis of reward were studies demonstrating that NE receptor antagonists and NE reuptake inhibitors failed to impact drug self-administration. In recent years new tools, such as genetically engineered mice, and new experimental paradigms, such as reinstatement of drug seeking following withdrawal, have propelled NE back into the awareness of addiction researchers. Of particular interest is disulfiram, an inhibitor of the NE biosynthetic enzyme dopamine beta-hydroxylase, which has demonstrated promising efficacy in the treatment of cocaine dependence in preliminary clinical trials. The purpose of this review is to synthesize the new data linking NE to critical aspects of DA signaling and drug addiction, with a focus on psychostimulants (eg, cocaine), opiates (eg, morphine), and alcohol.
Collapse
Affiliation(s)
- David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
8
|
Mulert C, Juckel G, Giegling I, Pogarell O, Leicht G, Karch S, Mavrogiorgou P, Möller HJ, Hegerl U, Rujescu D. A Ser9Gly polymorphism in the dopamine D3 receptor gene (DRD3) and event-related P300 potentials. Neuropsychopharmacology 2006; 31:1335-44. [PMID: 16395310 DOI: 10.1038/sj.npp.1300984] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An important reason for the interest in P300 event-related potentials are findings in patients with psychiatric disorders like schizophrenia or alcoholism in which attenuations of the P300 amplitude are common findings. The P300 wave has been suggested to be a promising endophenotype for genetic research since attenuations of the amplitude and latency can be observed not only in patients but also in relatives. In parallel, the search for genes involved in the pathogenesis of psychiatric disorders has revealed for both, schizophrenia and alcoholism an association with a DRD3 Ser9Gly polymorphism in a number of studies. In the present study, we have investigated 124 unrelated healthy subjects of German descent and have found diminished parietal and increased frontal P300 amplitudes in Gly9 homozygotes in comparison to Ser9 carriers. This finding suggests a possible role of the DRD3 receptor gene in the interindividual variation of P300 amplitudes. Further studies should address the direct role of the DRD3 Ser9Gly polymorphism in attenuated P300 amplitudes in psychiatric disorders like schizophrenia or alcoholism.
Collapse
Affiliation(s)
- Christoph Mulert
- Department of Psychiatry, University of Munich, LMU, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pastor R, Miquel M, Aragon CMG. Habituation to test procedure modulates the involvement of dopamine D2- but not D1-receptors in ethanol-induced locomotor stimulation in mice. Psychopharmacology (Berl) 2005; 182:436-46. [PMID: 16133139 DOI: 10.1007/s00213-005-0115-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 06/22/2005] [Indexed: 11/30/2022]
Abstract
RATIONALE Novelty associated with behavioral testing has been shown to enhance psychostimulant- and morphine-induced locomotor stimulation. Evidence has demonstrated that novelty increases dopamine (DA) activity, and habituation to a novel environment reduces such activation. However, it is not clear whether novelty modulates ethanol-induced behavioral stimulation and whether DA plays a role in this effect. OBJECTIVES The present work sought to demonstrate a role of habituation to test procedure as a factor that could modulate the involvement of DA in ethanol-induced locomotor stimulation. METHODS Non-habituated (NH) and habituated (H) Swiss mice pretreated with DA D1- (SCH23390; 0-0.045 mg/kg) or D2-receptor (sulpiride; 0-50 mg/kg) antagonists were tested for ethanol (0-2.5 g/kg)-induced locomotor stimulation. Experiments with amphetamine (0-4 mg/kg), morphine (0-5 mg/kg) and caffeine (0-15 mg/kg)were designed to compare their results to those obtained with ethanol. The effect of the non-selective opioid receptor antagonist naltrexone (0-1.5 mg/kg) was also tested on ethanol-induced locomotor stimulation. RESULTS NH and H animals did not differ in their locomotor response to ethanol or caffeine; however, amphetamine- and morphine-induced stimulation was greater in NH than in H mice. SCH23390 only reduced ethanol-induced stimulation at doses that also reduced spontaneous activity in both NH and H mice. Sulpiride decreased ethanol-stimulated behavior only in the NH condition. Habituation did not modify the effect of sulpiride on amphetamine-, morphine- or caffeine-induced activation. Naltrexone (0-1.5 mg/kg) reduced ethanol-induced stimulation regardless of habituation. CONCLUSIONS The present data suggest that the participation of DA D2-receptors in ethanol-induced behavioral stimulation requires the presence of novelty. Results also support the involvement of neurotransmitter systems other than DA (i.e., endogenous opioid system) as important substrates mediating ethanol-induced locomotor activation.
Collapse
Affiliation(s)
- Raúl Pastor
- Area de Psicobiología, Universtitat Jaume I. Campus de Riu Sec, Avda. Sos Baynat s/n, 12071 Castelló, Spain
| | | | | |
Collapse
|
10
|
Heidbreder CA, Gardner EL, Xi ZX, Thanos PK, Mugnaini M, Hagan JJ, Ashby CR. The role of central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. ACTA ACUST UNITED AC 2005; 49:77-105. [PMID: 15960988 PMCID: PMC3732040 DOI: 10.1016/j.brainresrev.2004.12.033] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 10/21/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
The cDNA for the dopamine D3 receptor was isolated and characterized in 1990. Subsequent studies have indicated that D3 receptors, as well as D3 receptor mRNA, are primarily localized in limbic regions in mammals. This finding led to the postulate that D3 receptors may be involved in drug dependence and addiction. However, this hypothesis has been difficult to test due to the lack of compounds with high selectivity for central D3 receptors. The interpretation of results from studies using mixed D2/D3 agonists and/or antagonists is problematic because these agents have low selectivity for D3 over D2 receptors and it is likely that their actions are primarily related to D2 receptor antagonism and possibly interaction with other neurotransmitter receptors. Currently, with the synthesis and characterization of new highly selective D3 receptor antagonists such as SB-277011-A this difficulty has been surmounted. The purpose of the present article is to review, for the first time, the effects of various putative D3 receptor selective compounds in animal models of drug dependence and addiction. The results obtained with highly selective D3 receptor antagonists such as SB-277011-A, SB-414796, and NGB-2904 indicate that central D3 receptors may play an important role in drug-induced reward, drug-taking, and cue-, drug-, and stress-induced reinstatement of drug-seeking behavior. Provided these results can be extrapolated to human drug addicts, they suggest that selective DA D3 receptor antagonists may prove effective as potential pharmacotherapeutic agents to manage drug dependence and addiction.
Collapse
Affiliation(s)
- Christian A. Heidbreder
- Centre of Excellence for Drug Discovery in Psychiatry, GlaxoSmithKline Pharmaceuticals, 37135 Verona, Italy
| | - Eliot L. Gardner
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224-6823, USA
| | - Zheng-Xiong Xi
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224-6823, USA
| | - Panayotis K. Thanos
- Medical Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Manolo Mugnaini
- Centre of Excellence for Drug Discovery in Psychiatry, GlaxoSmithKline Pharmaceuticals, 37135 Verona, Italy
| | - Jim J. Hagan
- Centre of Excellence for Drug Discovery in Psychiatry, GlaxoSmithKline Pharmaceuticals, 37135 Verona, Italy
| | - Charles R. Ashby
- Pharmaceutical Sciences Department, Saint John’s University, 8000 Utopia Parkway, Jamaica, NY 11439-0001, USA
- Corresponding author. Fax: +1 718 990 1877. (C.R. Ashby)
| |
Collapse
|
11
|
Pierce RC, Kumaresan V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 2005; 30:215-38. [PMID: 16099045 DOI: 10.1016/j.neubiorev.2005.04.016] [Citation(s) in RCA: 597] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 04/05/2005] [Accepted: 04/19/2005] [Indexed: 11/23/2022]
Abstract
In this review we will critically assess the hypothesis that the reinforcing effect of virtually all drugs of abuse is primarily dependent on activation of the mesolimbic dopamine system. The focus is on five classes of abused drugs: psychostimulants, opiates, ethanol, cannabinoids and nicotine. For each of these drug classes, the pharmacological and physiological mechanisms underlying the direct or indirect influence on mesolimbic dopamine transmission will be reviewed. Next, we evaluate behavioral pharmacological experiments that specifically assess the influence of activation of the mesolimbic dopamine system on drug reinforcement, with particular emphasis on animal experiments using drug self-administration paradigms. There is overwhelming evidence that all five classes of abused drugs increase dopamine transmission in limbic regions of the brain through interactions with a variety of transporters, ionotropic receptors and metabotropic receptors. Behavioral pharmacological experiments indicate that increased dopamine transmission is clearly both necessary and sufficient to promote psychostimulant reinforcement. For the other four classes of abused substances, self-administration experiments suggest that although increasing mesolimbic dopamine transmission plays an important role in the reinforcing effects of opiates, ethanol, cannabinoids and nicotine, there are also dopamine-independent processes that contribute significantly to the reinforcing effects of these compounds.
Collapse
Affiliation(s)
- R Christopher Pierce
- Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, L603 Boston, MA 02118, USA.
| | | |
Collapse
|
12
|
Green AI, Chau DT, Keung WM, Dawson R, Mesholam RI, Schildkraut JJ. Clozapine reduces alcohol drinking in Syrian golden hamsters. Psychiatry Res 2004; 128:9-20. [PMID: 15450910 DOI: 10.1016/j.psychres.2004.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 01/05/2004] [Accepted: 05/17/2004] [Indexed: 10/26/2022]
Abstract
Alcohol abuse contributes substantially to the overall morbidity of schizophrenia. While typical antipsychotic medications do not limit alcohol use in patients with schizophrenia, emerging data suggest that the atypical antipsychotic clozapine does. To further elucidate the effects of these antipsychotics on alcohol use, we initiated a study in alcohol-preferring rodents. Syrian golden hamsters were given free-choice, unlimited access to alcohol. Nine days of treatment (s.c. injection) with clozapine (2-4 mg/kg/day), but not haloperidol (0.2-0.4 mg/kg/day), reduced alcohol drinking. Clozapine reduced alcohol drinking by 88% (from 11.3+/-1.7 to 1.4+/-0.2 g/kg/day) while increasing both water and food intake. Alcohol drinking gradually (during 24 days) returned toward baseline in the clozapine-treated animals when vehicle was substituted for clozapine. Further increasing the doses of haloperidol (0.6-1.0 mg/kg/day) had no effect on alcohol drinking; moreover, very low doses of haloperidol (0.025-0.1 mg/kg/day) tested in separate groups of hamsters also had no effect on alcohol drinking. This study demonstrates that clozapine, but not haloperidol, can effectively and reversibly decrease alcohol consumption in alcohol-preferring hamsters. The results are compatible with the observations that clozapine, but not haloperidol, limits alcohol use in patients with schizophrenia. These data further suggest that clozapine may serve as a prototype for developing novel treatments for alcohol abuse.
Collapse
Affiliation(s)
- Alan I Green
- Commonwealth Research Center, Massachusetts Mental Health Center, 74 Fenwood Road, Boston 02115, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Boyce-Rustay JM, Cunningham CL. The Role of NMDA Receptor Binding Sites in Ethanol Place Conditioning. Behav Neurosci 2004; 118:822-34. [PMID: 15301608 DOI: 10.1037/0735-7044.118.4.822] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Little is known about the specific role of glutamate, in particular its actions at N-methyl-D-aspartate (NMDA) receptors, in ethanol reward. Pretreatment with channel blockers MK-801 and ketamine, NMDA NR2B receptor subunit antagonists ifenprodil and CP-101,606, and the glycine(B) partial agonist (+)-HA-966 did not alter acquisition of ethanol-induced conditioned place preference (CPP) in mice. However, pretreatment with the competitive antagonist CGP-37849 attenuated acquisition of ethanol-induced CPP. Follow-up experiments indicated that CGP-37849 also blocked acquisition of ethanol-induced and lithium chloride-induced conditioned place aversion but did not produce rewarding or aversive effects on its own. These results suggest that the NMDA receptor glutamate binding site is important for ethanol place conditioning. Moreover, these results suggest CGP-37849 modulates ethanol place conditioning by impairing the ability to learn these tasks.
Collapse
Affiliation(s)
- Janel M Boyce-Rustay
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
14
|
Duarte C, Lefebvre C, Chaperon F, Hamon M, Thiébot MH. Effects of a dopamine D3 receptor ligand, BP 897, on acquisition and expression of food-, morphine-, and cocaine-induced conditioned place preference, and food-seeking behavior in rats. Neuropsychopharmacology 2003; 28:1903-15. [PMID: 12915863 DOI: 10.1038/sj.npp.1300276] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study addressed the role of dopaminergic D(3) receptors (D(3)R) in motivational processes in rats. The effects of the selective D(3)R partial agonist, BP 897 (0.25-1 mg/kg, i.p.), on the establishment and the expression of conditioned place preference (CPP) supported by food, morphine (4 mg/kg, s.c.), or cocaine (2 mg/kg, s.c.) were investigated using an unbiased, one-compartment, place-conditioning procedure. When administered alone, BP 897 (0.05-2 mg/kg, i.p.) did not support CPP; on the contrary, conditioned place avoidance (CPA) was observed at 1 mg/kg, suggesting that this dose of BP 897 could be perceived as aversive. When given before each cocaine injection during the conditioning phase, BP 897 (1 mg/kg) prevented the establishment of CPP, and a single administration of BP 897 (0.5 and 1 mg/kg) before the test session impaired the expression of cocaine CPP. In contrast, neither the establishment nor the expression of food- and morphine-CPP were significantly altered by BP 897 (up to 1 mg/kg), whereas the full but less selective D(3)/D(2)R agonists, 7-OH-DPAT (0.5-2 mug/kg, s.c.) and quinelorane (1 mug/kg, s.c.), prevented the acquisition of food CPP. In a within-session extinction schedule of lever pressing for food, BP 897 (0.06-2 mg/kg) was ineffective in potentiating response reinstatement induced by the noncontingent delivery of two food pellets, in contrast with quinelorane and 7-OH-DPAT where previous studies showed to be efficient in this respect (Duarte et al, 2003). These results indicate that BP 897 has no positive appetitive value on its own, and that a moderate degree of stimulation of D(3)R is not sufficient to modulate food-primed food-seeking behavior or alter incentive motivation for food, morphine, and/or their associated cues. However, D(3)R are likely involved in the perception of the rewarding value of cocaine and cocaine-paired cues. This suggests that the appetitive effects of cocaine are subserved by mechanisms different, at least in part, from those of morphine and food, and that D(3)R play a role only in the former.
Collapse
Affiliation(s)
- Christine Duarte
- INSERM U.288, Faculty of Medicine Pitié-Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
15
|
Hill KG, Alva H, Blednov YA, Cunningham CL. Reduced ethanol-induced conditioned taste aversion and conditioned place preference in GIRK2 null mutant mice. Psychopharmacology (Berl) 2003; 169:108-14. [PMID: 12721779 DOI: 10.1007/s00213-003-1472-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Accepted: 03/10/2003] [Indexed: 01/16/2023]
Abstract
RATIONALE Previous studies have shown that GIRK2 channel function is enhanced by ethanol and that GIRK2 null mutant mice are less sensitive to some of ethanol's effects, including anxiolysis, habituated locomotor stimulation, and acute handling-induced convulsions than wild types. Under some conditions, GIRK2 knockout mice consume more ethanol than wild types, but it is unclear whether they do so because they are more sensitive to ethanol's rewarding effects or less sensitive to its aversive effects. OBJECTIVE To further assess the role of GIRK2 in ethanol action, GIRK2 null mutant and wild type mice were tested in conditioning models that measure the motivational effects of ethanol. METHOD In a conditioned taste aversion (CTA) procedure, knockout and wild type mice were given ethanol (0.0, 2.0, 2.5, or 3.5 g/kg, IP) following 1-h access to saccharin every 48 h over a 10 day period. In a conditioned place preference (CPP) procedure, knockout and wild type mice were given ethanol (2.0 or 3.0 g/kg, IP) paired with one stimulus (grid or hole floor) and saline paired with the other. After four 5-min trials with each stimulus, a 60-min choice test was done. RESULTS The results demonstrated a genotypic difference in both paradigms. In CTA, there was no difference between genotypes at 0.0 or 3.5 g/kg ethanol, but at the 2.0 and 2.5 g/kg doses, wild types developed a stronger aversion to saccharin than knockouts. In CPP, wild types developed place preference, but knockouts did not. CONCLUSIONS These studies show that GIRK2 deletion reduced ethanol's impact in tasks that are commonly used to index the drug's rewarding and aversive effects. These findings could reflect either a learning/memory deficit or decreased sensitivity to ethanol's motivational effects in null mutant mice. The latter interpretation is more consistent with previous data showing that knockout mice consume higher doses of ethanol than wild type mice.
Collapse
Affiliation(s)
- Katherine G Hill
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR 97201-3098, USA.
| | | | | | | |
Collapse
|