1
|
Manzoor MF, Riaz S, Verma DK, Waseem M, Goksen G, Ali A, Zeng XA. Nutraceutical tablets: Manufacturing processes, quality assurance, and effects on human health. Food Res Int 2024; 197:115197. [PMID: 39593282 DOI: 10.1016/j.foodres.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Consumers are increasingly focused on food products' nutritional content and health aspects. Nutraceutical tablets containing nutritional supplements have seen remarkable progress and are well-known for their precise dosage, which can improve consumer health by increasing the intake of bioactive compounds and vital nutrients. Oral nutraceuticals are frequently used to enhance consumer well-being, with around 80% of products being in solid form. This manuscript aims to thoroughly analyze and summarize the gathered literature using various search engines to investigate key trends in the market, the components involved, and the functional impact of nutraceutical tablets. Furthermore, the manuscript explores various nutraceutical tablets such as chewable tablets, gelling capsules, vitamin tablets, spirulina tablets, and bran tablets. A perspective is provided on multiple production and manufacturing methods of nutraceutical tablets, along with comparing these processes. Following this, evaluating quality characteristics and enforcing quality assurance procedures have been emphasized. The manuscript discussed the physiological breakdown of ingestible nutraceutical tablets in the human body and the possible toxic effects of the components found in these tablets. Furthermore, the focus is on producing nutraceutical tablets in a more environmentally friendly manner, tackling sustainability issues, offering solutions, and delving into potential opportunities. This manuscript will create a significant platform for people from the research, scientific, and industrial fields seeking novel and inventive projects.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Sakhawat Riaz
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agriculture University, Hefei, China
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Muhammad Waseem
- Department of Food Science & Technology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey
| | - Anwar Ali
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 St., 02-776 Warsaw, Poland
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
2
|
Xie Y, Cui S, Hu J, Yu H, Xuan A, Wei Y, Lian Y, Wu J, Du W, Zhang E. Design and preparation of Ti-xFe antibacterial titanium alloys based on micro-area potential difference. Biometals 2024; 37:337-355. [PMID: 37904075 DOI: 10.1007/s10534-023-00551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Fe was selected as an alloying element for the first time to prepare a new antibacterial titanium alloy based on micro-area potential difference (MAPD) antibacterial mechanism. The microstructure, the corrosion resistance, the mechanical properties, the antibacterial properties and the cell biocompatibility have been investigated in detail by optical microscopy, scanning electron microscopy, electrochemical testing, mechanical property test, plate count method and cell toxicity measurement. It was demonstrated that heat treatment had a significant on the compressive mechanical properties and the antibacterial properties. Ti-xFe (x = 3,5 and 9) alloys after 850 °C/3 h + 550 °C/62 h heat treatment exhibited strong antimicrobial properties with an antibacterial rate of more than 90% due to the MAPD caused by the redistribution of Fe element during the aging process. In addition, the Fe content and the heat treatment process had a significant influence on the mechanical properties of Ti-xFe alloy but had nearly no effect on the corrosion resistance. All Ti-xFe alloys showed non-toxicity to the MC3T3 cell line in comparison with cp-Ti, indicating that the microzone potential difference had no adverse effect on the corrosion resistance, cell proliferation, adhesion, and spreading. Strong antibacterial properties, good cell compatibility and good corrosion resistance demonstrated that Ti-xFe alloy might be a candidate titanium alloy for medical applications.
Collapse
Affiliation(s)
- Yanchun Xie
- Northern Theater General Hospital, Shenyang, 110016, China
| | - Shenshen Cui
- Key Laboratory for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Education Ministry of China, Northeastern University, Shenyang, 110819, China
| | - Jiali Hu
- Key Laboratory for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Education Ministry of China, Northeastern University, Shenyang, 110819, China
| | - Hailong Yu
- Northern Theater General Hospital, Shenyang, 110016, China.
| | - Anwu Xuan
- Northern Theater General Hospital, Shenyang, 110016, China
| | - Yongcun Wei
- Graduate School of Dalian Medical University, Dalian, 116051, China
| | - Yi Lian
- Northern Theater General Hospital, Shenyang, 110016, China
| | - Jinhua Wu
- Zhejiang Wanfeng Precision Casting Co., Ltd, Shaoxing, 312000, China
| | - Weinan Du
- Zhejiang Wanfeng Precision Casting Co., Ltd, Shaoxing, 312000, China
| | - Erlin Zhang
- Key Laboratory for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Education Ministry of China, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
3
|
Wu J, Luo Y, Cui C, Han Q, Peng Z. Carbon dots as multifunctional fluorescent probe for Fe 3+ sensing in ubiquitous water environments and living cells as well as lysine detection via "on-off-on" mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123840. [PMID: 38217985 DOI: 10.1016/j.saa.2024.123840] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Iron and amino acids are essential nutrients for living organisms, and their deficiency or excess can cause a range of diseases. Therefore, there is considerable interest in developing sensing assays capable of detecting these nutrients with sensitivity, selectivity, and multifunctionality even in complex environments. In this report, hydrothermally synthesized blue fluorescent carbon dots (C-dots) from zinc gluconate were utilized for the detection of Fe3+ and lysine via "on-off" and "on-off-on" mechanisms, respectively. Specifically, the Fe3+ sensing assay achieved a broad linear range of 0-200 μM and a low limit of detection (LOD) of 1.9 μM. It is worth mentioning that the assay was also well adapted to natural aqueous environments (e.g., lake water), and its linear detection range could be extended to 0-1000 μM with a LOD of 3.3 μM. Furthermore, the assay was also effective for intracellular Fe3+ tracking. Most importantly, the assay could also be applied for the quantitative detection of lysine with a linear range of 0-1200 μM and LOD of 8.6 μM. Systematic mechanistic studies revealed that Fe3+ sensing was based on a static quenching process between C-dots and Fe3+, whereas a stronger complexation might have formed between Fe3+ and Lys, leading to the release of C-dots and thus the recovery of fluorescence.
Collapse
Affiliation(s)
- Jiajia Wu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China; Electron Microscopy Center, Yunnan University, Kunming 650091, China
| | - Yuanping Luo
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Chen Cui
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Qiurui Han
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Zhili Peng
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China.
| |
Collapse
|
4
|
Che Y, Yang J, Dong Z, Wang J, Yan X, Wang Y, Shuang S. A sensitive "turn-on" Schiff-base fluorescent probe for the selective detection of Fe 3+ and bio-imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123799. [PMID: 38134651 DOI: 10.1016/j.saa.2023.123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
A novel Schiff-base fluorescent probe, 4-(N-(2- hydroxyl-1-naphthalymethylimino)-ethylamino) -7-nitro-1,2,3-benzoxadiazole (HENB) was synthesized and utilized for spectral sensing of Fe3+ ions at neutral pH. The binding of Fe3+ to HENB in C2H5OH-HEPES buffer (1:1 v/ v, 25 mM, pH 7.2) resulted in a pronounced emission enhancement at 530 nm, which is possibly due to the inhibition of photo-induced electron transfer (PET) process as well as the chelation enhanced fluorescence (CHEF) effect. HENB shows good selectivity and sensitivity toward Fe3+ with the detection limit as low as 4.51 nM. Test strips made of HENB was used for rapid "naked-eye" detection of Fe3+ ions in aqueous medium. Moreover, HENB was successfully applied in fluorescence imaging of exogenous and endogenous Fe3+ in live Hela cells as well as zebrafish. Importantly, HENB is capable of effectively monitoring the variations of Fe3+ in living cells during ferroptosis process.
Collapse
Affiliation(s)
- Yiran Che
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jingying Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhenming Dong
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jianhua Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiaoqing Yan
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China.
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
5
|
Kim MJ, Song YR, Kim YE, Bae SJ, Lee WY, Bak SB, Kim YW. Kaempferol stimulation of autophagy regulates the ferroptosis under the oxidative stress as mediated with AMP-activated protein kinase. Free Radic Biol Med 2023; 208:630-642. [PMID: 37703935 DOI: 10.1016/j.freeradbiomed.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Recent studies have highlighted the positive effects of Kaempferol (KP), including its anti-inflammatory and antioxidant properties. However, its impact on oxidative damage induced by heavy metals and pro-inflammatory mediators, such as arachidonic acid (AA), has not yet been identified. Our objective was to specifically evaluate liver damage due to AA + iron-induced oxidative stress, both in vitro and in vivo. In HepG2 cells, KP activated the AMP-activated protein kinase (AMPK), suggesting a hepatoprotective effect through AMPK inhibition, as assessed by immunoblot and FACS analysis (EC50 = 10 μM). KP also stimulated autophagy, a degradation process that eliminates aged, damaged, and unnecessary components, via mTOR inhibition and ULK1 phosphorylation. This activation was further validated by the upregulation of autophagy-related genes (ATG5) and Beclin-1, along with the conversion of LC3BI to LC3BII. Ferroptosis, a non-apoptotic type of cell death characterized by oxidative stress from the production of reactive oxygen species (ROS) and excessive iron accumulation, was linked to the activation of autophagy, as confirmed through the protein expression of deferoxamine (DFO) and ferrostatin-1 (Fer-1), the representative ferroptosis inhibitors (positive controls). In mice, oral administration of KP demonstrated protective effects against CCl4-induced hepatotoxicity. In conclusion, KP provides hepatoprotective effects against oxidative stress induced by AA + iron treatment in vitro and CCl4 treatment in vivo.
Collapse
Affiliation(s)
- Min-Jin Kim
- AI-Bio Convergence DDI Basic Research Lab., School of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea
| | - Yu-Rim Song
- AI-Bio Convergence DDI Basic Research Lab., School of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea
| | - Young Eun Kim
- AI-Bio Convergence DDI Basic Research Lab., School of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea
| | - Su-Jin Bae
- AI-Bio Convergence DDI Basic Research Lab., School of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea
| | - Won-Yung Lee
- AI-Bio Convergence DDI Basic Research Lab., School of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea; College of Korean Medicine, Wonkwang University, Iksan-si, South Korea
| | - Seon-Been Bak
- AI-Bio Convergence DDI Basic Research Lab., School of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea
| | - Young Woo Kim
- AI-Bio Convergence DDI Basic Research Lab., School of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea.
| |
Collapse
|
6
|
Mariotti F. Nutritional and health benefits and risks of plant-based substitute foods. Proc Nutr Soc 2023:1-14. [PMID: 37881950 DOI: 10.1017/s0029665123004767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Plant-based substitutes (PBS) are seen as a convenient way to transition to a more plant-based diet, but their potential health benefits and nutritional concerns remain debated. Based on a review of the literature, it is concluded here that the primary risk of insufficient nutrient intake with PBS concerns iron and calcium, which are critical to the nutritional value of PBS. Other risks were identified but these would depend on the characteristics of the overall diet, as is the case for iodine in a diet containing no seafood or dairy, and vitamin B12 in a vegetarian/vegan diet. Conversely, the use of PBS is also expected to confer some benefits for long-term health because it would result in higher fibre intakes (in the case of meat PBS) and lower SFA intakes (but higher PUFA/MUFA intakes), but attention should be paid to a potential increase in sodium intake with PBS of meat products. In fact, a recurring finding in this review was that PBS is a very heterogeneous food category involving considerable variations in ingredient and nutrient composition, and whose design could be improved in order to foster nutritional and health benefits. The latter also depend on the animal food that is being replaced and are only deemed likely when PBS replace red meat. The fortification of PBS with key nutrients such as iron and calcium may constitute an actionable public health solution to further shift the balance in favour of PBS in the context of the current dietary transition in western countries.
Collapse
Affiliation(s)
- François Mariotti
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120 Palaiseau, France
| |
Collapse
|
7
|
Fluorene-based polymers of intrinsic microporosity as fluorescent probes for metal ions. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
8
|
Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS OMEGA 2022; 7:20441-20456. [PMID: 35755397 PMCID: PMC9219084 DOI: 10.1021/acsomega.2c01833] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/20/2022] [Indexed: 05/04/2023]
Abstract
Iron is an essential element for human life since it participates in many functions in the human body, including oxygen transport, immunity, cell division and differentiation, and energy metabolism. Iron homeostasis is mainly controlled by intestinal absorption because iron does not have active excretory mechanisms for humans. Thus, efficient intestinal iron bioavailability is essential to reduce the risk of iron deficiency anemia. There are two forms of iron, heme and nonheme, found in foods. The average daily dietary iron intake is 10 to 15 mg in humans since only 1 to 2 mg is absorbed through the intestinal system. Nutrient-nutrient interactions may play a role in dietary intestinal iron absorption. Dietary inhibitors such as calcium, phytates, polyphenols and enhancers such as ascorbic acid and proteins mainly influence iron bioavailability. Numerous studies have been carried out for years to enhance iron bioavailability and combat iron deficiency. In addition to traditional methods, innovative techniques are being developed day by day to enhance iron bioavailability. This review will provide information about iron bioavailability, factors affecting absorption, iron deficiency, and recent studies on improving iron bioavailability.
Collapse
Affiliation(s)
- Elif Piskin
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Danila Cianciosi
- Faculty of Medicine, Department of Clinical Sciences, Polytechnic University of Marche, via Pietro Ranieri, 60131 Ancona, Italy
| | - Sukru Gulec
- Molecular Nutrition and Human Physiology Laboratory, Department of Food Engineering, İzmir Institute of Technology, 35430 Urla, İzmir
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
9
|
High Iron Exposure from the Fetal Stage to Adulthood in Mice Alters Lipid Metabolism. Nutrients 2022; 14:nu14122451. [PMID: 35745181 PMCID: PMC9227341 DOI: 10.3390/nu14122451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Iron supplementation is recommended during pregnancy and fetal growth. However, excess iron exposure may increase the risk of abnormal fetal development. We investigated the potential side effects of high iron levels in fetuses and through their adult life. C57BL/6J pregnant mice from 2 weeks of gestation and their offspring until 30 weeks were fed a control (CTRL, FeSO4 0 g/1 kg) or high iron (HFe, FeSO4 9.9 g/1 kg) diets. HFe group showed higher iron accumulation in the liver with increased hepcidin, reduced TfR1/2 mRNAs, and lowered ferritin heavy chain (FTH) proteins in both liver and adipose tissues despite iron loading. HFe decreased body weight, fat weight, adipocyte size, and triglyceride levels in the blood and fat, along with downregulation of lipogenesis genes, including PPARγ, C/EBPα, SREBP1c, FASN, and SCD1, and fatty acid uptake and oxidation genes, such as CD36 and PPARα. UCP2, adiponectin, and mRNA levels of antioxidant genes such as GPX4, HO-1, and NQO1 were increased in the HFe group, while total glutathione was reduced. We conclude that prolonged exposure to high iron from the fetal stage to adulthood may decrease fat accumulation by altering ferritin expression, adipocyte differentiation, and triglyceride metabolism, resulting in an alteration in normal growth.
Collapse
|
10
|
Das TK, Poater A. Review on the Use of Heavy Metal Deposits from Water Treatment Waste towards Catalytic Chemical Syntheses. Int J Mol Sci 2021; 22:13383. [PMID: 34948184 PMCID: PMC8706456 DOI: 10.3390/ijms222413383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
The toxicity and persistence of heavy metals has become a serious problem for humans. These heavy metals accumulate mainly in wastewater from various industries' discharged effluents. The recent trends in research are now focused not only on the removal efficiency of toxic metal particles, but also on their effective reuse as catalysts. This review discusses the types of heavy metals obtained from wastewater and their recovery through commonly practiced physico-chemical pathways. In addition, it covers the advantages of the new system for capturing heavy metals from wastewater, as compared to older conventional technologies. The discussion also includes the various structural aspects of trapping systems and their hypothesized mechanistic approaches to immobilization and further rejuvenation of catalysts. Finally, it concludes with the challenges and future prospects of this research to help protect the ecosystem.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Albert Poater
- Institute of Computational Chemistry and Catalysis, Department of Chemistry, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain
| |
Collapse
|
11
|
Tao J, Li C, Zheng Y, Wang F, Zhang M, Wu X, Chen Y, Zeng Q, Chen F, Fei W. Biological protein mediated ferroptotic tumor nanotherapeutics. J Mater Chem B 2021; 9:9262-9284. [PMID: 34730601 DOI: 10.1039/d1tb01289d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ferroptosis, a cell death pathway involving iron-related generation of lipid hydroperoxides for achieving incredible tumor suppression, has reignited the hope of chemotherapy in tumor treatment in the past decade. With extensive research studies, various bioactive proteins and cellular pathways have been demonstrated to regulate the occurrence and development of ferroptosis. The gradually established ferroptotic regulatory network is conducive to find effective proteins from a holistic perspective and guides better designs for future ferroptotic tumor therapies. The first section of this review summarizes the recent advances in ferroptotic regulatory mechanisms of proteins and attempts to clarify their latent function in the ferroptotic regulatory network. Second, the existing protein-mediated ferroptotic tumor nanotherapeutic strategies were reviewed, including the protein-mediated iron supplement, cell membrane transporter inhibition, glutathione peroxidase 4 interference, glutathione depletion, bioenzyme-mediated reactive oxygen species generation, heat shock protein inhibition, and tumor-overexpressed protein-triggered drug release for ferroptotic therapy. Finally, the future expectations and challenges of ferroptotic tumor nanotherapeutics for clinical cancer therapy are highlighted.
Collapse
Affiliation(s)
- Jiaoyang Tao
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chaoqun Li
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Yongquan Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Qingquan Zeng
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Fengying Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
12
|
Sales CH, Rogero MM, Sarti FM, Fisberg RM. Prevalence and Factors Associated with Iron Deficiency and Anemia among Residents of Urban Areas of São Paulo, Brazil. Nutrients 2021; 13:1888. [PMID: 34072813 PMCID: PMC8226555 DOI: 10.3390/nu13061888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Anemia is a worldwide concern. This cross-sectional population-based study examined the prevalence of iron-deficiency anemia (IDA) among residents of São Paulo (n = 898; 12-93 years), considering sociodemographic factors, dietary iron inadequacy, and food contributors to iron intake. Blood cell count and iron biomarkers were quantified. Dietary iron intake was measured using two 24-h dietary recalls. Iron intake inadequacy was estimated using a probabilistic approach. The prevalence of anemia was 6.7%, depleted iron stores 5.1%, and IDA 1.1%. Women of all age groups, older adults, and those who were underweight or obese had the highest prevalence of anemia, and female adolescents had the highest prevalence of depleted iron stores. Female adolescents and adults were more vulnerable to depleted iron stores. Male adults and older adults had a considerable prevalence of iron overload. Except for female adolescents and adults, all groups had mild probabilities of inadequate iron intake. The main food iron contributor was wheat flour. Hemoglobin concentrations were directly associated with being an adult, having a higher income, and inversely associated with being female. Serum ferritin concentrations were directly associated with age and inversely correlated with female sex. Residents of São Paulo had a low prevalence of anemia, iron deficiency, and IDA, and sociodemographic factors interfered with these parameters.
Collapse
Affiliation(s)
- Cristiane Hermes Sales
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (M.M.R.); (R.M.F.)
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (M.M.R.); (R.M.F.)
| | - Flávia Mori Sarti
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil;
| | - Regina Mara Fisberg
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (M.M.R.); (R.M.F.)
| |
Collapse
|
13
|
Tracking biochemical changes induced by iron loading in AML12 cells with synchrotron live cell, time-lapse infrared microscopy. Biochem J 2021; 478:1227-1239. [PMID: 33616158 DOI: 10.1042/bcj20200653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Hepatocytes are essential for maintaining the homeostasis of iron and lipid metabolism in mammals. Dysregulation of either iron or lipids has been linked with serious health consequences, including non-alcoholic fatty liver disease (NAFLD). Considered the hepatic manifestation of metabolic syndrome, NAFLD is characterised by dysregulated lipid metabolism leading to a lipid storage phenotype. Mild to moderate increases in hepatic iron have been observed in ∼30% of individuals with NAFLD; however, direct observation of the mechanism behind this increase has remained elusive. To address this issue, we sought to determine the metabolic consequences of iron loading on cellular metabolism using live cell, time-lapse Fourier transform infrared (FTIR) microscopy utilising a synchrotron radiation source to track biochemical changes. The use of synchrotron FTIR is non-destructive and label-free, and allowed observation of spatially resolved, sub-cellular biochemical changes over a period of 8 h. Using this approach, we have demonstrated that iron loading in AML12 cells induced perturbation of lipid metabolism congruent with steatosis development. Iron-loaded cells had approximately three times higher relative ester carbonyl concentration compared with controls, indicating an accumulation of triglycerides. The methylene/methyl ratio qualitatively suggests the acyl chain length of fatty acids in iron-loaded cells increased over the 8 h period of monitoring compared with a reduction observed in the control cells. Our findings provide direct evidence that mild to moderate iron loading in hepatocytes drives de novo lipid synthesis, consistent with a role for iron in the initial hepatic lipid accumulation that leads to the development of hepatic steatosis.
Collapse
|
14
|
Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Based on Melting of the Donor Phase: a New Approach for the Determination of Trace Elements in Solid Samples. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01897-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Staniek HZ, Król E, Wójciak RW. The Interactive Effect of High Doses of Chromium(III) and Different Iron(III) Levels on the Carbohydrate Status, Lipid Profile, and Selected Biochemical Parameters in Female Wistar Rats. Nutrients 2020; 12:nu12103070. [PMID: 33050015 PMCID: PMC7599772 DOI: 10.3390/nu12103070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of the study was to evaluate the main and interactive effects of chromium(III) propionate complex (Cr3) supplementation and different iron supply on the carbohydrate metabolism, lipid profile and other selected biochemical parameters of rats. The experiment was carried out in a two-factor design, in which rats were fed a diet with different proportions of Fe(III) and Cr(III) for six weeks. Fifty-four healthy female Wistar rats were divided into nine experimental groups with different Fe(III) levels, i.e. adequate-control group (45 mg/kg)-100% recommended daily dietary dose of Fe for rodents, deficient (5 mg/kg) and oversupply (180 mg/kg-400%). At the same time they were supplemented with Cr(III) of doses 1 (adequate), 50 and 500 mg/kg of diet. The activity and concentrations of most biochemical parameters were measured with standard enzymatic, kinetic, and colorimetric methods. HOMA-IR and QUICKI indexes were calculated according to appropriate formulas. It was found that there was an interactive effect of high Cr(III) doses and different Fe(III) levels in the diet on the carbohydrate metabolism and insulin resistance indexes. The presented results suggested that iron deficient diet fed animals led to insulin resistance; however, an effect is attenuated by Cr(III) supplementation at high doses. There were no significant changes in the rats' lipid profile (except for the high density lipoprotein cholesterol (HDL-C) level) and most of the other biochemical parameters, such as the leptin, aspartate aminotransferase (AST), alanine transaminase (ALT), total protein (TP), creatinine (Crea) and the urea (BUN) concentrations. The study proved that the Cr(III) supplementation, independently and in combination with diversified Fe(III) content in the diet, affected the carbohydrate metabolism and insulin resistance indexes but did not affect lipid profile and most of the other biochemical parameters in healthy rats. The findings proved the role of Fe and Cr(III) and their interactions on disturbances carbohydrates metabolism.
Collapse
Affiliation(s)
- Halina Zofia Staniek
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, 60-624 Poznan, Poland;
- Correspondence: ; Tel.: +48-(61)-8487334
| | - Ewelina Król
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, 60-624 Poznan, Poland;
| | - Rafał Wojciech Wójciak
- Department of Clinical Psychology, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, 61-871 Poznan, Poland
| |
Collapse
|
16
|
Leite LCS, Melo ESDP, Arakaki DG, dos Santos EF, do Nascimento VA. Human Health Risk Assessment through Roasted Meats Consumption. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6737. [PMID: 32947842 PMCID: PMC7558450 DOI: 10.3390/ijerph17186737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022]
Abstract
Data on the content of metals and metalloids in roasted meats with different types of wood and charcoal are still scarce in the literature. The concentrations of metals (Al, Cr, Cd, Cu, Fe, Mg, Mn, Mo, Ni, V, and Zn) and metalloid (As) were determined by inductively coupled plasma mass spectrometry (ICP-OES) after microwave digestion, and the estimated daily intake (EDI) for adults was assessed to determine the hazard quotient (HQ). The concentrations of Al, Cr, Cu, and Fe in raw meats were below the data obtained in other countries. The concentration of As (0.17 ± 0.42-0.23 ± 0.10 mg/kg), Mg (206.77 ± 3.99-291.95 ± 8.87 mg/kg), V (0.42 ± 0.14-6.66 ± 0.80 mg/kg), and Zn (6.66 ± 0.80-48.13 ± 0.56 mg/kg) in raw meats exceeded the values in the literature. The concentrations of Mg, As, Cr, Fe, V, and Zn are high when the meat is roasted using wood. All levels of Al, As, Cr, Cu, Fe, Mg, Mn, Mo, V, and Zn in raw meats are lower than those of meat roasted with coal and wood. The content of As in meat roasted with Chromed Copper Arsenate (CCA) wood (15.10 ± 0.27-26.25 ± 1.47 mg/kg) is higher than meat roasted with charcoal (0.46 ± 0.09-1.16 ± 0.50 mg/kg). EDI and HQ values revealed a minimal exposure of the adult population to those metals through roasted-meats consumption. However, EDI values of As in some roasted meats are above standard limits. Roast meats with wood showed higher levels of major and trace elements than meats roasted with coal. High exposures, in the long-term, may cause damage to health.
Collapse
Affiliation(s)
- Luana C. S. Leite
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande MS 79079-900, Brazil; (L.C.S.L.); (E.S.d.P.M.); (D.G.A.)
| | - Elaine S. de P. Melo
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande MS 79079-900, Brazil; (L.C.S.L.); (E.S.d.P.M.); (D.G.A.)
| | - Daniela G. Arakaki
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande MS 79079-900, Brazil; (L.C.S.L.); (E.S.d.P.M.); (D.G.A.)
| | - Elisvânia F. dos Santos
- Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul—UFMS, Campo Grande MS 79079-900, Brazil;
- Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande MS 79079-900, Brazil
| | - Valter A. do Nascimento
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, School of Medicine, Postgraduation Program in Health and Development in the Midwest Region, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande MS 79079-900, Brazil; (L.C.S.L.); (E.S.d.P.M.); (D.G.A.)
| |
Collapse
|
17
|
Fakhri Y, Djahed B, Toolabi A, Raoofi A, Gholizadeh A, Eslami H, Taghavi M, Alipour MR, Mousavi Khaneghah A. Potentially toxic elements (PTEs) in fillet tissue of common carp (Cyprinus carpio): a systematic review, meta-analysis and risk assessment study. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1737826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yadolah Fakhri
- Department of Environmental Health Engineering, Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Babak Djahed
- Department of Environmental Health Engineering, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Ali Toolabi
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Science, Bam, Iran
| | - Amir Raoofi
- Leishmaniasis Research Center, Department of Anatomical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abdolmajid Gholizadeh
- Department of Environmental Health Engineering, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hadi Eslami
- Department of Environmental Health Engineering, School of Health, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahmoud Taghavi
- Department of Environmental Health, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad reza Alipour
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
18
|
Chan KK, Yang C, Chien YH, Panwar N, Yong KT. A facile synthesis of label-free carbon dots with unique selectivity-tunable characteristics for ferric ion detection and cellular imaging applications. NEW J CHEM 2019. [DOI: 10.1039/c8nj06306k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The application of a pH-tuning concept to create specific analytical responses of carbon dots towards a specific targeted metal ion.
Collapse
Affiliation(s)
- Kok Ken Chan
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging
- School of Biomedical Engineering
- Health Science Center
- Shenzhen University
- Shenzhen 518060
| | - Yi-Hsin Chien
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
- Department of Materials Science and Engineering
| | - Nishtha Panwar
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|
19
|
Staniek H, Wójciak RW. The Combined Effects of Iron Excess in the Diet and Chromium(III) Supplementation on the Iron and Chromium Status in Female Rats. Biol Trace Elem Res 2018; 184:398-408. [PMID: 29164513 PMCID: PMC6061187 DOI: 10.1007/s12011-017-1203-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022]
Abstract
Inadequate iron supply has significant consequences to health. There are some relations between the metabolism of different trace elements, such as iron, zinc, copper and chromium. However, the direction of these interactions can be antagonistic or synergistic, and it depends on many factors. The aim of the study was to evaluate the combined effects of supplementary of chromium(III) propionate complex (Cr3) with iron excess on the Cr and Fe status in healthy female rats. The 36 healthy female Wistar rats were divided into six experimental groups (six animals in each) with different Fe levels-adequate (45 mg kg-1-100% RDA) and high (excessive-180 mg kg-1-400% RDA). At the same time, they were supplemented with Cr(III) at doses of 1, 50 and 500 mg kg-1 of diet: C1-control (Fe 45 mg kg-1, Cr 1 mg kg-1); C50 (Fe 45 mg kg-1, Cr 50 mg kg-1); C500 (Fe 45 mg kg-1, Cr 500 mg kg-1); H1 (Fe 180 mg kg-1, Cr 1 mg kg-1); H50 (Fe 180 mg kg-1, Cr 50 mg kg-1); H500 (Fe 180 mg kg-1, Cr 500 mg kg-1). The serum iron level and total iron binding capacity (TIBC) were measured with colorimetric methods. The serum ferritin level was measured by means of electrochemiluminescence immunoassay. The serum transferrin level was measured with the ELISA method. Haematological measurements were made with an automated blood analyser. The Cr and Fe tissular levels were measured with the AAS method. The exposure to a high level of Fe(III) alone or in combination with Cr caused Fe accumulation in tissues, especially in the liver and kidneys, but there were no significant changes in the TIBC, transferrin, ferritin concentration in the serum and most haematological parameters. Moreover, the serum, hepatic and renal Cr concentrations decreased. The doses of supplementary Cr(III) given separately or in combination with high level of Fe(III) disturbed the Cr content in the liver and kidneys of healthy female rats. However, they did not change most of the parameters of Fe metabolism, except the Fe kidney concentration. Supplementary Cr3 decreased the renal Fe level in groups with adequate Fe content in the diet. However, the renal Fe levels increased along with a higher Cr level in the diet in groups with high Fe content. The findings proved a relationship between Fe(III) and Cr(III) metabolism in healthy female rats. However, the direction of change varied and depended on relative amounts of these elements in the diet.
Collapse
Affiliation(s)
- Halina Staniek
- Institute of Human Nutrition and Dietetics, Department of Bromatology and Food Toxicology, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624, Poznań, Poland.
| | - Rafał W Wójciak
- Department of Clinical Psychology, Poznań University of Medical Sciences, ul. Bukowska 70, 60-812, Poznań, Poland
| |
Collapse
|
20
|
Cheng Z, Bai Z, Dai Y, Luo L, Liu X. Benzimidazole-containing aramid nanofiber for naked-eye detection of heavy metal ions. Analyst 2018; 143:5225-5233. [DOI: 10.1039/c8an01484a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rapid detection of heavy metal ions in wastewater has received significant attention in modern society.
Collapse
Affiliation(s)
- Zheng Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Zhenyuan Bai
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Yu Dai
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Longbo Luo
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Xiangyang Liu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| |
Collapse
|
21
|
Abstract
Over 70% of Americans take some form of dietary supplement every day, and the supplement industry is currently big business, with a gross of over $28 billion. However, unlike either foods or drugs, supplements do not need to be registered or approved by the US Food and Drug Administration (FDA) prior to production or sales. Under the Dietary Supplement Health and Education Act of 1994, the FDA is restricted to adverse report monitoring postmarketing. Despite widespread consumption, there is limited evidence of health benefits related to nutraceutical or supplement use in well-nourished adults. In contrast, a small number of these products have the potential to produce significant toxicity. In addition, patients often do not disclose supplement use to their physicians. Therefore, the risk of adverse drug-supplement interactions is significant. An overview of the major supplement and nutraceutical classes is presented here, together with known toxic effects and the potential for drug interactions.
Collapse
Affiliation(s)
- Martin J J Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA; , ,
| | - Kim B Pedersen
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA; , ,
| | - James Watt
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA; , ,
| |
Collapse
|
22
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
23
|
Abstract
Human genetic variation is a determinant of nutrient efficacy and of tolerances and intolerances and has the potential to influence nutrient intake values (NIVs). Knowledge derived from the comprehensive identification of human genetic variation offers the potential to predict the physiological and pathological consequences of individual genetic differences and prevent and/or manage adverse outcomes through diet. Nutrients and genomes interact reciprocally; genomes confer differences in nutrient utilization, whereas nutrients effectively modify genome expression, stability, and viability. Understanding the interactions that occur among human genes, including all genetic variants thereof, and environmental exposures is enabling the development of genotype-specific nutritional regimens that prevent disease and promote wellness for individuals and populations throughout the life cycle. Genomic technologies may provide new criteria for establishing NIVs. The impact of a gene variant on NIVs will be dependent on its penetrance and prevalence within a population. Recent experiences indicate that few gene variants are anticipated to be sufficiently penetrant to affect average requirement (AR) values to a greater degree than environmental factors. If highly penetrant gene variants are identified that affect nutrient requirements, the prevalence of the variant in that country or region will determine the feasibility and necessity of deriving more than one AR or upper limit (UL) for affected genetic subgroups.
Collapse
Affiliation(s)
- Patrick J Stover
- Division of Nutritional Sciences, Cornell Uniersity, 315 Savage Hall, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Zhu Q, Qian Y, Yang Y, Wu W, Xie J, Wei D. Effects of carbonyl iron powder on iron deficiency anemia and its subchronic toxicity. J Food Drug Anal 2016; 24:746-753. [PMID: 28911612 PMCID: PMC9337281 DOI: 10.1016/j.jfda.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/04/2016] [Accepted: 04/01/2016] [Indexed: 11/16/2022] Open
Affiliation(s)
- Qiaosha Zhu
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237,
China
| | - Yang Qian
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237,
China
- Department of Radiotherapy of Zhongshan Hospital, Fudan University, Shanghai 200032,
China
| | - Ying Yang
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237,
China
| | - Weifeng Wu
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237,
China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237,
China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237,
China
- Corresponding author. P. O. Box 283#, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. E-mail address: (J. Xie)
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237,
China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237,
China
| |
Collapse
|
25
|
|
26
|
Wang C, Chen X, Zou H, Chen X, Liu Y, Zhao S. The roles of mitoferrin-2 in the process of arsenic trioxide-induced cell damage in human gliomas. Eur J Med Res 2014; 19:49. [PMID: 25256833 PMCID: PMC4200193 DOI: 10.1186/s40001-014-0049-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 08/27/2014] [Indexed: 12/29/2022] Open
Abstract
Background Among glioma treatment strategies, arsenic trioxide (As2O3) has shown efficacy as a therapeutic agent against human gliomas. However, the exact antitumor mechanism of action of As2O3 is still unclear. Mitochondria are considered to be the major source of intracellular reactive oxygen species (ROS), which are known to be associated with As2O3-induced cell damage. Therefore, we investigated whether mitoferrin-2, a mitochondrial iron uptake transporter, participates in As2O3-induced cell killing in human gliomas. Methods Human glioma cell lines were used to explore the mechanism of As2O3’s antitumor effects. First, expression of mitoferrin-2 was analyzed in glioma cells that were pretreated with As2O3. Changes in ROS production and apoptosis were assessed. Furthermore, cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Results In the present study we found that As2O3 induced ROS production and apoptosis in glioma cells. In addition, gene expression of mitoferrin-2, a mitochondrial iron uptake transporter, was increased 4 to 5 fold after exposure to As2O3 (5 μM) for 48 hours. Furthermore, apoptosis and cytotoxicity induced by As2O3 in glioma cells were decreased after silencing the mitoferrin-2 gene. Conclusions Our findings indicated that mitoferrin-2 participates in mitochondrial ROS-dependent mechanisms underlying As2O3-mediated damage in glioma cells.
Collapse
|
27
|
Molska A, Gutowska I, Baranowska-Bosiacka I, Noceń I, Chlubek D. The content of elements in infant formulas and drinks against mineral requirements of children. Biol Trace Elem Res 2014; 158:422-7. [PMID: 24706326 PMCID: PMC4012161 DOI: 10.1007/s12011-014-9947-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/17/2014] [Indexed: 11/26/2022]
Abstract
The present study aimed at analysing the content of fluorine (F), calcium (Ca), magnesium (Mg), iron (Fe) and zinc (Zn) in the drinks for children and infant formulas, a popular supplement or substitute for breast milk produced from cow milk on an industrial scale. Ca, Mg, Zn and Fe concentrations were determined using atomic absorption spectrophotometer, while F levels using a potentiometric method. F levels in the examined formula samples increased with the intended age range, until the intended age of 1 year, and then decreased. A lower content of Ca, Mg and Zn was observed in formulas intended for children <1 year of age and higher for older children. Fe content increased with the age range. A statistically significant higher content of Ca, Mg, Zn and Fe in samples intended for children with phenylketonuria in comparison to those intended for healthy children or children with food allergies was noted. The content of the analysed elements in juices and nectars showed the highest contents in products intended for infants (under 6 months of age). The lowest levels of elements tested were found in drinks for children over 6 months of age. In conclusion, the concentrations of the examined elements in infant formulas and juices for children were decidedly greater than the standards for the individual age groups. Although the absorption of these elements from artificial products is far lower than from breast milk, there is still the fear of consequences of excessive concentrations of these minerals.
Collapse
Affiliation(s)
- A. Molska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego Str. 24, 71-460 Szczecin, Poland
| | - I. Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego Str. 24, 71-460 Szczecin, Poland
| | - I. Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University, Powstańców Wlkp. av. 72, 70-111 Szczecin, Poland
| | - I. Noceń
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. av. 72, 70-111 Szczecin, Poland
| | - D. Chlubek
- Department of Biochemistry, Pomeranian Medical University, Powstańców Wlkp. av. 72, 70-111 Szczecin, Poland
| |
Collapse
|
28
|
Rigas AS, Sørensen CJ, Pedersen OB, Petersen MS, Thørner LW, Kotzé S, Sørensen E, Magnussen K, Rostgaard K, Erikstrup C, Ullum H. Predictors of iron levels in 14,737 Danish blood donors: results from the Danish Blood Donor Study. Transfusion 2013; 54:789-96. [PMID: 24372094 PMCID: PMC4209803 DOI: 10.1111/trf.12518] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 12/13/2022]
Abstract
Background Dietary studies show a relationship between the intake of iron enhancers and inhibitors and iron stores in the general population. However, the impact of dietary factors on the iron stores of blood donors, whose iron status is affected by blood donations, is incompletely understood. Study Design and Methods In the Danish Blood Donor Study, we assessed the effect of blood donation frequency, physiologic factors, lifestyle and supplemental factors, and dietary factors on ferritin levels. We used multiple linear and logistic regression analyses stratified by sex and menopausal status. Results Among high-frequency donors (more than nine donations in the past 3 years), we found iron deficiency (ferritin below 15 ng/mL) in 9, 39, and 22% of men, premenopausal women, and postmenopausal women, respectively. The strongest predictors of iron deficiency were sex, menopausal status, the number of blood donations in a 3-year period, and the time since last donation. Other significant factors included weight, age, intensity of menstruation, iron tablets, vitamin pills, and consumption of meat and wine. Conclusion The study confirms iron deficiency as an important problem, especially among menstruating women donating frequently. The risk of iron depletion was largely explained by sex, menopausal status, and donation frequency. Other factors, including dietary and supplemental iron intake, had a much weaker effect on the risk of iron depletion.
Collapse
|
29
|
Zhang X, Lemasters JJ. Translocation of iron from lysosomes to mitochondria during ischemia predisposes to injury after reperfusion in rat hepatocytes. Free Radic Biol Med 2013; 63:243-53. [PMID: 23665427 PMCID: PMC3932485 DOI: 10.1016/j.freeradbiomed.2013.05.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/22/2013] [Accepted: 05/01/2013] [Indexed: 12/24/2022]
Abstract
The mitochondrial permeability transition (MPT) initiated by reactive oxygen species (ROS) plays an essential role in ischemia-reperfusion (IR) injury. Iron is a critical catalyst for ROS formation, and intracellular chelatable iron promotes oxidative injury-induced and MPT-dependent cell death in hepatocytes. Accordingly, our aim was to investigate the role of chelatable iron in IR-induced ROS generation, MPT formation, and cell death in primary rat hepatocytes. To simulate IR, overnight-cultured hepatocytes were incubated anoxically at pH 6.2 for 4h and reoxygenated at pH 7.4. Chelatable Fe(2+), ROS, and mitochondrial membrane potential were monitored by confocal fluorescence microscopy of calcein, chloromethyldichlorofluorescein, and tetramethylrhodamine methyl ester, respectively. Cell killing was assessed by propidium iodide fluorimetry. Ischemia caused progressive quenching of cytosolic calcein by more than 90%, signifying increased chelatable Fe(2+). Desferal and starch-desferal 1h before ischemia suppressed calcein quenching. Ischemia also induced quenching and dequenching of calcein loaded into mitochondria and lysosomes, respectively. Desferal, starch-desferal, and the inhibitor of the mitochondrial Ca(2+) uniporter (MCU), Ru360, suppressed mitochondrial calcein quenching during ischemia. Desferal, starch-desferal, and Ru360 before ischemia also decreased mitochondrial ROS formation, MPT opening, and cell killing after reperfusion. These results indicate that lysosomes release chelatable Fe(2+) during ischemia, which is taken up into mitochondria by MCU. Increased mitochondrial iron then predisposes to ROS-dependent MPT opening and cell killing after reperfusion.
Collapse
Affiliation(s)
- Xun Zhang
- Center for Cell Death, Injury & Regeneration, Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John J. Lemasters
- Center for Cell Death, Injury & Regeneration, Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
30
|
Zeng T, Pan LT, Gao HW. Heterodinuclear Replacement Complexation for Sensitive Determination of Iron Ion in Surface Water with Dibromocarboxyarsenazo. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200800013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Out of balance--systemic iron homeostasis in iron-related disorders. Nutrients 2013; 5:3034-61. [PMID: 23917168 PMCID: PMC3775241 DOI: 10.3390/nu5083034] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element in our daily diet. Most iron is required for the de novo synthesis of red blood cells, where it plays a critical role in oxygen binding to hemoglobin. Thus, iron deficiency causes anemia, a major public health burden worldwide. On the other extreme, iron accumulation in critical organs such as liver, heart, and pancreas causes organ dysfunction due to the generation of oxidative stress. Therefore, systemic iron levels must be tightly balanced. Here we focus on the regulatory role of the hepcidin/ferroportin circuitry as the major regulator of systemic iron homeostasis. We discuss how regulatory cues (e.g., iron, inflammation, or hypoxia) affect the hepcidin response and how impairment of the hepcidin/ferroportin regulatory system causes disorders of iron metabolism.
Collapse
|
32
|
Pouraram H, Elmadfa I, Dorosty AR, Abtahi M, Neyestani TR, Sadeghian S. Long-term consequences of iron-fortified flour consumption in nonanemic men. ANNALS OF NUTRITION AND METABOLISM 2012; 60:115-21. [PMID: 22433920 DOI: 10.1159/000336184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 01/01/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Despite the advantages of fortifying flour with iron, there are still special concerns regarding the possible adverse effects of the extra iron consumed by nonanemic individuals. This study aimed to investigate the oxidative stress and iron status following 8 and 16 months of consumption of iron-fortified flour in nonanemic men. METHODS In a before-and-after intervention study, 78 nonanemic apparently healthy 40- to 65-year-old men were randomly selected from Semnan, in the northeast of Iran. Data were collected at three time points. Evaluation of oxidative stress biomarkers as well as the assessment of iron status was performed in all three stages. After baseline data collection, the flour fortification program was started with 30 mg/kg iron as ferrous sulfate. RESULTS After 16 months, serum iron levels had significantly increased from 102.9 ± 31.5 μg/dl (baseline) to 117.2 ± 29.8 μg/dl (p < 0.001). The mean total antioxidant capacity (1.71 ± 0.10 μM) was significantly lower than that at baseline (1.83 ± 0.17 μM; p < 0.01). Among other oxidative stress biomarkers, only superoxide dismutase and glutathione peroxidase activity increased significantly compared to the beginning of the study (p < 0.001 and p < 0.001, respectively). The results of this study did not show any symptoms of iron overload after 8 and 16 months. CONCLUSIONS Our data did not support the safety of flour fortification with 30 mg/kg iron as ferrous sulfate as a community-based approach to control iron deficiency in nonanemic healthy men.
Collapse
Affiliation(s)
- Hamed Pouraram
- Institute of Nutritional Sciences, University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
33
|
Aroun A, Zhong JL, Tyrrell RM, Pourzand C. Iron, oxidative stress and the example of solar ultraviolet A radiation. Photochem Photobiol Sci 2012; 11:118-34. [DOI: 10.1039/c1pp05204g] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Booyjzsen C, Scarff CA, Moreton B, Portman I, Scrivens JH, Costantini G, Sadler PJ. Fibrillation of transferrin. Biochim Biophys Acta Gen Subj 2011; 1820:427-36. [PMID: 22119572 DOI: 10.1016/j.bbagen.2011.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND The nature of fibrillar deposits from aqueous solutions of human serum and recombinant human transferrin on mica and carbon-coated formvar surfaces has been investigated. METHODS AND RESULTS Atomic force microscopy showed that the deposition of recombinant transferrin onto the hydrophilic surface of mica resulted in the formation of a monolayer-thick film composed of conformationally-strained flattened protein molecules. Elongated fibres developed on top of this layer and appeared to be composed of single proteins or small clusters thereof. Monomeric and dimeric transferrins were separated by gel permeation chromatography and their states of aggregation confirmed by mass spectrometry and dynamic light scattering. Transmission electron-microscopy showed that dimeric transferrin, but not monomeric transferrin, deposited on carbon-coated formvar grids forms rounded (circular) structures ca. 250nm in diameter. Small transferrin fibrils ca. 250nm long appeared to be composed of smaller rounded sub-units. Synchrotron radiation-circular dichroism and, Congo red and thioflavin-T dye-binding experiments suggested that transferrin aggregation in solution does not involve major structural changes to the protein or formation of classical β-sheet amyloid structures. Collisional cross sections determined via ion mobility-mass spectrometry showed little difference between the overall protein shapes of apo- and holo-transferrin in the gas phase. GENERAL SIGNIFICANCE The possibility that transferrin deformation and aggregation are involved in neurological disorders such as Parkinson's and Alzheimer's disease is discussed. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Claire Booyjzsen
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Lee BK, Kim Y, Kim YI. Association of serum ferritin with metabolic syndrome and diabetes mellitus in the South Korean general population according to the Korean National Health and Nutrition Examination Survey 2008. Metabolism 2011; 60:1416-24. [PMID: 21489582 DOI: 10.1016/j.metabol.2011.02.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 12/28/2022]
Abstract
We examined the association of serum ferritin levels with metabolic syndrome (MS) and diabetes mellitus in a representative sample of the adult South Korean population using data from the 2008 Korean National Health and Nutrition Examination Survey. We conducted a cross-sectional study of 6311 adults older than 20 years who participated in the 2008 Korean National Health and Nutrition Examination Survey. Metabolic syndrome was defined as the presence of at least 3 of the following: elevated blood pressure, low high-density lipoprotein cholesterol, elevated serum triglycerides, elevated plasma glucose, and abdominal obesity. Diabetes mellitus was defined as fasting glucose of at least 126 mg/dL. Insulin resistance was determined using the homeostasis model assessment estimate of insulin resistance. In a representative sample of the adult Korean population, MS was more prevalent in the highest quartile compared with the lowest quartile of serum ferritin concentrations in women following adjustments for age, education, smoking, alcohol intake, body mass index, aspartate aminotransferase, and alanine aminotransferase. Diabetes mellitus was more prevalent in the highest quartile compared with the lowest quartile of serum ferritin concentrations in premenopausal women and men. The geometric means of fasting insulin and insulin resistance determined using the homeostasis model assessment of insulin resistance in the fourth serum ferritin quartiles of postmenopausal women and men were significantly higher compared with those in the first quartile of the respective groups. The present study demonstrates that elevated serum ferritin concentrations are associated with an increased risk of MS and diabetes mellitus in a representative sample of the adult South Korean population.
Collapse
Affiliation(s)
- Byung-Kook Lee
- Institute of Environmental & Occupational Medicine, Soonchunhyang University 646 Eupnae-ri, Shinchang-myun, Asan-si, Choongnam 336-745, South Korea
| | | | | |
Collapse
|
36
|
Nitrative and oxidative modifications of enolase are associated with iron in iron-overload rats and in vitro. J Biol Inorg Chem 2010; 16:481-90. [DOI: 10.1007/s00775-010-0747-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/30/2010] [Indexed: 12/17/2022]
|
37
|
Nehir El S, Karakaya S, Şimşek Ş. Effect of phytic acid on iron bioavailability in fortified infant cereals. ACTA ACUST UNITED AC 2010. [DOI: 10.1108/00346651011076992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Zhu L, Glahn RP, Nelson D, Miller DD. Comparing soluble ferric pyrophosphate to common iron salts and chelates as sources of bioavailable iron in a Caco-2 cell culture model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:5014-5019. [PMID: 19449807 DOI: 10.1021/jf900328t] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Iron bioavailability from supplements and fortificants varies depending upon the form of the iron and the presence or absence of iron absorption enhancers and inhibitors. Our objectives were to compare the effects of pH and selected enhancers and inhibitors and food matrices on the bioavailability of iron in soluble ferric pyrophosphate (SFP) to other iron fortificants using a Caco-2 cell culture model with or without the combination of in vitro digestion. Ferritin formation was the highest in cells treated with SFP compared to those treated with other iron compounds or chelates. Exposure to pH 2 followed by adjustment to pH 7 markedly decreased FeSO(4) bioavailability but had a smaller effect on bioavailabilities from SFP and sodium iron(III) ethylenediaminetetraacetate (NaFeEDTA), suggesting that chelating agents minimize the effects of pH on iron bioavailability. Adding ascorbic acid (AA) and cysteine to SFP in a 20:1 molar ratio increased ferritin formation by 3- and 2-fold, respectively, whereas adding citrate had no significant effect on the bioavailability of SFP. Adding phytic acid (10:1) and tannic acid (1:1) to iron decreased iron bioavailability from SFP by 91 and 99%, respectively. The addition of zinc had a marked inhibitory effect on iron bioavailability. Calcium and magnesium also inhibited iron bioavailability but to a lesser extent. Incorporating SFP in rice greatly reduced iron bioavailability from SFP, but this effect can be partially reversed with the addition of AA. SFP and FeSO(4) were taken up similarly when added to nonfat dry milk. Our results suggest that dietary factors known to enhance and inhibit iron bioavailability from various iron sources affect iron bioavailability from SFP in similar directions. However, the magnitude of the effects of iron absorption inhibitors on SFP iron appears to be smaller than on iron salts, such as FeSO(4) and FeCl(3). This supports the hypothesis that SFP is a promising iron source for food fortification and dietary supplements.
Collapse
Affiliation(s)
- Le Zhu
- Department of Human Biology, University of Wisconsin-Green Bay, Green Bay, Wisconsin 54311, USA.
| | | | | | | |
Collapse
|
39
|
Uchiyama A, Kim JS, Kon K, Jaeschke H, Ikejima K, Watanabe S, Lemasters JJ. Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury. Hepatology 2008; 48:1644-54. [PMID: 18846543 PMCID: PMC2579320 DOI: 10.1002/hep.22498] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Iron overload exacerbates various liver diseases. In hepatocytes, a portion of non-heme iron is sequestered in lysosomes and endosomes. The precise mechanisms by which lysosomal iron participates in hepatocellular injury remain uncertain. Here, our aim was to determine the role of intracellular movement of chelatable iron in oxidative stress-induced killing to cultured hepatocytes from C3Heb mice and Sprague-Dawley rats. Mitochondrial polarization and chelatable iron were visualized by confocal microscopy of tetramethylrhodamine methylester (TMRM) and quenching of calcein, respectively. Cell viability and hydroperoxide formation (a measure of lipid peroxidation) were measured fluorometrically using propidium iodide and chloromethyl dihydrodichlorofluorescein, respectively. After collapse of lysosomal/endosomal acidic pH gradients with bafilomycin (50 nM), an inhibitor of the vacuolar proton-pumping adenosine triphosphatase, cytosolic calcein fluorescence became quenched. Deferoxamine mesylate and starch-deferoxamine (1 mM) prevented bafilomycin-induced calcein quenching, indicating that bafilomycin induced release of chelatable iron from lysosomes/endosomes. Bafilomycin also quenched calcein fluorescence in mitochondria, which was blocked by 20 microM Ru360, an inhibitor of the mitochondrial calcium uniporter, consistent with mitochondrial iron uptake by the uniporter. Bafilomycin alone was not sufficient to induce mitochondrial depolarization and cell killing, but in the presence of low-dose tert-butylhydroperoxide (25 microM), bafilomycin enhanced hydroperoxide generation, leading to mitochondrial depolarization and subsequent cell death. CONCLUSION Taken together, the results are consistent with the conclusion that bafilomycin induces release of chelatable iron from lysosomes/endosomes, which is taken up by mitochondria. Oxidative stress and chelatable iron thus act as two "hits" synergistically promoting toxic radical formation, mitochondrial dysfunction, and cell death. This pathway of intracellular iron translocation is a potential therapeutic target against oxidative stress-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Akira Uchiyama
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA,Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Kazuyoshi Kon
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Kenichi Ikejima
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sumio Watanabe
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - John J. Lemasters
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
40
|
Stover PJ, Caudill MA. Genetic and epigenetic contributions to human nutrition and health: managing genome-diet interactions. ACTA ACUST UNITED AC 2008; 108:1480-7. [PMID: 18755320 DOI: 10.1016/j.jada.2008.06.430] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 02/04/2008] [Indexed: 01/24/2023]
Abstract
The Institute of Medicine recently convened a workshop to review the state of the various domains of nutritional genomics research and policy and to provide guidance for further development and translation of this knowledge into nutrition practice and policy. Nutritional genomics holds the promise to revolutionize both clinical and public health nutrition practice and facilitate the establishment of (a) genome-informed nutrient and food-based dietary guidelines for disease prevention and healthful aging, (b) individualized medical nutrition therapy for disease management, and (c) better targeted public health nutrition interventions (including micronutrient fortification and supplementation) that maximize benefit and minimize adverse outcomes within genetically diverse human populations. As the field of nutritional genomics matures, which will include filling fundamental gaps in knowledge of nutrient-genome interactions in health and disease and demonstrating the potential benefits of customizing nutrition prescriptions based on genetics, registered dietitians will be faced with the opportunity of making genetically driven dietary recommendations aimed at improving human health.
Collapse
Affiliation(s)
- Patrick J Stover
- Cornell University, Division of Nutritional Sciences, Ithaca, NY 14853, USA.
| | | |
Collapse
|
41
|
Vanloot P, Coulomb B, Brach-Papa C, Sergent M, Boudenne JL. Multivariate optimization of solid-phase extraction applied to iron determination in finished waters. CHEMOSPHERE 2007; 69:1351-60. [PMID: 17604823 DOI: 10.1016/j.chemosphere.2007.05.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 05/08/2007] [Accepted: 05/13/2007] [Indexed: 05/16/2023]
Abstract
In this work, Amberlite XAD-4 resin functionalized with salicylic acid was synthetized, characterized and applied as a new packing material for an on-line system to iron determination in aqueous samples. The detection method is based on the sorption of Fe(III) ions in a minicolumn containing the synthesized resin, followed by a desorption step using an acid solution and measurement of iron by vis-spectrophotometry (CAS method). The optimization of the solid-phase extraction system was performed using factorial design and Doehlert matrix considering six variables: sample percolation rate (0.5-9 ml min(-1)), sample metal concentration (20-200 microg l(-1)), flow-through sample volume (0-5 ml) (all three directly linked to the extraction step), elution flow-rate (0.5-9 ml min(-1)), concentration and volume of eluent (HCl 0.1-0.5M) (all three directly linked to the elution step). The aim of this study was to obtain a set of operating ranges for the six variables tested in order to obtain--by means of a mathematical function allowing maximisation of each response (desirability function)--at least 90% of iron recovery rates. Using the experimental conditions defined in the optimization, the method allowed iron determination with achieved detection limit of 2.3 microgl(-1) and precision (assessed as the relative standard deviation) of 9.3-2.8% for iron solutions of 10.0-150 microgl(-1). Real samples (coming from a water treatment unit) were used successfully when evaluating potentialities of the developed SPE procedure coupled to a spectrophotometric determination.
Collapse
Affiliation(s)
- P Vanloot
- Laboratoire de Chimie et Environnement, FRE2704, Université de Provence - CNRS, Aix-Marseille I, 3 Place Victor Hugo, Case 29, 13331 Marseille Cedex 3, France
| | | | | | | | | |
Collapse
|
42
|
Tsai CJ, Leitzmann MF, Willett WC, Giovannucci EL. Heme and non-heme iron consumption and risk of gallstone disease in men. Am J Clin Nutr 2007; 85:518-22. [PMID: 17284752 DOI: 10.1093/ajcn/85.2.518] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Excessive iron intake can promote biliary cholesterol crystal formation in experimental studies. The absorption of heme iron is more complete than that of non-heme iron in humans; however, the effect of long-term consumption of heme and non-heme iron on the risk of gallstones is unknown. OBJECTIVE The objective of the study was to examine long-term iron intake in relation to the occurrence of gallstone disease. DESIGN We prospectively studied intakes of heme and non-heme iron and the risk of gallstone disease in a cohort of 44 758 US men from 1986 to 2002. Iron consumption was assessed by using a validated semiquantitative food-frequency questionnaire. Newly diagnosed gallstone disease was ascertained biennially. RESULTS We documented 2468 incident cases of symptomatic gallstones during 597 699 person-years of follow-up. The age-adjusted relative risks (RRs) for men with intakes of heme iron and non-heme iron, when the highest and lowest quintiles were compared, were 1.21 (95% CI: 1.06, 1.37; P for trend = 0.0008) and 1.02 (95% CI: 0.90, 1.16; P for trend = 0.45), respectively. After adjustment for multiple potential confounding variables, when extreme quintiles were compared, the multivariate RR of heme iron intake was not significantly changed and remained significant with a dose-response relation (RR = 1.21; 95% CI: 1.03, 1.42; P for trend = 0.01), and that of non-heme iron intake was not significant (RR = 1.14; 95% CI: 0.99, 1.31; P for trend = 0.18). CONCLUSION Our findings suggest that a higher consumption of heme iron is associated with a greater risk of gallstone disease among men.
Collapse
Affiliation(s)
- Chung-Jyi Tsai
- Division of Digestive Diseases and Nutrition, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA.
| | | | | | | |
Collapse
|
43
|
Vitali D, Vedrina Dragojević I, Šebečić B, Vujić L. Impact of modifying tea–biscuit composition on phytate levels and iron content and availability. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Zhu L, Glahn RP, Yeung CK, Miller DD. Iron uptake by Caco-2 cells from NaFeEDTA and FeSO4: Effects of ascorbic acid, pH, and a Fe(II) chelating agent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:7924-8. [PMID: 17002471 DOI: 10.1021/jf061036z] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sodium iron(III) ethylenediaminetetraacetate (NaFeEDTA) has considerable promise as an iron fortificant because of its high bioavailability in foods containing iron absorption inhibitors. In this study, uptakes of iron from NaFeEDTA, FeSO4, and FeCl3 by Caco-2 cells were compared in the absence or presence of ascorbic acid (AA), an iron absorption enhancer; at selected pH levels; and in the absence or presence of an iron absorption inhibitor, bathophenanthroline disulfonic acid (BPDS). Ferritin formation in the cells was used as the indicator of iron uptake. Uptake from all three Fe sources was similar in the absence of AA. Adding AA at a 5:1 molar excess as compared to Fe increased uptake by 5.4-, 5.1-, and 2.8-fold for FeSO4, FeCl3, and NaFeEDTA, respectively. The smaller effect of AA on uptake from NaFeEDTA may be related to the higher solubility of NaFeEDTA and/or the strong binding affinity of EDTA for Fe3+, which may prevent AA and duodenal cytochrome b from effectively reducing EDTA-bound Fe. Uptake was inversely related to the pH of the media over a range of 5.8-7.2. Because uptake by DMT-1 is proton-coupled, the inverse relationship between pH and Fe uptake in all three iron sources suggests that they all follow the DMT-1 pathway into the cell. Adding BPDS to the media inhibited uptake from all three iron compounds equally. Because BPDS binds Fe2+ but not Fe3+ and because only Fe2+ is transported by DMT-1, the finding that BPDS inhibited uptake from NaFeEDTA suggests that at least some iron dissociates from EDTA and is reduced just as simple inorganic iron at the brush border membrane of the enterocyte. Taken together, these results suggest that uptake of iron from NaFeEDTA by intestinal enterocytes is regulated similarly to uptake from iron salts.
Collapse
Affiliation(s)
- Le Zhu
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
45
|
Stover PJ, Garza C. Nutrition and developmental biology--implications for public health. Nutr Rev 2006; 64:S60-71; discussion S72-91. [PMID: 16770956 DOI: 10.1111/j.1753-4887.2006.tb00248.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recent advances in understanding genome-nutrient and nutrient-network interactions, and the modifying effects of genetic variation on their function, have strengthened interests in acute and long-lasting diet/ nutrition influences on health. Relationships between early and mid-gestational and perinatal conditions (including those related to maternal nutrition) and outcomes, and later-onset chronic diseases have received particular attention. Controlled animal experiments support views that responses with long-lasting effects to nutritional milieus are enabled by epigenetic and other metabolic adjustments during critical windows. Thus, underlying mechanisms are beginning to be understood. For example, chromatin remodeling during development can alter gene expression levels, fix or determine future set points critical to intra- and inter-organ communication networks, alter morphogenesis, initiate remodeling events, etc., all with lifelong consequences. These also may affect DNA mutation rates and thereby influence adult cancer and other risks. There is increasing evidence that nutrient-based strategies will be of value to the prevention or delay of onset of chronic diseases and that these strategies may require initiation during embryonic or fetal stages of development to achieve maximal benefit.
Collapse
Affiliation(s)
- Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
46
|
Seril DN, Liao J, West AB, Yang GY. High-iron diet: foe or feat in ulcerative colitis and ulcerative colitis-associated carcinogenesis. J Clin Gastroenterol 2006; 40:391-7. [PMID: 16721219 DOI: 10.1097/00004836-200605000-00006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anemia associated with long-standing chronic inflammation and iron deficiency, and the increased risk for the development of dysplasia and carcinoma, are two of the most common complications in patients with ulcerative colitis (UC). Because of iron and nutrition deficiency, UC patients are encouraged to consume a high-protein and high-iron diet. The crucial clinical question is the effect of a high-iron diet on inflammation activity and inflammation-driven carcinogenesis. Is a high-iron diet a foe or a feat in UC and UC-associated carcinogenesis? This review updates the progress and information on (1) iron nutrition and iron-deficiency anemia in patients with UC, (2) experimental evidence of the exacerbating effect of a high-iron diet on UC and its associated carcinogenesis and the difference between a high-iron diet and parental iron supplementation, (3) the clinical efficacy of, and concerns about, oral and intravenous iron supplements in patients with inflammatory bowel disease and iron deficiency anemia, and (4) the clinical implications of long-term iron supplements and management of UC. These experimental findings from animal models provide evidence to warrant further consideration and clinical studies of iron nutrition, inflammation activity, and cancer development.
Collapse
MESH Headings
- Administration, Oral
- Anemia, Iron-Deficiency/drug therapy
- Anemia, Iron-Deficiency/etiology
- Animals
- Biological Availability
- Cell Transformation, Neoplastic
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/complications
- Colitis, Ulcerative/pathology
- Colorectal Neoplasms/complications
- Colorectal Neoplasms/pathology
- Dietary Supplements/adverse effects
- Disease Models, Animal
- Disease Progression
- Dose-Response Relationship, Drug
- Humans
- Iron, Dietary/adverse effects
- Oxidative Stress
Collapse
Affiliation(s)
- Darren N Seril
- Susan L. Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | | | | | | |
Collapse
|