1
|
Blouin K, Malaisé F, Verreault J, Lair S, Lu Z. Occurrence and temporal trends of industrial antioxidants and UV absorbents in the endangered St. Lawrence Estuary beluga whale (Delphinapterus leucas). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156635. [PMID: 35697212 DOI: 10.1016/j.scitotenv.2022.156635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Elevated contaminant exposure has been identified as a stressor that has negative impacts on the health and recovery of the endangered St. Lawrence Estuary (SLE) beluga (Delphinapterus leucas) population. However, the accumulation of many groups of contaminants of emerging concern is still unknown in the SLE beluga. The objective of this study was to investigate the occurrence and temporal trends (2000-2017) of synthetic phenolic antioxidants (SPAs), secondary aromatic amines (Ar-SAs), benzotriazole UV stabilizers (BZT-UVs), and organic UV filters (UVFs) in the blubber (n = 69) and liver (n = 80) of SLE beluga carcasses recovered in the SLE. The SPA 2,6-di-tert-butyl-1,4-benzoquinone (BHTQ) was the most prevalent contaminant in the blubber (detection frequency: 86 %; median: 71.1 ng/g wet weight (ww)) and liver (50 %; 12.2 ng/g ww) of SLE belugas. In the blubber, 2-hydroxy-4-methoxybenzophenone (BP3) (36 %; 3.15 ng/g ww) and 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethyl butyl)phenol (UV329) (49 %; 6.84 ng/g ww) were the most frequently detected UVFs and BZT-UVs, respectively. Ar-SAs were not detected in most of the blubber and liver samples. Blubber accumulated higher levels of BHTQ and UV329 than liver, whereas the levels of BP3 were greater in the liver. Male SLE beluga accumulated greater concentrations of UV329 in blubber compared to females. These results indicated that the accumulation of BHTQ, UV329 and BP3 in SLE belugas is tissue- and sex-specific. BHTQ showed a decreasing trend in the blubber (2000-2017) of male SLE beluga, whereas no significant trend of this contaminant was found in females. UV329 showed no discernible temporal trend. This study established a baseline for the future monitoring of SPAs, Ar-SAs, BZT-UVs and UVFs in belugas and other marine mammals.
Collapse
Affiliation(s)
- Karine Blouin
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Florentine Malaisé
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Stéphane Lair
- Centre québécois sur la santé des animaux sauvages/Canadian Wildlife Health Cooperative, Département de sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Québec J2S 7C6, Canada
| | - Zhe Lu
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada.
| |
Collapse
|
2
|
Wang R, Zhao W, Cui N, Dong S, Su X, Liang H, Zhang N, Song Z, Tian F, Wang P. Comparative In Vitro and In Vivo Hydroxylation Metabolization of Polychlorinated Biphenyl 101 in Laying Hens: A Pilot Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7279-7287. [PMID: 35649149 DOI: 10.1021/acs.jafc.2c01462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) can be metabolized into hydroxylated PCBs (OH-PCBs) that exhibit greater toxicity than their parent compounds. In particular, 2,2',4,5,5'-pentachlorobiphenyl (PCB 101) is commonly found in chicken feeds and breeding environments, although information on the biotransformation of this PCB in chickens is lacking. In this study, the hydroxylation metabolization of PCB 101 was assessed based on in vitro trials with Sanhuang chicken liver microsomes and in vivo experiments with Hy-Line Brown hens. The para-substituted metabolite 4'-OH-PCB 101 is the predominant metabolite of PCB 101. 4'-OH-PCB 101 is preferentially retained in the chicken bloodstream and partly distributed into different tissues of laying hens. The blood-brain barrier can effectively prevent the OH-PCB from entering the brain, and the adipose tissue contains a relatively low residue concentration of the OH-PCB. The laying hen can deplete the OH-PCB via laying eggs and excrement. The ratio of 4'-OH-PCB 101/PCB 101 in egg yolk is about 1:2. These results first provide definite evidence for the previous hypothesis of the PCB 101 metabolism by chickens. They could assist in predicting the environmental fate of PCBs, and in the risk assessment of PCBs and OH-PCBs in chicken-based foodstuffs.
Collapse
Affiliation(s)
- Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Wenyu Zhao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Na Cui
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Haijun Liang
- CHINA FEED Magazine Agency, Beijing 100710, China
| | - Na Zhang
- National Animal Husbandry Service, Beijing 100125, China
| | - Zhichao Song
- Henan Provincial Institute of Veterinary Drug Control, Zhengzhou 450008, China
| | - Feifei Tian
- Shimadzu China Co., Ltd., Beijing 100020, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| |
Collapse
|
3
|
Kunisue T, Goto A, Sunouchi T, Egashira K, Ochiai M, Isobe T, Tajima Y, Yamada TK, Tanabe S. Anthropogenic and natural organohalogen compounds in melon-headed whales (Peponocephala electra) stranded along the Japanese coastal waters: Temporal trend analysis using archived samples in the environmental specimen bank (es-BANK). CHEMOSPHERE 2021; 269:129401. [PMID: 33385672 DOI: 10.1016/j.chemosphere.2020.129401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The present study determined recent accumulation levels of polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDDs), polychlorinated diphenyl ethers (PCDEs), methoxylated-PBDEs (MeO-PBDEs) and 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1) in the blubber of melon-headed whales (Peponocephala electra) stranded along the Japanese coastal waters in 2015 and examined temporal trends of these organohalogen compound (OHC) levels by analyzing blubber samples of this species archived in the environmental specimen bank which were collected in 1982, 2001, 2002, 2006, 2010 and 2011. The median concentrations in melon-headed whales stranded recently were in the order of DDTs ≈ PCBs > HBCDDs > Q1 > CHLs > MeO-PBDEs > PBDEs > HCB > HCHs > PCDEs, indicating that considerable amounts of HBCDDs, in addition to DDTs and PCBs, have been transported to tropical and subtropical waters of the open ocean and pelagic whale species might be exposed to relatively high levels of these OHCs. Temporal trend analyses of OHC levels in the blubber of melon-headed whales revealed significant decrease for anthropogenic OCs such as DDTs, PCBs, HCB, HCHs and PCDEs, and significant increase for CHLs, PBDEs, HBCDDs, MeO-PBDEs and Q1 since 1982. Besides, the analyses from 2001 to 2015 showed no decreasing trends (unchanged) for some PCB congeners, p,p'-DDE, cis- and trans-nonachlors, Q1, BDE-47, -100 and -154, and significantly increasing trends for α-HBCDD and 6MeO-BDE47, suggesting their chronic exposure for this pelagic whale species.
Collapse
Affiliation(s)
- Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan.
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Tomoya Sunouchi
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Kana Egashira
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Mari Ochiai
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Tomohiko Isobe
- Center for Environmental Health Sciences, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Yuko Tajima
- Department of Zoology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, 305-0005, Japan
| | - Tadasu K Yamada
- Department of Zoology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, 305-0005, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| |
Collapse
|
4
|
Yoo J, Hirano M, Mizukawa H, Nomiyama K, Agusa T, Kim EY, Tanabe S, Iwata H. In Vitro and in Silico Analyses for Predicting Hepatic Cytochrome P450-Dependent Metabolic Potencies of Polychlorinated Biphenyls in the Baikal Seal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14588-14596. [PMID: 26579933 DOI: 10.1021/acs.est.5b03890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this study was to understand the cytochrome P450 (CYP)-dependent metabolic pathway and potency of polychlorinated biphenyls (PCBs) in the Baikal seal (Pusa sibirica). In vitro metabolism of 62 PCB congener mixtures was investigated by using liver microsomes of this species. A decreased ratio of over 20% was observed for CB3, CB4, CB8, CB15, CB19, CB22, CB37, CB54, CB77, and CB105, suggesting the preferential metabolism of low-chlorinated PCBs by CYPs. The highly activated metabolic pathways in Baikal seals that were predicted from the decreased PCBs and detected hydroxylated PCBs (OH-PCBs) were CB22 to 4'OH-CB20 and CB77 to 4'OH-CB79. The total amount of OH-PCBs detected as identified and unidentified congeners accounted for only a 3.8 ± 1.7 mol % of loaded PCBs, indicating many unknown PCB metabolic pathways. To explore factors involved in CYP-dependent PCB metabolism, we examined the relationships among the structural and physicochemical properties of PCBs, the in silico PCB-CYP docking parameters, and the in vitro PCB decreased ratios by principal component analysis. Statistical analysis showed that the decreased PCB ratio was at least partly accounted for by the substituted chlorine number of PCBs and the distance from the Cl-unsubstituted carbon of docked PCBs to the heme Fe in CYP2A and 2B.
Collapse
Affiliation(s)
- Jean Yoo
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Masashi Hirano
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Hazuki Mizukawa
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Tetsuro Agusa
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University , Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| |
Collapse
|
5
|
Ochiai M, Nomiyama K, Isobe T, Mizukawa H, Yamada TK, Tajima Y, Matsuishi T, Amano M, Tanabe S. Accumulation of hydroxylated polychlorinated biphenyls (OH-PCBs) and implications for PCBs metabolic capacities in three porpoise species. CHEMOSPHERE 2013; 92:803-810. [PMID: 23725750 DOI: 10.1016/j.chemosphere.2013.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 02/24/2013] [Accepted: 04/06/2013] [Indexed: 06/02/2023]
Abstract
The present study investigated polychlorinated biphenyls (PCBs) and hydroxylated metabolites of PCBs (OH-PCBs) in blood from three porpoise species: finless porpoises (Neophocaena phocaenoides), harbor porpoises (Phocoena phocoena), and Dall's porpoises (Phocoenoides dalli). The porpoises were found stranded or were bycaught along the Japanese coast. Concentrations of OH-PCB were the highest in Dall's porpoises (58pgg(-1) wet wt), second highest in finless porpoises (20pgg(-1) wet wt), and lowest in harbor porpoises (8.3pgg(-1) wet wt). The concentrations in Dall's porpoises were significantly higher than the concentrations in finless porpoises and harbor porpoises (p<0.05 and p<0.01, respectively). There was a positive correlation between PCB and OH-PCB concentrations (r=0.67, p<0.001), suggesting the possible concentration-dependent induction of CYP enzymes. The three porpoise species may have exceptionally low metabolic capacities compared with other marine and terrestrial mammals, because low OH-PCB/PCB concentration ratios were found, which were 0.0016 for Dall's porpoises, 0.0013 for harbor porpoises, and 0.00058 for finless porpoises. Distinct differences in the OH-PCB congener patterns were observed for the three species, even though they are taxonomically closely related.
Collapse
Affiliation(s)
- Mari Ochiai
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Garrick RA, Woodin BR, Wilson JY, Middlebrooks BL, Stegeman JJ. Cytochrome P4501A is induced in endothelial cell lines from the kidney and lung of the bottlenose dolphin, Tursiops truncatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 76:295-305. [PMID: 16290286 DOI: 10.1016/j.aquatox.2005.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 10/14/2005] [Accepted: 10/15/2005] [Indexed: 05/05/2023]
Abstract
Marine mammals respond to the presence of polycyclic and planar halogenated aromatic hydrocarbons (PAH or PHAH) with the induced expression in endothelium of cytochrome P4501A1, regulated through the aryl hydrocarbon receptor (AHR) transcription factor. Physiological responses in other animals, such as edema and inflammation indicate that the endothelium may be compromised by exposure to AHR agonists, which are ubiquitous in the marine environment. In other mammals and fish the cellular and molecular consequences of exposure to AHR agonists have been elucidated in cultured endothelial cells. We have cultured and characterized cetacean endothelial cells (EC) and used them in induction studies. Endothelial cells were cultured from the lung and kidney of the bottlenose dolphin, Tursiops truncates, and exposed to the AHR agonists beta-naphthoflavone (betaNF) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). betaNF (1-3 microM) induced significant increases in CYP1A1 (O-deethylation of 7-ethoxyresorufin to resorufin; EROD) activity to 3.6 and 0.92 pmol/mg/min in lung and kidney EC, respectively. TCDD was more potent than betaNF, and more efficacious, with maximum induction of CYP1A1 activity of 10.1 and 15.2 pmol/mg/min in lung and kidney EC at 3-10 nM TCDD. The differential response indicates that the lung and kidney endothelial cells in culture retain the ability to respond in a selective manner to specific stimuli. Both the molecular mechanisms of induction and the physiological consequences, especially in the vasculature, of toxicant exposure can be studied in this system.
Collapse
Affiliation(s)
- Rita Anne Garrick
- Department of Natural Sciences, Fordham University, New York, NY 10023, USA.
| | | | | | | | | |
Collapse
|
7
|
Chana A, Concejero MA, de Frutos M, González MJ, Herradón B. Computational studies on biphenyl derivatives. Analysis of the conformational mobility, molecular electrostatic potential, and dipole moment of chlorinated biphenyl: searching for the rationalization of the selective toxicity of polychlorinated biphenyls (PCBs). Chem Res Toxicol 2002; 15:1514-26. [PMID: 12482233 DOI: 10.1021/tx025596d] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the objective to understand how the pattern and degree of chlorination influence on the properties of the title molecules, a computational study on biphenyl and all the chlorinated biphenyls (from 1 to 10 chlorine atoms, 209 congeners) has been undertaken. The study includes conformational searches (and further refinement by molecular dynamics simulations) and the ab initio calculation of the molecular electrostatic potential (MEP) and the dipole moments for all the congeners. The most significant property is the MEP, finding a good correlation between the MEPs and the substitution pattern on chlorinated biphenyls. The most toxic congeners possess highly positive values of electrostatic potential on the aromatic rings and highly negative values of electrostatic potential on the chlorine atoms. Additionally, we have found that the toxic congeners possess conformations with low dipole moments, a fact that may be linked to the ready accumulation on the adipose tissue. The results on the geometry and electrostatic properties of chlorinated biphenyls can be useful to rationalize their selective toxicities.
Collapse
Affiliation(s)
- Antonio Chana
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|