1
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
2
|
Johnson H, Dubiel J, Collins CH, Eriksson ANM, Lu Z, Doering JA, Wiseman S. Assessing the Toxicity of Benzotriazole Ultraviolet Stabilizers to Fishes: Insights into Aryl Hydrocarbon Receptor-Mediated Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:110-120. [PMID: 38112502 PMCID: PMC10785820 DOI: 10.1021/acs.est.3c06117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are chemicals used to mitigate UV-induced damage to manufactured goods. Their presence in aquatic environments and biota raises concerns, as certain BUVSs activate the aryl hydrocarbon receptor (AhR), which is linked to adverse effects in fish. However, potencies of BUVSs as AhR agonists and species sensitivities to AhR activation are poorly understood. This study evaluated the toxicity of three BUVSs using embryotoxicity assays. Zebrafish (Danio rerio) embryos exposed to BUVSs by microinjection suffered dose-dependent increases in mortality, with LD50 values of 4772, 11 608, and 56 292 ng/g-egg for UV-P, UV-9, and UV-090, respectively. The potencies and species sensitivities to AhR2 activation by BUVSs were assessed using a luciferase reporter gene assay with COS-7 cells transfected with the AhR2 of zebrafish and eight other fishes. The rank order of potency for activation of the AhR2 from all nine species was UV-P > UV-9 > UV-090. However, AhR2s among species differed in sensitivities to activation by up to 100-fold. An approximate reversed rank order of species sensitivity was observed compared to the rank order of sensitivity to 2,3,7,8-tetrachlorodibenzo[p]dioxin, the prototypical AhR agonist. Despite this, a pre-existing quantitative adverse outcome pathway linking AhR activation to embryo lethality could predict embryotoxicities of BUVSs in zebrafish.
Collapse
Affiliation(s)
- Hunter
M. Johnson
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Justin Dubiel
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Cameron H. Collins
- Department
of Environmental Sciences, College of the Coast and Environmental, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Andreas N. M. Eriksson
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Zhe Lu
- Institut
des Sciences de la Mer de Rimouski, Université du Québec
à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Jon A. Doering
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Department
of Environmental Sciences, College of the Coast and Environmental, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Steve Wiseman
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
3
|
Bhalla D, van Noort V. Molecular Evolution of Aryl Hydrocarbon Receptor Signaling Pathway Genes. J Mol Evol 2023; 91:628-646. [PMID: 37392220 DOI: 10.1007/s00239-023-10124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
The Aryl hydrocarbon receptor is an ancient transcriptional factor originally discovered as a sensor of dioxin. In addition to its function as a receptor of environmental toxicants, it plays an important role in development. Although a significant amount of research has been carried out to understand the AHR signal transduction pathway and its involvement in species' susceptibility to environmental toxicants, none of them to date has comprehensively studied its evolutionary origins. Studying the evolutionary origins of molecules can inform ancestral relationships of genes. The vertebrate genome has been shaped by two rounds of whole-genome duplications (WGD) at the base of vertebrate evolution approximately 600 million years ago, followed by lineage-specific gene losses, which often complicate the assignment of orthology. It is crucial to understand the evolutionary origins of this transcription factor and its partners, to distinguish orthologs from ancient non-orthologous homologs. In this study, we have investigated the evolutionary origins of proteins involved in the AHR pathway. Our results provide evidence of gene loss and duplications, crucial for understanding the functional connectivity of humans and model species. Multiple studies have shown that 2R-ohnologs (genes and proteins that have survived from the 2R-WGD) are enriched in signaling components relevant to developmental disorders and cancer. Our findings provide a link between the AHR pathway's evolutionary trajectory and its potential mechanistic involvement in pathogenesis.
Collapse
Affiliation(s)
- Diksha Bhalla
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium.
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
4
|
Ruan T, Li P, Wang H, Li T, Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem Rev 2023; 123:10584-10640. [PMID: 37531601 DOI: 10.1021/acs.chemrev.3c00056] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made. In this review, the basic principles on recognition of environmental organic pollutants are overviewed. Complementary analytical methodologies (i.e., quantitative structure-activity relationship prediction, mass spectrometric nontarget screening, and effect-directed analysis) and experimental platforms are briefly described. The stages of technique development and/or essential parts of the analytical workflow for each of the methodologies are then reviewed. Finally, plausible technique paths and applications of the future nontarget screening methods, interdisciplinary techniques for achieving toxicant identification, and burgeoning strategies on risk assessment of chemical cocktails are discussed.
Collapse
Affiliation(s)
- Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Leyria J, Orchard I, Lange AB. Impact of JH Signaling on Reproductive Physiology of the Classical Insect Model, Rhodnius prolixus. Int J Mol Sci 2022; 23:ijms232213832. [PMID: 36430311 PMCID: PMC9692686 DOI: 10.3390/ijms232213832] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
In adult females of several insect species, juvenile hormones (JHs) act as gonadotrophic hormones, regulating egg production. JH binds to its nuclear receptor, Methoprene tolerant (Met), triggering its dimerization with the protein Taiman (Tai). The resulting active complex induces transcription of JH response genes, such as Krüppel homolog 1 (Kr-h1). In this study we report for the first time the participation of the isoform JH III skipped bisepoxide (JHSB3) and its signaling pathway in the reproductive fitness of the classical insect model Rhodnius prolixus. The topical application of synthetic JHSB3 increases transcript and protein expression of yolk protein precursors (YPPs), mainly by the fat body but also by the ovaries, the second source of YPPs. These results are also confirmed by ex vivo assays. In contrast, when the JH signaling cascade is impaired via RNA interference by downregulating RhoprMet and RhoprTai mRNA, egg production is inhibited. Although RhoprKr-h1 transcript expression is highly dependent on JHSB3 signaling, it is not involved in egg production but rather in successful hatching. This research contributes missing pieces of JH action in the insect model in which JH was first postulated almost 100 years ago.
Collapse
|
6
|
Li Q, Hao S, Cheng T. [Research progress on in vitro expansion and clinical application of hematopoietic stem cell]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:167-172. [PMID: 35381684 PMCID: PMC8980649 DOI: 10.3760/cma.j.issn.0253-2727.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Q Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - S Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - T Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
7
|
Fang J, Dong S, Boogaard PJ, Rietjens IMCM, Kamelia L. Developmental toxicity testing of unsubstituted and methylated 4- and 5-ring polycyclic aromatic hydrocarbons using the zebrafish embryotoxicity test. Toxicol In Vitro 2022; 80:105312. [PMID: 35033653 DOI: 10.1016/j.tiv.2022.105312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 01/29/2023]
Abstract
The present study evaluates the in vitro developmental toxicity of 4- and 5-ring PAHs including benz[a]anthracene and benzo[a]pyrene and six of their monomethylated congeners, and dibenz[a,h]anthracene using the zebrafish embryotoxicity test (ZET). In general, the tested PAHs induced various developmental effects in the zebrafish embryos including unhatched embryos, no movement and circulation, yolk sac and pericardial edemas, deformed body shape, and cumulative mortality at 96 h post fertilization (hpf). The alkyl substituent on different positions of the aromatic ring of the PAHs appeared to change their in vitro developmental toxicity. Comparison to a previously reported molecular docking study showed that the methyl substituents may affect the interaction of the PAHs with the aryl hydrocarbon receptor (AhR) which is known to play a role in the developmental toxicity of some PAHs. Taken together, our results show that methylation can either increase or decrease the developmental toxicity of PAHs and suggest this may relate to effects on the molecular dimensions and resulting consequences for interactions with the AhR.
Collapse
Affiliation(s)
- Jing Fang
- Division of Toxicology, Wageningen University and Research, 6708, WE, Wageningen, the Netherlands.
| | - Shutong Dong
- Division of Toxicology, Wageningen University and Research, 6708, WE, Wageningen, the Netherlands
| | - Peter J Boogaard
- Division of Toxicology, Wageningen University and Research, 6708, WE, Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, 6708, WE, Wageningen, the Netherlands
| | - Lenny Kamelia
- Shell Health, Shell International B.V., 2596, HR, The Hague, the Netherlands
| |
Collapse
|
8
|
Vazquez-Rivera E, Rojas B, Parrott JC, Shen AL, Xing Y, Carney PR, Bradfield CA. The aryl hydrocarbon receptor as a model PAS sensor. Toxicol Rep 2021; 9:1-11. [PMID: 34950569 PMCID: PMC8671103 DOI: 10.1016/j.toxrep.2021.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Proteins containing PER-ARNT-SIM (PAS) domains are commonly associated with environmental adaptation in a variety of organisms. The PAS domain is found in proteins throughout Archaea, Bacteria, and Eukarya and often binds small-molecules, supports protein-protein interactions, and transduces input signals to mediate an adaptive physiological response. Signaling events mediated by PAS sensors can occur through induced phosphorelays or genomic events that are often dependent upon PAS domain interactions. In this perspective, we briefly discuss the diversity of PAS domain containing proteins, with particular emphasis on the prototype member, the aryl hydrocarbon receptor (AHR). This ligand-activated transcription factor acts as a sensor of the chemical environment in humans and many chordates. We conclude with the idea that since mammalian PAS proteins often act through PAS-PAS dimers, undocumented interactions of this type may link biological processes that we currently think of as independent. To support this idea, we present a framework to guide future experiments aimed at fully elucidating the spectrum of PAS-PAS interactions with an eye towards understanding how they might influence environmental sensing in human and wildlife populations.
Collapse
Affiliation(s)
- Emmanuel Vazquez-Rivera
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Brenda Rojas
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Jessica C. Parrott
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Anna L. Shen
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Yongna Xing
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Patrick R. Carney
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| |
Collapse
|
9
|
Larigot L, Benoit L, Koual M, Tomkiewicz C, Barouki R, Coumoul X. Aryl Hydrocarbon Receptor and Its Diverse Ligands and Functions: An Exposome Receptor. Annu Rev Pharmacol Toxicol 2021; 62:383-404. [PMID: 34499523 DOI: 10.1146/annurev-pharmtox-052220-115707] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a transcriptional factor that regulates multiple functions following its activation by a variety of ligands, including xenobiotics, natural products, microbiome metabolites, and endogenous molecules. Because of this diversity, the AhR constitutes an exposome receptor. One of its main functions is to regulate several lines of defense against chemical insults and bacterial infections. Indeed, in addition to its well-established detoxication function, it has several functions at physiological barriers, and it plays a critical role in immunomodulation. The AhR is also involved in the development of several organs and their homeostatic maintenance. Its activity depends on the type of ligand and on the time frame of the receptor activation, which can be either sustained or transient, leading in some cases to opposite modes of regulations as illustrated in the regulation of different cancer pathways. The development of selective modulators and their pharmacological characterization are important areas of research. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| | - Louise Benoit
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Meriem Koual
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Céline Tomkiewicz
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| | - Robert Barouki
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Xavier Coumoul
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| |
Collapse
|
10
|
Satija S, Kaur H, Tambuwala MM, Sharma P, Vyas M, Khurana N, Sharma N, Bakshi HA, Charbe NB, Zacconi FC, Aljabali AA, Nammi S, Dureja H, Singh TG, Gupta G, Dhanjal DS, Dua K, Chellappan DK, Mehta M. Hypoxia-Inducible Factor (HIF): Fuel for Cancer Progression. Curr Mol Pharmacol 2021; 14:321-332. [PMID: 33494692 DOI: 10.2174/1874467214666210120154929] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
Abstract
Hypoxia is an integral part of the tumor microenvironment, caused primarily due to rapidly multiplying tumor cells and a lack of proper blood supply. Among the major hypoxic pathways, HIF-1 transcription factor activation is one of the widely investigated pathways in the hypoxic tumor microenvironment (TME). HIF-1 is known to activate several adaptive reactions in response to oxygen deficiency in tumor cells. HIF-1 has two subunits, HIF-1β (constitutive) and HIF-1α (inducible). The HIF-1α expression is largely regulated via various cytokines (through PI3K-ACT-mTOR signals), which involves the cascading of several growth factors and oncogenic cascades. These events lead to the loss of cellular tumor suppressant activity through changes in the level of oxygen via oxygen-dependent and oxygen-independent pathways. The significant and crucial role of HIF in cancer progression and its underlying mechanisms have gained much attention lately among the translational researchers in the fields of cancer and biological sciences, which have enabled them to correlate these mechanisms with various other disease modalities. In the present review, we have summarized the key findings related to the role of HIF in the progression of tumors.
Collapse
Affiliation(s)
- Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Harpreet Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Prabal Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Nitin B Charbe
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuna McKenna 4860, 7820436 Macul, Santiago, Chile
| | - Flavia C Zacconi
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuna McKenna 4860, 7820436 Macul, Santiago, Chile
| | - Alaa A Aljabali
- Yarmouk University - Faculty of Pharmacy, Department of Pharmaceutical Sciences, Irbid, Jordan
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, Penrith NSW 2751, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Thakur G Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Suresh Gyan Vihar University, Jaipur, India
| | - Daljeet S Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| |
Collapse
|
11
|
Cartolano MC, Alloy MM, Milton E, Plotnikova A, Mager EM, McDonald MD. Exposure and Recovery from Environmentally Relevant Levels of Waterborne Polycyclic Aromatic Hydrocarbons from Deepwater Horizon Oil: Effects on the Gulf Toadfish Stress Axis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1062-1074. [PMID: 33252787 DOI: 10.1002/etc.4945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
There is evidence that the combination of polycyclic aromatic hydrocarbons (PAHs) released in the Deepwater Horizon oil spill impairs the glucocorticoid stress response of vertebrates in the Gulf of Mexico, but the mechanisms are unclear. We hypothesized that inhibition of cortisol release may be due to 1) overstimulation of the hypothalamic-pituitary-inter-renal (HPI) axis, or 2) an inhibition of cortisol biosynthesis through PAH activation of the aryl hydrocarbon receptor (AhR). Using a flow-through system, Gulf toadfish (Opsanus beta) were continuously exposed to control conditions or one of 3 environmentally relevant concentrations of PAHs from Deepwater Horizon oil (∑PAH50 = 0-3 μg L-1 ) for up to 7 d. One group of toadfish was then exposed to a recovery period for up to 7 d. No changes in corticotrophin-releasing factor mRNA expression, adrenocorticotropic hormone (ACTH), or pituitary mass suggested that overstimulation of the HPI axis was not a factor. The AhR activation was measured by an elevation of cytochrome P4501A1 (CYP1A) mRNA expression within the HPI axis in fish exposed to high PAH concentrations; however, CYP1A was no longer induced after 3 d of recovery in any of the tissues. At 7 d of recovery, there was an impairment of cortisol release in response to an additional simulated predator chase that does not appear to be due to changes in the mRNA expression of the kidney steroidogenic pathway proteins steroidogenic acute regulatory protein, cytochrome P450 side chain cleavage, and 11β-hydroxylase. Future analyses are needed to determine whether the stress response impairment is due to cholesterol availability and/or down-regulation of the melanocortin 2 receptor. Environ Toxicol Chem 2021;40:1062-1074. © 2020 SETAC.
Collapse
Affiliation(s)
- Maria C Cartolano
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Matthew M Alloy
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Emily Milton
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Anastasiya Plotnikova
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Edward M Mager
- Advanced Environmental Research Institute, University of North Texas, Denton, Texas, USA
| | - M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| |
Collapse
|
12
|
Leclerc D, Staats Pires AC, Guillemin GJ, Gilot D. Detrimental activation of AhR pathway in cancer: an overview of therapeutic strategies. Curr Opin Immunol 2021; 70:15-26. [PMID: 33429228 DOI: 10.1016/j.coi.2020.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
Sustained transcriptional activation of the aryl hydrocarbon receptor (AhR) promotes tumour growth and impairs the immune defence, at least for cutaneous melanoma and glioma. AhR ligands are produced by the tumour microenvironment (TME) and by the tumour itself (intracrine). The recent identification of interleukin-4-induced-1 (IL4I1), a parallel pathway to indoleamine 2 3-dioxygenase 1 (IDO1)/ tryptophan 2,3-dioxygenase (TDO), and its ability to generate AhR ligands, confirms that a complete inhibition of AhR ligand production might be difficult to reach. Here, we have focused on recent discoveries explaining the large varieties of AhR ligands and the functional consequences in terms of cancer cell plasticity and consecutive therapy resistance. We also examined therapeutic strategies targeting the AhR signalling pathway and their possible adverse effects. Since the end of 2019, two phase I clinical trials have investigated the ability of the AhR antagonist to 'reset' the immune system and re-sensitize the cancer cells to therapies by preventing their dedifferentiation.
Collapse
Affiliation(s)
- Delphine Leclerc
- Inserm U1242, Université de Rennes, France, Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Ananda Christina Staats Pires
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia; Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - David Gilot
- Inserm U1242, Université de Rennes, France, Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
13
|
Wang Z, Snyder M, Kenison JE, Yang K, Lara B, Lydell E, Bennani K, Novikov O, Federico A, Monti S, Sherr DH. How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. Int J Mol Sci 2020; 22:ijms22010387. [PMID: 33396563 PMCID: PMC7795223 DOI: 10.3390/ijms22010387] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, the aryl hydrocarbon receptor (AHR) was studied for its role in environmental chemical toxicity i.e., as a quirk of nature and a mediator of unintended consequences of human pollution. During that period, it was not certain that the AHR had a “normal” physiological function. However, the ongoing accumulation of data from an ever-expanding variety of studies on cancer, cancer immunity, autoimmunity, organ development, and other areas bears witness to a staggering array of AHR-controlled normal and pathological activities. The objective of this review is to discuss how the AHR has gone from a likely contributor to genotoxic environmental carcinogen-induced cancer to a master regulator of malignant cell progression and cancer aggression. Particular focus is placed on the association between AHR activity and poor cancer outcomes, feedback loops that control chronic AHR activity in cancer, and the role of chronically active AHR in driving cancer cell invasion, migration, cancer stem cell characteristics, and survival.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Megan Snyder
- Graduate Program in Genetics and Genomics, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Jessica E. Kenison
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kangkang Yang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Brian Lara
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | - Emily Lydell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Kawtar Bennani
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | | | - Anthony Federico
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - Stefano Monti
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
- Correspondence: ; Tel.: +1-617-358-1707
| |
Collapse
|
14
|
Murray IA, Perdew GH. How Ah Receptor Ligand Specificity Became Important in Understanding Its Physiological Function. Int J Mol Sci 2020; 21:ijms21249614. [PMID: 33348604 PMCID: PMC7766308 DOI: 10.3390/ijms21249614] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Increasingly, the aryl hydrocarbon receptor (AHR) is being recognized as a sensor for endogenous and pseudo-endogenous metabolites, and in particular microbiota and host generated tryptophan metabolites. One proposed explanation for this is the role of the AHR in innate immune signaling within barrier tissues in response to the presence of microorganisms. A number of cytokine/chemokine genes exhibit a combinatorial increase in transcription upon toll-like receptors and AHR activation, supporting this concept. The AHR also plays a role in the enhanced differentiation of intestinal and dermal epithelium leading to improved barrier function. Importantly, from an evolutionary perspective many of these tryptophan metabolites exhibit greater activation potential for the human AHR when compared to the rodent AHR. These observations underscore the importance of the AHR in barrier tissues and may lead to pharmacologic therapeutic intervention.
Collapse
|
15
|
Štampar M, Breznik B, Filipič M, Žegura B. Characterization of In Vitro 3D Cell Model Developed from Human Hepatocellular Carcinoma (HepG2) Cell Line. Cells 2020; 9:E2557. [PMID: 33260628 PMCID: PMC7759933 DOI: 10.3390/cells9122557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
In genetic toxicology, there is a trend against the increased use of in vivo models as highlighted by the 3R strategy, thus encouraging the development and implementation of alternative models. Two-dimensional (2D) hepatic cell models, which are generally used for studying the adverse effects of chemicals and consumer products, are prone to giving misleading results. On the other hand, newly developed hepatic three-dimensional (3D) cell models provide an attractive alternative, which, due to improved cell interactions and a higher level of liver-specific functions, including metabolic enzymes, reflect in vivo conditions more accurately. We developed an in vitro 3D cell model from the human hepatocellular carcinoma (HepG2) cell line. The spheroids were cultured under static conditions and characterised by monitoring their growth, morphology, and cell viability during the time of cultivation. A time-dependent suppression of cell division was observed. Cell cycle analysis showed time-dependent accumulation of cells in the G0/G1 phase. Moreover, time-dependent downregulation of proliferation markers was shown at the mRNA level. Genes encoding hepatic markers, metabolic phase I/II enzymes, were time-dependently deregulated compared to monolayers. New knowledge on the characteristics of the 3D cell model is of great importance for its further development and application in the safety assessment of chemicals, food products, and complex mixtures.
Collapse
Affiliation(s)
- Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Avilla MN, Malecki KMC, Hahn ME, Wilson RH, Bradfield CA. The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chem Res Toxicol 2020; 33:860-879. [PMID: 32259433 PMCID: PMC7175458 DOI: 10.1021/acs.chemrestox.9b00476] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 12/12/2022]
Abstract
The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins ("dioxins"), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.
Collapse
Affiliation(s)
- Mele N. Avilla
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Kristen M. C. Malecki
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Mark E. Hahn
- Biology
Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1050, United States
| | - Rachel H. Wilson
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
- McArdle
Laboratory for Cancer Research, University of Wisconsin School of Medicine
and Public Health, Madison, Wisconsin 53705-227, United States
| |
Collapse
|
17
|
Ghazi Eid B, Hanafy A, Hasan A, Neamatalla T. Zingerone Enhances Fertility Markers in Both Male and Female Rats and Increases Aryl Hydrocarbon Receptor Expression. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.267.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Meyer-Alert H, Larsson M, Hollert H, Keiter SH. Benzo[a]pyrene and 2,3-benzofuran induce divergent temporal patterns of AhR-regulated responses in zebrafish embryos (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109505. [PMID: 31394372 DOI: 10.1016/j.ecoenv.2019.109505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Biotests like the fish embryo toxicity test have become increasingly popular in risk assessment and evaluation of chemicals found in the environment. The large range of possible endpoints is a big advantage when researching on the mode of action of a certain substance. Here, we utilized the frequently used model organism zebrafish (Danio rerio) to examine regulative mechanisms in the pathway of the aryl-hydrocarbon receptor (AHR) in early development. We exposed embryos to representatives of two chemical classes known to elicit dioxin-like activity: benzo[a]pyrene for polycyclic aromatic hydrocarbons (PAHs) and 2,3-benzofuran for polar O-substituted heterocycles as a member of heterocyclic compounds in general (N-, S-, O-heterocycles; NSO-hets). We measured gene transcription of the induced P450 cytochromes (cyp1), their formation of protein and biotransformation activity throughout the whole embryonic development until 5 days after fertilization. The results show a very specific time course of transcription depending on the chemical properties (e.g. halogenation, planarity, Kow), the physical decay and the biodegradability of the tested compound. However, although this temporal pattern was not precisely transferable onto the protein level, significant regulation in enzymatic activity over time could be detected. We conclude, that a careful choice of time and end point as well as consideration of the chemical properties of a substance are fairly important when planning, conducting and especially evaluating biotests.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| |
Collapse
|
19
|
Aryl Hydrocarbon Receptor Directly Regulates Artemin Gene Expression. Mol Cell Biol 2019; 39:MCB.00190-19. [PMID: 31358547 DOI: 10.1128/mcb.00190-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022] Open
Abstract
Transgenic mice expressing a constitutively active form of the aryl hydrocarbon receptor in keratinocytes (AhR-CA mice) develop severe dermatitis that substantially recapitulates the pathology of human atopic dermatitis. The neurotrophic factor artemin (Artn) is highly expressed in the epidermis of AhR-CA mice and causes hypersensitivity to itch (alloknesis) by elongating nerves into the epidermis. However, whether the Artn gene is regulated directly by AhR or indirectly through complex regulation associated with AhR remains unclear. To this end, we previously conducted chromatin immunoprecipitation-sequencing analyses of the Artn locus and found a xenobiotic response element (XRE) motif located far upstream (52 kb) of the gene. Therefore, in this study, we addressed whether the XRE actually regulates the Artn gene expression by deleting the region containing the motif. We generated two lines of ArtnΔXRE mice. In the mouse epidermis, inducible expression of the Artn gene by the AhR agonist 3-methylcholanthrene was substantially suppressed compared to that in wild-type mice. Importantly, in AhR-CA::ArtnΔXRE mice, Artn expression was significantly suppressed, and alloknesis was improved. These results demonstrate that the Artn gene is indeed regulated by the distal XRE-containing enhancer, and alloknesis in AhR-CA mice is provoked by the AhR-mediated direct induction of the Artn gene.
Collapse
|
20
|
Song Y, Nahrgang J, Tollefsen KE. Transcriptomic analysis reveals dose-dependent modes of action of benzo(a)pyrene in polar cod (Boreogadus saida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:176-189. [PMID: 30408666 DOI: 10.1016/j.scitotenv.2018.10.261] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
Polar cod (Boreogadus saida) has been used as a model Arctic species for hazard assessment of environmental stressors such as polycyclic aromatic hydrocarbons (PAHs). However, most of the PAH studies using polar cod rely on targeted biomarker-based analysis thus may not adequately address the complexity of the toxic mechanisms of the stressors. The present study was performed to develop a broad-content transcriptomic platform for polar cod and apply it for understanding the toxic mechanisms of a model PAH, benzo(a)pyrene (BaP). Hepatic transcriptional analysis using a combination of high-density polar cod oligonucleotide microarray and quantitative real-time RT-PCR was conducted to characterize the stress responses in polar cod after 14d repeated dietary exposure to 0.4 (Low) and 20.3 μg/g fish/feeding (High) BaP doses. Bile metabolic analysis was performed to identify the storage of a key BaP hepatic biotransformation product, 3-hydroxybenzo(a)pyrene (3-OH-BaP). The results clearly showed that 3-OH-BaP was detected in the bile of polar cod after both Low and High BaP exposure. Dose-dependent hepatic stress responses were identified, with Low BaP suppressing genes involved in the defense mechanisms and High BaP inducing genes associated with these pathways. The results suggested that activation of the aryl hydrocarbon receptor signaling, induction of oxidative stress, DNA damage and apoptosis were the common modes of action (MoA) of BaP between polar cod or other vertebrates, whereas induction of protein degradation and disturbance of mitochondrial functions were proposed as novel MoAs. Furthermore, conceptual toxicity pathways were proposed for BaP-mediated effects in Arctic fish. The present study has for the first time reported a transcriptome-wide analysis using a polar cod-specific microarray and suggested novel MoAs of BaP. The analytical tools, bioinformatics solutions and mechanistic knowledge generated by this study may facilitate mechanistically-based hazard assessment of environmental stressors in the Arctic using this important fish as a model species.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway.
| | - Jasmine Nahrgang
- UiT The Arctic University of Norway, Faculty of Biosciences, Fisheries and Economics, Dept. of Arctic and Marine Biology, N-9037 Tromsø, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, Dept. for Environmental Sciences, Post box 5003, N-1432 Ås, Norway.
| |
Collapse
|
21
|
Akishina AA, Vorontsova JE, Cherezov RO, Slezinger MS, Simonova OB, Kuzin BA. NAP Family CG5017 Chaperone Pleiotropically Regulates Human AHR Target Genes Expression in Drosophila Testis. Int J Mol Sci 2018; 20:ijms20010118. [PMID: 30597983 PMCID: PMC6337364 DOI: 10.3390/ijms20010118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
To study the regulatory mechanism of the Aryl hydrocarbon receptor (AHR), target genes of transcription are necessary for understanding the normal developmental and pathological processes. Here, we examined the effects of human AHR ligands on male fecundity. To induce ectopic human AhR gene expression, we used Drosophilamelanogaster transformed with human AhR under the control of a yeast UAS promoter element capable of activation in the two-component UAS-GAL4 system. We found that exogenous AHR ligands decrease the number of Drosophila gonadal Tj-positive cells. We also found both an increase and decrease of AHR target gene expression, including in genes that control homeostasis and testis development. This suggests that gonadal AHR activation may affect the expression of gene networks that control sperm production and could be critical for fertility not just in Drosophila but also in humans. Finally, we found that the activation of the expression for some AHR target genes depends on the expression of testis-specific chaperone CG5017 in gonadal cells. Since CG5017 belongs to the nucleosome assembly protein (NAP) family and may participate in epigenetic regulation, we propose that this nucleotropic chaperone is essential to provide the human AHR with access to only the defined set of its target genes during spermatogenesis.
Collapse
Affiliation(s)
- Angelina A Akishina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Julia E Vorontsova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Roman O Cherezov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Mikhail S Slezinger
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Olga B Simonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Boris A Kuzin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| |
Collapse
|
22
|
Glazer L, Kido Soule MC, Longnecker K, Kujawinski EB, Aluru N. Hepatic metabolite profiling of polychlorinated biphenyl (PCB)-resistant and sensitive populations of Atlantic killifish (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:114-122. [PMID: 30368057 PMCID: PMC6246827 DOI: 10.1016/j.aquatox.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Atlantic killifish inhabiting polluted sites along the east coast of the U.S. have evolved resistance to toxic effects of contaminants. One such contaminated site is the Acushnet River estuary, near New Bedford Harbor (NBH), Massachusetts, which is characterized by very high PCB concentrations in the sediments and in the tissues of resident killifish. Though killifish at this site appear to be thriving, the metabolic costs of survival in a highly contaminated environment are not well understood. In this study we compared the hepatic metabolite profiles of resistant (NBH) and sensitive populations (Scorton Creek (SC), Sandwich, MA) using a targeted metabolomics approach in which polar metabolites were extracted from adult fish livers and quantified. Our results revealed differences in the levels of several metabolites between fish from the two sites. The majority of these metabolites are associated with one-carbon metabolism, an important pathway that supports multiple physiological processes including DNA and protein methylation, nucleic acid biosynthesis and amino acid metabolism. We measured the gene expression of DNA methylation (DNA methyltransferase 1, dnmt1) and demethylation genes (Ten-Eleven Translocation (TET) genes) in the two populations, and observed lower levels of dnmt1 and higher levels of TET gene expression in the NBH livers, suggesting possible differences in DNA methylation profiles. Consistent with this, the two populations differed significantly in the levels of 5-methylcytosine and 5-hydroxymethylcytosine nucleotides. Overall, our results suggest that the unique hepatic metabolite signatures observed in NBH and SC reflect the adaptive mechanisms for survival in their respective habitats.
Collapse
Affiliation(s)
- Lilah Glazer
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States; School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Melissa C Kido Soule
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Krista Longnecker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Elizabeth B Kujawinski
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States.
| |
Collapse
|
23
|
Meyer-Alert H, Ladermann K, Larsson M, Schiwy S, Hollert H, Keiter SH. A temporal high-resolution investigation of the Ah-receptor pathway during early development of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:117-129. [PMID: 30245344 DOI: 10.1016/j.aquatox.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
In order to contribute to a comprehensive understanding of the regulating mechanisms of the aryl-hydrocarbon-receptor (AHR) in zebrafish embryos, we aimed to elucidate the interaction of proteins taking part in this signaling pathway during early development of the zebrafish (Danio rerio) after chemical exposure. We managed to illustrate initial transcription processes of the implemented proteins after exposure to two environmentally relevant chemicals: polychlorinated biphenyl 126 (PCB126) and β-Naphthoflavone (BNF). Using qPCR, we quantified mRNA every 4 h until 118 h post fertilization and found the expression of biotransformation enzymes (cyp1 family) and the repressor of the AHR (ahr-r) to be dependent on the duration of chemical exposure and the biodegradability of the compounds. PCB126 induced persistently increased amounts of transcripts as it is not metabolized, whereas activation by BNF was limited to the initial period of exposure. We did not find a clear relation between the amount of transcripts and activity of the induced CYP-proteins, so posttranscriptional mechanisms are likely to regulate biotransformation of BNF. With regard to zebrafish embryos and their application in risk assessment of hazardous chemicals, our examination of the AHR pathway especially supports the relevance of the time point or period of exposure that is used for bioanalytical investigations and consideration of chemical properties determining biodegradability.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Kim Ladermann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| | - Sabrina Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| |
Collapse
|
24
|
Lamas B, Natividad JM, Sokol H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol 2018; 11:1024-1038. [PMID: 29626198 DOI: 10.1038/s41385-018-0019-2] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 02/04/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix-(bHLH) superfamily of transcription factors, which are associated with cellular responses to environmental stimuli, such as xenobiotics and oxygen levels. Unlike other members of bHLH, AhR is the only bHLH transcription factor that is known to be ligand activated. Early AhR studies focused on understanding the role of AhR in mediating the toxicity and carcinogenesis properties of the prototypic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In recent years, however, it has become apparent that, in addition to its toxicological involvement, AhR is highly receptive to a wide array of endogenous and exogenous ligands, and that its activation leads to a myriad of key host physiological functions. In this study, we review the current understanding of the functions of AhR in the mucosal immune system with a focus on its role in intestinal barrier function and intestinal immune cells, as well as in intestinal homeostasis.
Collapse
Affiliation(s)
- Bruno Lamas
- Laboratoire de biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL Research University, CNRS, INSERM, AP-HP, Hôpital Saint-Antoine, Paris, F-75005, France.,Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France
| | - Jane M Natividad
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France
| | - Harry Sokol
- Laboratoire de biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL Research University, CNRS, INSERM, AP-HP, Hôpital Saint-Antoine, Paris, F-75005, France. .,Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy en Josas, 78350, France.
| |
Collapse
|
25
|
Mancia A, Lunardi D, Abelli L. The chronicles of the contaminated Mediterranean seas: a story told by the cetaceans' skin genes. MARINE POLLUTION BULLETIN 2018; 127:10-14. [PMID: 29475641 DOI: 10.1016/j.marpolbul.2017.11.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/11/2017] [Accepted: 11/16/2017] [Indexed: 06/08/2023]
Abstract
Wild animals in their natural environment could provide a big source of information, but sampling can be very challenging, above all for protected species, like marine mammals. Nevertheless, significant data can be obtained sampling stranded animals right after their death, taking into account proper sampling time and methodology. RNA samples from the skin of 12 individuals including the species Stenella coeruleoalba, Tursiops truncatus, and Grampus griseus were used to test 4 potential gene markers of anthropogenic contaminants exposure. The individuals were sampled in 3 geographic areas: the Adriatic, Ionian and Tyrrhenian seas. Three out of the 4 genes tested showed higher expression in the samples collected from the Adriatic Sea. Minute skin samples tell the story of the specific geographic location where the marine mammal spent its life, thanks to the different impact on gene expression exerted by different contamination levels.
Collapse
Affiliation(s)
- Annalaura Mancia
- University of Ferrara, Department of Life Sciences and Biotechnology, Ferrara 44121, Italy.
| | - Denise Lunardi
- University of Ferrara, Department of Life Sciences and Biotechnology, Ferrara 44121, Italy
| | - Luigi Abelli
- University of Ferrara, Department of Life Sciences and Biotechnology, Ferrara 44121, Italy
| |
Collapse
|
26
|
Akishina AA, Vorontsova JE, Cherezov RO, Mertsalov IB, Zatsepina OG, Slezinger MS, Panin VM, Petruk S, Enikolopov GN, Mazo A, Simonova OB, Kuzin BA. Xenobiotic-induced activation of human aryl hydrocarbon receptor target genes in Drosophila is mediated by the epigenetic chromatin modifiers. Oncotarget 2017; 8:102934-102947. [PMID: 29262535 PMCID: PMC5732701 DOI: 10.18632/oncotarget.22173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/13/2017] [Indexed: 01/07/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is the key transcription factor that controls animal development and various adaptive processes. The AHR’s target genes are involved in biodegradation of endogenous and exogenous toxins, regulation of immune response, organogenesis, and neurogenesis. Ligand binding is important for the activation of the AHR signaling pathway. Invertebrate AHR homologs are activated by endogenous ligands whereas vertebrate AHR can be activated by both endogenous and exogenous ligands (xenobiotics). Several studies using mammalian cultured cells have demonstrated that transcription of the AHR target genes can be activated by exogenous AHR ligands, but little is known about the effects of AHR in a living organism. Here, we examined the effects of human AHR and its ligands using transgenic Drosophila lines with an inducible human AhR gene. We found that exogenous AHR ligands can increase as well as decrease the transcription levels of the AHR target genes, including genes that control proliferation, motility, polarization, and programmed cell death. This suggests that AHR activation may affect the expression of gene networks that could be critical for cancer progression and metastasis. Importantly, we found that AHR target genes are also controlled by the enzymes that modify chromatin structure, in particular components of the epigenetic Polycomb Repressive complexes 1 and 2. Since exogenous AHR ligands (alternatively – xenobiotics) and small molecule inhibitors of epigenetic modifiers are often used as pharmaceutical anticancer drugs, our findings may have significant implications in designing new combinations of therapeutic treatments for oncological diseases.
Collapse
Affiliation(s)
- Angelina A Akishina
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Julia E Vorontsova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Roman O Cherezov
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Il'ya B Mertsalov
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga G Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail S Slezinger
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladislav M Panin
- Department of Biochemistry and Biophysics, Texas A and M University, College Station, TX, USA
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Grigori N Enikolopov
- Center for Developmental Genetics, Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Olga B Simonova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris A Kuzin
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Sakurai S, Shimizu T, Ohto U. The crystal structure of the AhRR-ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription. J Biol Chem 2017; 292:17609-17616. [PMID: 28904176 DOI: 10.1074/jbc.m117.812974] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/12/2017] [Indexed: 12/19/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin and related compounds are extraordinarily potent environmental toxic pollutants. Most of the 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicities are mediated by aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor belonging to the basic helix-loop-helix (bHLH) Per-ARNT-Sim (PAS) family. Upon ligand binding, AhR forms a heterodimer with AhR nuclear translocator (ARNT) and induces the expression of genes involved in various biological responses. One of the genes induced by AhR encodes AhR repressor (AhRR), which also forms a heterodimer with ARNT and represses the activation of AhR-dependent transcription. The control of AhR activation is critical for managing AhR-mediated diseases, but the mechanisms by which AhRR represses AhR activation remain poorly understood, because of the lack of structural information. Here, we determined the structure of the AhRR-ARNT heterodimer by X-ray crystallography, which revealed an asymmetric intertwined domain organization presenting structural features that are both conserved and distinct among bHLH-PAS family members. The structures of AhRR-ARNT and AhR-ARNT were similar in the bHLH-PAS-A region, whereas the PAS-B of ARNT in the AhRR-ARNT complex exhibited a different domain arrangement in this family reported so far. The structure clearly disclosed that AhRR competitively represses AhR binding to ARNT and target DNA and further suggested the existence of an AhRR-ARNT-specific repression mechanism. This study provides a structural basis for understanding the mechanism by which AhRR represses AhR-mediated gene transcription.
Collapse
Affiliation(s)
- Shunya Sakurai
- From the Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan and
| | - Toshiyuki Shimizu
- From the Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan and .,the Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Umeharu Ohto
- From the Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan and
| |
Collapse
|
28
|
Sadowska A, Nynca A, Ruszkowska M, Paukszto L, Myszczynski K, Orlowska K, Swigonska S, Molcan T, Jastrzebski JP, Ciereszko RE. Transcriptional profiling of porcine granulosa cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. CHEMOSPHERE 2017; 178:368-377. [PMID: 28340459 DOI: 10.1016/j.chemosphere.2017.03.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 06/06/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a toxic man-made chemical compound contaminating the environment. An exposure of living organisms to TCDD may result in numerous disorders, including reproductive pathologies. The aim of the current study was to examine the effects of TCDD on the transcriptome of porcine granulosa cell line AVG-16. By employing next-generation sequencing (NGS) we aimed to identify genes potentially involved in the mechanism of TCDD action and toxicity in porcine granulosa cells. The AVG-16 cells were treated with TCDD (100 nM) for 3, 12 or 24 h, and afterwards total cellular RNA was isolated and sequenced. In TCDD-treated cells we identified 141 differentially expressed genes (DEGs; padjusted < 0.05 and log2 fold change ≥1.0). The DEGs were assigned to GO term, covering biological processes, molecular functions and cellular components. Due to the large number of genes with altered expression, in the current study we analyzed only the genes involved in follicular growth, development and functioning. The obtained results showed that TCDD may affect ovarian follicle fate by influencing granulosa cell cycle, proliferation and DNA repair. The demonstrated over-time changes in the quantity and quality of genes being affected by TCDD treatment showed that the effects of TCDD on granulosa cells changed dramatically between 3-, 12- and 24-h of cell culture. This finding indicate that timing of gene expression measurement is critical for drawing correct conclusions on detailed relationships between the TCDD-affected genes and resulting intracellular processes. These conclusions have to be confirmed and extended by research involving proteomic and functional studies.
Collapse
Affiliation(s)
- Agnieszka Sadowska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Monika Ruszkowska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Kamil Myszczynski
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Karina Orlowska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Tomasz Molcan
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Jan P Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Renata E Ciereszko
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland; Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
29
|
Subramanian S, Schnoor JL, Van Aken B. Effects of Polychlorinated Biphenyls (PCBs) and Their Hydroxylated Metabolites (OH-PCBs) on Arabidopsis thaliana. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7263-7270. [PMID: 28541669 PMCID: PMC5772893 DOI: 10.1021/acs.est.7b01538] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants metabolize polychlorinated biphenyls (PCBs) into hydroxylated derivatives (OH-PCBs), which are sometimes more toxic than the parent PCBs. The objective of this research was to compare the toxicity of a suite of PCBs and OH-PCBs toward the model plant, Arabidopsis thaliana. While parent PCBs and higher-chlorinated OH-PCBs exhibited a low or nondetectable toxicity, lower-chlorinated OH-PCBs significantly inhibited the germination rate and plant growth, with inhibition concentration 50% (IC50) ranging from 1.6 to 12.0 mg L-1. The transcriptomic response of A. thaliana to 2,5-dichlorobiphenyl (2,5-DCB), and its OH metabolite, 4'-OH-2,5-DCB, was then examined using whole-genome expression microarrays (Affymetrix). Exposure to 2,5-DCB and 4'-OH-2,5-DCB resulted in different expression patterns, with the former leading to enrichment of genes involved in response to toxic stress and detoxification functions. Exposure to 2,5-DCB induced multiple xenobiotic response genes, such as cytochrome P-450 and glutathione S-transferases, potentially involved in the PCB metabolism. On the contrary, exposure to both compounds resulted in the down-regulation of genes involved in stresses not directly related to toxicity. Unlike its OH derivative, 2,5-DCB was shown to induce a transcriptomic profile similar to plant safeners, which are nontoxic chemicals stimulating detoxification pathways in plants. The differentiated induction of detoxification enzymes by 2,5-DCB may explain its lower phytotoxicity compared to 4'-OH-2,5-DCB.
Collapse
Affiliation(s)
- Srishty Subramanian
- Department of Civil & Environmental Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jerald L. Schnoor
- Department of Civil & Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Benoit Van Aken
- Department of Civil & Environmental Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
- Corresponding Author, . Phone: 215-204-7087. Fax: 215-204-4696
| |
Collapse
|
30
|
Whitehead A, Clark BW, Reid NM, Hahn ME, Nacci D. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish ( Fundulus heteroclitus) populations. Evol Appl 2017; 10:762-783. [PMID: 29151869 PMCID: PMC5680427 DOI: 10.1111/eva.12470] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human‐mediated environmental changes, including environmental pollution. Here we review how key features of populations, the characteristics of environmental pollution, and the genetic architecture underlying adaptive traits, may interact to shape the likelihood of evolutionary rescue from pollution. Large populations of Atlantic killifish (Fundulus heteroclitus) persist in some of the most contaminated estuaries of the United States, and killifish studies have provided some of the first insights into the types of genomic changes that enable rapid evolutionary rescue from complexly degraded environments. We describe how selection by industrial pollutants and other stressors has acted on multiple populations of killifish and posit that extreme nucleotide diversity uniquely positions this species for successful evolutionary adaptation. Mechanistic studies have identified some of the genetic underpinnings of adaptation to a well‐studied class of toxic pollutants; however, multiple genetic regions under selection in wild populations seem to reflect more complex responses to diverse native stressors and/or compensatory responses to primary adaptation. The discovery of these pollution‐adapted killifish populations suggests that the evolutionary influence of anthropogenic stressors as selective agents occurs widely. Yet adaptation to chemical pollution in terrestrial and aquatic vertebrate wildlife may rarely be a successful “solution to pollution” because potentially adaptive phenotypes may be complex and incur fitness costs, and therefore be unlikely to evolve quickly enough, especially in species with small population sizes.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Environmental Toxicology University of California Davis Davis CA USA
| | - Bryan W Clark
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development Oak Ridge Institute for Science and Education US Environmental Protection Agency Narragansett RI USA
| | - Noah M Reid
- Department of Molecular and Cell Biology University of Connecticut Storrs CT USA
| | - Mark E Hahn
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA.,Superfund Research Program Boston University Boston MA USA
| | - Diane Nacci
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development US Environmental Protection Agency Narragansett RI USA
| |
Collapse
|
31
|
Ho CC, Lee HL, Chen CY, Luo YH, Tsai MH, Tsai HT, Lin P. Involvement of the cytokine-IDO1-AhR loop in zinc oxide nanoparticle-induced acute pulmonary inflammation. Nanotoxicology 2017; 11:360-370. [PMID: 28285566 DOI: 10.1080/17435390.2017.1306129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely used in our daily life, such as in sunscreens and electronic nanodevices. However, pulmonary exposure to ZnONPs causes acute pulmonary inflammation, which is considered as an initial event for various respiratory diseases. Thus, elucidation of the underlying cellular mechanisms of ZnONPs can help us in predicting their potential effects in respiratory diseases. In this study, we observed that ZnONPs increased proinflammatory cytokines, accompanied with an increased expression of aryl hydrocarbon receptor (AhR) and its downstream target cytochrome P450 1A1 (CYP1A1) in macrophages in vitro and in mouse lung epithelia in vivo. Moreover, zinc nitrate, but not silica or titanium dioxide nanoparticles (NPs), had similar effects on macrophages, indicating that the zinc element or ion released from ZnONPs is likely responsible for the activation of the AhR pathway. Cotreatment with an AhR antagonist or AhR knockout reduced ZnONPs-induced cytokine secretion in macrophages or mice, respectively. Furthermore, kynurenine (KYN), an endogenous AhR agonist and a tryptophan metabolite catalyzed by indoleamine 2,3-dioxygenase (IDO), was increased in the serums of mice that aspirated ZnONPs. Consistently, ZnONPs increased IDO1 expression in lung cells in vitro and in vivo. Finally, AhR knockout reduced ZnONPs-induced pulmonary inflammation, cytokine secretion and KYN production in mice, suggesting that AhR activation is involved in ZnONPs-induced cytokine secretion and pulmonary inflammation. In summary, we demonstrated that the pulmonary exposure of ZnONPs stimulated the cytokine-IDO1-AhR loop in the lungs, which has been implied to play roles in immune dysfunctions.
Collapse
Affiliation(s)
- Chia-Chi Ho
- a National Health Research Institutes, National Institute of Environmental Health Sciences , Zhunan , Taiwan
| | - Hui-Ling Lee
- b Department of Chemistry , Fu Jen Catholic University , New Taipei City , Taiwan
| | - Chao-Yu Chen
- b Department of Chemistry , Fu Jen Catholic University , New Taipei City , Taiwan
| | - Yueh-Hsia Luo
- a National Health Research Institutes, National Institute of Environmental Health Sciences , Zhunan , Taiwan
| | - Ming-Hsien Tsai
- a National Health Research Institutes, National Institute of Environmental Health Sciences , Zhunan , Taiwan
| | - Hui-Ti Tsai
- a National Health Research Institutes, National Institute of Environmental Health Sciences , Zhunan , Taiwan
| | - Pinpin Lin
- a National Health Research Institutes, National Institute of Environmental Health Sciences , Zhunan , Taiwan
| |
Collapse
|
32
|
Cheng L, Qian L, Wang GS, Li XM, Li XP. Genetic association of aromatic hydrocarbon receptor and its repressor gene polymorphisms with risk of rheumatoid arthritis in Han Chinese populations. Medicine (Baltimore) 2017; 96:e6392. [PMID: 28403070 PMCID: PMC5403067 DOI: 10.1097/md.0000000000006392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The goal of this study was to evaluate the potential relationship among polymorphisms of aromatic hydrocarbon receptor, aromatic hydrocarbon receptor repressor, and rheumatoid arthritis (RA) susceptibility as well as the association among the polymorphisms of aromatic hydrocarbon receptor, aromatic hydrocarbon receptor repressor, and their expression.We performed a hospital-based, case-control study of 400 patients with RA and 726 healthy controls in Han Chinese populations. Two single-nucleotide polymorphisms were selected for genotyping including aromatic hydrocarbon receptor (rs2066853) and aromatic hydrocarbon receptor repressor (rs2292596).To single-nucleotide polymorphism rs2292596, a statistically significantly increased risk of RA was found to be associated with the G allele of rs2292596; the odds ratio was 2.170 (95% confidence interval: 1.820-2.587). Unfortunately, no significant differences exhibited in the allelic and the genotype frequencies of rs2066853 between 2 groups. We failed to find any association between rs2066853, rs2292596 genotypes and their expression of patients, respectively. No statistical relationship was found between aromatic hydrocarbon receptor, aromatic hydrocarbon receptor repressor at messenger Ribonucleic acid levels and clinical data, either.This study demonstrated that the polymorphisms of rs2292596 was significant with genetic susceptibility to RA patients; furthermore, it suggests the G allele of rs2292596 might be associated with a dangerous effect on RA in Han Chinese populations.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University
| | - Long Qian
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University
| | - Guo-Sheng Wang
- Department of Rheumatology and Immunology, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiang-Pei Li
- Department of Rheumatology and Immunology, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
33
|
Transcript variations, phylogenetic tree and chromosomal localization of porcine aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) genes. J Genet 2017; 96:75-85. [PMID: 28360392 DOI: 10.1007/s12041-017-0745-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor best known for mediating xenobiotic-induced toxicity. AhR requires aryl hydrocarbon receptor nuclear translocator (ARNT) to form an active transcription complex and promote the activation of genes which have dioxin responsive element in their regulatory regions. The present study was performed to determine the complete cDNA sequences of porcine AhR and ARNT genes and their chromosomal localization. Total RNA from porcine livers were used to obtain the sequence of the entire porcine transcriptome by next-generation sequencing (NGS; lllumina HiSeq2500). In addition, both, in silico analysis and fluorescence in situ hybridization (FISH) were used to determine chromosomal localization of porcine AhR and ARNT genes. In silico analysis of nucleotide sequences showed that there were two transcript variants of AhR and ARNT genes in the pig. In addition, computer analysis revealed that AhR gene in the pig is located on chromosome 9 and ARNT on chromosome 4. The results of FISH experiment confirmed the localization of porcine AhR and ARNT genes. In the present study, for the first time, the full cDNAs of AhR and ARNT were demonstrated in the pig. In future, it would be interesting to determine the tissue distribution of AhR and ARNT transcript variants in the pig and to test whether these variants are associated with different biological functions and/or different activation pathways.
Collapse
|
34
|
Hahn ME, Karchner SI, Merson RR. Diversity as Opportunity: Insights from 600 Million Years of AHR Evolution. CURRENT OPINION IN TOXICOLOGY 2017; 2:58-71. [PMID: 28286876 DOI: 10.1016/j.cotox.2017.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and toxicologists. However, this protein has fundamental roles in biology that are being revealed through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in most major groups of modern bilaterian animals, including deuterostomes (chordates, hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans (e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR homologs also have been identified in cnidarians such as the sea anemone Nematostella and in the genome of Trichoplax, a placozoan. Bilaterians, cnidarians, and placozoans form the clade Eumetazoa, whose last common ancestor lived approximately 600 million years ago (MYA). The presence of AHR homologs in modern representatives of all these groups indicates that the original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates reveal parallel functions of AHR in the development and function of sensory neural systems, suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The existence of multiple AHRs may have facilitated subfunction partitioning and specialization of specific AHR types in some taxa. Additional research in diverse model and non-model species will continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, MS-32, Woods Hole, MA 02543, USA
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, MS-32, Woods Hole, MA 02543, USA
| | - Rebeka R Merson
- Biology Department, Rhode Island College, 600 Mt. Pleasant Avenue, 251 Fogarty Life Sciences, Providence, RI 02908
| |
Collapse
|
35
|
Novikov O, Wang Z, Stanford EA, Parks AJ, Ramirez-Cardenas A, Landesman E, Laklouk I, Sarita-Reyes C, Gusenleitner D, Li A, Monti S, Manteiga S, Lee K, Sherr DH. An Aryl Hydrocarbon Receptor-Mediated Amplification Loop That Enforces Cell Migration in ER-/PR-/Her2- Human Breast Cancer Cells. Mol Pharmacol 2016; 90:674-688. [PMID: 27573671 PMCID: PMC5074452 DOI: 10.1124/mol.116.105361] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
The endogenous ligand-activated aryl hydrocarbon receptor (AHR) plays an important role in numerous biologic processes. As the known number of AHR-mediated processes grows, so too does the importance of determining what endogenous AHR ligands are produced, how their production is regulated, and what biologic consequences ensue. Consequently, our studies were designed primarily to determine whether ER−/PR−/Her2− breast cancer cells have the potential to produce endogenous AHR ligands and, if so, how production of these ligands is controlled. We postulated that: 1) malignant cells produce tryptophan-derived AHR ligand(s) through the kynurenine pathway; 2) these metabolites have the potential to drive AHR-dependent breast cancer migration; 3) the AHR controls expression of a rate-limiting kynurenine pathway enzyme(s) in a closed amplification loop; and 4) environmental AHR ligands mimic the effects of endogenous ligands. Data presented in this work indicate that primary human breast cancers, and their metastases, express high levels of AHR and tryptophan-2,3-dioxygenase (TDO); representative ER−/PR−/Her2− cell lines express TDO and produce sufficient intracellular kynurenine and xanthurenic acid concentrations to chronically activate the AHR. TDO overexpression, or excess kynurenine or xanthurenic acid, accelerates migration in an AHR-dependent fashion. Environmental AHR ligands 2,3,7,8-tetrachlorodibenzo[p]dioxin and benzo[a]pyrene mimic this effect. AHR knockdown or inhibition significantly reduces TDO2 expression. These studies identify, for the first time, a positive amplification loop in which AHR-dependent TDO2 expression contributes to endogenous AHR ligand production. The net biologic effect of AHR activation by endogenous ligands, which can be mimicked by environmental ligands, is an increase in tumor cell migration, a measure of tumor aggressiveness.
Collapse
Affiliation(s)
- Olga Novikov
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Elizabeth A Stanford
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Ashley J Parks
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Alejandra Ramirez-Cardenas
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Esther Landesman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Israa Laklouk
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Carmen Sarita-Reyes
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Daniel Gusenleitner
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Amy Li
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Stefano Monti
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Sara Manteiga
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Kyongbum Lee
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| |
Collapse
|
36
|
Lehmann DW, Levine JF, McHugh Law J. Polychlorinated Biphenyl Exposure Causes Gonadal Atrophy and Oxidative Stress in Corbicula fluminea Clams. Toxicol Pathol 2016; 35:356-65. [PMID: 17455083 DOI: 10.1080/01926230701230288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Polychlorinated biphenyls (PCBs) are widespread environmental contaminants that have been linked to oxidative and other toxic effects in both humans and wildlife. Due to recent environmental health concerns at a PCB contaminated Superfund site near Raleigh, NC, we used a common clam species ( Corbicula fluminea) as surrogates to isolate the effects of PCBs on threatened bivalves native to the region. Under controlled laboratory conditions, clams were exposed to 0, 1, 10, or 100 ppb Aroclor 1260 in the ambient water for 21 days. Measured biomarkers spanned a range of effective levels of biological organization including low molecular weight antioxidants, lipid-soluble antioxidants, and whole tissue radical absorption capacity. These data were augmented by use of histological evaluation of whole samples. Aroclor 1260 significantly increased reduced glutathione (GSH) and total protein concentrations at all treatments levels. Significant decreases were measured in all treatments in γ-tocopherol and total oxidant scavenging capacity (TOSC) and α-tocopherol values in the 100 ppb exposure. Histologically, Aroclor 1260 caused significant gonadal atrophy, effacement of gonad architecture with accumulations of Brown cells, and inflammation and necrosis in digestive glands and foot processes. Our results indicate that oxidative mechanisms play a significant role in the decreased health of these clams due to exposure to Aroclor 1260. The changes in the gonads of exposed clams suggest that a serious threat to bivalve reproduction exists due to PCB exposure.
Collapse
Affiliation(s)
- Daniel W Lehmann
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
37
|
Gilfeather CL, Lemley CO. Effects of Interferon‐Tau and Steroids on Cytochrome P450 Activity in Bovine Endometrial Epithelial Cells. Reprod Domest Anim 2016; 51:415-20. [DOI: 10.1111/rda.12695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/29/2016] [Indexed: 11/29/2022]
Affiliation(s)
- CL Gilfeather
- Department of Animal and Dairy Sciences Mississippi State University Mississippi State MS USA
| | - CO Lemley
- Department of Animal and Dairy Sciences Mississippi State University Mississippi State MS USA
| |
Collapse
|
38
|
Liu W, Wang LY, Xing XX, Fan GW. Conditions and possible mechanisms of VCD-induced ovarian failure. Altern Lab Anim 2016; 43:385-92. [PMID: 26753941 DOI: 10.1177/026119291504300606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Perimenopause is an important period in women's lives, in which they experience a series of physiological changes. Current animal models of perimenopause fail to adequately replicate this particular stage in female life, while current in vitro models are too simplistic and cannot account for systemic effects. Neither the naturally-ageing animal model, nor the ovariectomised animal model, mimic the natural transitional process that is the menopause. In vivo and in vitro studies have confirmed that the occupational chemical, 4-vinylcyclohexene diepoxide (VCD), can cause selective destruction of the ovarian primordial and primary follicles of rats and mice by accelerating the apoptotic process, which successfully mimics the perimenopausal state in women. However, it is the in vivo VCD-induced rodent perimenopausal models that are currently the most widely used in research, rather than any of the available in vitro models. Studies on the mechanisms involved have found that VCD induces ovotoxicity via interference with the c-kit/kit ligand and apoptotic signalling pathways, among others. Overall, the VCD-induced perimenopausal animal models have provided some insight into female perimenopause, but they are far from ideal models of the human situation.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ling-Yan Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Xue Xing
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guan-Wei Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
39
|
Vázquez-Gómez G, Rubio-Lightbourn J, Espinosa-Aguirre JJ. MECANISMOS DE ACCIÓN DEL RECEPTOR DE HIDROCARBUROS DE ARILOS EN EL METABOLISMO DEL BENZO[A]PIRENO Y EL DESARROLLO DE TUMORES. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2016. [DOI: 10.1016/j.recqb.2016.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
Choi MS, Kwon SR, Choi SH, Kwon HC. Effect of TBT and PAHs on CYP1A, AhR and Vitellogenin Gene Expression in the Japanese Eel, Anguilla japonica. Dev Reprod 2015; 16:289-94. [PMID: 25949102 PMCID: PMC4282236 DOI: 10.12717/dr.2012.16.4.289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 11/20/2022]
Abstract
Gene expressions of cytochrome P4501A (CYP1A), aryl hydrocarbon receptor (AhR) and vitellogenin (Vg) by endocrine disruptors, benzo[α]pyrene (B[a]P) and tributyltin (TBT) were examined in cultured eel hepatocytes which were isolated from eels treated previously with B[a]P (10 mg/kg) or estradiol-17β (20 mg/kg) in vivo, and the relationship between CYP1A, AhR and Vg genes were studied. When the cultured eel hepatocytes were treated with B[a]P (10-6-10-5 M) the gene expressions of CYP1A and AhR were enhanced in a concentration-dependent manner. However, when treated with TBT (10-9-10-5 M) the gene expressions of CYP1A and AhR were suppressed at high concentrations (10-6-10-5 M), while having no effects at low concentrations (10-9-10-7 M). Gene expression of Vg was also suppressed by TBT in a concentration-dependent manner in cultured eel hepatocytes which was previously treated in vivo with estradiol-17β.
Collapse
Affiliation(s)
- Min Seop Choi
- Dept. of Aquatic Life Medical Science, Sun Moon University, Asan 336-708, Korea
| | - Se Ryun Kwon
- Dept. of Aquatic Life Medical Science, Sun Moon University, Asan 336-708, Korea
| | - Seong Hee Choi
- Dept. of Food Science, Sun Moon University, Asan 336-708, Korea
| | - Hyuk Chu Kwon
- Dept. of Aquatic Life Medical Science, Sun Moon University, Asan 336-708, Korea
| |
Collapse
|
41
|
Huang S, Shui X, He Y, Xue Y, Li J, Li G, Lei W, Chen C. AhR expression and polymorphisms are associated with risk of coronary arterial disease in Chinese population. Sci Rep 2015; 5:8022. [PMID: 25620626 PMCID: PMC4306136 DOI: 10.1038/srep08022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/29/2014] [Indexed: 11/15/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) mediates the control of environmental toxicity, and modulates the development and pathogenesis of the cardiovascular system. However, little is known about the role of AhR in coronary arterial disease (CAD) susceptibility. We therefore conducted a case-control study in a Chinese population, and assessed the potential association between AhR variants and CAD susceptibility. Compared with the controls, circulating AhR expression was found to be significantly increased in patients with CAD and its subtypes including ST-segment and non-ST-segment elevation myocardial infarction, and stable and unstable angina pectoris. Receiver operating characteristic (ROC) analysis to evaluate the effect of AhR on CAD progression showed it to be a potent biomarker for CAD. Genotype frequencies of AhR rs2066853 differed significantly between CAD and control subjects, while smoking and hyperlipidemia markedly promoted CAD risk relative to the AhR polymorphism. Moreover, a significant difference in AhR variant distribution was observed between the four CAD subtypes with different severities. The expression level and functional polymorphisms of circulating AhR may affect the susceptibility and progression of CAD in Chinese populations. This provides a novel view of the etiology and epidemiology of CAD, and will contribute to the diagnosis and therapy of this severe disease.
Collapse
Affiliation(s)
- Shian Huang
- 1] Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang 524001, China [2] Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Guangdong Medical College, Zhanjiang 524001, China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang 524001, China
| | - Yiqiang Xue
- Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Jianwen Li
- Laboratory of Vascular Surgery, Guangdong Medical College, Zhanjiang 524001, China
| | - Guoming Li
- Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Wei Lei
- 1] Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang 524001, China [2] Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Can Chen
- 1] Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang 524001, China [2] Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| |
Collapse
|
42
|
Jones SP, Kennedy SW. Feathers as a source of RNA for genomic studies in avian species. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:55-60. [PMID: 25253643 DOI: 10.1007/s10646-014-1354-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2014] [Indexed: 06/03/2023]
Abstract
Dioxins and dioxin-like chemicals (DLCs) cause a suite of adverse effects in terrestrial species. Most of the adverse effects occur subsequent to binding to the aryl hydrocarbon receptor. Avian species vary in their sensitivity to the effects of DLCs and current research indicates that this is mediated by variations in the amino acid sequence within the ligand binding domain (LBD) of the aryl hydrocarbon receptor 1 (AHR1). Eighty-eight avian species have been classified into three broad categories of sensitivity, based on the amino acid variations within the AHR1 LBD: sensitive type 1 (Ile324_Ser380), moderately sensitive type 2 (Ile324_Ala380), and relatively insensitive type 3 (Val324_Ala380). Risk assessment of avian species can be complicated due to the variability in sensitivity among species. A predictive tool for selecting the priority species at a given site would have broad implications for the risk assessment community. We present a method for AHR1 genotyping using plucked feathers as a source of RNA. The method is extremely robust, requires minimal sample processing and handling, and eliminates the need for blood sampling or tissue collection from the species of interest. Using this method we were able to determine the amino acid sequence of the AHR LBD of three avian species: the chicken, the herring gull, and the zebra finch, and to categorize them based on the identity of amino acids at key sites within the LBD.
Collapse
Affiliation(s)
- Stephanie P Jones
- Environment Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Raven Road, Ottawa, ON, K1A 0H3, Canada,
| | | |
Collapse
|
43
|
Luckenbach T, Fischer S, Sturm A. Current advances on ABC drug transporters in fish. Comp Biochem Physiol C Toxicol Pharmacol 2014; 165:28-52. [PMID: 24858718 DOI: 10.1016/j.cbpc.2014.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 01/14/2023]
Abstract
Most members of the large ATP-binding cassette (ABC) gene family are transporters involved in substrate translocation across biological membranes. In eukaryotes, ABC proteins functioning as drug transporters are located in the plasma membrane and mediate the cellular efflux of a wide range of organic chemicals, with some transporters also transporting certain metals. As the enhanced expression of ABC drug transporters can confer multidrug resistance (MDR) to cancers and multixenobiotic resistance (MXR) to organisms from polluted habitats, these ABC family members are also referred to as MDR or MXR proteins. In mammals, ABC drug transporters show predominant expression in tissues involved in excretion or constituting internal or external body boundaries, where they facilitate the excretion of chemicals and their metabolites, and limit chemical uptake and penetration into "sanctuary" sites of the body. Available knowledge about ABC proteins is still limited in teleost fish, a large vertebrate group of high ecological and economic importance. Using transport activity measurements and immunochemical approaches, early studies demonstrated similarities in the tissue distribution of ABC drug transporters between teleosts and mammals, suggesting conserved roles of the transporters in the biochemical defence against toxicants. Recently, the availability of teleost genome assemblies has stimulated studies of the ABC family in this taxon. This review summarises the current knowledge regarding the genetics, functional properties, physiological function, and ecotoxicological relevance of teleostean ABC transporters. The available literature is reviewed with emphasis on recent studies addressing the tissue distribution, substrate spectrum, regulation, physiological function and phylogenetic origin of teleostean ABC transporters.
Collapse
Affiliation(s)
- Till Luckenbach
- Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Stephan Fischer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Department of Environmental Systems Sciences, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Armin Sturm
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
44
|
Eichbaum K, Brinkmann M, Buchinger S, Reifferscheid G, Hecker M, Giesy JP, Engwall M, van Bavel B, Hollert H. In vitro bioassays for detecting dioxin-like activity--application potentials and limits of detection, a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 487:37-48. [PMID: 24762647 DOI: 10.1016/j.scitotenv.2014.03.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 05/05/2023]
Abstract
Use of in vitro assays as screening tool to characterize contamination of a variety of environmental matrices has become an increasingly popular and powerful toolbox in the field of environmental toxicology. While bioassays cannot entirely substitute analytical methods such as gas chromatography-mass spectrometry (GC-MS), the increasing improvement of cell lines and standardization of bioassay procedures enhance their utility as bioanalytical pre-screening tests prior to more targeted chemical analytical investigations. Dioxin-receptor-based assays provide a holistic characterization of exposure to dioxin-like compounds (DLCs) by integrating their overall toxic potential, including potentials of unknown DLCs not detectable via e.g. GC-MS. Hence, they provide important additional information with respect to environmental risk assessment of DLCs. This review summarizes different in vitro bioassay applications for detection of DLCs and considers the comparability of bioassay and chemical analytically derived toxicity equivalents (TEQs) of different approaches and various matrices. These range from complex samples such as sediments through single reference to compound mixtures. A summary of bioassay derived detection limits (LODs) showed a number of current bioassays to be equally sensitive as chemical methodologies, but moreover revealed that most of the bioanalytical studies conducted to date did not report their LODs, which represents a limitation with regard to low potency samples.
Collapse
Affiliation(s)
- Kathrin Eichbaum
- Institute for Environmental Research, Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Markus Brinkmann
- Institute for Environmental Research, Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sebastian Buchinger
- Federal Institute of Hydrology (BFG), Department G3: Biochemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Georg Reifferscheid
- Federal Institute of Hydrology (BFG), Department G3: Biochemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Markus Hecker
- School of the Environment & Sustainability and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, SK S7N 5B3 Saskatoon, Canada
| | - John P Giesy
- School of the Environment & Sustainability and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, SK S7N 5B3 Saskatoon, Canada; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, SK S7N 5B3 Saskatoon, Canada; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Magnus Engwall
- Man-Technology-Environment Research Centre, Deptartment of Natural Sciences, Örebro University, 70182 Örebro, Sweden
| | - Bert van Bavel
- Man-Technology-Environment Research Centre, Deptartment of Natural Sciences, Örebro University, 70182 Örebro, Sweden
| | - Henner Hollert
- Institute for Environmental Research, Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Key Laboratory of Yangtze River Environment of Education Ministry of China, College of Environmental Science and Engineering, Tongji University, Shanghai, China; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China; School of Environment, Nanjing University, China.
| |
Collapse
|
45
|
Chang Z, Lu M, Kim SS, Park JS. Potential role of HSP90 in mediating the interactions between estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) signaling pathways. Toxicol Lett 2014; 226:6-13. [PMID: 24487124 DOI: 10.1016/j.toxlet.2014.01.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 11/28/2022]
Abstract
The estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) are ligand-activated transcription factors involved in estrogen or xenobiotic exposure, whereas the 90-kDa heat shock protein (HSP90), which is a ubiquitously expressed molecular chaperone, is involved in the signal transduction process. Although the interactions between these pathways have been under investigation, the mechanisms are unclear and the potential role of HSP90 in these interactions has not been reported. The results of goldfish primary hepatocytes showed that exposure to PCB77 and 17β-estradiol (E2) alone induced significant protein expression of cytochrome P450 1A (CYP1A) and vitellogenin (VTG), respectively. On the other hand, the combined exposure to PCB77 and E2 led to the reduction of CYP1A and VTG compared to the single treatments. Although the AhRs and ERs were naturally induced during the co-treatment, the total amount of HSP90 binding to the receptors was not changed. Furthermore, while the HSP90 chaperon activity was blocked by the specific inhibitor (geldanamycin), reciprocal inhibition between AhR and ER pathways was not observed. These findings indicate a potential role of HSP90 where competition between AhR and ER for binding to HSP90 can occur and cause reciprocal inhibition.
Collapse
Affiliation(s)
- Ziwei Chang
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Ming Lu
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - So-Sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Jang-Su Park
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
46
|
Lin Z, Fisher JW, Wang R, Ross MK, Filipov NM. Estimation of placental and lactational transfer and tissue distribution of atrazine and its main metabolites in rodent dams, fetuses, and neonates with physiologically based pharmacokinetic modeling. Toxicol Appl Pharmacol 2013; 273:140-58. [DOI: 10.1016/j.taap.2013.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/07/2013] [Accepted: 08/10/2013] [Indexed: 11/27/2022]
|
47
|
Ball A, Truskewycz A. Polyaromatic hydrocarbon exposure: an ecological impact ambiguity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:4311-4326. [PMID: 23529398 DOI: 10.1007/s11356-013-1620-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/07/2013] [Indexed: 06/02/2023]
Abstract
Polyaromatic hydrocarbons (PAHs) represent a fraction of petroleum hydrocarbons and are currently one of the foremost sources of generating energy in today's contemporary society. However, evidence highlighted in this review show that PAH pollution, as a result of oil spills, hazardous PAH-contaminated working environments and technologies which do not efficiently utilise fuels, as well as natural sources of emissions (e.g. forest fires) may have significant health implications for all taxa. The extent of damage to organisms from PAH exposure is dependent on numerous factors including degree and type of PAH exposure, nature of the environment contaminated (i.e. terrestrial or aquatic), the ability of an organism to relocate to pristine environments, type and sensitivity of organism to specific hydrocarbon fractions and ability of the organism to metabolise different PAH fractions. The review highlights the fact that studies on the potential damage of PAHs should be carried out using mixtures of hydrocarbons as opposed to individual hydrocarbon fractions due to the scarcity of individual fractions being a sole contaminant. Furthermore, potential damage of PAH-contaminated sites should be assessed using an entire ecological impact outlook of the affected area.
Collapse
Affiliation(s)
- Andrew Ball
- RMIT University, Plenty Road, Building: 223 Level: 1 Room: 53A, Bundoora 3083, Australia.
| | | |
Collapse
|
48
|
Putz MV, Putz AM. DFT Chemical Reactivity Driven by Biological Activity: Applications for the Toxicological Fate of Chlorinated PAHs. STRUCTURE AND BONDING 2012. [DOI: 10.1007/978-3-642-32750-6_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Ko SK, Shin I. Cardiosulfa induces heart deformation in zebrafish through the AhR-mediated, CYP1A-independent pathway. Chembiochem 2012; 13:1483-9. [PMID: 22692990 DOI: 10.1002/cbic.201200177] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Indexed: 11/07/2022]
Abstract
Heart development is a complicated and elaborate biological process. To study this and similar complicated process and diseases, the discovery and use of small molecules for probing biological events is invaluable. As part of such an investigation, we have identified cardiosulfa, a small molecule that induces severely impaired heart morphology and function in zebrafish. The results of the present study show that cardiosulfa-promoted heart deformation is protected by negative regulators of the aryl hydrocarbon receptor (AhR) signaling pathway, such as the AhR antagonist CH-223191 and an AhR2-morpholino antisense oligonucleotide, zfahr2-MO. However, the toxic effect of cardiosulfa is not alleviated by zfcyp1a-MO, a morpholino antisense oligo for cytochrome P450 1A (CYP1A), which is the most well-characterized gene of the AhR pathway. Similar results were obtained for the known AhR agonist PCB126. These observations suggest that cardiosulfa causes heart deformation in zebrafish through the AhR-mediated, CYP1A-independent pathway. Our results indicate that cardiosulfa has potential as a novel type of a biological probe to investigate the AhR pathway.
Collapse
Affiliation(s)
- Sung-Kyun Ko
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, 120-749 Seoul, Korea
| | | |
Collapse
|
50
|
Yan Z, Lu G, He J. Reciprocal inhibiting interactive mechanism between the estrogen receptor and aryl hydrocarbon receptor signaling pathways in goldfish (Carassius auratus) exposed to 17β-estradiol and benzo[a]pyrene. Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:17-23. [PMID: 22425873 DOI: 10.1016/j.cbpc.2012.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 12/24/2022]
Abstract
In the aquatic environment, both the estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) responses are established biomarkers for assessing exposure to pollutants. These receptor responses can also be affected by the presence of other classes of pollutants and may result in misinterpretation of existing pollution. In this study, we investigated the interaction between ER-vitellogenin (VTG) and AhR-cytochrome P450 1A (CYP1A) signaling pathways in goldfish (Carassius auratus) after 10 days exposure to pollutants. 17β-Estradiol (E(2)) and benzo[a]pyrene (BaP) were selected as the ER and AhR agonists, respectively. The messenger RNA (mRNA) expression of ER-VTG and AhR-CYP1A in liver was determined using quantitative real-time polymerase chain reaction (QRT-PCR). VTG, endogenous E(2) and 7-ethoxyresorufin-O-deethylase (EROD) were also studied. Exposure to E(2) and BaP alone significantly induced the gene expression of ERα-VTG and AhR2-CYP1A, respectively. Moreover, the obvious expression of related proteins was also observed. However, these inductions were significantly reduced after combined exposure to E(2) and lower concentrations of BaP (20 and 50 μg/L), indicative of a reciprocal inhibiting ER-AhR interaction. However, high concentrations (100 μg/L) of BaP did not affect the E(2)-induced gene expression. Changes in VTG protein were in accordance with the expression of VTG mRNA, and more VTG protein was observed in liver than in serum. The induced endogenous E(2) levels were suppressed by the presence of BaP. While the gene expression of CYP1A showed a concentration-dependent increase, EROD induction exhibited a bell-shaped concentration-response curve. Taken together, these results demonstrate a reciprocal inhibiting mode of ER-AhR interactions and may lead to a possible underestimation of actual exposure.
Collapse
MESH Headings
- Animals
- Benzo(a)pyrene/toxicity
- Cytochrome P-450 CYP1A1/blood
- Cytochrome P-450 CYP1A1/toxicity
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Egg Proteins/genetics
- Egg Proteins/metabolism
- Estradiol/blood
- Estradiol/toxicity
- Gene Expression/drug effects
- Goldfish/genetics
- Goldfish/metabolism
- Liver/metabolism
- Male
- RNA, Messenger/genetics
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Signal Transduction/drug effects
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, People's Republic of China
| | | | | |
Collapse
|