1
|
Bednarczyk E, Lu Y, Paini A, Batista Leite S, van Grunsven LA, Worth A, Whelan M. Extension of the Virtual Cell Based Assay from a 2-D to a 3-D Cell Culture Model. Altern Lab Anim 2022; 50:45-56. [PMID: 35238679 DOI: 10.1177/02611929221082200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prediction of chemical toxicity is very useful in risk assessment. With the current paradigm shift towards the use of in vitro and in silico systems, we present herein a theoretical mathematical description of a quasi-diffusion process to predict chemical concentrations in 3-D spheroid cell cultures. By extending a 2-D Virtual Cell Based Assay (VCBA) model into a 3-D spheroid cell model, we assume that cells are arranged in a series of concentric layers within the sphere. We formulate the chemical quasi-diffusion process by simplifying the spheroid with respect to the number of cells in each layer. The system was calibrated and tested with acetaminophen (APAP). Simulated predictions of APAP toxicity were compared with empirical data from in vitro measurements by using a 3-D spheroid model. The results of this first attempt to extend the VCBA model are promising - they show that the VCBA model simulates close correlation between the influence of compound concentration and the viability of the HepaRG 3-D cell culture. The 3-D VCBA model provides a complement to current in vitro procedures to refine experimental setups, to fill data gaps and help in the interpretation of in vitro data for the purposes of risk assessment.
Collapse
Affiliation(s)
- Ewa Bednarczyk
- European Commission, 49566Joint Research Centre (JRC), Ispra, Italy
| | - Yanfei Lu
- European Commission, 49566Joint Research Centre (JRC), Ispra, Italy
| | - Alicia Paini
- European Commission, 49566Joint Research Centre (JRC), Ispra, Italy
| | | | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussel, Belgium
| | - Andrew Worth
- European Commission, 49566Joint Research Centre (JRC), Ispra, Italy
| | - Maurice Whelan
- European Commission, 49566Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
2
|
Armitage JM, Sangion A, Parmar R, Looky AB, Arnot JA. Update and Evaluation of a High-Throughput In Vitro Mass Balance Distribution Model: IV-MBM EQP v2.0. TOXICS 2021; 9:toxics9110315. [PMID: 34822706 PMCID: PMC8625852 DOI: 10.3390/toxics9110315] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
This study demonstrates the utility of an updated mass balance model for predicting the distribution of organic chemicals in in vitro test systems (IV-MBM EQP v2.0) and evaluates its performance with empirical data. The IV-MBM EQP v2.0 tool was parameterized and applied to four independent data sets with measured ratios of bulk medium or freely-dissolved to initial nominal concentrations (e.g., C24/C0 where C24 is the measured concentration after 24 h of exposure and C0 is the initial nominal concentration). Model performance varied depending on the data set, chemical properties (e.g., "volatiles" vs. "non-volatiles", neutral vs. ionizable organics), and model assumptions but overall is deemed acceptable. For example, the r2 was greater than 0.8 and the mean absolute error (MAE) in the predictions was less than a factor of two for most neutral organics included. Model performance was not as good for the ionizable organic chemicals included but the r2 was still greater than 0.7 and the MAE less than a factor of three. The IV-MBM EQP v2.0 model was subsequently applied to several hundred chemicals on Canada's Domestic Substances List (DSL) with nominal effects data (AC50s) reported for two in vitro assays. We report the frequency of chemicals with AC50s corresponding to predicted cell membrane concentrations in the baseline toxicity range (i.e., >20-60 mM) and tabulate the number of chemicals with "volatility issues" (majority of chemical in headspace) and "solubility issues" (freely-dissolved concentration greater than water solubility after distribution). In addition, the predicted "equivalent EQP blood concentrations" (i.e., blood concentration at equilibrium with predicted cellular concentration) were compared to the AC50s as a function of hydrophobicity (log octanol-water partition or distribution ratio). The predicted equivalent EQP blood concentrations exceed the AC50 by up to a factor of 100 depending on hydrophobicity and assay conditions. The implications of using AC50s as direct surrogates for human blood concentrations when estimating the oral equivalent doses using a toxicokinetic model (i.e., reverse dosimetry) are then briefly discussed.
Collapse
Affiliation(s)
- James M. Armitage
- AES Armitage Environmental Sciences, Inc., Ottawa, ON K1L 8C3, Canada
- Correspondence:
| | - Alessandro Sangion
- ARC Arnot Research and Consulting, Inc., Toronto, ON M4M 1W4, Canada; (A.S.); (R.P.); (A.B.L.); (J.A.A.)
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Rohan Parmar
- ARC Arnot Research and Consulting, Inc., Toronto, ON M4M 1W4, Canada; (A.S.); (R.P.); (A.B.L.); (J.A.A.)
| | - Alexandra B. Looky
- ARC Arnot Research and Consulting, Inc., Toronto, ON M4M 1W4, Canada; (A.S.); (R.P.); (A.B.L.); (J.A.A.)
| | - Jon A. Arnot
- ARC Arnot Research and Consulting, Inc., Toronto, ON M4M 1W4, Canada; (A.S.); (R.P.); (A.B.L.); (J.A.A.)
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Effective exposure of chemicals in in vitro cell systems: A review of chemical distribution models. Toxicol In Vitro 2021; 73:105133. [DOI: 10.1016/j.tiv.2021.105133] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
|
4
|
Predicting exposure concentrations of chemicals with a wide range of volatility and hydrophobicity in different multi-well plate set-ups. Sci Rep 2021; 11:4680. [PMID: 33633258 PMCID: PMC7907087 DOI: 10.1038/s41598-021-84109-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
Quantification of chemical toxicity in small-scale bioassays is challenging owing to small volumes used and extensive analytical resource needs. Yet, relying on nominal concentrations for effect determination maybe erroneous because loss processes can significantly reduce the actual exposure. Mechanistic models for predicting exposure concentrations based on distribution coefficients exist but require further validation with experimental data. Here we developed a complementary empirical model framework to predict chemical medium concentrations using different well-plate formats (24/48-well), plate covers (plastic lid, or additionally aluminum foil or adhesive foil), exposure volumes, and biological entities (fish, algal cells), focusing on the chemicals’ volatility and hydrophobicity as determinants. The type of plate cover and medium volume were identified as important drivers of volatile chemical loss, which could accurately be predicted by the framework. The model focusing on adhesive foil as cover was exemplary cross-validated and extrapolated to other set-ups, specifically 6-well plates with fish cells and 24-well plates with zebrafish embryos. Two case study model applications further demonstrated the utility of the empirical model framework for toxicity predictions. Thus, our approach can significantly improve the applicability of small-scale systems by providing accurate chemical concentrations in exposure media without resource- and time-intensive analytical measurements.
Collapse
|
5
|
Lungu-Mitea S, Vogs C, Carlsson G, Montag M, Frieberg K, Oskarsson A, Lundqvist J. Modeling Bioavailable Concentrations in Zebrafish Cell Lines and Embryos Increases the Correlation of Toxicity Potencies across Test Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:447-457. [PMID: 33320646 PMCID: PMC7872314 DOI: 10.1021/acs.est.0c04872] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/28/2020] [Accepted: 12/02/2020] [Indexed: 05/04/2023]
Abstract
Linking cellular toxicity to low-tier animal toxicity and beyond is crucial within the adverse outcome pathway concept and the 3R framework. This study aimed to determine and compare the bioavailable effect concentrations in zebrafish cell lines and embryos. Acute, short-term toxicity (48 h) of eight veterinary pharmaceuticals was measured in two zebrafish cell lines (hepatocytes, fibroblasts) and zebrafish embryos. Seven endpoints of cytotoxicity were recorded. The fish embryo acute toxicity test was modified by adding sublethal endpoints. Chemical distribution modeling (mass balance) was applied to compute the bioavailable compound concentrations in cells (Cfree) and embryos (Cint;aq) based on nominal effect concentrations (Cnom). Effect concentration ratios were calculated (cell effects/embryo effects). A low correlation was observed between cytotoxicity and embryo toxicity when nominal concentrations were used. Modeled bioavailable effect concentrations strongly increased correlations and placed regression lines close to the line of unity and axis origin. Cytotoxicity endpoints showed differences in sensitivity and predictability. The hepatocyte cell line depicted closer proximity to the embryo data. Conclusively, the high positive correlation between the cell- and embryo-based test systems emphasizes the appropriate modulation of toxicity when linked to bioavailable concentrations. Furthermore, it highlights the potential of fish cell lines to be utilized in integrated testing strategies.
Collapse
Affiliation(s)
- Sebastian Lungu-Mitea
- Department
of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Carolina Vogs
- Department
of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Gunnar Carlsson
- Department
of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Maximiliane Montag
- Institute
for Environmental Research, RWTH Aachen, Worringerweg 1, D-52074 Aachen, Germany
| | - Kim Frieberg
- Department
of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Agneta Oskarsson
- Department
of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Johan Lundqvist
- Department
of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| |
Collapse
|
6
|
Fischer FC, Henneberger L, Schlichting R, Escher BI. How To Improve the Dosing of Chemicals in High-Throughput in Vitro Mammalian Cell Assays. Chem Res Toxicol 2019; 32:1462-1468. [DOI: 10.1021/acs.chemrestox.9b00167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Fabian C. Fischer
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Luise Henneberger
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Rita Schlichting
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Centre for Applied Geoscience, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
7
|
Leonard JA, Nelms M, Craig E, Perron M, Pope-Varsalona H, Dobreniecki S, Lowit A, Tan YM. A weight of evidence approach to investigate potential common mechanisms in pesticide groups to support cumulative risk assessment: A case study with dinitroaniline pesticides. Regul Toxicol Pharmacol 2019; 107:104419. [PMID: 31301330 DOI: 10.1016/j.yrtph.2019.104419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022]
Abstract
In 2016, the United States Environmental Protection Agency's (EPA) Office of Pesticide Programs published guidelines for establishing candidate common mechanism groups (CMGs) for cumulative risk assessment (CRA) weight-of-evidence-based screenings. A candidate CMG is a group of chemicals that may share similar structure, apical endpoints, and/or mechanistic data that suggest the potential for a common mechanism of toxicity among them. Here, a weight-of-evidence approach is presented to establish candidacy of a CMG for a group of nine dinitroaniline pesticides. This approach involves review of available in vivo toxicity information and literature to determine mode of action, along with analyses of in vitro toxicity data and chemical structure. Despite structural similarity among some dinitroanilines and some shared target organs identified through toxicity observed in in vivo studies, there were no consistencies among groups, suggesting lack of a common mechanism when all analyses are considered together. For example, two structurally similar compounds with thyroid/liver in vivo effects were not found active in any Toxicity Forecaster (ToxCast) in vitro assays. The weight-of-evidence is insufficient to support the testable hypothesis that dinitroanilines could form a CMG, and highlights the importance of establishing a consensus among multiple lines of evidence prior to CRA.
Collapse
Affiliation(s)
- Jeremy A Leonard
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37831, United States.
| | - Mark Nelms
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37831, United States
| | - Evisabel Craig
- Office of Pesticide Programs, United States Environmental Protection Agency, Washington, DC, 20460, United States
| | - Monique Perron
- Office of Pesticide Programs, United States Environmental Protection Agency, Washington, DC, 20460, United States
| | - Hannah Pope-Varsalona
- Office of Pesticide Programs, United States Environmental Protection Agency, Washington, DC, 20460, United States
| | - Sarah Dobreniecki
- Office of Pesticide Programs, United States Environmental Protection Agency, Washington, DC, 20460, United States
| | - Anna Lowit
- Office of Pesticide Programs, United States Environmental Protection Agency, Washington, DC, 20460, United States
| | - Yu-Mei Tan
- Office of Pesticide Programs, United States Environmental Protection Agency, Washington, DC, 20460, United States
| |
Collapse
|
8
|
Finlayson KA, Leusch FDL, Limpus CJ, van de Merwe JP. Towards the development of standardised sea turtle primary cell cultures for toxicity testing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:63-70. [PMID: 30769204 DOI: 10.1016/j.ecoenv.2019.01.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Chemical contaminants are known to accumulate in marine megafauna globally, but little is known about how this impacts animal health. In vitro assays offer an ethical, reproducible and cost-effective alternative to live animal toxicity testing on large, long-lived or threatened species, such as sea turtles. However, using a cell culture from a single animal raise the question of whether the toxicity observed adequately represents the toxicity in that species. This study examined variation in the cytotoxic response of primary skin fibroblasts established from seven green (Chelonia mydas) and five loggerhead (Caretta caretta) sea turtles. Cell viability using resazurin dye was examined in response to exposure to five contaminants. The variation in cytotoxicity was generally low (within a factor of five) for both independent analyses of the same cell culture, and cell cultures from different individuals. This low within and between cell culture variation indicates that primary sea turtle cell cultures can provide a suitable approach to understanding toxicity in sea turtles. In addition, green and loggerhead turtle cells showed similar toxicity to the compounds tested, indicating that only subtle differences in chemical sensitivity may exist between sea turtle species. This study provides a framework for using species-specific cell cultures in future toxicological studies on sea turtles. Although in vivo studies are the gold standard for toxicological studies and species-specific risk assessments, the development of in vitro tools can provide important information when in vivo studies are not possible or practical. For large, endangered species such as sea turtles that are exposed to, and accumulate, a large number of contaminants, using validated cell cultures may facilitate the rapid assessment of chemical risk to these animals.
Collapse
Affiliation(s)
- Kimberly A Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Colin J Limpus
- Department of Environment and Science, Queensland, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
9
|
Groothuis FA, Timmer N, Opsahl E, Nicol B, Droge STJ, Blaauboer BJ, Kramer NI. Influence of in Vitro Assay Setup on the Apparent Cytotoxic Potency of Benzalkonium Chlorides. Chem Res Toxicol 2019; 32:1103-1114. [PMID: 31012305 PMCID: PMC6584903 DOI: 10.1021/acs.chemrestox.8b00412] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The nominal concentration
is generally used to express concentration–effect
relationships in in vitro toxicity assays. However, the nominal concentration
does not necessarily represent the exposure concentration responsible
for the observed effect. Surfactants accumulate at interphases and
likely sorb to in vitro system components such as serum protein and
well plate plastic. The extent of sorption and the consequences of
this sorption on in vitro readouts is largely unknown for these chemicals.
The aim of this study was to demonstrate the effect of sorption to
in vitro components on the observed cytotoxic potency of benzalkonium
chlorides (BAC) varying in alkyl chain length (6–18 carbon
atoms, C6–18) in a basal cytotoxicity assay with
the rainbow trout gill cell line (RTgill-W1). Cells were exposed for
48 h in 96-well plates to increasing concentration of BACs in exposure
medium containing 0, 60 μM bovine serum albumin (BSA) or 10%
fetal bovine serum (FBS). Before and after exposure, BAC concentrations
in exposure medium were analytically determined. Based on freely dissolved
concentrations at the end of the exposure, median effect concentrations
(EC50) decreased with increasing alkyl chain length up
to 14 carbons. For BAC with alkyl chains of 12 or more carbons, EC50’s based on measured concentrations after exposure
in supplement-free medium were up to 25-times lower than EC50’s calculated using nominal concentrations. When BSA or FBS
was added to the medium, a decrease in cytotoxic potency of up to
22 times was observed for BAC with alkyl chains of eight or more carbons.
The results of this study emphasize the importance of expressing the
in vitro readouts as a function of a dose metric that is least influenced
by assay setup to compare assay sensitivities and chemical potencies.
Collapse
Affiliation(s)
- Floris A Groothuis
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Niels Timmer
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Eystein Opsahl
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Beate Nicol
- Safety & Environmental Assurance Centre , Unilever U.K. , Colworth Science Park, Sharnbrook, Bedford MK44 1LQ , United Kingdom
| | - Steven T J Droge
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Bas J Blaauboer
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| |
Collapse
|
10
|
Combes R, Balls M, Illing P, Bhogal N, Dale J, Duvé G, Feron V, Grindon C, Gülden M, Loizou G, Priston R, Westmoreland C. Possibilities for a New Approach to Chemicals Risk Assessment — The Report of a FRAME Workshop. Altern Lab Anim 2019; 34:621-49. [PMID: 17266394 DOI: 10.1177/026119290603400606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Robert Combes
- FRAME, Russell & Burch House, 96-98 North Sherwood Street, Nottingham, NG1 4EE, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dierickx P. Prediction of Human Acute Toxicity by the Hep G2/24-hour/Total Protein Assay, with Protein Measurement by the CBQCA Method. Altern Lab Anim 2019; 33:207-13. [PMID: 16180976 DOI: 10.1177/026119290503300304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In our previously described Hep G2/24-hour/total protein assay, protein levels were measured by using the Lowry method. This assay was the best acute in vitro assay for the prediction of human toxicity within the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) study. In order to increase the MEIC data-base with a wider range of chemicals, we were interested in introducing the more practical 3-(4-carboxybenzoyl)-quinoline-2-carboxaldehyde (CBQCA) method for the quantification of the total protein content. Therefore, we investigated whether the same good results for the prediction of acute human toxicity would be obtained with the CBQCA method. The cells were treated for 24 hours, then cytotoxicity was determined by measuring the total protein content with CBQCA. The results were quantified by using the PI50c: the concentration (in mM) of test compound required to reduce the total protein content measured with the CBQCA-method by 50% as compared to the control cells. The results were compared with the PI50, the corresponding value when the Lowry method was used. A relatively low correlation was observed between PI50 and PI50c, reflecting the large and unexpected, differences when using the two protein assays. However, when comparing the log PI50c with the human toxicity, a correlation coefficient of r2 = 0.761 ( n = 44) was obtained for exactly the same series of MEIC chemicals. This value is clearly higher than that for the Lowry method ( r2 = 0.695). Compared to the Lowry method originally used, the Hep G2/24-hour/CBQCA total protein assay has the additional important advantage that it can be very easily adapted for large-scale analyses with robotic systems, including the on-line calculation of the results.
Collapse
Affiliation(s)
- Paul Dierickx
- Instituut voor Volksgezondheid, Afdeling Toxikologie, Laboratorium Biochemische Toxikologie, Brussels, Belgium.
| |
Collapse
|
12
|
Prieto P, Baird AW, Blaauboer BJ, Castell Ripoll JV, Corvi R, Dekant W, Dietl P, Gennari A, Gribaldo L, Griffin JL, Hartung T, Heindel JJ, Hoet P, Jennings P, Marocchio L, Noraberg J, Pazos P, Westmoreland C, Wolf A, Wright J, Pfaller W. The Assessment of Repeated Dose ToxicityIn Vitro: A Proposed Approach. Altern Lab Anim 2019; 34:315-41. [PMID: 16831063 DOI: 10.1177/026119290603400307] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Pilar Prieto
- ECVAM, Institute for Health & Consumer Protection, European Joint Research Centre, 21020 Ispra (VA), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Farkas E, Szekacs A, Kovacs B, Olah M, Horvath R, Szekacs I. Label-free optical biosensor for real-time monitoring the cytotoxicity of xenobiotics: A proof of principle study on glyphosate. JOURNAL OF HAZARDOUS MATERIALS 2018; 351:80-89. [PMID: 29518655 DOI: 10.1016/j.jhazmat.2018.02.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/08/2018] [Accepted: 02/23/2018] [Indexed: 12/17/2023]
Abstract
Rapid and inexpensive biosensor technologies allowing real-time analysis of biomolecular and cellular events have become the basis of next-generation cell-based screening techniques. Our work opens up novel opportunities in the application of the high-throughput label-free Epic BenchTop optical biosensor in cell toxicity studies. The Epic technology records integrated cellular responses about changes in cell morphology and dynamic mass redistribution of cellular contents at the 100-150 nm layer above the sensor surface. The aim of the present study was to apply this novel technology to identify the effect of the herbicide Roundup Classic, its co-formulant polyethoxylated tallow amine (POEA), and its active ingredient glyphosate, on MC3T3-E1 cells adhered on the biosensor surface. The half maximal inhibitory concentrations of Roundup Classic, POEA and glyphosate upon 1 h of exposure were found to be 0.024%, 0.021% and 0.163% in serum-containing medium and 0.028%, 0.019% and 0.538% in serum-free conditions, respectively (at concentrations equivalent to the diluted Roundup solution). These results showed a good correlation with parallel end-point assays, demonstrating the outstanding utility of the Epic technique in cytotoxicity screening, allowing not only high-throughput, real-time detection, but also reduced assay run time and cytotoxicity assessment at end-points far before cell death would occur.
Collapse
Affiliation(s)
- Eniko Farkas
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary; Subdoctoral School of Molecular and Nanotechnologies, Chemical Engineering and Material Science Doctoral School, University of Pannonia, Egyetem u.10, H-8200 Veszprém, Hungary
| | - Andras Szekacs
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Herman Ottó u. 15, H-1022 Budapest, Hungary
| | - Boglarka Kovacs
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary; Subdoctoral School of Molecular and Nanotechnologies, Chemical Engineering and Material Science Doctoral School, University of Pannonia, Egyetem u.10, H-8200 Veszprém, Hungary
| | - Marianna Olah
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Herman Ottó u. 15, H-1022 Budapest, Hungary; Doctoral School of Environmental Sciences, Szent István University, Páter K. u.1, H-2100 Gödöllő, Hungary
| | - Robert Horvath
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary.
| | - Inna Szekacs
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary.
| |
Collapse
|
14
|
Proks P, Kramer H, Haythorne E, Ashcroft FM. Binding of sulphonylureas to plasma proteins - A KATP channel perspective. PLoS One 2018; 13:e0197634. [PMID: 29772022 PMCID: PMC5957440 DOI: 10.1371/journal.pone.0197634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/04/2018] [Indexed: 12/25/2022] Open
Abstract
Sulphonylurea drugs stimulate insulin secretion from pancreatic β-cells primarily by inhibiting ATP sensitive potassium (KATP) channels in the β-cell membrane. The effective sulphonylurea concentration at its site of action is significantly attenuated by binding to serum albumin, which makes it difficult to compare in vitro and in vivo data. We therefore measured the ability of gliclazide and glibenclamide to inhibit KATP channels and stimulate insulin secretion in the presence of serum albumin. We used this data, together with estimates of free drug concentrations from binding studies, to predict the extent of sulphonylurea inhibition of KATP channels at therapeutic concentrations in vivo. KATP currents from mouse pancreatic β-cells and Xenopus oocytes were measured using the patch-clamp technique. Gliclazide and glibenclamide binding to human plasma were determined in spiked plasma samples using an ultrafiltration-mass spectrometry approach. Bovine serum albumin (60g/l) produced a mild, non-significant reduction of gliclazide block of KATP currents in pancreatic β-cells and Xenopus oocytes. In contrast, glibenclamide inhibition of recombinant KATP channels was dramatically suppressed by albumin (predicted free drug concentration <0.1%). Insulin secretion was also reduced. Free concentrations of gliclazide and glibenclamide in the presence of human plasma measured in binding experiments were 15% and 0.05%, respectively. Our data suggest the free concentration of glibenclamide in plasma is too low to account for the drug’s therapeutic effect. In contrast, the free gliclazide concentration in plasma is high enough to close KATP channels and stimulate insulin secretion.
Collapse
Affiliation(s)
- Peter Proks
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Holger Kramer
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Haythorne
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M. Ashcroft
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Tagun R, Boxall ABA. The Response of Lemna minor to Mixtures of Pesticides That Are Commonly Used in Thailand. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:516-523. [PMID: 29435616 DOI: 10.1007/s00128-018-2291-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
In the field, aquatic organisms are exposed to multiple contaminants rather than to single compounds. It is therefore important to understand the toxic interactions of co-occurring substances in the environment. The aim of the study was to assess the effects of individual herbicides (atrazine, 2,4-D, alachlor and paraquat) that are commonly used in Thailand and their mixtures on Lemna minor. Plants were exposed to individual and binary mixtures for 7 days and the effects on plant growth rate were assesed based on frond area measurements. Experimental observations of mixture toxicity were compared with predictions based on single herbicide exposure data using concentration addition and independent action models. The single compound studies showed that paraquat and alachlor were most toxic to L. minor, followed by atrazine and then 2,4-D. For the mixtures, atrazine with 2,4-D appeared to act antagonistically, whereas alachlor and paraquat showed synergism.
Collapse
Affiliation(s)
- Rungnapa Tagun
- Biology Department, Chiang Mai Rajabhat University, Chiang Mai, 50300, Thailand.
| | | |
Collapse
|
16
|
Ankley GT, LaLone CA, Gray LE, Villeneuve DL, Hornung MW. Evaluation of the scientific underpinnings for identifying estrogenic chemicals in nonmammalian taxa using mammalian test systems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2806-2816. [PMID: 27074246 DOI: 10.1002/etc.3456] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/03/2016] [Accepted: 04/08/2016] [Indexed: 05/02/2023]
Abstract
The US Environmental Protection Agency has responsibility for assessing endocrine activity of more than 10 000 chemicals, a task that cannot reasonably be achieved solely through use of available mammalian and nonmammalian in vivo screening assays. Hence, it has been proposed that chemicals be prioritized for in vivo testing using data from in vitro high-throughput assays for specific endocrine system targets. Recent efforts focused on potential estrogenic chemicals-specifically those that activate estrogen receptor-alpha (ERα)-have broadly demonstrated feasibility of the approach. However, a major uncertainty is whether prioritization based on mammalian (primarily human) high-throughput assays accurately reflects potential chemical-ERα interactions in nonmammalian species. The authors conducted a comprehensive analysis of cross-species comparability of chemical-ERα interactions based on information concerning structural attributes of estrogen receptors, in vitro binding and transactivation data for ERα, and the effects of a range of chemicals on estrogen-signaling pathways in vivo. Overall, this integrated analysis suggests that chemicals with moderate to high estrogenic potency in mammalian systems also should be priority chemicals in nonmammalian vertebrates. However, the degree to which the prioritization approach might be applicable to invertebrates is uncertain because of a lack of knowledge of the biological role(s) of possible ERα orthologs found in phyla such as annelids. Further, comparative analysis of in vitro data for fish and reptiles suggests that mammalian-based assays may not effectively capture ERα interactions for low-affinity chemicals in all vertebrate classes. Environ Toxicol Chem 2016;35:2806-2816. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Gerald T Ankley
- Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota.
| | - Carlie A LaLone
- Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - L Earl Gray
- Toxicity Assessment Division, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Daniel L Villeneuve
- Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Michael W Hornung
- Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| |
Collapse
|
17
|
Chitrangi S, Nair P, Khanna A. 3D engineered In vitro hepatospheroids for studying drug toxicity and metabolism. Toxicol In Vitro 2016; 38:8-18. [PMID: 27794450 DOI: 10.1016/j.tiv.2016.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/14/2016] [Accepted: 10/24/2016] [Indexed: 01/29/2023]
Abstract
Drug toxicity is one of the reasons for late stage drug attrition, because of hepatotoxicity. Various in vitro liver models like primary human hepatocytes, immortalized human hepatic cell lines, liver slices and microsomes have been used; but limited by viability, hepatic gene expression and function. The 3D-engineered construct of hepatocyte-like-cells (HLCs) differentiated from stem cells, may provide a limitless source of hepatocytes with improved reproducibility. Towards this end, we used hepatospheroids (diameter=50-80μm) differentiated from human-umbilical-cord-mesenchymal stem cells (hUC-MSCs) on 3D scaffold GEVAC (Gelatin-vinyl-acetate-copolymer) as in vitro model for studying drug metabolism/toxicity. Our data demonstrated that hUC-MSCs-derived-hepatospheroids cultured on GEVAC expressed significantly higher drug-metabolizing enzymes (CYPs) both at mRNA and activity level compared to 2D culture, using HR-LC/MS. We further showed that hepatospheroids convert phenacetin (by CYP1A2) and testosterone (by CYP3A4) to their human-specific metabolites acetaminophen and 6β-hydroxytestosterone with a predictive clearance rate of 0.011ml/h/106 cells and 0.021ml/h/106 cells respectively, according to first-order kinetics. Hepatotoxicity was confirmed by exposing hepatospheroids to ethanol and acetaminophen; ROS generation, cell viability, cytoskeleton structure, elevation of liver function enzymes, i.e. AST and ALT, was analyzed. To the best of our knowledge, this is the first report to use hUC-MSCs-derived-hepatospheroids on GEVAC as in vitro model for drug metabolism/toxicity study; which can replace the conventional 2D-models used in drug development.
Collapse
Affiliation(s)
- Swati Chitrangi
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM'S NMIMS (Deemed-to-be ) University, V. L Mehta road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Prabha Nair
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Shree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India
| | - Aparna Khanna
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM'S NMIMS (Deemed-to-be ) University, V. L Mehta road, Vile Parle (West), Mumbai 400056, Maharashtra, India.
| |
Collapse
|
18
|
Broeders JJ, Parmentier C, Truisi GL, Jossé R, Alexandre E, Savary CC, Hewitt PG, Mueller SO, Guillouzo A, Richert L, van Eijkeren JC, Hermens JL, Blaauboer BJ. Biokinetics of chlorpromazine in primary rat and human hepatocytes and human HepaRG cells after repeated exposure. Toxicol In Vitro 2015; 30:52-61. [DOI: 10.1016/j.tiv.2014.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 08/03/2014] [Accepted: 08/21/2014] [Indexed: 01/01/2023]
|
19
|
Biokinetics in repeated-dosing in vitro drug toxicity studies. Toxicol In Vitro 2015; 30:217-24. [PMID: 26362508 DOI: 10.1016/j.tiv.2015.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/11/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022]
Abstract
The aim of the EU FP7 Predict-IV project was to improve the predictivity of in vitro assays for unwanted effects of drugs after repeated dosing. The project assessed the added benefit of integrating long-lived in vitro organotypic cell systems with 'omics' technologies and in silico modelling, including systems biology and pharmacokinetic assessments. RPTEC/TERT1 kidney cells, primary rat and human hepatocytes, HepaRG liver cells and 2D and 3D primary brain cultures were dosed daily or every other day for 14 days to a selection of drugs varying in their mechanism of pharmacological action. Since concentration-effect relationships not only depend on the activity of the drug or the sensitivity of the target, but also on the distribution of compounds in the in vitro system, the concentration of a selection of drugs in cells, microtitre plate plastic and medium was measured over time. Results, reviewed in this paper, indicate that lipophilic drugs bind significantly to plastic labware. A few drugs, including less lipophilic drugs, bind to cell-attachment matrices. Chemicals that reach high concentrations in cells, including cyclosporin A and amiodarone, significantly accumulate over time after repeated dosing, partly explaining their increased toxicity after repeated dosing, compared to a single dose.
Collapse
|
20
|
Doskey CM, van ‘t Erve TJ, Wagner BA, Buettner GR. Moles of a Substance per Cell Is a Highly Informative Dosing Metric in Cell Culture. PLoS One 2015; 10:e0132572. [PMID: 26172833 PMCID: PMC4501792 DOI: 10.1371/journal.pone.0132572] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/16/2015] [Indexed: 01/24/2023] Open
Abstract
Background The biological consequences upon exposure of cells in culture to a dose of xenobiotic are not only dependent on biological variables, but also the physical aspects of experiments e.g. cell number and media volume. Dependence on physical aspects is often overlooked due to the unrecognized ambiguity in the dominant metric used to express exposure, i.e. initial concentration of xenobiotic delivered to the culture medium over the cells. We hypothesize that for many xenobiotics, specifying dose as moles per cell will reduce this ambiguity. Dose as moles per cell can also provide additional information not easily obtainable with traditional dosing metrics. Methods Here, 1,4-benzoquinone and oligomycin A are used as model compounds to investigate moles per cell as an informative dosing metric. Mechanistic insight into reactions with intracellular molecules, differences between sequential and bolus addition of xenobiotic and the influence of cell volume and protein content on toxicity are also investigated. Results When the dose of 1,4-benzoquinone or oligomycin A was specified as moles per cell, toxicity was independent of the physical conditions used (number of cells, volume of medium). When using moles per cell as a dose-metric, direct quantitative comparisons can be made between biochemical or biological endpoints and the dose of xenobiotic applied. For example, the toxicity of 1,4-benzoquinone correlated inversely with intracellular volume for all five cell lines exposed (C6, MDA-MB231, A549, MIA PaCa-2, and HepG2). Conclusions Moles per cell is a useful and informative dosing metric in cell culture. This dosing metric is a scalable parameter that: can reduce ambiguity between experiments having different physical conditions; provides additional mechanistic information; allows direct comparison between different cells; affords a more uniform platform for experimental design; addresses the important issue of repeatability of experimental results, and could increase the translatability of information gained from in vitro experiments.
Collapse
Affiliation(s)
- Claire M. Doskey
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Thomas J. van ‘t Erve
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Brett A. Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Garry R. Buettner
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa, 52242, United States of America
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa, 52242, United States of America
- * E-mail:
| |
Collapse
|
21
|
Gülden M, Schreiner J, Seibert H. In vitro toxicity testing with microplate cell cultures: Impact of cell binding. Toxicology 2015; 332:41-51. [DOI: 10.1016/j.tox.2013.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/06/2013] [Accepted: 11/17/2013] [Indexed: 11/27/2022]
|
22
|
Truisi GL, Consiglio ED, Parmentier C, Savary CC, Pomponio G, Bois F, Lauer B, Jossé R, Hewitt PG, Mueller SO, Richert L, Guillouzo A, Testai E. Understanding the biokinetics of ibuprofen after single and repeated treatments in rat and human in vitro liver cell systems. Toxicol Lett 2015; 233:172-86. [DOI: 10.1016/j.toxlet.2015.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 01/09/2023]
|
23
|
Harrill JA, Robinette BL, Freudenrich TM, Mundy WR. Media formulation influences chemical effects on neuronal growth and morphology. In Vitro Cell Dev Biol Anim 2015; 51:612-29. [PMID: 25678462 DOI: 10.1007/s11626-015-9873-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/21/2015] [Indexed: 12/23/2022]
Abstract
Screening for developmental neurotoxicity using in vitro, cell-based systems has been proposed as an efficient alternative to performing in vivo studies. One tool currently used for developmental neurotoxicity screening is automated high-content imaging of neuronal morphology. While high-content imaging (HCI) has been demonstrated to be useful in detection of potential developmental neurotoxicants, comparison of results between laboratories or assays can be complicated due to methodological differences. In order to determine whether high-content imaging-based developmental neurotoxicity assays can be affected by differences in media formulation, a systematic comparison of serum-supplemented (Dulbecco's modified Eagle's media (DMEM) + 10% serum) and serum-free (Neurobasal A + B27) culture media on neuronal morphology was performed using primary rat cortical neurons. Concentration-response assays for neuritogenesis, axon and dendrite outgrowth, and synaptogenesis were performed in each media type using chemicals with previously demonstrated effects. Marked qualitative and quantitative differences in the characteristics of neurons cultured in the two media types were observed, with increased neuronal growth and less basal cell death in Neurobasal A + B27. Media formulation also affected assay sensitivity and selectivity. Increases in assay sensitivity were observed in Neurobasal A + B27 media as compared to serum-supplemented DMEM. In some instances, a greater difference between effective concentrations for cell death and neurodevelopmental-specific endpoints was also observed in Neurobasal A + B27 media as compared to serum-supplemented DMEM. These data show that media formulation must be considered when comparing data for similar endpoints between studies. Neuronal culture maintained in Neurobasal A + B27 media had several features advantageous for HCI applications including less basal cell death, less cell clustering and neurite fasciculation, and a tendency towards increased sensitivity and selectivity in chemical concentration-response studies.
Collapse
Affiliation(s)
- Joshua A Harrill
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory (NHEERL), United States Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, NC, 27711, USA
| | | | | | | |
Collapse
|
24
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
25
|
Krey A, Kwan M, Chan HM. In vivo and in vitro changes in neurochemical parameters related to mercury concentrations from specific brain regions of polar bears (Ursus maritimus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2463-2471. [PMID: 25264143 DOI: 10.1002/etc.2685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/27/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
Mercury (Hg) has been detected in polar bear brain tissue, but its biological effects are not well known. Relationships between Hg concentrations and neurochemical enzyme activities and receptor binding were assessed in the cerebellum, frontal lobes, and occipital lobes of 24 polar bears collected from Nunavik (Northern Quebec), Canada. The concentration-response relationship was further studied with in vitro experiments using pooled brain homogenate of 12 randomly chosen bears. In environmentally exposed brain samples, there was no correlative relationship between Hg concentration and cholinesterase (ChE) activity or muscarinic acetylcholine receptor (mAChR) binding in any of the 3 brain regions. Monoamine oxidase (MAO) activity in the occipital lobe showed a negative correlative relationship with total Hg concentration. In vitro experiments, however, demonstrated that Hg (mercuric chloride and methylmercury chloride) can inhibit ChE and MAO activities and muscarinic mAChR binding. These results show that Hg can alter neurobiochemical parameters but the current environmental Hg exposure level does have an effect on the neurochemistry of polar bears from northern Canada.
Collapse
Affiliation(s)
- Anke Krey
- Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, British Columbia, Canada
| | | | | |
Collapse
|
26
|
Irizar A, Duarte D, Guilhermino L, Marigómez I, Soto M. Optimization of NRU assay in primary cultures of Eisenia fetida for metal toxicity assessment. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1326-1335. [PMID: 25011921 DOI: 10.1007/s10646-014-1275-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
Coelomocytes, immunocompetent cells of lumbricids, have received special attention for ecotoxicological studies due to their sensibility to pollutants. Their in vitro responses are commonly quantified after in vivo exposure to real or spiked soils. Alternatively, quantifications of in vitro responses after in vitro exposure are being studied. Within this framework, the present study aimed at optimizing the neutral red uptake (NRU) assay in primary culture of Eisenia fetida coelomocytes for its application in soil toxicity testing. Optimized assay conditions were: earthworm depuration for 24 h before retrieving coelomocytes by electric extrusion; 2 × 10(5) seeded cells/well (200 µl) for the NRU assay and incubation for 1 h with neutral red dye. Supplementation of the culture medium with serum was not compatible with the NRU assay, but coelomocytes could be maintained with high viability for 3 days in a serum-free medium without replenishment. Thus, primary cultures were used for 24 h in vitro toxicity testing after exposure to different concentrations of Cd, Cu, Ni and Pb (ranging from 0.1 to 100 μg/ml). Primary cultures were sensitive to metals, the viability declining in a dose-dependent manner. The toxicity rank was, from high to low, Pb > Ni > Cd > Cu. Therefore, it can be concluded that the NRU assay in coelomocytes in primary cultures provides a sensitive and prompt response after in vitro exposure to metals.
Collapse
Affiliation(s)
- Amaia Irizar
- Cell Biology & Environmental Toxicology Research Group, Research Centre for Experimental Marine Biology & Biotechnology (PIE) & Zoology & Animal Cell Biology Department (Faculty of Science & Technology), University of the Basque Country, P.O. 11 Box 644, 48080, Bilbao, Basque Country, Spain
| | | | | | | | | |
Collapse
|
27
|
Armitage JM, Wania F, Arnot JA. Application of mass balance models and the chemical activity concept to facilitate the use of in vitro toxicity data for risk assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9770-9. [PMID: 25014875 DOI: 10.1021/es501955g] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Practical, financial, and ethical considerations related to conducting extensive animal testing have resulted in various initiatives to promote and expand the use of in vitro testing data for chemical evaluations. Nominal concentrations in the aqueous phase corresponding to an effect (or biological activity) are commonly reported and used to characterize toxicity (or biological response). However, the true concentration in the aqueous phase can be substantially different from the nominal. To support in vitro test design and aid the interpretation of in vitro toxicity data, we developed a mass balance model that can be parametrized and applied to represent typical in vitro test systems. The model calculates the mass distribution, freely dissolved concentrations, and cell/tissue concentrations corresponding to the initial nominal concentration and experimental conditions specified by the user. Chemical activity, a metric which can be used to assess the potential for baseline toxicity to occur, is also calculated. The model is first applied to a set of hypothetical chemicals to illustrate the degree to which test conditions (e.g., presence or absence of serum) influence the distribution of the chemical in the test system. The model is then applied to set of 1194 real substances (predominantly from the ToxCast chemical database) to calculate the potential range of concentrations and chemical activities under assumed test conditions. The model demonstrates how both concentrations and chemical activities can vary by orders of magnitude for the same nominal concentration.
Collapse
Affiliation(s)
- James M Armitage
- Department of Physical and Environmental Sciences, University of Toronto Scarborough , 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | | | | |
Collapse
|
28
|
Extrapolating In Vitro Results to Predict Human Toxicity. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Stalter D, Dutt M, Escher BI. Headspace-free setup of in vitro bioassays for the evaluation of volatile disinfection by-products. Chem Res Toxicol 2013; 26:1605-14. [PMID: 24117097 DOI: 10.1021/tx400263h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The conventional setup of in vitro bioassays in microplates does not prevent the loss of volatile compounds, which hampers the toxicological characterization of waterborne volatile disinfection by-products (DBPs). To minimize the loss of volatile test chemicals, we adapted four in vitro bioassays to a headspace-free setup using eight volatile organic compounds (four trihalomethanes, 1,1-dichloroethene, bromoethane, and two haloacetonitriles) that cover a wide range of air-water partition coefficients. The nominal effect concentrations of the test chemicals decreased by up to three orders of magnitude when the conventional setup was changed to a headspace-free setup for the bacterial cytotoxicity assay using bioluminescence inhibition of Vibrio fischeri. The increase of apparent sensitivity correlated significantly with the air-water partition coefficient. Purge and trap GC/MS analysis revealed a reduced loss of dosed volatile compounds in the headspace free setup (78-130% of nominal concentration) compared to a substantial loss in the conventional set up (2-13% of the nominal concentration). The experimental effect concentrations converged with the headspace-free setup to the effect concentrations predicted by a QSAR model, confirming the suitability of the headspace-free approach to minimize the loss of volatile test chemicals. The analogue headspace-free design of the bacterial bioassays for genotoxicity (umuC assay) and mutagenicity (Ames fluctuation assay) increased the number of compounds detected as genotoxic or mutagenic from one to four and zero to two, respectively. In a bioassay with a mammalian cell line applied for detecting the induction of the Nrf-2-mediated oxidative stress response (AREc32 assay), the headspace-free setup improved the apparent sensitivity by less than one order of magnitude, presumably due to the retaining effect of the serum components in the medium, which is also reflected in the reduced aqueous concentrations of compounds. This study highlights the importance of adapting bioanalytical test setups when volatile/semivolatile compounds are present in the sample to avoid the loss of chemicals and thus to avoid underestimating the toxicity of mixtures and complex environmental samples.
Collapse
Affiliation(s)
- Daniel Stalter
- National Research Centre for Environmental Toxicology (Entox), The University of Queensland , 39 Kessels Road, Brisbane Qld 4108, Australia
| | | | | |
Collapse
|
30
|
Comparative effects of sodium channel blockers in short term rat whole embryo culture. Toxicol Appl Pharmacol 2013; 272:306-12. [DOI: 10.1016/j.taap.2013.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 06/16/2013] [Accepted: 06/21/2013] [Indexed: 02/01/2023]
|
31
|
Groothuis FA, Heringa MB, Nicol B, Hermens JLM, Blaauboer BJ, Kramer NI. Dose metric considerations in in vitro assays to improve quantitative in vitro-in vivo dose extrapolations. Toxicology 2013; 332:30-40. [PMID: 23978460 DOI: 10.1016/j.tox.2013.08.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 07/17/2013] [Accepted: 08/14/2013] [Indexed: 12/17/2022]
Abstract
Challenges to improve toxicological risk assessment to meet the demands of the EU chemical's legislation, REACH, and the EU 7th Amendment of the Cosmetics Directive have accelerated the development of non-animal based methods. Unfortunately, uncertainties remain surrounding the power of alternative methods such as in vitro assays to predict in vivo dose-response relationships, which impedes their use in regulatory toxicology. One issue reviewed here, is the lack of a well-defined dose metric for use in concentration-effect relationships obtained from in vitro cell assays. Traditionally, the nominal concentration has been used to define in vitro concentration-effect relationships. However, chemicals may differentially and non-specifically bind to medium constituents, well plate plastic and cells. They may also evaporate, degrade or be metabolized over the exposure period at different rates. Studies have shown that these processes may reduce the bioavailable and biologically effective dose of test chemicals in in vitro assays to levels far below their nominal concentration. This subsequently hampers the interpretation of in vitro data to predict and compare the true toxic potency of test chemicals. Therefore, this review discusses a number of dose metrics and their dependency on in vitro assay setup. Recommendations are given on when to consider alternative dose metrics instead of nominal concentrations, in order to reduce effect concentration variability between in vitro assays and between in vitro and in vivo assays in toxicology.
Collapse
Affiliation(s)
- Floris A Groothuis
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands.
| | - Minne B Heringa
- National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Beate Nicol
- Unilever U.K., Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, United Kingdom.
| | - Joop L M Hermens
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands.
| | - Bas J Blaauboer
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands.
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
32
|
Piotrowska H, Kucinska M, Murias M. Expression of CYP1A1, CYP1B1 and MnSOD in a panel of human cancer cell lines. Mol Cell Biochem 2013; 383:95-102. [PMID: 23873331 PMCID: PMC3788183 DOI: 10.1007/s11010-013-1758-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022]
Abstract
The expression of P450 enzymes and antioxidative enzymes in tumour tissue can have a major impact on the responsiveness of tumours to cancer chemotherapeutic drugs, therefore such information may be very precious when experiments are designed. The compressive information, concerning the expression of drug metabolism enzymes or antioxidative enzymes is still lacking, therefore in this study the expression of CYP1A1, CYP1B1 and mitochondrial superoxide dismutase MnSOD (both mRNA and protein) in a panel of eight commonly used cancer cell lines, representing four tumour tissues was assayed. In the study two ovarian cancer cell lines A2780 and SKOV-3, two colorectal cancer LOVO and DLD-1, two breast cancer derived MCF-7 and MDA-MB-231 and two cervical cancer cell lines HeLa and C33A were employed. The relatively high expression of all assayed enzymes was shown in MDA-MB-231 breast cancer cells, lack of cancer cell specific CYP1B1 protein was discovered in LOVO colorectal cells. In order to test possible correlation between expression of CYP1A1, CYP1B1 and MnSOD and modulators of their activity, cytotoxicity of resveratrol and its promising hydroxylated analogue 3,3′,4,4′,5,5′-trans-hexahydroxystilbene against cell lines used in experiment was assayed. The relatively high correlation was found between IC50 values calculated for 3,3′,4,4′,5,5′-trans-hexahydroxystilbene and expression of MnSOD (r = 0.6562).
Collapse
Affiliation(s)
- Hanna Piotrowska
- Department of Toxicology, Poznan University of Medical Sciences, ul. Dojazd 30, 60-631, Poznan, Poland
| | | | | |
Collapse
|
33
|
In vitro biokinetics of chlorpromazine and the influence of different dose metrics on effect concentrations for cytotoxicity in Balb/c 3T3, Caco-2 and HepaRG cell cultures. Toxicol In Vitro 2013; 27:1057-64. [DOI: 10.1016/j.tiv.2013.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/24/2012] [Accepted: 01/07/2013] [Indexed: 11/19/2022]
|
34
|
Gutsell S, Russell P. The role of chemistry in developing understanding of adverse outcome pathways and their application in risk assessment. Toxicol Res (Camb) 2013. [DOI: 10.1039/c3tx50024a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
35
|
Xie W, Pao C, Graham T, Dul E, Lu Q, Sweitzer TD, Ames RS, Li H. Development of a Cell-Based High Throughput Luciferase Enzyme Fragment Complementation Assay to Identify Nuclear-Factor-E2-Related Transcription Factor 2 Activators. Assay Drug Dev Technol 2012; 10:514-24. [DOI: 10.1089/adt.2011.436] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Wensheng Xie
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| | - Christina Pao
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| | - Taylor Graham
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| | - Ed Dul
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| | - Quinn Lu
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| | - Thomas D. Sweitzer
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| | - Robert S. Ames
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| | - Hu Li
- Department of Biological Reagents and Assay Development, Platform Technology and Science, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania
| |
Collapse
|
36
|
Coecke S, Pelkonen O, Leite SB, Bernauer U, Bessems JG, Bois FY, Gundert-Remy U, Loizou G, Testai E, Zaldívar JM. Toxicokinetics as a key to the integrated toxicity risk assessment based primarily on non-animal approaches. Toxicol In Vitro 2012; 27:1570-7. [PMID: 22771339 DOI: 10.1016/j.tiv.2012.06.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/09/2012] [Accepted: 06/22/2012] [Indexed: 02/02/2023]
Abstract
Toxicokinetics (TK) is the endpoint that informs about the penetration into and fate within the body of a toxic substance, including the possible emergence of metabolites. Traditionally, the data needed to understand those phenomena have been obtained in vivo. Currently, with a drive towards non-animal testing approaches, TK has been identified as a key element to integrate the results from in silico, in vitro and already available in vivo studies. TK is needed to estimate the range of target organ doses that can be expected from realistic human external exposure scenarios. This information is crucial for determining the dose/concentration range that should be used for in vitro testing. Vice versa, TK is necessary to convert the in vitro results, generated at tissue/cell or sub-cellular level, into dose response or potency information relating to the entire target organism, i.e. the human body (in vitro-in vivo extrapolation, IVIVE). Physiologically based toxicokinetic modelling (PBTK) is currently regarded as the most adequate approach to simulate human TK and extrapolate between in vitro and in vivo contexts. The fact that PBTK models are mechanism-based which allows them to be 'generic' to a certain extent (various extrapolations possible) has been critical for their success so far. The need for high-quality in vitro and in silico data on absorption, distribution, metabolism as well as excretion (ADME) as input for PBTK models to predict human dose-response curves is currently a bottleneck for integrative risk assessment.
Collapse
Affiliation(s)
- Sandra Coecke
- ECVAM, Institute for Health & Consumer Protection, European Commission Joint Research Centre, 21027 Ispra (VA), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yoon M, Campbell JL, Andersen ME, Clewell HJ. Quantitativein vitrotoin vivoextrapolation of cell-based toxicity assay results. Crit Rev Toxicol 2012; 42:633-52. [DOI: 10.3109/10408444.2012.692115] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Kramer NI, Krismartina M, Rico-Rico A, Blaauboer BJ, Hermens JLM. Quantifying processes determining the free concentration of phenanthrene in Basal cytotoxicity assays. Chem Res Toxicol 2012; 25:436-45. [PMID: 22242923 DOI: 10.1021/tx200479k] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Difficulties may arise when extrapolating in vitro derived toxicity data to in vivo toxicity data because of the high variability and occasional low sensitivity of in vitro results. Differences in the free concentration of a test compound between in vitro and in vivo systems and between different in vitro systems may in part explain this variability and sensitivity difference. The aim of this study was to determine what assay components influence the free concentration of phenanthrene in a Balb/c 3T3 and RTgill-W1 MTT assay. Partition coefficients of phenanthrene to serum, well plate plastic, cells, and headspace were measured and subsequently used to model the free concentration of the compound in vitro. The estimated free concentration was compared to the free concentration measured in the assays using solid phase microextraction (SPME). Results indicate that the free concentration of phenanthrene, a relatively volatile and hydrophobic compound, is significantly reduced in a typical in vitro setup as it binds to matrices such as serum protein and well plate plastic. A reduction in free concentration due to increasing serum protein levels is accompanied by an increase in the median effect concentration (EC(50)) and can be modeled, with the exception of evaporation, using the partition coefficients of the compound to assay components.
Collapse
Affiliation(s)
- Nynke I Kramer
- Institute for Risk Assessment Sciences, Utrecht University , P.O. Box 80177, 3508 TD Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
A potential role of IL-6 in the chito-oligosaccharide-mediated inhibition of adipogenesis. Br J Nutr 2011; 106:1142-53. [PMID: 21736830 DOI: 10.1017/s0007114511001486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent studies have suggested that chito-oligosaccharides can have anti-adipogenic properties. The objectives of the present study were to evaluate the anti-adipogenic potential of four different chito-oligosaccharides (molecular weight (MW) < 1000, 1000-3000, 3000-5000 and 5000-10,000 Da) and to identify molecular mechanisms underlying the chito-oligosaccharide-mediated inhibition of adipogenesis. Mouse 3T3-L1 cells were allowed to differentiate in the presence of chito-oligosaccharide. At day 8 post-induction of differentiation, lipid accumulation, free glycerol release and the quantitative expression of adipogenic marker genes were evaluated. Chito-oligosaccharides had concentration- and MW-dependent inhibitory effects on lipid accumulation (P < 0·001 and < 0·05, respectively), as well as a concentration-dependent effect (P < 0·001) on free glycerol release and the expression of adipogenic marker genes. The 5000-10,000 Da chito-oligosaccharide was selected for subsequent molecular studies. A panel of forty-four lipid metabolic pathway-specific genes was analysed by quantitative real-time PCR. Chito-oligosaccharide-mediated inhibition of adipogenesis was associated with the up-regulation of the IL-6 gene at all concentrations of chito-oligosaccharide examined and the PG-endoperoxide synthase 2 (PTGS2) gene at higher concentrations of chito-oligosaccharide. The effect of chito-oligosaccharide on gene expression was validated by measuring IL-6 protein concentrations in the media. Finally, an IL-6 promoter assay was developed to characterise the effect of chito-oligosaccharide on the transcriptional activity of the IL-6 promoter, which was increased in a concentration-dependent manner (P < 0·001). We conclude that IL-6 is a candidate signalling molecule in the chito-oligosaccharide-mediated inhibition of adipogenesis in 3T3-L1 cells.
Collapse
|
40
|
Bougeard C, Gallampois C, Brack W. Passive dosing: an approach to control mutagen exposure in the Ames fluctuation test. CHEMOSPHERE 2011; 83:409-414. [PMID: 21272911 DOI: 10.1016/j.chemosphere.2010.12.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/13/2010] [Accepted: 12/26/2010] [Indexed: 05/30/2023]
Abstract
One of the major challenges for mutagenicity assessment of environmental samples and individual compounds for example in the Ames fluctuation test (AFT) is the establishment and control of a well defined exposure concentration. Thus, a combination of passive dosing with silicone O-rings (SRs) together with an analytical confirmation of the freely dissolved concentration (FDC) is presented. FDCs are often determined with a combination of solid phase micro-extraction (SPME) with gas chromatography (GC). For compounds with poor performance in GC, a high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis of bi-distilled water dosed with identically loaded SRs is suggested to avoid interference of the bacterial culture. The approach was tested for six amino-, nitro-, and keto-substituted polycyclic aromatic compounds with a logK(OW) range of 2.5-5.1 without metabolic activation. The method provided reliable concentration-effect relationships and freely dissolved 50% effect concentrations (DEC(50)) 3-33 times lower than nominal effect concentrations (NEC(50)) derived in parallel solvent-dosed AFT. Partition coefficients and NEC(50)/DEC(50) ratios were well correlated with lipophilicity.
Collapse
Affiliation(s)
- Cynthia Bougeard
- UFZ - Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstrasse 15, 04315 Leipzig, Germany
| | | | | |
Collapse
|
41
|
Andreozzi R, Di Somma I, Marotta R, Pinto G, Pollio A, Spasiano D. Oxidation of 2,4-dichlorophenol and 3,4-dichlorophenol by means of Fe(III)-homogeneous photocatalysis and algal toxicity assessment of the treated solutions. WATER RESEARCH 2011; 45:2038-2048. [PMID: 21251692 DOI: 10.1016/j.watres.2010.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 05/30/2023]
Abstract
Chlorophenols are used worldwide as broad-spectrum biocides and fungicides. They have half-life times in water from 0.6 to 550 h and in sediments up to 1700 h and, due to their numerous origins, they can be found in wastewaters, groundwaters or soils. Moreover, chlorophenols are not readily biodegradable. Recently, classic Advanced Oxidation Processes (AOP) have been proposed for their abatement in an aqueous solution. This paper investigates the oxidation of 2,4-dichlorophenol and 3,4-dichlorophenol, at starting concentrations of 6.1 · 10(-5) mol L(-1), in aqueous solutions through Fe(III)/O(2) homogeneous photocatalysis under UV light (303 ÷ 366 nm). The Fe(III)/O(2) homogeneous photocatalysis is less expensive than using H(2)O(2) due to the capability of Fe(III) to produce OH radicals, if irradiated with an UVA radiation, and of oxygen to re-oxidize ferrous ions to ferric ones when dissolved in solution. The results show that the best working conditions, for both compounds, are found for pH=3.0 and initial Fe(III) concentration equal to 1.5 · 10(-4) mol L(-1) although the investigated oxidizing system can be used even at pH close to 4.0 but with slower abatement kinetics. Toxicity assessment on algae indicates that treated solutions of 2,4-dichlorophenol are less toxic on algae Pseudokirchneriella subcapitata if compared to not treated solutions whereas in the case of 3,4-dichlorophenol only the samples collected during the runs at 20 and 60 min are capable of inhibiting the growth of the adopted organism. The values of the kinetic constant for the photochemical re-oxidation of iron (II) to iron (III) and for HO attack to intermediates are evaluated by a mathematical model for pH range of 2.0-3.0 and initial Fe(III) concentrations range of 1.5 · 10(-5)-5.2 · 10(-4) mol L(-1).
Collapse
Affiliation(s)
- Roberto Andreozzi
- Università degli Studi di Napoli Federico II, Facoltà di Ingegneria, Dipartimento di Ingegneria Chimica, p.le V. Tecchio, 80, 80125 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Lasting effect of preceding culture conditions on the susceptibility of C6 cells to peroxide-induced oxidative stress. Toxicol In Vitro 2010; 24:2090-6. [DOI: 10.1016/j.tiv.2010.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/21/2010] [Accepted: 06/08/2010] [Indexed: 11/18/2022]
|
43
|
Kramer NI, Busser FJM, Oosterwijk MTT, Schirmer K, Escher BI, Hermens JLM. Development of a Partition-Controlled Dosing System for Cell Assays. Chem Res Toxicol 2010; 23:1806-14. [PMID: 20961080 DOI: 10.1021/tx1002595] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nynke I. Kramer
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf, Switzerland, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, CHN G50.3, Universitätstrasse 16, 8092 Zürich, Switzerland, and The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plain QLD 4108, Australia
| | - Frans J. M. Busser
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf, Switzerland, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, CHN G50.3, Universitätstrasse 16, 8092 Zürich, Switzerland, and The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plain QLD 4108, Australia
| | - Mattheus T. T. Oosterwijk
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf, Switzerland, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, CHN G50.3, Universitätstrasse 16, 8092 Zürich, Switzerland, and The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plain QLD 4108, Australia
| | - Kristin Schirmer
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf, Switzerland, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, CHN G50.3, Universitätstrasse 16, 8092 Zürich, Switzerland, and The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plain QLD 4108, Australia
| | - Beate I. Escher
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf, Switzerland, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, CHN G50.3, Universitätstrasse 16, 8092 Zürich, Switzerland, and The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plain QLD 4108, Australia
| | - Joop L. M. Hermens
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf, Switzerland, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, CHN G50.3, Universitätstrasse 16, 8092 Zürich, Switzerland, and The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plain QLD 4108, Australia
| |
Collapse
|
44
|
Gustafsson H, Runesson J, Lundqvist J, Lindegren H, Axelsson V, Forsby A. Neurofunctional endpoints assessed in human neuroblastoma SH-SY5Y cells for estimation of acute systemic toxicity. Toxicol Appl Pharmacol 2010; 245:191-202. [DOI: 10.1016/j.taap.2010.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/26/2010] [Accepted: 02/27/2010] [Indexed: 11/29/2022]
|
45
|
Kramer NI, Hermens JL, Schirmer K. The influence of modes of action and physicochemical properties of chemicals on the correlation between in vitro and acute fish toxicity data. Toxicol In Vitro 2009; 23:1372-9. [DOI: 10.1016/j.tiv.2009.07.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
|
46
|
Investigation of the interaction between pentachlorophenol and human serum albumin using spectral methods. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2009.05.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Pelkonen O, Kapitulnik J, Gundert-Remy U, Boobis A, Stockis A. Local Kinetics and Dynamics of Xenobiotics. Crit Rev Toxicol 2008; 38:697-720. [DOI: 10.1080/10408440802194931] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Kaur P, Schulz K, Heggland I, Aschner M, Syversen T. The use of fluorescence for detecting MeHg-induced ROS in cell cultures. Toxicol In Vitro 2008; 22:1392-8. [DOI: 10.1016/j.tiv.2008.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/23/2008] [Accepted: 01/31/2008] [Indexed: 11/16/2022]
|
49
|
Whalen MM, DeWitt JC, Luebke RW. Serum supplementation modulates the effects of dibutyltin on human natural killer cell function. Toxicol Sci 2008; 104:312-9. [PMID: 18441343 PMCID: PMC2574802 DOI: 10.1093/toxsci/kfn082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Accepted: 04/20/2008] [Indexed: 01/09/2023] Open
Abstract
Natural killer (NK) cells are a subset of lymphocytes capable of killing tumor cells, virally infected cells and antibody-coated cells. Dibutyltin (DBT) dichloride is an organotin used as a stabilizer in polyvinylchloride (PVC) plastics and as a deworming product in poultry. DBT may leach from PVC water supply pipes and therefore poses a potential risk to human health. We previously reported diminished NK cells lysis of tumor cells following exposure to DBT in serum-free cell culture medium. However, under in vivo conditions, circulating cells will be exposed to DBT in the presence of 100% plasma; thus we investigated whether serum supplementation and incubation time modulates DBT effects on NK cell killing and the accumulation of DBT in freshly isolated NK cells, to determine whether a serum-free model accurately predicts possible effects of DBT on human NK cells under in vivo conditions. Lytic function was decreased by approximately 35% at an intracellular DBT (DBTi) concentration of 200 microM and nearly complete loss of lytic function was observed at DBTi above 300 microM for one h. However, an intracellular concentration of 50 microM DBT, achieved over 24 h of exposure in 50% serum, reduced lytic function by 50%. Thus, conditions that reflect prolonged contact with circulating DBT, in the presence of serum, suggest that NK cell activity is decreased at lower DBTi. These data indicate that the model is useful in predicting potential human effects of relatively low DBTi concentrations.
Collapse
Affiliation(s)
- Margaret M. Whalen
- Department of Chemistry, Tennessee State University, Nashville, Tennessee 37209
| | - Jamie C. DeWitt
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Immunotoxicology Branch, Immunotoxicology Branch, Expaerimental Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Robert W. Luebke
- Immunotoxicology Branch, Immunotoxicology Branch, Expaerimental Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| |
Collapse
|
50
|
Murias M, Luczak MW, Niepsuj A, Krajka-Kuzniak V, Zielinska-Przyjemska M, Jagodzinski PP, Jäger W, Szekeres T, Jodynis-Liebert J. Cytotoxic activity of 3,3',4,4',5,5'-hexahydroxystilbene against breast cancer cells is mediated by induction of p53 and downregulation of mitochondrial superoxide dismutase. Toxicol In Vitro 2008; 22:1361-70. [PMID: 18434081 DOI: 10.1016/j.tiv.2008.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 02/27/2008] [Accepted: 03/09/2008] [Indexed: 01/14/2023]
Abstract
The phytochemical resveratrol, which is found in grapes and red wine, has been reported to have a variety of biological properties. It was shown in our previous research that introduction of additional hydroxyl groups into the stilbene structure increases the biological activity of resveratrol. In this study, the activity of 3,3',4,4',5,5'-hexahydroxystilbene (M8) was investigated in ZR-75-1, MDA-MB-231 and T47D human breast cancer cells. For evaluation of cytotoxic activity of M8, clonogenic and cell proliferation assays were used. The IC50 values obtained in the clonogenic assay were 0.846 microM for T47D, 8.53 microM for ZR-75-1 cells and 25.5 microM for MDA-MB-231, while IC50 values obtained in the cell proliferation assay were significantly higher: 90.1 microM, 98.4 microM, 127.8 microM for T47D, ZR-75-1 and MDA-MB-231 cells, respectively. Compound M8 caused the activation of caspase-8 in MDA-MB-231 cells (marker of extrinsic apoptotic pathway), while activities of caspase-9 (marker of intrinsic apoptotic pathway) and caspase-3 were increased in all 3 tested cell lines. Activation of caspase-9 and caspase-3 was connected with loss of mitochondrial potential and increase of p53, which could have an impact on downregulation of mitochondrial superoxide dismutase (MnSOD) seen in our experiments. MnSOD is a key enzyme providing antioxidative defense in mitochondria - the cellular center of reactive oxygen species' generation. Downregulation of MnSOD can therefore cause a significant decrease of antioxidant defense in cancer cells. An increase of oxidative stress conditions was suggested by loss of reduced glutathione in tested cells. Since cancer cells are usually under permanent oxidative stress, additional increased ROS generation as a result of the interaction of M8 with the mitochondrial respiratory chain and a decrease in oxidative defense can therefore be a promising method for selective elimination of cancer cells.
Collapse
Affiliation(s)
- Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, ul Dojazd 30, 60-631 Poznan, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|