1
|
Peng FJ, Palazzi P, Mezzache S, Adelin E, Bourokba N, Bastien P, Appenzeller BM. Cross-Sectional Examination of Thyroid Hormones and Environmental Exposure to Multiclass Pesticides in Women of Reproductive Age in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:107005. [PMID: 39422607 PMCID: PMC11488487 DOI: 10.1289/ehp14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Some pesticides have been shown to interfere with thyroid functions through changes in thyroid hormone (TH) levels. However, few human studies have explored associations between TH levels and environmental exposure to currently used pesticides, including neonicotinoids, phenylpyrazoles, phenoxy acids, and azoles. Moreover, such studies often measure biomarkers of exposure in urine or blood, and thus reveal only recent exposure. In contrast, hair has been demonstrated to be a suitable matrix for assessing chronic exposure to both persistent and nonpersistent organic pollutants. OBJECTIVES We investigated 54 biomarkers of pollutant exposure in relation to tetraiodothyronine (T4), 3,3',5-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3), and 3,3'-diiodothyronine (T2). METHODS In a cross-sectional study of 196 healthy Chinese women of reproductive age (25-45 years of age), concentrations of both pollutants and THs were analyzed in the first 12 cm (starting from the scalp) of the hair matrix, collected in 2016. Associations between pollutants and TH levels were explored using stability-enhanced least absolute shrinkage and selection operator (lasso) by regressing all exposures against each outcome of interest, adjusted for age, body mass index, and city. RESULTS Each TH was associated with the mixture of at least eight of the examined pesticides. We found associations of β -HCH, PCP, DMP, DETP, 3Me4NP, carbofuran, ClCF 3 CA , imidacloprid, 2,4-D, metolachlor, difenoconazole, and tebuconazole with THs. For example, a 2-standard deviation (SD) increase in log 10 -transformed hair DMP concentration was associated with lower hair T4 concentration [- 15.0 % (95% CI: - 26.1 , - 2.21 % )] and higher hair T3 concentration [8.16% (95% CI: 1.73, 15.0%)] in the adjusted unpenalized regression models. We also found associations of some pesticides with T3/T4, rT3/T4, and rT3/T3 molar ratios, including PCP, DMP, 2,4-D, metolachlor, difenoconazole, and tebuconazole. DISCUSSION Our results suggest that exposure to the low levels of pesticides examined here may disrupt thyroid homeostasis in humans. Further studies are needed to confirm our results and to evaluate the long-term consequences of these subtle interferences. https://doi.org/10.1289/EHP14378.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | | | - Emilie Adelin
- L’Oréal Research and Innovation, Aulnay sous Bois, France
| | | | | | - Brice M.R. Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
2
|
Xenobiotica-metabolizing enzyme induction potential of chemicals in animal studies: NanoString nCounter gene expression and peptide group-specific immunoaffinity as accelerated and economical substitutions for enzyme activity determinations? Arch Toxicol 2020; 94:2663-2682. [PMID: 32451601 DOI: 10.1007/s00204-020-02777-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Xenobiotica-metabolizing enzyme (XME) induction is a relevant biological/biochemical process vital to understanding the toxicological profile of xenobiotics. Early recognition of XME induction potential of compounds under development is therefore important, yet its determination by traditional XME activity measurements is time consuming and cost intensive. A proof-of-principle study was therefore designed due to the advent of faster and less cost-intensive methods for determination of enzyme protein and transcript levels to determine whether two such methods may substitute for traditional measurement of XME activity determinations. The results of the study show that determination of enzyme protein levels by peptide group-specific immunoaffinity enrichment/MS and/or determination of gene expression by NanoString nCounter may serve as substitutes for traditional evaluation methodology and/or as an early predictor of potential changes in liver enzymes. In this study, changes of XME activity by the known standard XME inducers phenobarbital, beta-naphthoflavone and Aroclor 1254 were demonstrated by these two methods. To investigate the applicability of these methods to demonstrate XME-inducing activity of an unknown, TS was also examined and found to be an XME inducer. More specifically, TS was found to be a phenobarbital-type inducer (likely mediated by CAR rather than PXR as nuclear receptor), but not due to Ah receptor-mediated or antioxidant response element-mediated beta-naphthoflavone-type induction. The results for TS were confirmed via enzymatic activity measurements. The results of the present study demonstrate the potential applicability of NanoString nCounter mRNA quantitation and peptide group-specific immunoaffinity enrichment/MS protein quantitation for predicting compounds under development to be inducers of liver XME activity.
Collapse
|
3
|
Wang Y, Xu P, Chang J, Li W, Yang L, Tian H. Unraveling the toxic effects of neonicotinoid insecticides on the thyroid endocrine system of lizards. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113731. [PMID: 31874442 DOI: 10.1016/j.envpol.2019.113731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
The widespread use of neonicotinoids has resulted in large residues in the soil, which has a major impact on the lizards that inhabit the soil. Thyroid hormones play an important role in the growth and development of lizards. In this report, we assessed the disrupting effects of thyroid system on lizards after 28 days of continuous exposure to dinotefuran, thiamethoxam, and imidacloprid, respectively. Neonicotinoid insecticides could seriously affect the concentration of T4 in lizard plasma and the conversion of T4 to T3 in the thyroid gland. Specifically, exposure to dinotefuran affected the intake and utilization of iodine in the thyroid gland, resulting in insufficient thyroid function, which in turn lead to thyroid epithelial hyperplasia and follicular volume enlargement by negative feedback. Exposure to thiamethoxam could activate thyroid function, significantly increasing plasma T3 and T4 concentrations and promoting the binding of T3 and thyroid hormone receptors. Imidacloprid exposure could inhibit the secretion of thyroid hormones, leading to down-regulation of thyroid hormone receptors and related phase II metabolic enzyme genes. This study verified that the continuous exposure of neonicotinoids could affect the lizard thyroid endocrine system. The harm of neonicotinoids to reptiles deserved more attention.
Collapse
Affiliation(s)
- Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| | - Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| | - Lu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| | - Haoting Tian
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resource and Environment, Linyi University, Linyi 276005, China.
| |
Collapse
|
4
|
Grønnestad R, Villanger GD, Polder A, Kovacs KM, Lydersen C, Jenssen BM, Borgå K. Effects of a complex contaminant mixture on thyroid hormones in breeding hooded seal mothers and their pups. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:10-16. [PMID: 29729564 DOI: 10.1016/j.envpol.2018.04.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
There is a general lack of information on the possible effects of perfluoroalkyl substances (PFASs) on thyroid hormones (THs) in wildlife species. The effects of PFASs, which are known endocrine disruptors, on the TH homeostasis in hooded seals (Cystophora cristata) have yet to be investigated. Previously, correlations were found between plasma thyroid hormone (TH) concentrations in hooded seals, and organohalogen contaminants (OHCs) and hydroxyl (OH)-metabolites. Because animals are exposed to multiple contaminants simultaneously in nature, the effects of the complex contaminant mixtures that they accumulate should be assessed. Herein, we analyse relationships between plasma concentrations of multiple contaminants including protein-associated PFASs, hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs) and lipid soluble OHCs and plasma concentrations of free and total THs, i.e. triiodothyronine (FT3, TT3) and thyroxine (FT4, TT4) in hooded seal mothers and their pups. The perfluoroalkyl carboxylates (PFCAs) were the most important predictors for FT3 concentrations and TT3:FT3 ratios in the mothers. The FT3 levels decreased with increasing PFCA levels, while the TT3:FT3 ratios increased. In the pups, hexachlorocyclohexanes (HCHs) were the most important predictors for TT3:FT3 ratios, increasing with increasing HCHs levels. Additionally, perfluoroalkyl sulfonates (PFSAs) and PFCAs were important predictors for FT4:FT3 ratios in hooded seal pups, and the ratio increased with increasing concentrations. The study suggests that PFASs contribute to thyroid disruption in hooded seals exposed to complex contaminant mixtures that include chlorinated and fluorinated organic compounds.
Collapse
Affiliation(s)
- Randi Grønnestad
- Department of Biosciences, University of Oslo, Oslo, Norway; Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gro D Villanger
- Department of Child Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | | | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway; Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Dhakal K, Gadupudi GS, Lehmler HJ, Ludewig G, Duffel MW, Robertson LW. Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16277-16290. [PMID: 28744683 PMCID: PMC5785587 DOI: 10.1007/s11356-017-9694-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/30/2017] [Indexed: 04/16/2023]
Abstract
Polychlorinated biphenyls (PCBs), a group of 209 congeners that differ in the number and position of chlorines on the biphenyl ring, are anthropogenic chemicals that belong to the persistent organic pollutants (POPs). For many years, PCBs have been a topic of interest because of their biomagnification in the food chain and their environmental persistence. PCBs with fewer chlorine atoms, however, are less persistent and more susceptible to metabolic attack, giving rise to chemicals characterized by the addition of one or more hydroxyl groups to the chlorinated biphenyl skeleton, collectively known as hydroxylated PCBs (OH-PCBs). In animals and plants, this biotransformation of PCBs to OH-PCBs is primarily carried out by cytochrome P-450-dependent monooxygenases. One of the reasons for infrequent detection of lower chlorinated PCBs in serum and other biological matrices is their shorter half-lives, and their metabolic transformation, resulting in OH-PCBs or their conjugates, such as sulfates and glucuronides, or macromolecule adducts. Recent biomonitoring studies have reported the presence of OH-PCBs in human serum. The occurrence of OH-PCBs, the size of this group (there are 837 mono-hydroxyl PCBs alone), and their wide spectra of physical characteristics (pKa's and log P's ranging over 5 to 6 orders of magnitude) give rise to a multiplicity of biological effects. Among those are bioactivation to electrophilic metabolites that can form covalent adducts with DNA and other macromolecules, interference with hormonal signaling, inhibition of enzymes that regulate cellular concentrations of active hormones, and interference with the transport of hormones. This new information creates an urgent need for a new perspective on these often overlooked metabolites.
Collapse
Affiliation(s)
- Kiran Dhakal
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus #219 IREH, Iowa City, IA, 52242-5000, USA
| | - Gopi S Gadupudi
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus #219 IREH, Iowa City, IA, 52242-5000, USA
| | - Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus #219 IREH, Iowa City, IA, 52242-5000, USA
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus #219 IREH, Iowa City, IA, 52242-5000, USA
| | - Michael W Duffel
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, USA
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA.
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus #219 IREH, Iowa City, IA, 52242-5000, USA.
| |
Collapse
|
6
|
Gutleb AC, Cambier S, Serchi T. Impact of Endocrine Disruptors on the Thyroid Hormone System. Horm Res Paediatr 2018; 86:271-278. [PMID: 26771660 DOI: 10.1159/000443501] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022] Open
Abstract
The thyroid hormone (TH) system plays a central role in central physiological processes of many species, including mammals and humans, ranging from growth and cell differentiation, energy metabolism, thermoregulation and phasing of hibernation or annual movements of migratory species, metamorphosis from larvae to adult forms, brain development, reproduction, or the cardiovascular system. Several chemicals are known to be TH-disrupting compounds (THDCs) and have been shown to interact with virtually all elements of TH homeostasis such as feedback mechanisms with the hypothalamus-pituitary axis, TH synthesis, TH storage and release from the thyroid gland, transport protein binding and TH distribution in tissues and organs, cellular TH uptake, intracellular TH metabolism, and TH receptor binding. Therefore, chemicals interfering with the TH homeostasis have the potential to interact with many of these important processes, and especially early-life stage exposure results in permanent alterations of tissue organization and homeostatic regulation of adaptive processes. This is not only of theoretical importance as the reported plasma concentrations of THDCs in human plasma fall well within the range of reported in vitro effect concentrations, and this is of even higher importance as the developing fetus and young children are in a sensitive developmental stage.
Collapse
Affiliation(s)
- Arno C Gutleb
- Environmental Health Group, Life Cycle Sustainability and Risk Assessment (LiSRA) Unit, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg
| | | | | |
Collapse
|
7
|
Quinete N, Schettgen T, Bertram J, Kraus T. Occurrence and distribution of PCB metabolites in blood and their potential health effects in humans: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11951-11972. [PMID: 24943885 DOI: 10.1007/s11356-014-3136-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
In recent years, attention has been directed to chemicals with possible endocrine-disrupting properties. Polychlorinated biphenyls (PCBs) and their metabolites belong to one group of environmental contaminants that have been shown to interact with the endocrine system in mammals, including humans. Although recent developments have been made in terms of determination of PCB metabolites in blood samples, still limited number of studies have been able to elucidate their profiles and toxicological and health effects in humans. This review aims to evaluate and compare the levels of hydroxylated PCBs (OH-PCBs) and methyl sulfone PCBs (MeSO2-PCBs) in blood and their relationship to parent compounds and also address the potential risks and adverse health effects in humans. Levels of OH-PCBs varied between 0.0002 and 1.6 ng g(-1) w/w in human serum/plasma from the selected literature, correlating well with ∑PCBs. In contrast, ∑OH-PCB/∑PCB ratio in animals did not show a significant correlation, which might suggest that the bioaccumulation plays an even more important role in the concentration of OH-PCBs compared to PCB metabolism. Highest levels of MeSO2-PCBs were reported in marine mammals with high selectivity retention in the liver. Health effects of PCB metabolites included carcinogenicity, reproductive impairment, and developmental neurotoxicity, being more efficiently transferred to the brain and across the placenta from mother to fetus in comparison to the parent PCBs. Based on the lack of knowledge on the occurrence and distribution of lower chlorinated OH-PCBs in humans, further studies to identify and assess the risks associated to human exposure are essential.
Collapse
Affiliation(s)
- Natalia Quinete
- Institute for Occupational and Social Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany,
| | | | | | | |
Collapse
|
8
|
James MO, Ambadapadi S. Interactions of cytosolic sulfotransferases with xenobiotics. Drug Metab Rev 2014; 45:401-14. [PMID: 24188364 DOI: 10.3109/03602532.2013.835613] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cytosolic sulfotransferases are a superfamily of enzymes that catalyze the transfer of the sulfonic group from 3'-phosphoadenosine-5'-phosphosulfate to hydroxy or amine groups in substrate molecules. The human cytosolic sulfotransferases that have been most studied, namely SULT1A1, SULT1A3, SULT1B1, SULT1E1 and SULT2A1, are expressed in different tissues of the body, including liver, intestine, adrenal, brain and skin. These sulfotransferases play important roles in the sulfonation of endogenous molecules such as steroid hormones and neurotransmitters, and in the elimination of xenobiotic molecules such as drugs, environmental chemicals and natural products. There is often overlapping substrate selectivity among the sulfotransferases, although one isoform may exhibit greater enzyme efficiency than other isoforms. Similarly, inhibitors or enhancers of one isoform often affect other isoforms, but typically with different potency. This means that if the activity of one form of sulfotransferase is altered (either inhibited or enhanced) by the presence of a xenobiotic, the sulfonation of endogenous and xenobiotic substrates for other isoforms may well be affected. There are more examples of inhibitors than enhancers of sulfonation. Modulators of sulfotransferase enzymes include natural products ingested as part of the human diet as well as environmental chemicals and drugs. This review will discuss recent work on such interactions.
Collapse
Affiliation(s)
- Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville , FL , USA
| | | |
Collapse
|
9
|
Valdehita A, Quesada-García A, Delgado MM, Martín JV, García-González MC, Fernández-Cruz ML, Navas JM. In vitro assessment of thyroidal and estrogenic activities in poultry and broiler manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:630-641. [PMID: 24317169 DOI: 10.1016/j.scitotenv.2013.11.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 06/02/2023]
Abstract
Among the many chemicals found in avian manure, endocrine disruptors (EDs), of natural or anthropogenic origin, are of special environmental concern. Nowadays, an increasing amount of estrogens is being released into the environment via the use of manure to fertilize agricultural land. While most research in this field has focused on estrogenic phenomena, little is known about alterations related to other endocrine systems, such as the thyroidal one. Here we simultaneously assessed the potential estrogenic and thyroidal activity of poultry and broiler litter manure using in vitro approaches based on estrogen receptor (Er) and thyroid receptor (Tr) transactivation assays. In addition, leaching experiments were performed to assess whether the EDs present in the manure pass through a soil column and potentially reach the groundwater. Manure from four broiler and four poultry farms was collected in two sampling campaigns carried out in two seasons (fall and spring). Extracts from broiler and poultry manure exhibited strong thyroidal activity. Only poultry manure showed estrogenic activity, which is consistent with the low levels of estrogens expected in hatchlings. Leakage experiments were performed in columns with two kinds of arable soils: sandy and loamy. No estrogenicity or thyroidal activity was detectable in soils treated with the manure or in the corresponding leachates. These results indicate that substances with estrogenic or thyroidal activity were degraded in the soil under our experimental conditions. However, the long-term effects associated with the constant and intensive application of manure to agricultural land in some regions require further research.
Collapse
Affiliation(s)
- A Valdehita
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain.
| | - A Quesada-García
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain.
| | - M M Delgado
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain.
| | - J V Martín
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain.
| | - M C García-González
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Área de Innovación y Optimización de Procesos, Carretera de Burgos Km 119, 47071 Valladolid, Spain.
| | - M L Fernández-Cruz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain.
| | - J M Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña Km 7.5, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Yu LQ, Zhao GF, Feng M, Wen W, Li K, Zhang PW, Peng X, Huo WJ, Zhou HD. Chronic exposure to pentachlorophenol alters thyroid hormones and thyroid hormone pathway mRNAs in zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:170-176. [PMID: 24123209 DOI: 10.1002/etc.2408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/06/2013] [Accepted: 09/23/2013] [Indexed: 06/02/2023]
Abstract
Pentachlorophenol (PCP) is frequently detected in the aquatic environment and has been implicated as an endocrine disruptor in fish. In the present study, 4-month-old zebrafish (Danio rerio) were exposed to 1 of 4 concentrations of PCP (0.1, 1, 9, and 27 µg/L) for 70 d. The effects of PCP exposure on plasma thyroid hormone levels, and the expression levels of selected genes, were measured in the brain and liver. The PCP exposure at 27 µg/L resulted in elevated plasma thyroxine concentrations in male and female zebrafish and depressed 3, 5, 3'-triiodothyronine concentrations in males only. In both sexes, PCP exposure resulted in decreased messenger RNA (mRNA) expression levels of thyroid-stimulating hormone β-subunit (tshβ) and thyroid hormone receptor β (trβ) in the brain, as well as increased liver levels of uridine diphosphoglucuronosyl transferase (ugt1ab) and decreased deiodinase 1 (dio1). The authors also identified several sex-specific effects of PCP exposure, including changes in mRNA levels for deiodinase 2 (dio2), cytosolic sulfotransferase (sult1 st5), and transthyretin (ttr) genes in the liver. Environmental PCP exposure also caused an increased malformation rate in offspring that received maternal exposure to PCP. The present study demonstrates that chronic exposure to environmental levels of PCP alters plasma thyroid hormone levels, as well as the expression of genes associated with thyroid hormone signaling and metabolism in the hypothalamic-pituitary-thyroid (HPT) axis and liver, resulting in abnormal zebrafish development.
Collapse
Affiliation(s)
- Li-Qin Yu
- China Institute of Water Resources and Hydropower Research, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Villanger GD, Gabrielsen KM, Kovacs KM, Lydersen C, Lie E, Karimi M, Sørmo EG, Jenssen BM. Effects of complex organohalogen contaminant mixtures on thyroid homeostasis in hooded seal (Cystophora cristata) mother-pup pairs. CHEMOSPHERE 2013; 92:828-842. [PMID: 23726007 DOI: 10.1016/j.chemosphere.2013.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Many lipid-soluble and phenolic compounds present in the complex mixture of orgaohalogen contaminants (OHCs) that arctic wildlife is exposed to have the ability to interfere with the thyroid hormone (TH) system. The aim of this study was to identify compounds that might interfere with thyroid homeostasis in 14 nursing hooded seal (Cystophora cristata) mothers and their pups (1-4d old) sampled in the West Ice in March 2008. Multivariate modelling was used to assess the potential effects of measured plasma levels of OHCs on circulating TH levels of the measured free (F) and total (T) levels of triidothyrine (T3) and thyroxine (T4). Biological factors were important in all models (e.g. age and sex). In both mothers and pups, TT3:FT3 ratios were associated with α- and β-hexachlorocyclohexane (HCH), ortho-PCBs, chlordanes and DDTs. The similarities between the modelled TT3:FT3 responses to OHC levels in hooded seal mothers and pups most probably reflects similar exposure patterns, but could also indicate interconnected TH responses. There were some differences in the modelled TH responses of mothers and pups. Most importantly, the negative relationships between many OH-PCBs (particularly 3'-OH-CB138) and TT3:FT3 ratio and the positive relationships between TT4:FT4 ratios and polybrominated diphenyl ether [PBDE]-99, -100 and 4-OH-CB107 in pups, which was not found in mothers. Although statistical associations are not evidence per se of biological cause-effect relationships, the results suggest that thyroid homeostasis is affected in hooded seals, and that the inclusion of the fullest possible OHC mixture is important when assessing TH related effects in wildlife.
Collapse
Affiliation(s)
- Gro D Villanger
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Grasselli E, Cortese K, Voci A, Vergani L, Fabbri R, Barmo C, Gallo G, Canesi L. Direct effects of Bisphenol A on lipid homeostasis in rat hepatoma cells. CHEMOSPHERE 2013; 91:1123-1129. [PMID: 23399309 DOI: 10.1016/j.chemosphere.2013.01.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/10/2012] [Accepted: 01/02/2013] [Indexed: 06/01/2023]
Abstract
Bisphenol A (BPA), used in the manufacture of polycarbonate plastic and epoxy resin, is one of the most abundant endocrine disruptors in the environment, considered as a xenoestrogen. BPA has recently become of additional public health concern because of increasing evidence of deleterious effects on metabolism. Dietary intake seems the most important route for BPA exposure, followed by rapid biotransformation in the gut and liver and elimination in the urine. Although hepatocytes can represent a significant target for this compound, little is known on the direct effects and mechanisms of action of BPA on lipid homeostasis at the cellular level. In this work, the effects of BPA (0.3-3-30-300 ng mL(-1), 24 h) were investigated in rat FaO hepatoma, a well differentiated liver cell line. At both 30 and 300 ng mL(-1), BPA significantly increased intracellular triglyceride (TAG) content and lipid accumulation in lipid droplets (LDs), without affecting cell viability. The effects of BPA were associated with decreased mRNA levels of the transcription factors Peroxisome Proliferator-Activated Receptor (PPAR) isoforms α and βδ, as well as of their downstream genes acyl-CoA oxidase (AOX) and carnitine palmitoyl transferase (CPT1) involved in lipid oxidation. No increase in transcription of lipogenic genes was observed. BPA also decreased mRNA levels of ApolipoproteinB (apoB) and the extracellular TAG content, indicating alterations in lipid secretion. FaO cells did not express Estrogen Receptor α (ERα and showed a very low expression of ERβ compared to rat liver. All the effects of BPA were prevented by cell pretreatment with Wortmannin, indicating the involvement of phosphatidyl inositol-3 kinase activation. The results demonstrate a direct action of BPA on lipid homeostasis in FaO cells through interference with lipid oxidation and secretion, and add further information on the cellular pathways that can be perturbed by this compound.
Collapse
Affiliation(s)
- Elena Grasselli
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Murk AJ, Rijntjes E, Blaauboer BJ, Clewell R, Crofton KM, Dingemans MML, Furlow JD, Kavlock R, Köhrle J, Opitz R, Traas T, Visser TJ, Xia M, Gutleb AC. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicol In Vitro 2013; 27:1320-46. [PMID: 23453986 DOI: 10.1016/j.tiv.2013.02.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/07/2013] [Accepted: 02/18/2013] [Indexed: 11/16/2022]
Abstract
The thyroid hormone (TH) system is involved in several important physiological processes, including regulation of energy metabolism, growth and differentiation, development and maintenance of brain function, thermo-regulation, osmo-regulation, and axis of regulation of other endocrine systems, sexual behaviour and fertility and cardiovascular function. Therefore, concern about TH disruption (THD) has resulted in strategies being developed to identify THD chemicals (THDCs). Information on potential of chemicals causing THD is typically derived from animal studies. For the majority of chemicals, however, this information is either limited or unavailable. It is also unlikely that animal experiments will be performed for all THD relevant chemicals in the near future for ethical, financial and practical reasons. In addition, typical animal experiments often do not provide information on the mechanism of action of THDC, making it harder to extrapolate results across species. Relevant effects may not be identified in animal studies when the effects are delayed, life stage specific, not assessed by the experimental paradigm (e.g., behaviour) or only occur when an organism has to adapt to environmental factors by modulating TH levels. Therefore, in vitro and in silico alternatives to identify THDC and quantify their potency are needed. THDC have many potential mechanisms of action, including altered hormone production, transport, metabolism, receptor activation and disruption of several feed-back mechanisms. In vitro assays are available for many of these endpoints, and the application of modern '-omics' technologies, applicable for in vivo studies can help to reveal relevant and possibly new endpoints for inclusion in a targeted THDC in vitro test battery. Within the framework of the ASAT initiative (Assuring Safety without Animal Testing), an international group consisting of experts in the areas of thyroid endocrinology, toxicology of endocrine disruption, neurotoxicology, high-throughput screening, computational biology, and regulatory affairs has reviewed the state of science for (1) known mechanisms for THD plus examples of THDC; (2) in vitro THD tests currently available or under development related to these mechanisms; and (3) in silico methods for estimating the blood levels of THDC. Based on this scientific review, the panel has recommended a battery of test methods to be able to classify chemicals as of less or high concern for further hazard and risk assessment for THD. In addition, research gaps and needs are identified to be able to optimize and validate the targeted THD in vitro test battery for a mechanism-based strategy for a decision to opt out or to proceed with further testing for THD.
Collapse
Affiliation(s)
- AlberTinka J Murk
- Wageningen University, Sub-department of Toxicology, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schnitzler JG, Klaren PHM, Bouquegneau JM, Das K. Environmental factors affecting thyroid function of wild sea bass (Dicentrarchuslabrax) from European coasts. CHEMOSPHERE 2012; 87:1009-1017. [PMID: 22169207 DOI: 10.1016/j.chemosphere.2011.11.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 11/02/2011] [Accepted: 11/06/2011] [Indexed: 05/31/2023]
Abstract
Thyroid functional status of wild fish in relation with the contamination of their environment deserves further investigation. We here applied a multi-level approach of thyroid function assessment in 87 wild sea bass collected near several estuaries: namely the Scheldt, the Seine, the Loire, the Charente and the Gironde. Thyroxine (T(4)) and triiodothyronine (T(3)) concentrations in muscle were analyzed by radioimmunoassay. The activity of hepatic enzymes involved in extrathyroidal pathways of thyroid hormone metabolism, viz. deiodination, glucuronidation and sulfatation were analyzed. Last, follicle diameter and epithelial cell heights were measured. We observed changes that are predicted to lead to an increased conversion of T(4)-T(3) and lowered thyroid hormone excretion. The changes in the metabolic pathways of thyroid hormones can be interpreted as a pathway to maintain thyroid hormone homeostasis. From all compounds tested, the higher chlorinated PCBs seemed to be the most implicated in this perturbation.
Collapse
Affiliation(s)
- Joseph G Schnitzler
- Mare Centre, Laboratory for Oceanology B6c, Liège University, Liège, Belgium.
| | | | | | | |
Collapse
|
15
|
Bytingsvik J, Lie E, Aars J, Derocher AE, Wiig Ø, Jenssen BM. PCBs and OH-PCBs in polar bear mother-cub pairs: a comparative study based on plasma levels in 1998 and 2008. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 417-418:117-128. [PMID: 22264925 DOI: 10.1016/j.scitotenv.2011.12.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to examine the plasma concentrations and prevalence of polychlorinated biphenyls (PCBs) and hydroxylated PCB-metabolites (OH-PCBs) in polar bear (Ursus maritimus) mothers (n=26) and their 4 months old cubs-of-the-year (n=38) from Svalbard to gain insight into the mother-cub transfer, biotransformation and to evaluate the health risk associated with the exposure to these contaminants. As samplings were performed in 1997/1998 and 2008, we further investigated the differences in levels and pattern of PCBs between the two sampling years. The plasma concentrations of Σ(21)PCBs (1997/1998: 5710 ± 3090 ng/g lipid weight [lw], 2008: 2560 ± 1500 ng/g lw) and Σ(6)OH-PCBs (1997/1998: 228 ± 60 ng/g wet weight [ww], 2008: 80 ± 38 ng/g ww) in mothers were significantly lower in 2008 compared to in 1997/1998. In cubs, the plasma concentrations of Σ(21)PCBs (1997/1998: 14680 ± 5350 ng/g lw, 2008: 6070 ± 2590 ng/g lw) and Σ(6)OH-PCBs (1997/1998: 98 ± 23 ng/g ww, 2008: 49 ± 21 ng/g ww) were also significantly lower in 2008 than in 1997/1998. Σ(21)PCBs in cubs was 2.7 ± 0.7 times higher than in their mothers. This is due to a significant maternal transfer of these contaminants. In contrast, Σ(6)OH-PCBs in cubs were approximately 0.53 ± 0.16 times the concentration in their mothers. This indicates a lower maternal transfer of OH-PCBs compared to PCBs. The majority of the metabolite/precursor-ratios were lower in cubs compared to mothers. This may indicate that cubs have a lower endogenous capacity to biotransform PCBs to OH-PCBs than polar bear mothers. Exposure to PCBs and OH-PCBs is a potential health risk for polar bears, and the levels of PCBs and OH-PCBs in cubs from 2008 were still above levels associated with health effects in humans and wildlife.
Collapse
Affiliation(s)
- Jenny Bytingsvik
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
16
|
Gabrielsen KM, Villanger GD, Lie E, Karimi M, Lydersen C, Kovacs KM, Jenssen BM. Levels and patterns of hydroxylated polychlorinated biphenyls (OH-PCBs) and their associations with thyroid hormones in hooded seal (Cystophora cristata) mother-pup pairs. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:482-491. [PMID: 21888873 DOI: 10.1016/j.aquatox.2011.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/04/2011] [Accepted: 08/06/2011] [Indexed: 05/31/2023]
Abstract
Blood (plasma/serum) samples from 14 adult female and their pups (1-4 days old) captured in the West Ice, east of Greenland were analysed for concentrations of total and free thyroxine and triiodothyronine (TT4, FT4, TT3, FT3), and hydroxylated polychlorinated biphenyls (OH-PCBs). The levels of all thyroid hormones (THs) were significantly higher in pups than in mothers. Sum OH-PCB levels (ΣOH-PCBs: 4-OH-CB107, 3'-OH-CB138, 4-OH-CB146, 4'-OH-CB172, 4-OH-CB187) were significantly higher in mothers (3.98 ± 1.55 pmol/g; 1.40 ± 0.54 ng/g wet weight) as compared to pups (1.95 ± 0.78 pmol/g; 0.68 ± 0.28 ng/g wet weight). Plasma levels of TT4 and FT4 in mothers increased as a function of pup age, as did levels of individual OH-PCBs in both mothers and pups. The pattern of OH-PCBs in the pups was similar to their mothers. We suggest that OH-PCBs found in pups are transferred from their mothers during gestation and that the transfer also continues after parturition via milk. Principal component analysis (PCA) showed that in pups, 4-OH-CB107 and 3'-OH-CB138 were negatively associated with FT4:FT3 and TT3:FT3 ratios, respectively. These relationships were confirmed by partial correlation analysis correcting for pup age. PCA suggested that 4'-OH-CB172 and 4-OH-CB187 were negatively associated with TT3 in mothers. However, this was not confirmed by correlation tests. Although statistical relationships should be interpreted with caution, the study indicates that young developing seals are more sensitive compared to adults with respect to TH-related effects of OH-PCBs.
Collapse
|
17
|
Schnitzler JG, Celis N, Klaren PHM, Blust R, Dirtu AC, Covaci A, Das K. Thyroid dysfunction in sea bass (Dicentrarchus labrax): underlying mechanisms and effects of polychlorinated biphenyls on thyroid hormone physiology and metabolism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:438-47. [PMID: 21872555 DOI: 10.1016/j.aquatox.2011.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 05/20/2023]
Abstract
The current study examines the effect of subchronic exposure to a mixture of Aroclor standards on thyroid hormone physiology and metabolism in juvenile sea bass. The contaminant mixture was formulated to reflect the persistent organic pollution to which the European sea bass population could conceivably be exposed (0.3, 0.6 and 1.0 μg Σ7PCBs per g food pellets) and higher (10 μg Σ7PCBs per g food pellets). After 120 days of exposure, histomorphometry of thyroid tissue, muscular thyroid hormone concentration and activity of enzymes involved in metabolism of thyroid hormones were assessed. Mean concentrations of 8, 86, 142, 214 and 2279 ng g(-1)ww (Σ7 ICES PCB congeners) were determined after 120 days exposure. The results show that the effects of PCB exposures on the thyroid system are dose-dependent. Exposure to environmentally relevant doses of PCB (0.3-1.0 μg Σ7PCBs per g food pellets) induced a larger variability of the follicle diameter and stimulated hepatic T(4) outer ring deiodinase. Muscular thyroid hormone levels were preserved thanks to the PCB induced changes in T(4) dynamics. At 10 times higher concentrations (10 μg Σ7PCBs per g food pellets) an important depression of T(3) and T(4) levels could be observed which are apparently caused by degenerative histological changes in the thyroid tissue.
Collapse
Affiliation(s)
- Joseph G Schnitzler
- Mare Centre, Laboratory for Oceanology B6c, Liège University, Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
18
|
Antunes-Fernandes EC, Bovee TF, Daamen FE, Helsdingen RJ, van den Berg M, van Duursen MB. Some OH-PCBs are more potent inhibitors of aromatase activity and (anti-) glucocorticoids than non-dioxin like (NDL)-PCBs and MeSO2-PCBs. Toxicol Lett 2011; 206:158-65. [DOI: 10.1016/j.toxlet.2011.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 01/23/2023]
|
19
|
Sonne C. Health effects from long-range transported contaminants in Arctic top predators: An integrated review based on studies of polar bears and relevant model species. ENVIRONMENT INTERNATIONAL 2010; 36:461-491. [PMID: 20398940 DOI: 10.1016/j.envint.2010.03.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/06/2010] [Accepted: 03/10/2010] [Indexed: 05/29/2023]
Abstract
The aim of this review is to provide a thorough overview of the health effects from the complexed biomagnified mixture of long-range transported industrial organochlorines (OCs), polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs) and mercury (Hg) on polar bear (Ursus maritimus) health. Multiple scientific studies of polar bears indicate negative relationships between exposure to these contaminants and health parameters; however, these are all of a correlative nature and do not represent true cause-and-effects. Therefore, information from controlled studies of farmed Norwegian Arctic foxes (Vulpes lagopus) and housed East and West Greenland sledge dogs (Canis familiaris) were included as supportive weight of evidence in the clarification of contaminant exposure and health effects in polar bears. The review showed that hormone and vitamin concentrations, liver, kidney and thyroid gland morphology as well as reproductive and immune systems of polar bears are likely to be influenced by contaminant exposure. Furthermore, exclusively based on polar bear contaminant studies, bone density reduction and neurochemical disruption and DNA hypomethylation of the brain stem seemed to occur. The range of tissue concentration, at which these alterations were observed in polar bears, were ca. 1-70,000 ng/g lw for OCs (blood plasma concentrations of some PCB metabolites even higher), ca. 1-1000 ng/g lw for PBDEs and for PFCs and Hg 114-3052 ng/g ww and 0.1-50 microg/g ww, respectively. Similar concentrations were found in farmed foxes and housed sledge dogs while the lack of dose response designs did not allow an estimation of threshold levels for oral exposure and accumulated tissue concentrations. Nor was it possible to pinpoint a specific group of contaminants being more important than others nor analyze their interactions. For East Greenland polar bears the corresponding daily SigmaOC and SigmaPBDE oral exposure was estimated to be 35 and 0.34 microg/kg body weight, respectively. Furthermore, PFC concentrations, at which population effect levels could occur, are likely to be reached around year 2012 for the East Greenland polar bear subpopulation if current increasing temporal trends continue. Such proposed reproductive population effects were supported by physiological based pharmacokinetic (PBPK) modelling of critical body residues (CBR) with risk quotients >or=1 for SigmaPCB, dieldrin, SigmaPFC and SigmaOHC (organohalogen contaminant). The estimated daily TEQ for East Greenland polar bears and East Greenland sledge dogs were 32-281-folds above WHO SigmaTEQ guidelines for humans. Compared to human tolerable daily intake (TDI), these were exceeded for PCBs, dieldrin, chlordanes and SigmaHCH in East Greenland polar bears. Comparisons like these should be done with caution, but together with the CBR modelling and T-score estimations, these were the only available tools for polar bear risk evaluation. In conclusion, polar bears seem to be susceptible to contaminant induced stress that may have an overall sub-clinical impact on their health and population status via impacts on their immune and reproductive systems.
Collapse
Affiliation(s)
- Christian Sonne
- Section for Contaminants, Effects and Marine Mammals, Department of Arctic Environment, National Environmental Research Institute, University of Aarhus, DK-4000 Roskilde, Denmark.
| |
Collapse
|
20
|
Dirtu AC, Jaspers VLB, Cernat R, Neels H, Covaci A. Distribution of PCBs, their hydroxylated metabolites, and other phenolic contaminants in human serum from two European countries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:2876-2883. [PMID: 20384379 DOI: 10.1021/es902149b] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Human exposure to mixtures of polychlorinated biphenyls (PCBs) may result in the formation of different profiles of hydroxylated PCBs (HO-PCBs), as a consequence of different exposures or dissimilar metabolism of parent compounds. Therefore, we investigated the levels and profiles of PCBs and HO-PCBs in human serum samples collected from two European countries with different degrees of pollution. There was no significant difference between the levels of sum PCBs measured in each set of samples, with a median concentration of 3100 pg/mL for Romanian samples (n = 53) and 3380 pg/mL for Belgian samples (n = 22). However, the median concentrations recorded for sum HO-PCBs were almost double in Belgian (310 pg/mL) compared to Romanian (175 pg/mL) samples. The detection frequency recorded for HO-PCBs in Belgian samples was also significantly higher compared to Romanian samples. The main contributors to the sum HO-PCBs in the Belgian samples were 4HO-CB107 > 4HO-CB146 > 4HO-CB187 (76% from the sum HO-PCBs) and 4HO-CB187 > 4HO-CB146 > 3'HO-CB138 (66% from the sum of HO-PCBs) in the Romanian samples. The HO-PCB profile showed that the higher chlorinated HO-PCBs had a higher contribution in the Romanian samples compared to the Belgian ones. This suggests that differences in the PCB profiles between populations can lead to the formation of different HO-PCB metabolite profiles presenting thus different risks for populations. No clear preferential mechanism of HO-PCB metabolite formation (HO-direct insertion vs. 1,2-shift of a chlorine atom) could be highlighted for investigated samples. The main chlorinated phenolic compound found in the Belgian samples was pentachlorophenol (PCP) which accounted for up to 85% of the total quantified phenolics, whereas in the Romanian samples, PCP accounted for only 35%.
Collapse
Affiliation(s)
- Alin C Dirtu
- Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | | | | | | |
Collapse
|
21
|
Investigation of the interaction between pentachlorophenol and human serum albumin using spectral methods. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2009.05.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Sonne C, Wolkers H, Leifsson PS, Iburg T, Jenssen BM, Fuglei E, Ahlstrøm O, Dietz R, Kirkegaard M, Muir DCG, Jørgensen EH. Chronic dietary exposure to environmental organochlorine contaminants induces thyroid gland lesions in Arctic foxes (Vulpes lagopus). ENVIRONMENTAL RESEARCH 2009; 109:702-711. [PMID: 19464679 DOI: 10.1016/j.envres.2009.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/10/2009] [Accepted: 04/20/2009] [Indexed: 05/27/2023]
Abstract
The impact of dietary organochlorine (OC) exposure on thyroid gland pathology was studied in farmed male Arctic foxes (Vulpes lagopus). The exposed group (n=16) was fed a diet based on wild minke whale (Balaenoptera acutorostrata) blubber as a main fat source in order to mimic the exposure to OC cocktails in the Artic environment. This resulted in an exposure of approximately 17 microg Sigma OC/kg day and a Sigma OC residue adipose tissue and liver concentration of 1700 and 4470 ng/gl.w., respectively, after 16 months of exposure. Control foxes (n=13) were fed a diet with pork (Sus scrofa) fat as a main fat source containing significantly lower OC concentrations. The food composition fed to the control and exposed group was standardized for nutrient contents. Four OC-related histopathological changes were found: (1) flat-epithelial-cell true thyroid cysts (TC) characterized by neutral content; (2) remnants of simple squamous epithelial-cell embryonic ducts containing neutral debris (EDN); (3) remnants of stratified squamous epithelial-cell embryonic ducts containing acid mucins often accompanied with debris of leukocyte inflammatory nature (EDM) and (4) disseminated thyroid C-cell hyperplasia (HPC). Of these, the prevalence of TC, EDN and HPC was significantly highest in the exposed group (chi(2) test: all p<0.04). The study shows that the OC mixture in minke whale blubber may cause development of thyroid gland cysts, C-cell hyperplasia and increase the prevalence of cystic remnants of embryonic ducts. The mechanism causing these effects could include endocrine disruption of the hypothalamus-pituitary-thyroid (HPT) axis, a disturbance of the calcium homeostasis/metabolism or energy metabolism or immune suppression. Because concentrations of OCs are higher in wild Arctic foxes, it is likely that these animals could suffer from similar OC-induced thyroid gland pathological and functional changes.
Collapse
Affiliation(s)
- Christian Sonne
- Section for Contaminants, Effects and Marine Mammals, Department of Arctic Environment, National Environmental Research Institute, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Carrizo D, Grimalt JO, Ribas-Fito N, Torrent M, Sunyer J. Pentachlorobenzene, hexachlorobenzene, and pentachlorophenol in children's serum from industrial and rural populations after restricted use. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 71:260-266. [PMID: 17935782 DOI: 10.1016/j.ecoenv.2007.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 05/14/2007] [Accepted: 08/29/2007] [Indexed: 05/25/2023]
Abstract
The study of a population of 4-year-old children born between 1997 and 1999 in an urban area under strong inputs of pentachlorobenzene (PeCB) and hexachlorobenzene (HCB) suggested that the measured concentrations of pentachlorophenol (PCP) in serum may essentially result from metabolism of these chlorinated hydrocarbons. In contrast, examination of a rural population of children where the same compounds were present at relatively low levels points to other inputs besides transformation of PeCB and HCB being responsible for the measured PCP concentrations. In both populations, the results showed that a major proportion of the organochlorine compounds present in these children's serum at 4 years of age was incorporated during the lactation period.
Collapse
Affiliation(s)
- Daniel Carrizo
- Department of Environmental Chemistry, Institute of Chemical and Environmental Research, IIQAB-CSIC, Barcelona, Catalonia, Spain
| | | | | | | | | |
Collapse
|
24
|
Otake T, Yoshinaga J, Enomoto T, Matsuda M, Wakimoto T, Ikegami M, Suzuki E, Naruse H, Yamanaka T, Shibuya N, Yasumizu T, Kato N. Thyroid hormone status of newborns in relation to in utero exposure to PCBs and hydroxylated PCB metabolites. ENVIRONMENTAL RESEARCH 2007; 105:240-6. [PMID: 17490634 DOI: 10.1016/j.envres.2007.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 03/02/2007] [Accepted: 03/27/2007] [Indexed: 05/15/2023]
Abstract
The associations between in utero exposure to polychlorinated biphenyls (PCBs) or hydroxylated PCB metabolites (OH-PCBs), and free thyroxin (fT4) or thyroid-stimulating hormone (TSH) status in the newborn were investigated as a pilot study of a large-scale epidemiologic study on in utero PCB or OH-PCB exposure and thyroid function of the newborns. Umbilical cord tissue was used as the media for the biological monitoring of PCBs/OH-PCBs exposure in utero. For the measurement of fT4 and TSH, a heel-prick blood sample spotted on filter paper, which is called Guthrie card, is collected from each neonate at day 4-6 postpartum for this study when the mass screening sampling was performed. We showed that the concentration of total OH-PCBs and one of the OH-PCB congeners (OH-PCB 187) was related significantly to higher fT4 level of newborns. On the other hand, the concentration of total PCBs and PCB congeners (PCB 118, 138, 153, and 180) showed no relationship with fT4 and TSH level of the newborns. The results obtained in this pilot study indicated the possibility that in utero OH-PCBs exposure affects thyroid hormone status of newborns.
Collapse
Affiliation(s)
- Takamitsu Otake
- Department of Environmental Studies, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|