1
|
Afshinnia F, Zeng L, Byun J, Wernisch S, Deo R, Chen J, Hamm L, Miller ER, Rhee EP, Fischer MJ, Sharma K, Feldman HI, Michailidis G, Pennathur S. Elevated lipoxygenase and cytochrome P450 products predict progression of chronic kidney disease. Nephrol Dial Transplant 2020; 35:303-312. [PMID: 30137494 PMCID: PMC7391277 DOI: 10.1093/ndt/gfy232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/14/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The clinical relevance of arachidonic acid (AA) metabolites in chronic kidney disease (CKD) progression is poorly understood. We aimed to compare the concentrations of 85 enzymatic pathway products of AA metabolism in patients with CKD who progressed to end-stage kidney disease (ESKD) versus patients who did not in a subcohort of Chronic Renal Insufficiency Cohort (CRIC) and to estimate the risk of CKD progression and major cardiovascular events by levels of AA metabolites and their link to enzymatic metabolic pathways. METHODS A total 123 patients in the CRIC study who progressed to ESKD were frequency matched with 177 nonprogressors and serum eicosanoids were quantified by mass spectrometry. We applied serum collected at patients' Year 1 visit and outcome of progression to ESKD was ascertained over the next 10 years. We used logistic regression models for risk estimation. RESULTS Baseline 15-hydroxyeicosatetraenoate (HETE) and 20-HETE levels were significantly elevated in progressors (false discovery rate Q ≤ 0.026). The median 20-HETE level was 7.6 pmol/mL [interquartile range (IQR) 4.2-14.5] in progressors and 5.4 pmol/mL (IQR 2.8-9.4) in nonprogressors (P < 0.001). In an adjusted model, only 20-HETE independently predicted CKD progression. Each 1 standard deviation increase in 20-HETE was independently associated with 1.45-fold higher odds of progression (95% confidence interval 1.07-1.95; P = 0.017). Principal components of lipoxygenase (LOX) and cytochrome P450 (CYP450) pathways were independently associated with CKD progression. CONCLUSIONS We found higher odds of CKD progression associated with higher 20-HETE, LOX and CYP450 metabolic pathways. These alterations precede CKD progression and may serve as targets for interventions aimed at halting progression.
Collapse
Affiliation(s)
- Farsad Afshinnia
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Lixia Zeng
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Jaeman Byun
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Stefanie Wernisch
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Rajat Deo
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Chen
- Division of Nephrology and Hypertension, Tulane University, New Orleans, LA, USA
| | - Lee Hamm
- Division of Nephrology and Hypertension, Tulane University, New Orleans, LA, USA
| | - Edgar R Miller
- Department of Internal Medicine, Jones Hopkins University, Baltimore, MD, USA
| | - Eugene P Rhee
- Department of Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael J Fischer
- Department of Medicine, University of Illinois, Center of Innovation for Complex Chronic Healthcare, Jesse Brown VAMC, Chicago, IL, USA
| | - Kumar Sharma
- Department of Internal Medicine-Nephrology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Harold I Feldman
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Subramaniam Pennathur
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Innes JK, Calder PC. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids 2018; 132:41-48. [PMID: 29610056 DOI: 10.1016/j.plefa.2018.03.004] [Citation(s) in RCA: 503] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/18/2022]
Abstract
Inflammation is a normal process that is part of host defence and tissue healing. However, excessive or unresolved inflammation can lead to uncontrolled tissue damage, pathology and disease. In humans on a Western diet, the omega-6 polyunsaturated fatty acid arachidonic acid (ARA) makes a significant contribution to the fatty acids present in the membrane phospholipids of cells involved in inflammation. ARA is a precursor to a number of potent pro-inflammatory mediators including well described prostaglandins and leukotrienes, which has led to the development of anti-inflammatory pharmaceuticals that target the ARA pathway to successfully control inflammation. Hence, it is commonly believed that increasing dietary intake of the omega-6 fatty acids ARA or its precursor linoleic acid (LA) will increase inflammation. However, studies in healthy human adults have found that increased intake of ARA or LA does not increase the concentrations of many inflammatory markers. Epidemiological studies have even suggested that ARA and LA may be linked to reduced inflammation. Contrastingly, there is also evidence that a high omega-6 fatty acid diet inhibits the anti-inflammatory and inflammation-resolving effect of the omega-3 fatty acids. Thus, the interaction of omega-3 and omega-6 fatty acids and their lipid mediators in the context of inflammation is complex and still not properly understood.
Collapse
Affiliation(s)
- Jacqueline K Innes
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, IDS Building, MP887 Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, IDS Building, MP887 Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, United Kingdom.
| |
Collapse
|
3
|
Omega-3-carboxylic acids provide efficacious anti-inflammatory activity in models of crystal-mediated inflammation. Sci Rep 2018; 8:1217. [PMID: 29352206 PMCID: PMC5775341 DOI: 10.1038/s41598-018-19252-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022] Open
Abstract
This study assesses the efficacy and exposure–response relationship of omega-3-carboxylic acids (OM-3 CA) in models of crystal-based inflammation. Human THP-1 macrophages and primary peripheral blood mononuclear cells exposed to multiple inflammatory crystal types were used to determine the anti-inflammatory potential of omega-3 (OM-3) fatty acids in vitro. Anti-inflammatory effects of OM-3 CA in vivo were tested in rat monosodium urate (MSU) crystal air pouch and rat knee intra-articular MSU injection models. Acute treatment with the OM-3 fatty acid docosahexaenoic acid suppressed MSU-, cholesterol crystal-, and calcium pyrophosphate crystal-mediated interleukin-1β (IL-1β) production in vitro. In vivo, OM-3 CA dose-dependently reduced crystal-mediated cell migration, exudate volume, and levels of IL-1β and prostaglandin E2. Following intra-articular injection of MSU, treatment with OM-3-CA (1 mL/kg) and indomethacin (1 mg/kg) resulted in similar mean reductions in pain (23% and 41%, respectively) and swelling (58% and 50%, respectively), compared with controls. Additionally, in complex formulations of OM-3 fatty acids, high levels of palmitic acid could reduce the in vivo effect on crystal-mediated IL-1β elevation. OM-3 CA has a broadly efficacious anti-inflammatory effect with a strong exposure–response relationship that could be beneficial in prevention and treatment of crystal arthritis, with potential applications in other IL-1β-mediated diseases.
Collapse
|
4
|
Al-Turki DA, Al-Omar MA, Abou-zeid LA, Shehata IA, Al-Awady MS. Design, synthesis, molecular modeling and biological evaluation of novel diaryl heterocyclic analogs as potential selective cyclooxygenase-2 (COX-2) inhibitors. Saudi Pharm J 2017; 25:59-69. [PMID: 28223863 PMCID: PMC5310148 DOI: 10.1016/j.jsps.2015.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/09/2015] [Indexed: 01/26/2023] Open
Abstract
New series of 3,4-diaryl-2-thioxoimidazolidin-4-ones and 3-alkylthio-4,5-diaryl-4H-1,2,4-triazoles were designed, synthesized and evaluated for their activity as anti-inflammatory agents. Compounds 20, 21, 23 and 34 are highly selective inhibitors of COX-2 enzyme at a concentration of 100 mM relative to celecoxib, the standard reference. (±)-3-(4-Phenoxy-phenyl)-5-phenyl-2-thioxoimidazolidin-4-ones 23 exhibited the most active anti-inflammatory agent.
Collapse
Affiliation(s)
- Deema A. Al-Turki
- Department of Pharmaceutical Chemistry, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila A. Abou-zeid
- Department of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ihsan A. Shehata
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed S. Al-Awady
- Department of Pharmacology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
5
|
Souza PR, Norling LV. Implications for eicosapentaenoic acid- and docosahexaenoic acid-derived resolvins as therapeutics for arthritis. Eur J Pharmacol 2015; 785:165-173. [PMID: 26165764 DOI: 10.1016/j.ejphar.2015.05.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/16/2015] [Accepted: 05/11/2015] [Indexed: 02/08/2023]
Abstract
Omega-3 polyunsaturated fatty acids are essential for health and are known to possess anti-inflammatory properties, improving cardiovascular health as well as benefiting inflammatory diseases. Indeed, dietary supplementation with omega-3 polyunsaturated fatty acids has proved efficacious in reducing joint pain, morning stiffness and nonsteroidal anti-inflammatory drugs usage in rheumatoid arthritis patients. However, the mechanisms by which omega-3 polyunsaturated fatty acids exert their beneficial effects have not been fully explored. Seminal discoveries by Serhan and colleagues have unveiled a novel class of bioactive lipid mediators that are enzymatically biosynthesized in vivo from omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), termed resolvins, protectins and maresins. These bioactive pro-resolving lipid mediators provide further rationale for the beneficial effects of fish-oil enriched diets. These endogenous lipid mediators are spatiotemporally biosynthesized to actively regulate resolution by acting on specific G protein-coupled receptors (GPCRs) to initiate anti-inflammatory and pro-resolving signals that terminate inflammation. In this review, we will discuss the mechanism of actions of these molecules, including their analgesic and bone-sparing properties making them ideal therapeutic agonists for the treatment of inflammatory diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Patricia R Souza
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Lucy V Norling
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| |
Collapse
|
6
|
Menstrual pain and epithelial ovarian cancer risk. Cancer Causes Control 2014; 25:1725-31. [PMID: 25189423 DOI: 10.1007/s10552-014-0463-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
PURPOSE Menstrual pain is associated with increased production of inflammatory molecules, such as prostaglandins. Inflammation is involved in pathogenesis of several cancers, including ovarian cancer. In this study, we examined the association between menstrual pain and risk of ovarian cancer. METHODS We conducted a case-control study with 2,028 cases of epithelial ovarian cancer and 2,091 age- and study center-matched controls. Women were asked to report the severity of menstrual pain during their twenties and thirties, when not using oral contraceptives or breastfeeding. We used an unconditional logistic regression to evaluate the association between menstrual pain and epithelial ovarian cancer risk overall, and polytomous logistic regression to evaluate whether the association differed across tumor subtypes. RESULTS Risk of ovarian cancer was increased in women with moderate (OR 1.22, 95 % CI 1.05-1.42) and severe pain (OR 1.34, 95 % CI 1.09-1.65) compared to women with no or mild pain during menstrual period. The association differed by histologic subtypes, with significant associations for severe pain with endometrioid (OR 1.64, 95 % CI 1.15-2.34) and clear cell tumors (OR 1.91, 95 % CI 1.11-3.28). CONCLUSIONS Our data suggest that moderate and severe pain during menstrual period are associated with increased risk of epithelial ovarian cancer. Due to high prevalence of menstrual pain in women of reproductive age, this observation warrants further studies.
Collapse
|
7
|
Yates CM, Calder PC, Ed Rainger G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther 2014; 141:272-82. [DOI: 10.1016/j.pharmthera.2013.10.010] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 12/11/2022]
|
8
|
Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol 2013; 75:645-62. [PMID: 22765297 PMCID: PMC3575932 DOI: 10.1111/j.1365-2125.2012.04374.x] [Citation(s) in RCA: 812] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/11/2012] [Indexed: 02/07/2023] Open
Abstract
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are able to inhibit partly a number of aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid, production of inflammatory cytokines and T cell reactivity. In parallel, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonioc acid and EPA and DHA give rise to anti-inflammatory and inflammation resolving resolvins and protectins. Mechanisms underlying the anti-inflammatory actions of n-3 fatty acids include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor kappa B so reducing expression of inflammatory genes, activation of the anti-inflammatory transcription factor NR1C3 (i.e. peroxisome proliferator activated receptor γ) and binding to the G protein coupled receptor GPR120. These mechanisms are interlinked. In adult humans, an EPA plus DHA intake greater than 2 g day⁻¹ seems to be required to elicit anti-inflammatory actions, but few dose finding studies have been performed. Animal models demonstrate benefit from n-3 fatty acids in rheumatoid arthritis (RA), inflammatory bowel disease (IBD) and asthma. Clinical trials of fish oil in patients with RA demonstrate benefit supported by meta-analyses of the data. Clinical trails of fish oil in patients with IBD and asthma are inconsistent with no overall clear evidence of efficacy.
Collapse
Affiliation(s)
- Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, MP887 Southampton General Hospital, Southampton, United Kingdom.
| |
Collapse
|
9
|
Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br J Nutr 2012; 107 Suppl 2:S171-84. [PMID: 22591891 DOI: 10.1017/s0007114512001560] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease of the joints and bones. The n-6 polyunsaturated fatty acid (PUFA) arachidonic acid (ARA) is the precursor of inflammatory eicosanoids which are involved in RA. Some therapies used in RA target ARA metabolism. Marine n-3 PUFAs (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) found in oily fish and fish oils decrease the ARA content of cells involved in immune responses and decrease the production of inflammatory eicosanoids from ARA. EPA gives rise to eicosanoid mediators that are less inflammatory than those produced from ARA and both EPA and DHA give rise to resolvins that are anti-inflammatory and inflammation resolving, although little is known about these latter mediators in RA. Marine n-3 PUFAs can affect other aspects of immunity and inflammation relevant to RA, including dendritic cell and T cell function and production of inflammatory cytokines and reactive oxygen species, although findings for these outcomes are not consistent. Fish oil has been shown to slow the development of arthritis in animal models and to reduce disease severity. A number of randomised controlled trials of marine n-3 PUFAs have been performed in patients with RA. A systematic review included 23 studies. Evidence is seen for a fairly consistent, but modest, benefit of marine n-3 PUFAs on joint swelling and pain, duration of morning stiffness, global assessments of pain and disease activity, and use of non-steroidal anti-inflammatory drugs.
Collapse
|
10
|
Kaithwas G, Majumdar DK. Therapeutic effect of Linum usitatissimum (flaxseed/linseed) fixed oil on acute and chronic arthritic models in albino rats. Inflammopharmacology 2010; 18:127-36. [PMID: 20157785 DOI: 10.1007/s10787-010-0033-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
The present study was undertaken to assess the activity/anti-inflammatory potential of Linum usitatissimum fixed oil against castor oil-induced diarrhoea, turpentine oil-induced joint oedema, formaldehyde and Complete Freund's Adjuvant (CFA)-induced arthritis in Wistar albino rats. The oil intraperitoneally, significantly inhibited the castor oil-induced diarrhoea and turpentine oil-induced exudative joint oedema in a dose-dependent manner. Significant inhibitory effect of L. usitatissimum fixed oil was observed in formaldehyde-induced proliferative global oedematous arthritis when given intraperitoneally, with significant checking of the serum glutamic oxaloacetic acid transaminase and serum glutamic pyruvic acid transaminase. Further, L. usitatissimum fixed oil showed a significant dose-dependent protective effect against CFA-induced arthritis as well. Secondary lesions produced by CFA due to a delayed hypersensitivity reaction were also reduced in a significant manner. Anti-inflammatory activity of L. usitatissimum fixed oil can be attributed to the presence of alpha linolenic acid (57.38%, an omega-3 fatty acid, 18:3, n-3) having dual inhibitory effect on arachidonate metabolism resulting in suppressed production of proinflammatory n-6 eicosanoids (PGE(2), LTB(4)) and diminished vascular permeability. These observations suggest possible therapeutic potential of L. usitatissimum fixed oil in inflammatory disorders like rheumatoid arthritis.
Collapse
Affiliation(s)
- Gaurav Kaithwas
- Department of Pharmaceutical Sciences, FHMS, Allahabad Agricultural Institute-Deemed University, Allahabad, Uttar Pradesh, India
| | | |
Collapse
|
11
|
Regulation of TNFα and IL1β in rheumatoid arthritis synovial fibroblasts by leukotriene B4. Rheumatol Int 2009; 30:1183-9. [DOI: 10.1007/s00296-009-1125-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 09/12/2009] [Indexed: 11/27/2022]
|
12
|
Session 3: Joint Nutrition Society and Irish Nutrition and Dietetic Institute Symposium on ‘Nutrition and autoimmune disease’ PUFA, inflammatory processes and rheumatoid arthritis. Proc Nutr Soc 2008; 67:409-18. [DOI: 10.1017/s0029665108008690] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease manifested by swollen and painful joints, bone erosion and functional impairment. The joint lesions are characterised by infiltration of T lymphocytes, macrophages and B lymphocytes into the synovium and by synovial inflammation involving eicosanoids, cytokines and matrix metalloproteinases. In relation to inflammatory processes, the main fatty acids of interest are the n-6 PUFA arachidonic acid, which is the precursor of inflammatory eicosanoids such as PGE2 and leukotriene B4, and the n-3 PUFA EPA and DHA, which are found in oily fish and fish oils. Eicosanoids derived from the n-6 PUFA arachidonic acid play a role in RA, and the efficacy of non-steroidal anti-inflammatory drugs in RA indicates the importance of pro-inflammatory cyclooxygenase pathway products of arachidonic acid in the pathophysiology of the disease. EPA and DHA inhibit arachidonic acid metabolism to inflammatory eicosanoids. EPA also gives rise to eicosanoid mediators that are less inflammatory than those produced from arachidonic acid and both EPA and DHA give rise to resolvins that are anti-inflammatory and inflammation resolving. In addition to modifying the lipid mediator profile, n-3 PUFA exert effects on other aspects of immunity relevant to RA such as antigen presentation, T-cell reactivity and inflammatory cytokine production. Fish oil has been shown to slow the development of arthritis in an animal model and to reduce disease severity. Randomised clinical trials have demonstrated a range of clinical benefits in patients with RA that include reducing pain, duration of morning stiffness and use of non-steroidal anti-inflammatory drugs.
Collapse
|
13
|
Sijben JWC, Calder PC. Differential immunomodulation with long-chain n-3 PUFA in health and chronic disease. Proc Nutr Soc 2007; 66:237-59. [PMID: 17466105 DOI: 10.1017/s0029665107005472] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The balance of intake of n-6 and n-3 PUFA, and consequently their relative incorporation into immune cells, is important in determining the development and severity of immune and inflammatory responses. Some disorders characterised by exaggerated inflammation and excessive formation of inflammatory markers have become among the most important causes of death and disability in man in modern societies. The recognition that long-chain n-3 PUFA have the potential to inhibit (excessive) inflammatory responses has led to a large number of clinical investigations with these fatty acids in inflammatory conditions as well as in healthy subjects. The present review explores the presence of dose-related effects of long-chain n-3 PUFA supplementation on immune markers and differences between healthy subjects and those with inflammatory conditions, because of the important implications for the transfer of information gained from studies with healthy subjects to patient populations, e.g. for establishing dose levels for specific applications. The effects of long-chain n-3 PUFA supplementation on ex vivo lymphocyte proliferation and cytokine production by lymphocytes and monocytes in healthy subjects have been studied in twenty-seven, twenty-five and forty-six treatment cohorts respectively, at intake levels ranging from 0.2 g EPA+DHA/d to 7.0 g EPA+DHA/d. Most studies, particularly those with the highest quality study design, have found no effects on these immune markers. Significant effects on lymphocyte proliferation are decreased responses in seven of eight cohorts, particularly in older subjects. The direction of the significant changes in cytokine production by lymphocytes is inconsistent and only found at supplementation levels > or =2.0 g EPA+DHA/d. Significant changes in inflammatory cytokine production by monocytes are decreases in their production in all instances. Overall, these studies fail to reveal strong dose-response effects of EPA+DHA on the outcomes measured and suggest that healthy subjects are relatively insensitive to immunomodulation with long-chain n-3 PUFA, even at intake levels that substantially raise their concentrations in phospholipids of immune cells. In patients with inflammatory conditions cytokine concentrations or production are influenced by EPA+DHA supplementation in a relatively large number of studies. Some of these studies suggest that local effects at the site of inflammation might be more pronounced than systemic effects and disease-related markers are more sensitive to the immunomodulatory effects, indicating that the presence of inflamed tissue or 'sensitised' immune cells in inflammatory disorders might increase sensitivity to the immunomodulatory effects of long-chain n-3 PUFA. In a substantial number of these studies clinical benefits related to the inflammatory state of the condition have been observed in the absence of significant effects on immune markers of inflammation. This finding suggests that condition-specific clinical end points might be more sensitive markers of modulation by EPA+DHA than cytokines. In general, the direction of immunomodulation in healthy subjects (if any) and in inflammatory conditions is the same, which indicates that studies in healthy subjects are a useful tool to describe the general principles of immunomodulation by n-3 PUFA. However, the extent of the effect might be very different in inflammatory conditions, indicating that studies in healthy subjects are not particularly suitable for establishing dose levels for specific applications in inflammatory conditions. The reviewed studies provide no indications that the immunomodulatory effects of long-chain n-3 PUFA impair immune function or infectious disease resistance. In contrast, in some conditions the immunomodulatory effects of EPA+DHA might improve immune function.
Collapse
Affiliation(s)
- John W C Sijben
- Numico Research, Bosrandweg 20, 6704 PH Wageningen, The Netherlands.
| | | |
Collapse
|
14
|
Abstract
Inflammation is part of the normal host response to infection and injury. However, excessive or inappropriate inflammation contributes to a range of acute and chronic human diseases and is characterized by the production of inflammatory cytokines, arachidonic acid-derived eicosanoids (prostaglandins, thromboxanes, leukotrienes, and other oxidized derivatives), other inflammatory agents (e.g., reactive oxygen species), and adhesion molecules. At sufficiently high intakes, long-chain n-3 polyunsaturated fatty acids (PUFAs), as found in oily fish and fish oils, decrease the production of inflammatory eicosanoids, cytokines, and reactive oxygen species and the expression of adhesion molecules. Long-chain n-3 PUFAs act both directly (e.g., by replacing arachidonic acid as an eicosanoid substrate and inhibiting arachidonic acid metabolism) and indirectly (e.g., by altering the expression of inflammatory genes through effects on transcription factor activation). Long-chain n-3 PUFAs also give rise to a family of antiinflammatory mediators termed resolvins. Thus, n-3 PUFAs are potentially potent antiinflammatory agents. As such, they may be of therapeutic use in a variety of acute and chronic inflammatory settings. Evidence of their clinical efficacy is reasonably strong in some settings (e.g., in rheumatoid arthritis) but is weak in others (e.g., in inflammatory bowel diseases and asthma). More, better designed, and larger trials are required to assess the therapeutic potential of long-chain n-3 PUFAs in inflammatory diseases. The precursor n-3 PUFA alpha-linolenic acid does not appear to exert antiinflammatory effects at achievable intakes.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
15
|
Singh RK, Ethayathulla AS, Jabeen T, Sharma S, Kaur P, Singh TP. Aspirin induces its anti-inflammatory effects through its specific binding to phospholipase A2: crystal structure of the complex formed between phospholipase A2 and aspirin at 1.9 angstroms resolution. J Drug Target 2005; 13:113-9. [PMID: 15823962 DOI: 10.1080/10611860400024078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phospholipase A2 is potentially an important target for structure-based rational drug design. In order to determine the involvement of phospholipase A2 in the action of non-steroidal anti-inflammatory drugs (NSAIDs), the crystal structure of the complex formed between phospholipase A2 and aspirin has been determined at 1.9 angstroms resolution. The structure contains 915 protein atoms, 1 calcium ion, 13 atoms of aspirin and 105 water molecules. The observed electron density of the aspirin molecule in the structure was of very high quality thus allowing the precise determination of its atomic coordinates leading to the clear description of its interactions with the enzyme. The structure of the complex clearly shows that aspirin is literally embedded in the hydrophobic environment of PLA2. It is so placed in the substrate binding channel that it forms several important attractive interactions with calcium ion, His 48 and Asp 49. Thus, the structure of the complex clearly shows that aspirin occupies a favourable place in the specific binding site of PLA2. The binding studies have shown that acetyl salicylate (aspirin) binds to PLA2 enzyme specifically with a dissociation constant of 6.4 x 10(-6) M. The structural details and binding data suggest that the inhibition of PLA2 by aspirin is of pharmacological
Collapse
Affiliation(s)
- Rajendra Kumar Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Abstract
The immune system is involved in host defense against infectious agents, tumor cells, and environmental insults. Inflammation is an important component of the early immunologic response. Inappropriate or dysfunctional immune responses underlie acute and chronic inflammatory diseases. The n-6 PUFA arachidonic acid (AA) is the precursor of prostaglandins, leukotrienes, and related compounds that have important roles in inflammation and in the regulation of immunity. Feeding fish oil results in partial replacement of AA in cell membranes by EPA. This leads to decreased production of AA-derived mediators, through several mechanisms, including decreased availability of AA, competition for cyclooxygenase (COX) and lipoxygenase (LOX) enzymes, and decreased expression of COX-2 and 5-LOX. This alone is a potentially beneficial anti-inflammatory effect of n-3 FA. However, n-3 FA have a number of other effects that might occur downstream of altered eicosanoid production or might be independent of this effect. For example, dietary fish oil results in suppressed production of proinflammatory cytokines and can modulate adhesion molecule expression. These effects occur at the level of altered gene expression. Fish oil feeding has been shown to ameliorate the symptoms of some animal models of autoimmune disease and to protect against the effects of endotoxin. Clinical studies have reported that oral fish oil supplementation has beneficial effects in rheumatoid arthritis and among some asthmatics, supporting the idea that the n-3 FA in fish oil are anti-inflammatory. There are indications that the inclusion of fish oil in enteral and parenteral formulae is beneficial to patients.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, United Kingdom.
| |
Collapse
|
18
|
Abstract
Rheumatoid arthritis is the paradigmatic immune-mediated inflammatory arthropathy and may be of comparatively recent, New World origin. Apart from the symptom-relieving nonsteroidal anti-inflammatory drugs, whose natural congeners have been in use since antiquity for musculoskeletal pain and inflammation, only a dozen drugs or drug classes--the disease-modifying antirheumatic drugs--are currently in common use in rheumatoid arthritis. Development of these drugs has been a notable achievement of the 20th century. Some were developed serendipitously (glucocorticoids, antimalarials), some were the product of faulty reasoning (gold, D-penicillamine), and others were applied for plausible reasons but whose mechanism remains unproven (sulfasalazine, methotrexate, minocycline). A minority were originally applied on the basis of actions that remain germane to the pathophysiology of rheumatoid arthritis as currently understood (azathioprine, cyclosporine, leflunomide, infliximab, etanercept). Among the latter are the more recently introduced and effective agents. The practical use of these drugs is determined by efficacy-toxicity considerations, which have also driven the recent development of the cyclooxygenase-2-selective nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- J P Case
- Division of Rheumatology, Cook County Hospital, Chicago, IL, USA
| |
Collapse
|