1
|
Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro. Cell Biol Toxicol 2022; 39:319-343. [PMID: 35701726 PMCID: PMC10042984 DOI: 10.1007/s10565-022-09730-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/10/2022] [Indexed: 12/16/2022]
Abstract
Adverse outcome pathways (AOPs) are organized sequences of key events (KEs) that are triggered by a xenobiotic-induced molecular initiating event (MIE) and summit in an adverse outcome (AO) relevant to human or ecological health. The AOP framework causally connects toxicological mechanistic information with apical endpoints for application in regulatory sciences. AOPs are very useful to link endophenotypic, cellular endpoints in vitro to adverse health effects in vivo. In the field of in vitro developmental neurotoxicity (DNT), such cellular endpoints can be assessed using the human "Neurosphere Assay," which depicts different endophenotypes for a broad variety of neurodevelopmental KEs. Combining this model with large-scale transcriptomics, we evaluated DNT hazards of two selected Chinese herbal medicines (CHMs) Lei Gong Teng (LGT) and Tian Ma (TM), and provided further insight into their modes-of-action (MoA). LGT disrupted hNPC migration eliciting an exceptional migration endophenotype. Time-lapse microscopy and intervention studies indicated that LGT disturbs laminin-dependent cell adhesion. TM impaired oligodendrocyte differentiation in human but not rat NPCs and activated a gene expression network related to oxidative stress. The LGT results supported a previously published AOP on radial glia cell adhesion due to interference with integrin-laminin binding, while the results of TM exposure were incorporated into a novel putative, stressor-based AOP. This study demonstrates that the combination of phenotypic and transcriptomic analyses is a powerful tool to elucidate compounds' MoA and incorporate the results into novel or existing AOPs for a better perception of the DNT hazard in a regulatory context.
Collapse
|
2
|
Hansen JM, Jones DP, Harris C. The Redox Theory of Development. Antioxid Redox Signal 2020; 32:715-740. [PMID: 31891515 PMCID: PMC7047088 DOI: 10.1089/ars.2019.7976] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
Significance: The geological record shows that as atmospheric O2 levels increased, it concomitantly coincided with the evolution of metazoans. More complex, higher organisms contain a more cysteine-rich proteome, potentially as a means to regulate homeostatic responses in a more O2-rich environment. Regulation of redox-sensitive processes to control development is likely to be evolutionarily conserved. Recent Advances: During early embryonic development, the conceptus is exposed to varying levels of O2. Oxygen and redox-sensitive elements can be regulated to promote normal development, defined as changes to cellular mass, morphology, biochemistry, and function, suggesting that O2 is a developmental morphogen. During periods of O2 fluctuation, embryos are "reprogrammed," on the genomic and metabolic levels. Reprogramming imparts changes to particular redox couples (nodes) that would support specific post-translational modifications (PTMs), targeting the cysteine proteome to regulate protein function and development. Critical Issues: Major developmental events such as stem cell expansion, proliferation, differentiation, migration, and cell fate decisions are controlled through oxidative PTMs of cysteine-based redox nodes. As such, timely coordinated redox regulation of these events yields normal developmental outcomes and viable species reproduction. Disruption of normal redox signaling can produce adverse developmental outcomes. Future Directions: Furthering our understanding of the redox-sensitive processes/pathways, the nature of the regulatory PTMs involved in development and periods of activation/sensitivity to specific developmental pathways would greatly support the theory of redox regulation of development, and would also provide rationale and direction to more fully comprehend poor developmental outcomes, such as dysmorphogenesis, functional deficits, and preterm embryonic death.
Collapse
Affiliation(s)
- Jason M. Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Dean P. Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Craig Harris
- Toxicology Program, Department of Environmental Sciences, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
3
|
Masjosthusmann S, Siebert C, Hübenthal U, Bendt F, Baumann J, Fritsche E. Arsenite interrupts neurodevelopmental processes of human and rat neural progenitor cells: The role of reactive oxygen species and species-specific antioxidative defense. CHEMOSPHERE 2019; 235:447-456. [PMID: 31272005 DOI: 10.1016/j.chemosphere.2019.06.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 05/10/2023]
Abstract
Arsenic exposure disturbs brain development in humans. Although developmental neurotoxicity (DNT) of arsenic has been studied in vivo and in vitro, its mode-of-action (MoA) is not completely understood. Here, we characterize the adverse neurodevelopmental effects of sodium arsenite on developing human and rat neural progenitor cells (hNPC, rNPC). Moreover, we analyze the involvement of reactive oxygen species (ROS) and the role of the glutathione (GSH)-dependent antioxidative defense for arsenite-induced DNT in a species-specific manner. We determined IC50 values for sodium arsenite-dependent (0.1-10 μM) inhibition of hNPC and rNPC migration (6.0 μM; >10 μM), neuronal (2.7 μM; 4.4 μM) and oligodendrocyte (1.1 μM; 2.0 μM) differentiation. ROS involvement was studied by quantifying the expression of ROS-regulated genes, measuring glutathione (GSH) levels, inhibiting GSH synthesis and co-exposing cells to the antioxidant N-acetylcysteine. Arsenite reduces NPC migration, neurogenesis and oligodendrogenesis of differentiating hNPC and rNPC at sub-cytotoxic concentrations. Species-specific arsenite cytotoxicity and induction of antioxidative gene expression is inversely related to GSH levels with rNPC possessing >3-fold the amount of GSH than hNPC. Inhibition of GSH synthesis increased the sensitivity towards arsenite in rNPC > hNPC. N-acetylcysteine antagonized arsenite-mediated induction of HMOX1 expression as well as reduction of neuronal and oligodendrocyte differentiation in hNPC suggesting involvement of oxidative stress in arsenite DNT. hNPC are more sensitive towards arsenite-induced neurodevelopmental toxicity than rNPC, probably due to their lower antioxidative defense capacities. This species-specific MoA data might be useful for adverse outcome pathway generation and future integrated risk assessment strategies concerning DNT.
Collapse
Affiliation(s)
- Stefan Masjosthusmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Clara Siebert
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Ulrike Hübenthal
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Farina Bendt
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Jenny Baumann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany; Heinrich-Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
4
|
Battistoni M, Di Renzo F, Menegola E, Bois FY. Quantitative AOP based teratogenicity prediction for mixtures of azole fungicides. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Rastogi A, Clark CW, Conlin SM, Brown SE, Timme-Laragy AR. Mapping glutathione utilization in the developing zebrafish (Danio rerio) embryo. Redox Biol 2019; 26:101235. [PMID: 31202080 PMCID: PMC6581987 DOI: 10.1016/j.redox.2019.101235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH), the most abundant vertebrate endogenous redox buffer, plays key roles in organogenesis and embryonic development, however, organ-specific GSH utilization during development remains understudied. Monochlorobimane (MCB), a dye conjugated with GSH by glutathione-s-transferase (GST) to form a fluorescent adduct, was used to visualize organ-specific GSH utilization in live developing zebrafish (Danio rerio) embryos. Embryos were incubated in 20 μM MCB for 1 h and imaged on an epifluorescence microscope. GSH conjugation with MCB was high during early organogenesis, decreasing as embryos aged. The heart had fluorescence 21-fold above autofluorescence at 24 hpf, dropping to 8.5-fold by 48 hpf; this increased again by 72 hpf to 23.5-fold, and stayed high till 96 hpf (18-fold). The brain had lower fluorescence (10-fold) at 24 and 48 hpf, steadily increasing to 30-fold by 96 hpf. The sensitivity and specificity of MCB staining was then tested with known GSH modulators. A 10-min treatment at 48 hpf with 750 μM tert-butylhydroperoxide, caused organ-specific reductions in staining, with the heart losing 30% fluorescence, and, the brain ventricle losing 47% fluorescence. A 24 h treatment from 24-48 hpf with 100 μM of N-Acetylcysteine (NAC) resulted in significantly increased fluorescence, with the brain ventricle and heart showing 312% and 240% increases respectively, these were abolished upon co-treatment with 5 μM BSO, an inhibitor of the enzyme that utilizes NAC to synthesize GSH. A 60 min 100 μM treatment with ethacrynic acid, a specific GST inhibitor, caused 30% reduction in fluorescence across all measured structures. MCB staining was then applied to test for GSH disruptions caused by the toxicants perfluorooctanesulfonic acid and mono-(2-ethyl-hexyl)phthalate; MCB fluorescence responded in a dose, structure and age-dependent manner. MCB staining is a robust, sensitive method to detect spatiotemporal changes in GSH utilization, and, can be applied to identify sensitive target tissues of toxicants.
Collapse
Affiliation(s)
- Archit Rastogi
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Christopher W Clark
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sarah M Conlin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sarah E Brown
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
6
|
Timme-Laragy AR, Hahn ME, Hansen JM, Rastogi A, Roy MA. Redox stress and signaling during vertebrate embryonic development: Regulation and responses. Semin Cell Dev Biol 2018; 80:17-28. [PMID: 28927759 PMCID: PMC5650060 DOI: 10.1016/j.semcdb.2017.09.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022]
Abstract
Vertebrate embryonic development requires specific signaling events that regulate cell proliferation and differentiation to occur at the correct place and the correct time in order to build a healthy embryo. Signaling pathways are sensitive to perturbations of the endogenous redox state, and are also susceptible to modulation by reactive species and antioxidant defenses, contributing to a spectrum of passive vs. active effects that can affect redox signaling and redox stress. Here we take a multi-level, integrative approach to discuss the importance of redox status for vertebrate developmental signaling pathways and cell fate decisions, with a focus on glutathione/glutathione disulfide, thioredoxin, and cysteine/cystine redox potentials and the implications for protein function in development. We present a tissue-specific example of the important role that reactive species play in pancreatic development and metabolic regulation. We discuss NFE2L2 (also known as NRF2) and related proteins, their roles in redox signaling, and their regulation of glutathione during development. Finally, we provide examples of xenobiotic compounds that disrupt redox signaling in the context of vertebrate embryonic development. Collectively, this review provides a systems-level perspective on the innate and inducible antioxidant defenses, as well as their roles in maintaining redox balance during chemical exposures that occur in critical windows of development.
Collapse
Affiliation(s)
- Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Archit Rastogi
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Monika A Roy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Hansen JM, Jacob BR, Piorczynski TB. Oxidative stress during development: Chemical-induced teratogenesis. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Fritsche E, Alm H, Baumann J, Geerts L, Håkansson H, Masjosthusmann S, Witters H. Literature review on in vitro and alternative Developmental Neurotoxicity (DNT) testing methods. ACTA ACUST UNITED AC 2015. [DOI: 10.2903/sp.efsa.2015.en-778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine (IUF), Group of Sphere Models and Risk Assessment, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Henrik Alm
- Leibniz Research Institute for Environmental Medicine (IUF), Group of Sphere Models and Risk Assessment, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Jenny Baumann
- Leibniz Research Institute for Environmental Medicine (IUF), Group of Sphere Models and Risk Assessment, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Lieve Geerts
- Flemish Institute for Technological Research (VITO), Environmental Risk & Health, Boeretang 200, B‐2400 Mol, Belgium
| | - Helen Håkansson
- Karolinska Institute (KI), Institute of Environmental Medicine (IMM), Unit of Environmental Health Risk Assessment, SE‐171 77 Stockholm, Sweden
| | - Stefan Masjosthusmann
- Leibniz Research Institute for Environmental Medicine (IUF), Group of Sphere Models and Risk Assessment, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Hilda Witters
- Flemish Institute for Technological Research (VITO), Environmental Risk & Health, Boeretang 200, B‐2400 Mol, Belgium
| |
Collapse
|
9
|
Hansen JM, Harris C. Glutathione during embryonic development. Biochim Biophys Acta Gen Subj 2014; 1850:1527-42. [PMID: 25526700 DOI: 10.1016/j.bbagen.2014.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/19/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Glutathione (GSH) is a ubiquitous, non-protein biothiol in cells. It plays a variety of roles in detoxification, redox regulation and cellular signaling. Many processes that can be regulated through GSH are critical to developing systems and include cellular proliferation, differentiation and apoptosis. Understanding how GSH functions in these aspects can provide insight into how GSH regulates development and how during periods of GSH imbalance how these processes are perturbed to cause malformation, behavioral deficits or embryonic death. SCOPE OF REVIEW Here, we review the GSH system as it relates to events critical for normal embryonic development and differentiation. MAJOR CONCLUSIONS This review demonstrates the roles of GSH extend beyond its role as an antioxidant but rather GSH acts as a mediator of numerous processes through its ability to undergo reversible oxidation with cysteine residues in various protein targets. Shifts in GSH redox potential cause an increase in S-glutathionylation of proteins to change their activity. As such, redox potential shifts can act to modify protein function on a possible longer term basis. A broad group of targets such as kinases, phosphatases and transcription factors, all critical to developmental signaling, is discussed. GENERAL SIGNIFICANCE Glutathione regulation of redox-sensitive events is an overlying theme during embryonic development and cellular differentiation. Various stresses can change GSH redox states, we strive to determine developmental stages of redox sensitivity where insults may have the most impactful damaging effect. In turn, this will allow for better therapeutic interventions and preservation of normal developmental signaling. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602, United States.
| | - Craig Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 40109-2029, United States
| |
Collapse
|
10
|
Dihydro-orotate dehydrogenase is physically associated with the respiratory complex and its loss leads to mitochondrial dysfunction. Biosci Rep 2013; 33:e00021. [PMID: 23216091 PMCID: PMC3564035 DOI: 10.1042/bsr20120097] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Some mutations of the DHODH (dihydro-orotate dehydrogenase) gene lead to postaxial acrofacial dysostosis or Miller syndrome. Only DHODH is localized at mitochondria among enzymes of the de novo pyrimidine biosynthesis pathway. Since the pyrimidine biosynthesis pathway is coupled to the mitochondrial RC (respiratory chain) via DHODH, impairment of DHODH should affect the RC function. To investigate this, we used siRNA (small interfering RNA)-mediated knockdown and observed that DHODH knockdown induced cell growth retardation because of G2/M cell-cycle arrest, whereas pyrimidine deficiency usually causes G1/S arrest. Inconsistent with this, the cell retardation was not rescued by exogenous uridine, which should bypass the DHODH reaction for pyrimidine synthesis. DHODH depletion partially inhibited the RC complex III, decreased the mitochondrial membrane potential, and increased the generation of ROS (reactive oxygen species). We observed that DHODH physically interacts with respiratory complexes II and III by IP (immunoprecipitation) and BN (blue native)/SDS/PAGE analysis. Considering that pyrimidine deficiency alone does not induce craniofacial dysmorphism, the DHODH mutations may contribute to the Miller syndrome in part through somehow altered mitochondrial function.
Collapse
|
11
|
Hansen JM, Harris C. Redox control of teratogenesis. Reprod Toxicol 2013; 35:165-79. [DOI: 10.1016/j.reprotox.2012.09.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 01/19/2023]
|
12
|
Identification of thalidomide-specific transcriptomics and proteomics signatures during differentiation of human embryonic stem cells. PLoS One 2012; 7:e44228. [PMID: 22952932 PMCID: PMC3429450 DOI: 10.1371/journal.pone.0044228] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
Embryonic development can be partially recapitulated in vitro by differentiating human embryonic stem cells (hESCs). Thalidomide is a developmental toxicant in vivo and acts in a species-dependent manner. Besides its therapeutic value, thalidomide also serves as a prototypical model to study teratogenecity. Although many in vivo and in vitro platforms have demonstrated its toxicity, only a few test systems accurately reflect human physiology. We used global gene expression and proteomics profiling (two dimensional electrophoresis (2DE) coupled with Tandem Mass spectrometry) to demonstrate hESC differentiation and thalidomide embryotoxicity/teratogenecity with clinically relevant dose(s). Proteome analysis showed loss of POU5F1 regulatory proteins PKM2 and RBM14 and an over expression of proteins involved in neuronal development (such as PAK2, PAFAH1B2 and PAFAH1B3) after 14 days of differentiation. The genomic and proteomic expression pattern demonstrated differential expression of limb, heart and embryonic development related transcription factors and biological processes. Moreover, this study uncovered novel possible mechanisms, such as the inhibition of RANBP1, that participate in the nucleocytoplasmic trafficking of proteins and inhibition of glutathione transferases (GSTA1, GSTA2), that protect the cell from secondary oxidative stress. As a proof of principle, we demonstrated that a combination of transcriptomics and proteomics, along with consistent differentiation of hESCs, enabled the detection of canonical and novel teratogenic intracellular mechanisms of thalidomide.
Collapse
|
13
|
Kim JH, Scialli AR. Thalidomide: the tragedy of birth defects and the effective treatment of disease. Toxicol Sci 2011; 122:1-6. [PMID: 21507989 DOI: 10.1093/toxsci/kfr088] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thalidomide was a widely used drug in the late 1950s and early 1960s for the treatment of nausea in pregnant women. It became apparent in the 1960s that thalidomide treatment resulted in severe birth defects in thousands of children. Though the use of thalidomide was banned in most countries at that time, thalidomide proved to be a useful treatment for leprosy and later, multiple myeloma. In rural areas of the world that lack extensive medical surveillance initiatives, thalidomide treatment of pregnant women with leprosy has continued to cause malformations. Research on thalidomide mechanisms of action is leading to a better understanding of molecular targets. With an improved understanding of these molecular targets, safer drugs may be designed. The thalidomide tragedy marked a turning point in toxicity testing, as it prompted United States and international regulatory agencies to develop systematic toxicity testing protocols; the use of thalidomide as a tool in developmental biology led to important discoveries in the biochemical pathways of limb development. In celebration of the Society of Toxicology's 50th Anniversary, which coincides with the 50th anniversary of the withdrawal of thalidomide from the market, it is appropriate to revisit the lessons learned from the thalidomide tragedy of the 1960s.
Collapse
Affiliation(s)
- James H Kim
- ILSI Health and Environmental Sciences Institute, Washington, DC 20005, USA.
| | | |
Collapse
|
14
|
Lee CJJ, Gonçalves LL, Wells PG. Resistance of CD-1 and ogg1 DNA Repair–Deficient Mice to Thalidomide and Hydrolysis Product Embryopathies in Embryo Culture. Toxicol Sci 2011; 122:146-56. [DOI: 10.1093/toxsci/kfr084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
15
|
Lee CJJ, Gonçalves LL, Wells PG. Embryopathic effects of thalidomide and its hydrolysis products in rabbit embryo culture: evidence for a prostaglandin H synthase (PHS)-dependent, reactive oxygen species (ROS)-mediated mechanism. FASEB J 2011; 25:2468-83. [PMID: 21502285 DOI: 10.1096/fj.10-178814] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thalidomide (TD) causes birth defects in humans and rabbits via several potential mechanisms, including bioactivation by embryonic prostaglandin H synthase (PHS) enzymes to a reactive intermediate that enhances reactive oxygen species (ROS) formation. We show herein that TD in rabbit embryo culture produces relevant embryopathies, including decreases in head/brain development by 28% and limb bud growth by 71% (P<0.05). Two TD hydrolysis products, 2-phthalimidoglutaramic acid (PGMA) and 2-phthalimidoglutaric acid (PGA), were similarly embryopathic, attenuating otic vesicle (ear) and limb bud formation by up to 36 and 77%, respectively (P<0.05). TD, PGMA, and PGA all increased embryonic DNA oxidation measured as 8-oxoguanine (8-oxoG) by up to 2-fold (P<0.05). Co- or pretreatment with the PHS inhibitors eicosatetraynoic acid (ETYA) or acetylsalicylic acid (ASA), or the free-radical spin trap phenylbutylnitrone (PBN), completely blocked embryonic 8-oxoG formation and/or embryopathies initiated by TD, PGMA, and PGA. This is the first demonstration of limb bud embryopathies initiated by TD, as well as its hydrolysis products, in a mammalian embryo culture model of a species susceptible to TD in vivo, indicating that all likely contribute to TD teratogenicity in vivo, in part through PHS-dependent, ROS-mediated mechanisms.
Collapse
Affiliation(s)
- Crystal J J Lee
- Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, Canada
| | | | | |
Collapse
|
16
|
Sweeting JN, Siu M, Wiley MJ, Wells PG. Species- and strain-dependent teratogenicity of methanol in rabbits and mice. Reprod Toxicol 2011; 31:50-8. [DOI: 10.1016/j.reprotox.2010.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/11/2010] [Accepted: 09/28/2010] [Indexed: 10/18/2022]
|
17
|
Chowdhury G, Murayama N, Okada Y, Uno Y, Shimizu M, Shibata N, Guengerich FP, Yamazaki H. Human liver microsomal cytochrome P450 3A enzymes involved in thalidomide 5-hydroxylation and formation of a glutathione conjugate. Chem Res Toxicol 2010; 23:1018-24. [PMID: 20443640 DOI: 10.1021/tx900367p] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
(R)-Thalidomide was oxidized to 5-hydroxythalidomide and 5'-hydroxythalidomide by NADPH-fortified liver microsomes from humans and monkeys. (R)-Thalidomide was hydroxylated more efficiently than (S)-thalidomide. Recombinant human P450s 3A4, 3A5, and 3A7 and monkey P450s 3A8 and 3A5 (coexpressed with NADPH-P450 reductase in bacterial membranes) also catalyzed (R)-thalidomide 5-hydroxylation. Purified human P450s 2C19, 3A4, and 3A5 mediated (R)-thalidomide 5-hydroxylation at similar rates in reconstituted systems. P450 2C19 showed a rather nonsaturable substrate-velocity curve; however, P450s 3A4 and 3A5 showed sigmoidal curves. P450 also oxidized 5-hydroxythalidomide to an epoxide or dihydroxy compound. Liquid chromatography-mass spectrometry analysis revealed the formation of a glutathione conjugate from (R)- and (S)-5-hydroxythalidomide, catalyzed by liver microsomal P450s 3A4 and 3A5 in the presence of glutathione (assigned as a conjugate of 5-hydroxythalidomide formed on the phenyl ring). These results indicate that human P450s 3A4 and 3A5 mediate thalidomide 5-hydroxylation and further oxidation leading to a glutathione conjugate, which may be of relevance in the pharmacological and toxicological actions of thalidomide.
Collapse
Affiliation(s)
- Goutam Chowdhury
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ellis-Hutchings RG, Carney EW. Whole embryo culture: a “New” technique that enabled decades of mechanistic discoveries. ACTA ACUST UNITED AC 2010; 89:304-12. [DOI: 10.1002/bdrb.20263] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
MacKinnon Y, Kapron CM. Reduction in cadmium-induced toxicity and c-Jun N-terminal kinase activation by glutathione in cultured mouse embryonic cells. ACTA ACUST UNITED AC 2010; 88:707-14. [DOI: 10.1002/bdra.20703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Kirman CR, Sweeney LM, Gargas ML, Kinzell JH. Evaluation of possible modes of action for acute effects of methyl iodide in laboratory animals. Inhal Toxicol 2008; 21:537-51. [DOI: 10.1080/08958370802601510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Ain KB, Lee C, Williams KD. Phase II trial of thalidomide for therapy of radioiodine-unresponsive and rapidly progressive thyroid carcinomas. Thyroid 2007; 17:663-70. [PMID: 17696837 DOI: 10.1089/thy.2006.0289] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND There are no known effective therapies for distantly metastatic, rapidly progressive thyroid carcinomas unresponsive to radioiodine. OBJECTIVE Since thyroid carcinomas are hypervascular and thalidomide is antiangiogenic, we assessed thalidomide's tumoristatic effects and toxicity in a phase II trial. DESIGN Thirty-six patients with follicular, papillary, insular, or medullary thyroid carcinomas and distant, radioiodine-unresponsive metastases (volumes increasing >or= 30% per year before entry) were accrued between July 2001 and December 2002. Daily thalidomide started at 200 mg, increasing over 6 weeks to 800 mg or maximum tolerated dose. Toxicities and responses were assessed at 8-week intervals with tumor volume assessments. MAIN OUTCOMES Twenty-eight of 36 patients were evaluable, 5 with partial responses (PR: 18%; 95% confidence interval [95% CI]: 6-37%) and 9 patients with stable disease (SD: 32%; 95% CI: 12-42%) for overall 50% response (95% CI: 31-69%). Median PR duration was 4 months (range: 2-6 months), and SD duration was 6 months (range: 2-14 months). Median survival was 23.5 months for responders (PR + SD) and 11 months for nonresponders. Most frequent toxicity was fatigue (69% grade 1-2, 8% grade 3-4). Four patients had grade 3-4 infections (without neutropenia), one had pericardial effusion, and one had pulmonary embolus. CONCLUSIONS Thalidomide confers therapeutic benefit in subsets of thyroid cancer patients with rapidly progressive, distantly metastatic disease.
Collapse
Affiliation(s)
- Kenneth B Ain
- Thyroid Cancer Research Laboratory, Veterans Affairs Medical Center, Lexington, Kentucky, USA.
| | | | | |
Collapse
|
22
|
Abstract
Contrary to the view that embryos and larvae are the most fragile stages of life, development is stable under real-world conditions. Early cleavage embryos are prepared for environmental vagaries by having high levels of cellular defenses already present in the egg before fertilization. Later in development, adaptive responses to the environment either buffer stress or produce alternative developmental phenotypes. These buffers, defenses, and alternative pathways set physiological limits for development under expected conditions; teratology occurs when embryos encounter unexpected environmental changes and when stress exceeds these limits. Of concern is that rapid anthropogenic changes to the environment are beyond the range of these protective mechanisms.
Collapse
Affiliation(s)
- Amro Hamdoun
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950
- *To whom correspondence may be addressed at:
Hopkins Marine Station 120 Oceanview Boulevard, Pacific Grove, CA 93950. E-mail:
or
| | - David Epel
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950
- *To whom correspondence may be addressed at:
Hopkins Marine Station 120 Oceanview Boulevard, Pacific Grove, CA 93950. E-mail:
or
| |
Collapse
|
23
|
Carney EW, Tornesi B, Keller C, Findlay HA, Nowland WS, Marshall VA, Ozolins TRS. Refinement of a morphological scoring system for postimplantation rabbit conceptuses. ACTA ACUST UNITED AC 2007; 80:213-22. [PMID: 17570508 DOI: 10.1002/bdrb.20118] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The rabbit is used extensively in developmental toxicity testing, yet basic information on rabbit embryo development is lacking. The goals of this study were to refine a rabbit embryo morphology scoring system, and use it to evaluate rabbit whole embryo cultures (WEC). METHODS A total of 265 conceptuses were harvested between GD 8.0 and 12.0 (coitus = GD 0) at 6-hr intervals and examined in detail. Discreet developmental landmarks were then established for 18 morphological features and assigned scores ranging from 0 up to 6. The scoring system was then validated on a subset of randomly selected in vivo conceptuses, and was used to evaluate conceptuses grown for 12, 24, 36, or 48 hr in WEC beginning from GD 9.0 or 10.0. A few embryos also were examined using microscopic computed tomography (microCT)-based virtual histologytrade mark to assess the utility of this technology. RESULTS Morphology scores of in vivo developed conceptuses increased linearly (r2 = 0.98) with advancing gestational age, from means of 0.0 on GD 8.0 to 67.9 on GD 12.0. Application of the scoring system, supplemented with evidence from Virtual histologytrade mark, indicated that the WEC system supported normal morphological development of rabbit conceptuses. However, when explanted at GD 9, the rate of development was about 20% slower than in vivo, whereas the rate of development in WEC from GD 10 was indistinguishable from in vivo. CONCLUSIONS This work enhances the evaluation tools available to study mechanisms of normal and abnormal development in this widely used animal testing species.
Collapse
Affiliation(s)
- Edward W Carney
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Emerging evidence shows that redox-sensitive signal transduction pathways are critical for developmental processes, including proliferation, differentiation, and apoptosis. As a consequence, teratogens that induce oxidative stress (OS) may induce teratogenesis via the misregulation of these same pathways. Many of these pathways are regulated by cellular thiol redox couples, namely glutathione/glutathione disulfide, thioredoxinred/thioredoinox, and cysteine/cystine. This review outlines oxidative stress as a mechanism of teratogenesis through the disruption of thiol-mediated redox signaling. Due to the ability of many known and suspected teratogens to induce oxidative stress and the many signaling pathways that have redox-sensitive components, further research is warranted to fully understand these mechanisms.
Collapse
Affiliation(s)
- Jason M Hansen
- Department of Pediatrics, Emory School of Medicine, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
25
|
Hansen JM, Harris C. A novel hypothesis for thalidomide-induced limb teratogenesis: redox misregulation of the NF-kappaB pathway. Antioxid Redox Signal 2004; 6:1-14. [PMID: 14713331 DOI: 10.1089/152308604771978291] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several hypotheses have been proposed to explain the mechanisms of thalidomide teratogenesis, although none adequately accounts for the observed malformations and explains the basis for species specificity. Recent observations that thalidomide increases the production of free radicals and elicits oxidative stress, coupled with new insights into the redox regulation of nuclear transcription factors, lead to the suggestion that thalidomide may act through redox misregulation of the limb outgrowth pathways. Oxidative stress, as marked by glutathione depletion/oxidation and a shift in intracellular redox potential toward the positive, occurs preferentially in limbs of thalidomide-sensitive rabbits, but not in resistant rats. DNA binding of nuclear factor kappa-B (NF-kappaB), a redox-sensitive transcription factor and key regulator of limb outgrowth, was shown to be significantly attenuated in rabbit limb cells and could be restored following the addition of a free radical spin-trapping agent, phenyl N-tert-butyl nitrone. The inability of NF-kappaB to bind to its DNA promoter results in the failure of limb cells to express fibroblast growth factor (FGF)-10 and twist in the limb progress zone (PZ) mesenchyme, which in turn attenuates expression of FGF-8 in the apical ectodermal ridge (AER). Failure to establish an FGF-10/FGF-8 feedback loop between the PZ and AER results in the truncation of limb outgrowth. We hypothesize that species-selective alterations in redox microenvironment caused by free radical production from thalidomide results in attenuation of the NF-kappaB-mediated gene expression that is responsible for limb outgrowth.
Collapse
|
26
|
Luzzio FA, Mayorov AV, Ng SSW, Kruger EA, Figg WD. Thalidomide metabolites and analogues. 3. Synthesis and antiangiogenic activity of the teratogenic and TNFalpha-modulatory thalidomide analogue 2-(2,6-dioxopiperidine-3-yl)phthalimidine. J Med Chem 2003; 46:3793-9. [PMID: 12930142 DOI: 10.1021/jm020079d] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Versatile synthesis of the teratogenic, TNFalpha-modulatory, and antiangiogenic thalidomide analogue 2-(2,6-dioxopiperidine-3-yl)phthalimidine (1) and its direct antiangiogenic properties are described. With thalidomide or thalidomide derivatives as precursors, the synthesis involved either carbonyl reduction/thiation-desulfurization or carbonyl reduction/acyliminium ion reduction protocols. Compared to earlier studies with thalidomide, which was only active with microsomal treatment, 1 exhibited marginal inhibitory activity in the rat aortic ring assay, thereby demonstrating the requirement for metabolic activation.
Collapse
Affiliation(s)
- Frederick A Luzzio
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, USA.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Forty years on from its worldwide withdrawal, thalidomide is currently undergoing a remarkable renaissance as a novel and powerful immunomodulatory agent. Over the last decade it has been found to be active in a wide variety of inflammatory and malignant disorders where conventional therapies have failed. Recently, considerable progress has been made in elucidating its complex mechanisms of action, which include both anticytokine and antiangiogenic properties. However, in addition to its well known teratogenic potential, it has a significant side effect profile that leads to cessation of treatment in up to 30% of subjects. In response to this, two new classes of potentially safer and non-teratogenic derivatives have recently been developed. This review summarises the biological effects, therapeutic applications, safety profile, and future potential of thalidomide and its derivatives.
Collapse
Affiliation(s)
- J N Gordon
- Division of Infection, Inflammation, and Repair, University of Southampton, Southampton General Hospital, Southampton.
| | | |
Collapse
|
28
|
Hansen JM, Gong SG, Philbert M, Harris C. Misregulation of gene expression in the redox-sensitive NF-kappab-dependent limb outgrowth pathway by thalidomide. Dev Dyn 2003; 225:186-94. [PMID: 12242718 DOI: 10.1002/dvdy.10150] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Thalidomide is known to induce oxidative stress, but mechanisms have not been described through which oxidative stress could contribute to thalidomide-induced terata. Oxidative stress modulates intracellular glutathione (GSH) and redox status and can perturb redox-sensitive processes, such as transcription factor activation and/or binding. Nuclear factor-kappa B (NF-kappaB), a redox-sensitive transcription factor involved in limb outgrowth, may be modulated by thalidomide-induced redox shifts. Thalidomide-resistant Sprague-Dawley rat embryos (gestation day [GD] 13) treated with thalidomide in utero showed no changes in GSH distribution in the limb but thalidomide-sensitive New Zealand White rabbit embryos (GD 12) showed selective GSH depletion in the limb bud progress zone (PZ). NF-kappaB and regulatory genes that initiate and maintain limb outgrowth and development, such as Twist and Fgf-10, are selectively expressed in the PZ. Green fluorescent protein (GFP) reporter vectors containing NF-kappaB binding promoter sites were transfected into both rat and rabbit limb bud cells (LBCs). Treatment with thalidomide caused a preferential decrease in GFP expression in rabbit LBCs but not in rat LBCs. N-acetylcysteine and alpha-N-t-phenylbutyl nitrone (PBN), a free radical trapping agent, rescued GFP expression in thalidomide-treated cultures compared with cultures that received thalidomide only. In situ hybridization showed a preferential decrease in Twist, Fgf-8, and Fgf-10 expression after thalidomide treatment (400 mg/kg per day) in rabbit embryos. Expression in rat embryos was not affected. Intravenous cotreatment with PBN and thalidomide (gavage) in rabbits restored normal patterns and localization of Twist, Fgf-8, and Fgf-10 expression. These findings show that NF-kappaB binding is diminished due to selective thalidomide-induced redox changes in the rabbit, resulting in the significant attenuation of expression of genes necessary for limb outgrowth.
Collapse
Affiliation(s)
- Jason M Hansen
- Toxicology Program, Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
29
|
Hansen JM, Harris KK, Philbert MA, Harris C. Thalidomide modulates nuclear redox status and preferentially depletes glutathione in rabbit limb versus rat limb. J Pharmacol Exp Ther 2002; 300:768-76. [PMID: 11861780 DOI: 10.1124/jpet.300.3.768] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thalidomide produces numerous birth defects, the most notable being phocomelia. Mechanisms behind thalidomide-induced malformations have not been fully elucidated, although recent evidence suggests a role for reactive oxygen species. A thalidomide-resistant (rat) and -sensitive (rabbit) species were used to compare potential inherent differences related to oxidative stress that may provide a more definitive understanding of mechanisms of thalidomide embryopathy. Limb bud cells (LBCs) were removed from the rat and rabbit embryo, dissociated, and plated in culture for 24 h. A fluorescence (6-carboxy-2',7'-dichlorofluorescin diacetate; DCF) assay for oxidative stress was used with varying concentrations of thalidomide (5-100 microM). Thalidomide (100 microM) showed a 6-fold greater production of oxidative stress in rabbit cultures than in rat. Lower concentrations (50 and 25 microM) also showed a significant increase in reactive oxygen species. Confocal microscopy revealed DCF fluorescence preferentially in rabbit LBC nuclei compared with the uniform distribution of DCF fluorescence in rat LBC. Localization of glutathione (GSH) was determined using 5-chloromethylfluorescein diacetate fluorescent confocal microscopy. In rat cultures, significant thalidomide-induced GSH depletion was detected in the cytosol but the nuclei maintained its GSH content, but rabbit LBC showed significant GSH depletion in both compartments. GSH depletion was confirmed by high-performance liquid chromatography analysis. These observations provide evidence that thalidomide preferentially produces oxidative stress in the thalidomide-sensitive species but not the thalidomide-resistant species. Nuclear GSH content in the rabbit LBC is selectively modified and indicates a shift in the nuclear redox environment. Redox shifts in the nucleus may result in the misregulation of transcription factor/DNA interactions and cause defective growth and development.
Collapse
Affiliation(s)
- Jason M Hansen
- University of Michigan, Department of Environmental Health Sciences Toxicology Program, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
30
|
Abstract
The rabbit has many advantages as a nonrodent and second model for assessing the effects of toxic agents on semen quality, fertility, developmental toxicity, and teratology. The male and female reproductive systems of the rabbit are described, and data on growth, sexual development and reproduction are compared with mice, rats, and humans. Techniques for semen collection and evaluation in the male, and artificial insemination, superovulation, embryo culture, and embryo transfer in the female are included as useful procedures in toxicity testing. Examples of the use of rabbits and experimental replication for toxicity testing are given. Special features of the visceral yolk sac and development of the chorioallantoic placenta of the rabbit are compared with rodents. The rabbit extraembryonic membranes more closely resemble the human than do the rodents, in some respects. The use of the rabbit in developmental toxicity and teratology studies is discussed.
Collapse
Affiliation(s)
- R H Foote
- Department of Animal Science, Cornell University, 204 Morrison Hall, Ithaca, New York, 14853-4801, USA.
| | | |
Collapse
|