1
|
Korshunov KS, Blakemore LJ, Trombley PQ. Illuminating and Sniffing Out the Neuromodulatory Roles of Dopamine in the Retina and Olfactory Bulb. Front Cell Neurosci 2020; 14:275. [PMID: 33110404 PMCID: PMC7488387 DOI: 10.3389/fncel.2020.00275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/04/2020] [Indexed: 01/28/2023] Open
Abstract
In the central nervous system, dopamine is well-known as the neuromodulator that is involved with regulating reward, addiction, motivation, and fine motor control. Yet, decades of findings are revealing another crucial function of dopamine: modulating sensory systems. Dopamine is endogenous to subsets of neurons in the retina and olfactory bulb (OB), where it sharpens sensory processing of visual and olfactory information. For example, dopamine modulation allows the neural circuity in the retina to transition from processing dim light to daylight and the neural circuity in the OB to regulate odor discrimination and detection. Dopamine accomplishes these tasks through numerous, complex mechanisms in both neural structures. In this review, we provide an overview of the established and emerging research on these mechanisms and describe similarities and differences in dopamine expression and modulation of synaptic transmission in the retinas and OBs of various vertebrate organisms. This includes discussion of dopamine neurons’ morphologies, potential identities, and biophysical properties along with their contributions to circadian rhythms and stimulus-driven synthesis, activation, and release of dopamine. As dysregulation of some of these mechanisms may occur in patients with Parkinson’s disease, these symptoms are also discussed. The exploration and comparison of these two separate dopamine populations shows just how remarkably similar the retina and OB are, even though they are functionally distinct. It also shows that the modulatory properties of dopamine neurons are just as important to vision and olfaction as they are to motor coordination and neuropsychiatric/neurodegenerative conditions, thus, we hope this review encourages further research to elucidate these mechanisms.
Collapse
Affiliation(s)
- Kirill S Korshunov
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Laura J Blakemore
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
2
|
Nguyen MTT, Vemaraju S, Nayak G, Odaka Y, Buhr ED, Alonzo N, Tran U, Batie M, Upton BA, Darvas M, Kozmik Z, Rao S, Hegde RS, Iuvone PM, Van Gelder RN, Lang RA. An opsin 5-dopamine pathway mediates light-dependent vascular development in the eye. Nat Cell Biol 2019; 21:420-429. [PMID: 30936473 PMCID: PMC6573021 DOI: 10.1038/s41556-019-0301-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
During mouse postnatal eye development, the embryonic hyaloid vascular network regresses from the vitreous as an adaption for high-acuity vision. This process occurs with precisely controlled timing. Here, we show that opsin 5 (OPN5; also known as neuropsin)-dependent retinal light responses regulate vascular development in the postnatal eye. In Opn5-null mice, hyaloid vessels regress precociously. We demonstrate that 380-nm light stimulation via OPN5 and VGAT (the vesicular GABA/glycine transporter) in retinal ganglion cells enhances the activity of inner retinal DAT (also known as SLC6A3; a dopamine reuptake transporter) and thus suppresses vitreal dopamine. In turn, dopamine acts directly on hyaloid vascular endothelial cells to suppress the activity of vascular endothelial growth factor receptor 2 (VEGFR2) and promote hyaloid vessel regression. With OPN5 loss of function, the vitreous dopamine level is elevated and results in premature hyaloid regression. These investigations identify violet light as a developmental timing cue that, via an OPN5-dopamine pathway, regulates optic axis clearance in preparation for visual function.
Collapse
Affiliation(s)
- Minh-Thanh T Nguyen
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shruti Vemaraju
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gowri Nayak
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yoshinobu Odaka
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA, USA
| | - Nuria Alonzo
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Uyen Tran
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew Batie
- Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian A Upton
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Martin Darvas
- Pathology, University of Washington Medical School, Seattle, WA, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Sujata Rao
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
- Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA, USA
- Pathology, University of Washington Medical School, Seattle, WA, USA
- Biological Structure, University of Washington Medical School, Seattle, WA, USA
| | - Richard A Lang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Dunkley PR, Dickson PW. Tyrosine hydroxylase phosphorylation
in vivo. J Neurochem 2019; 149:706-728. [DOI: 10.1111/jnc.14675] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Peter R. Dunkley
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| | - Phillip W. Dickson
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| |
Collapse
|
4
|
Waldner DM, Bech-Hansen NT, Stell WK. Channeling Vision: Ca V1.4-A Critical Link in Retinal Signal Transmission. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7272630. [PMID: 29854783 PMCID: PMC5966690 DOI: 10.1155/2018/7272630] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 01/09/2023]
Abstract
Voltage-gated calcium channels (VGCC) are key to many biological functions. Entry of Ca2+ into cells is essential for initiating or modulating important processes such as secretion, cell motility, and gene transcription. In the retina and other neural tissues, one of the major roles of Ca2+-entry is to stimulate or regulate exocytosis of synaptic vesicles, without which synaptic transmission is impaired. This review will address the special properties of one L-type VGCC, CaV1.4, with particular emphasis on its role in transmission of visual signals from rod and cone photoreceptors (hereafter called "photoreceptors," to the exclusion of intrinsically photoreceptive retinal ganglion cells) to the second-order retinal neurons, and the pathological effects of mutations in the CACNA1F gene which codes for the pore-forming α1F subunit of CaV1.4.
Collapse
Affiliation(s)
- D. M. Waldner
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - N. T. Bech-Hansen
- Department of Medical Genetics and Department of Surgery, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - W. K. Stell
- Department of Cell Biology and Anatomy and Department of Surgery, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Pérez-Fernández V, Harman DG, Morley JW, Cameron MA. Optimized Method to Quantify Dopamine Turnover in the Mammalian Retina. Anal Chem 2017; 89:12276-12283. [PMID: 29057649 DOI: 10.1021/acs.analchem.7b03216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Measurement of dopamine (DA) release in the retina allows the interrogation of the complex neural circuits within this tissue. A number of previous methods have been used to quantify this neuromodulator, the most common of which is HPLC with electrochemical detection (HPLC-ECD). However, this technique can produce significant concentration uncertainties. In this present study, we report a sensitive and accurate UHPLC-MS/MS method for the quantification of DA and its primary metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in mouse retina. Internal standards DA-d4 and DOPAC-d5 result in standard curve linearity for DA from 0.05-100 ng/mL (LOD = 6 pg/mL) and DOPAC from 0.5-100 ng/mL (LOD = 162 pg/mL). A systematic study of tissue extraction conditions reveals that the use of formic acid (1%), in place of the more commonly used perchloric acid, combined with 0.5 mM ascorbic acid prevents significant oxidation of the analytes. When the method is applied to mouse retinae a significant increase in the DOPAC/DA ratio is observed following in vivo light stimulation. We additionally examined the effect of anesthesia on DA and DOPAC levels in the retina in vivo and find that basal dark-adapted concentrations are not affected. Light caused a similar increase in DOPAC/DA ratio but interindividual variation was significantly reduced. Together, we systematically describe the ideal conditions to accurately and reliably measure DA turnover in the mammalian retina.
Collapse
Affiliation(s)
| | - David G Harman
- School of Medicine, Western Sydney University , Sydney, Australia
| | - John W Morley
- School of Medicine, Western Sydney University , Sydney, Australia
| | - Morven A Cameron
- School of Medicine, Western Sydney University , Sydney, Australia
| |
Collapse
|
6
|
Vivanco P, Studholme KM, Morin LP. Drugs that prevent mouse sleep also block light-induced locomotor suppression, circadian rhythm phase shifts and the drop in core temperature. Neuroscience 2013; 254:98-109. [PMID: 24056197 DOI: 10.1016/j.neuroscience.2013.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 02/08/2023]
Abstract
Exposure of mice to a brief light stimulus during their nocturnal active phase induces several simultaneous behavioral or physiological responses, including circadian rhythm phase shifts, a drop in core body temperature (Tc), suppression of locomotor activity and sleep. Each response is triggered by light, endures for a relatively fixed interval and does not require additional light for expression. The present studies address the ability of the psychostimulant drugs, methamphetamine (MA), modafinil (MOD) or caffeine (CAF), to modify the light-induced responses. Drug or vehicle (VEH) was injected at CT11 into constant dark-housed mice then exposed to 5-min 100μW/cm(2) light or no light at CT13. Controls (VEH/Light) showed approximately 60-min phase delays. In contrast, response was substantially attenuated by each drug (only 12-15min delays). Under a 12-h light:12-h dark (LD12:12) photoperiod, VEH/light-treated mice experienced a Tc drop of about 1.3°C coincident with locomotor suppression and both effects were abolished by drug pre-treatment. Each drug elevated activity during the post-injection interval, but there was also evidence for CAF-induced hypoactivity in the dark prior to the photic test stimulus. CAF acutely elevated Tc; MA acutely lowered it, but both drugs reduced Tc during the early dark (ZT12.5-ZT13). The ability of the psychostimulant drugs to block the several effects of light exposure is not the result of drug-induced hyperactivity. The results raise questions concerning the manner in which drugs, activity, sleep and Tc influence behavioral and physiological responses to light.
Collapse
Affiliation(s)
- P Vivanco
- Department of Psychiatry, Health Science Center, Stony Brook University, Stony Brook, NY, United States
| | | | | |
Collapse
|
7
|
Dkhissi-Benyahya O, Coutanson C, Knoblauch K, Lahouaoui H, Leviel V, Rey C, Bennis M, Cooper HM. The absence of melanopsin alters retinal clock function and dopamine regulation by light. Cell Mol Life Sci 2013; 70:3435-47. [PMID: 23604021 PMCID: PMC11113582 DOI: 10.1007/s00018-013-1338-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 01/25/2023]
Abstract
The retinal circadian clock is crucial for optimal regulation of retinal physiology and function, yet its cellular location in mammals is still controversial. We used laser microdissection to investigate the circadian profiles and phase relations of clock gene expression and Period gene induction by light in the isolated outer (rods/cones) and inner (inner nuclear and ganglion cell layers) regions in wild-type and melanopsin-knockout (Opn 4 (-/-) ) mouse retinas. In the wild-type mouse, all clock genes are rhythmically expressed in the photoreceptor layer but not in the inner retina. For clock genes that are rhythmic in both retinal compartments, the circadian profiles are out of phase. These results are consistent with the view that photoreceptors are a potential site of circadian rhythm generation. In mice lacking melanopsin, we found an unexpected loss of clock gene rhythms and of the photic induction of Per1-Per2 mRNAs only in the outer retina. Since melanopsin ganglion cells are known to provide a feed-back signalling pathway for photic information to dopaminergic cells, we further examined dopamine (DA) synthesis in Opn 4 (-/-) mice. The lack of melanopsin prevented the light-dependent increase of tyrosine hydroxylase (TH) mRNA and of DA and, in constant darkness, led to comparatively high levels of both components. These results suggest that melanopsin is required for molecular clock function and DA regulation in the retina, and that Period gene induction by light is mediated by a melanopsin-dependent, DA-driven signal acting on retinal photoreceptors.
Collapse
Affiliation(s)
- Ouria Dkhissi-Benyahya
- Department of Chronobiology, INSERM U846, Stem Cell and Brain Research Institute, 18 Avenue du Doyen Lépine, 69500, Bron, France.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gagné AM, Hébert M. Atypical pattern of rod electroretinogram modulation by recent light history: a possible biomarker of seasonal affective disorder. Psychiatry Res 2011; 187:370-4. [PMID: 20832867 DOI: 10.1016/j.psychres.2010.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 08/09/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
Our goal was to challenge both normal controls and patients with seasonal affective disorders (SAD) to various light histories and then measure their retinal response modulation using the electroretinogram (ERG) in both winter and summer. In winter and summer, 11 normal controls and 12 SAD patients were exposed to three different light conditions for 1 h (10,000, 100 and 5 lux) followed by an ERG. Groups showed similar ERG amplitudes in the 100 lux condition. Compared with the 100-lux condition, in controls, the ERG response was significantly increased in the 5-lux condition; in SAD, it was significantly decreased in the 10,000-lux condition. This pattern was present in both seasons. This is the first time a retinal response modulation anomaly has been observed in SAD patients in both the depressed and euthymic states. Retinal response modulation may represent an interesting biomarker of the disease for future research.
Collapse
Affiliation(s)
- Anne-Marie Gagné
- Research Center University Laval Robert-Giffard, Québec, QC, Canada
| | | |
Collapse
|
9
|
Combined fluorescent in situ hybridization and immunofluorescence: Limiting factors and a substitution strategy for slide-mounted tissue sections. J Neurosci Methods 2011; 196:281-8. [DOI: 10.1016/j.jneumeth.2011.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/18/2022]
|
10
|
Cameron MA, Pozdeyev N, Vugler AA, Cooper H, Iuvone PM, Lucas RJ. Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci 2009; 29:761-7. [PMID: 19200071 DOI: 10.1111/j.1460-9568.2009.06631.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Light-dependent release of dopamine (DA) in the retina is an important component of light-adaptation mechanisms. Melanopsin-containing inner retinal photoreceptors have been shown to make physical contacts with DA amacrine cells, and have been implicated in the regulation of the local retinal environment in both physiological and anatomical studies. Here we determined whether they contribute to photic regulation of DA in the retina as assayed by the ratio of DA with its primary metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), and by c-fos induction in tyrosine hydroxylase (TH)-labelled DA amacrine cells. Light treatment (approximately 0.7 log W/m(2) for 90 min) resulted in a substantial increase in DA release (as revealed by an increase in the DOPAC : DA ratio), as well as widespread induction of nuclear c-fos in DA amacrine cells in wild-type mice and in mice lacking melanopsin (Opn4(-/-)). Light-induced DA release was also retained in mice lacking rod phototransduction (Gnat1(-/-)), although the magnitude of this response was substantially reduced compared with wild-types, as was the incidence of light-dependent nuclear c-fos in DAergic amacrines. By contrast, the DAergic system of mice lacking both rods and cones (rd/rd cl) showed no detectable light response. Our data suggest that light regulation of DA, a pivotal retinal neuromodulator, originates primarily with rods and cones, and that melanopsin is neither necessary nor sufficient for this photoresponse.
Collapse
Affiliation(s)
- M A Cameron
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
11
|
Temporal resolution and temporal transfer properties: Gabaergic and cholinergic mechanisms. Vis Neurosci 2007; 24:787-97. [DOI: 10.1017/s0952523807070691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 08/20/2007] [Indexed: 11/06/2022]
Abstract
Temporal resolution is a basic property of the visual system and critically depends upon retinal temporal coding properties which are also of importance for directional coding. Whether the temporal coding properties for directional coding derive form inherent properties or critically depend upon the temporal coding mechanisms is unclear. Here, the influence of acetylcholine and GABA upon photopic temporal coding was investigated in goldfish, using flicker stimuli, in a behavioral and an electrophysiological (ERG) approach. The goldfish temporal resolution ability decreased from more than 90% correct choices at 20 Hz flicker frequency to about 65% at 45 Hz flicker frequency with a flicker fusion frequency of approximately 39 Hz. Blockade of GABAa-receptors reduced the flicker fusion frequency to about 23 Hz, not affecting temporal resolution below 20 Hz flicker frequency. Partial blockade of nicotinic acetylcholine receptors reduced the flicker fusion frequency slightly and lowered the temporal resolution ability in the 25–30 Hz range. Blockade of muscarinic acetylcholine receptors had a smaller effect than the partial blockade of nicotinic acetylcholine receptors. In ERG-recordings, blocking GABAa-receptors increased the a- and b-wave amplitude, induced a delay, an increase and a slow fall-off of the d-wave. Blocking GABAc-receptors had little effect. Blocking GABAa- or GABAa/c-receptors changed the temporal resolution, when expressed as a linear filter, from a 3rd degree filter with resonance to a low order low-pass filter with a low upper limit frequency. The temporal transfer properties were barely changed by blocking either nicotinic or muscarinic acteylcholine receptors, although ERG-components increased in amplitude to varying degrees. The behavioral and electrophysiological data indicate the important role of GABA for temporal processing but little involvement of the cholinergic system. It is proposed that the interaction of the GABAergic amacrine cell network and bipolar cells determines the gain of the retinal temporal coding in the upper frequency range.
Collapse
|
12
|
Vugler AA, Redgrave P, Hewson-Stoate NJ, Greenwood J, Coffey PJ. Constant illumination causes spatially discrete dopamine depletion in the normal and degenerate retina. J Chem Neuroanat 2007; 33:9-22. [PMID: 17223011 DOI: 10.1016/j.jchemneu.2006.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/20/2006] [Accepted: 10/21/2006] [Indexed: 11/20/2022]
Abstract
A fully competent retinal dopamine system underpins normal visual function. Although this system is known to be compromised both prior to and during retinal degeneration, the spatial dynamics of dopamine turnover within the degenerate retina are at present unknown. Here, using immunohistochemistry for dopamine in combination with quantitative optical density measurements, we reveal a global decline in retinal dopamine levels in the light adapted RCS dystrophic rat, which is restricted to plexiform layers in the dark. Pharmacological blockade of dopamine production with the drug alpha-methyl-p-tyrosine (AMPT) allows the direct visualisation of dopamine depletion in normal and degenerate retina in response to constant illumination. In normal retinae this effect is spatially discrete, being undetectable in perikarya and specific to amacrine cell fibres in sublamina 1 of the inner plexiform layer. A similar response was observed in the retinae of dystrophic rats but with a reduction in amplitude of approximately 50%. It is suggested that the pattern of dopamine depletion observed in rat retina may reflect an AMPT-resistant pool of perikaryal dopamine and/or a reduction in extrasynaptic release of this neurotransmitter in response to illumination in vivo. We conclude that the visualisation of dopamine depletion reported here represents a release of this neurotransmitter in the response to light. Turnover of dopamine in the dystrophic retina is discussed in the context of surviving photoreceptors, including the intrinsically photosensitive melanopsin ganglion cells of the inner retina.
Collapse
Affiliation(s)
- A A Vugler
- Division of Cellular Therapy, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | | | | | | | | |
Collapse
|
13
|
Lee NS, Kim CT, Han SY, Kawk JH, Sawada K, Fukui Y, Jeong YG. The absence of phosphorylated tyrosine hydroxylase expression in the purkinje cells of the ataxic mutant pogo mouse. Anat Histol Embryol 2006; 35:178-83. [PMID: 16677213 DOI: 10.1111/j.1439-0264.2005.00657.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pogo mouse is a new ataxic autosomal recessive mutant that arose in Korean wild mice (KJR/Mskist). Its ataxic phenotype includes difficulty in maintaining a normal posture and the inability to walk in a straight line. Several studies have reported that tyrosine hydroxylase (TH) is persistently ectopically expressed in particular subsets of Purkinje cells in a parasagittal banding pattern in several ataxic mutant mice, e.g. tottering alleles and pogo mice. In this present study, we examined the expression of an enzymatically active form of TH and phosphorylated TH at Ser(40) (phospho-TH) by using immunohistochemistry and double immunofluorescence in the cerebellum of pogo mice. TH immunostaining appeared in some Purkinje cells in pogo, but in only a few of Purkinje cells of their heterozygous littermate controls. In all groups of mice, no phospho-TH immunoreactive Purkinje cells were observed in the cerebellum, although subsets of TH immunoreactive Purkinje cells were found in adjacent sections. This study suggests that TH expression in the Purkinje cells of pogo abnormally increases without activation of this enzyme by phosphorylation. This may mean that TH in the Purkinje cells of these mutants does not catalyse the conversion of tyrosine to l-DOPA, and is not related to catecholamine synthesis.
Collapse
Affiliation(s)
- N S Lee
- Department of Anatomy, College of Medicine, Konyang University, Nonsan, Chungnam 320-711, South Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Avshalumov MV, Chen BT, Koós T, Tepper JM, Rice ME. Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. J Neurosci 2006; 25:4222-31. [PMID: 15858048 PMCID: PMC6725114 DOI: 10.1523/jneurosci.4701-04.2005] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ATP-sensitive K+ (K(ATP)) channels link metabolic state to cell excitability. Here, we examined regulation of K(ATP) channels in substantia nigra dopamine neurons by hydrogen peroxide (H2O2), which is produced in all cells during aerobic metabolism. Blockade of K(ATP) channels by glibenclamide (100 nM) or depletion of intracellular H2O2 by including catalase, a peroxidase enzyme, in the patch pipette increased the spontaneous firing rate of all dopamine neurons tested in guinea pig midbrain slices. Using fluorescence imaging with dichlorofluorescein to visualize intracellular H2O2, we found that moderate increases in H2O2 during partial inhibition of glutathione (GSH) peroxidase by mercaptosuccinate (0.1-0.3 mM) had no effect on dopamine neuron firing rate. However, with greater GSH inhibition (1 mM mercaptosuccinate) or application of exogenous H2O2, 50% of recorded cells showed K(ATP) channel-dependent hyperpolarization. Responsive cells also hyperpolarized with diazoxide, a selective opener for K(ATP) channels containing sulfonylurea receptor SUR1 subunits, but not with cromakalim, a selective opener for SUR2-based channels, indicating that SUR1-based K(ATP) channels conveyed enhanced sensitivity to elevated H2O2. In contrast, when endogenous H2O2 levels were increased after inhibition of catalase, the predominant peroxidase in the substantia nigra, with 3-amino-1,2,4-triazole (1 mM), all dopamine neurons responded with glibenclamide-reversible hyperpolarization. Fluorescence imaging of H2O2 indicated that catalase inhibition rapidly amplified intracellular H2O2, whereas inhibition of GSH peroxidase, a predominantly glial enzyme, caused a slower, smaller increase, especially in nonresponsive cells. Thus, endogenous H2O2 modulates neuronal activity via K(ATP) channel opening, thereby enhancing the reciprocal relationship between metabolism and excitability.
Collapse
Affiliation(s)
- Marat V Avshalumov
- Department of Neurosurgery, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
15
|
Mora-Ferrer C, Hausselt S, Schmidt Hoffmann R, Ebisch B, Schick S, Wollenberg K, Schneider C, Teege P, Jürgens K. Pharmacological properties of motion vision in goldfish measured with the optomotor response. Brain Res 2005; 1058:17-29. [PMID: 16150425 DOI: 10.1016/j.brainres.2005.07.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 11/26/2022]
Abstract
In goldfish, the retinal pathways involved in motion coding have been demonstrated to have an L-cone dominated action spectrum (S. Schaerer, C. Neumeyer, Motion detection in goldfish investigated with the optomotor response is "color blind", Vision Res. 36 (1996) 4025-4034). The neurotransmitters involved in retinal motion coding mechanisms, and the relevance of these retinal motion coding mechanisms for motion perception, are little investigated in fish. In this study, the optomotor response was used to investigate the effect of antagonists on different receptor types for acetylcholine (ACh), GABA, for the dopamine D2-receptor (D2-R) - which is known to modulate the action spectrum in motion coding (C. Mora-Ferrer, K. Behrend, Dopaminergic modulation of photopic temporal transfer properties in goldfish retina investigated with the ERG, Vision Res. 44 (2004) 2067-2081) - and of an agonist for against the mGluR6-receptor (mGluR6) on goldfish motion vision in the photopic range. Blockade of nicotinic ACh-R, GABAa-R and both GABAa- and GABAc-R eliminated the optomotor response completely. Neither a muscarinic ACH-R antagonist, a D2-R antagonist or a mGluR6-agonist affected goldfish motion vision. The pharmacological profile of the goldfish optomotor response resembles the pharmacological profile of direction-selective ganglion cells (DS-GC) described for vertebrate retinas in electrophysiological experiments, e.g. (S. Weng, W. Sun, S. He, Identification of ON-OFF direction-selective ganglion cells in the mouse retina, J. Physiol. 562 (2005) 915-923). This indicates that cells with direction-selective receptive field properties exist in the goldfish retina. It is proposed that these cells provide the input for the full field motion perception in goldfish.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Animals
- Dopamine/metabolism
- Eye Movements/drug effects
- Eye Movements/physiology
- GABA Antagonists/pharmacology
- Goldfish
- Motion Perception/drug effects
- Motion Perception/physiology
- Nicotinic Antagonists/pharmacology
- Psychomotor Performance/drug effects
- Psychomotor Performance/physiology
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Receptors, GABA/drug effects
- Receptors, GABA/metabolism
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/metabolism
- Retina/cytology
- Retina/drug effects
- Retina/physiology
- Retinal Ganglion Cells/cytology
- Retinal Ganglion Cells/drug effects
- Retinal Ganglion Cells/physiology
- Vision, Ocular/drug effects
- Vision, Ocular/physiology
- Visual Fields/physiology
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Carlos Mora-Ferrer
- Institute Zoology III, J Gutenberg University Mainz, 55099 Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dunkley PR, Bobrovskaya L, Graham ME, von Nagy-Felsobuki EI, Dickson PW. Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 2004; 91:1025-43. [PMID: 15569247 DOI: 10.1111/j.1471-4159.2004.02797.x] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate-limiting enzyme in catecholamine synthesis is tyrosine hydroxylase. It is phosphorylated at serine (Ser) residues Ser8, Ser19, Ser31 and Ser40 in vitro, in situ and in vivo. A range of protein kinases and protein phosphatases are able to phosphorylate or dephosphorylate these sites in vitro. Some of these enzymes are able to regulate tyrosine hydroxylase phosphorylation in situ and in vivo but the identity of the kinases and phosphatases is incomplete, especially for physiologically relevant stimuli. The stoichiometry of tyrosine hydroxylase phosphorylation in situ and in vivo is low. The phosphorylation of tyrosine hydroxylase at Ser40 increases the enzyme's activity in vitro, in situ and in vivo. Phosphorylation at Ser31 also increases the activity but to a much lesser extent than for Ser40 phosphorylation. The phosphorylation of tyrosine hydroxylase at Ser19 or Ser8 has no direct effect on tyrosine hydroxylase activity. Hierarchical phosphorylation of tyrosine hydroxylase occurs both in vitro and in situ, whereby the phosphorylation at Ser19 increases the rate of Ser40 phosphorylation leading to an increase in enzyme activity. Hierarchical phosphorylation depends on the state of the substrate providing a novel form of control of tyrosine hydroxylase activation.
Collapse
Affiliation(s)
- Peter R Dunkley
- School of Biomedical Sciences, The University of Newcastle, Callaghan, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
17
|
Witkovsky P, Veisenberger E, Haycock JW, Akopian A, Garcia-Espana A, Meller E. Activity-dependent phosphorylation of tyrosine hydroxylase in dopaminergic neurons of the rat retina. J Neurosci 2004; 24:4242-9. [PMID: 15115820 PMCID: PMC6729289 DOI: 10.1523/jneurosci.5436-03.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied in vivo activity-dependent phosphorylation of tyrosine hydroxylase (TH) in dopaminergic (DA) neurons of the rat retina. TH phosphorylation (TH-P) was evaluated by immunocytochemistry, using antibodies specific for each of three regulated phosphorylation sites. TH synthesis rate was measured by dihydroxyphenylalanine (DOPA) accumulation in the presence of NSD-1015, an inhibitor of aromatic amino acid decarboxylase. TH-P was increased markedly by light or after intraocular injection of GABA(A) and glycine inhibitors. All three phosphospecific antibodies responded similarly to test drugs or light. A 30 min exposure to light increased DOPA accumulation by threefold over that seen after 30 min in darkness. Immunostaining to an anti-panNa channel antibody was found in all parts of the DA neuron. TTX blocked TH-P induced by light or GABA/glycine inhibitors but only in varicosities of the DA axon plexus, not in perikarya or dendrites. Veratridine increased TH-P in all parts of the DA neuron. The distribution of the monoamine vesicular transporter 2 was shown by immunocytochemistry to reside in varicosities of the DA plexus but not in dendrites, indicating that the varicosities are sites of dopamine release. Collectively, these data indicate that, in the retina, dopamine synthesis in varicosities is affected by the spiking activity of retinal neurons, possibly including that of the DA neurons themselves.
Collapse
Affiliation(s)
- Paul Witkovsky
- Departments of Ophthalmology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Luft WA, Iuvone PM, Stell WK. Spatial, temporal, and intensive determinants of dopamine release
in the chick retina. Vis Neurosci 2004; 21:627-35. [PMID: 15579225 DOI: 10.1017/s0952523804214110] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Indexed: 11/07/2022]
Abstract
The retinal dopaminergic system is a global regulator of retinal
function. Apart from the fact that the rates of dopamine synthesis and
release are increased by increasing illumination, the visual image
parameters that influence dopaminergic function are mostly unknown.
Roles for spatial and temporal frequency and image contrast are
suggested by the effects of form-deprivation with a diffusing goggle.
Form-deprivation reduces the rates of dopamine synthesis and release,
and induces myopia, which is prevented by dopamine agonists. Our
purpose here was to identify visual stimulus parameters that activate
dopaminergic amacrine cells and elicit dopamine release. White Leghorn
cockerels 4–7 days old were exposed to 2 h of form-deprivation,
reduced light intensity, or stimuli of varied temporal or spatial
frequency. Activation of dopaminergic neurons, labeled for tyrosine
hydroxylase (TH), was assessed with immunocytochemistry for c-Fos, and
dopamine release was measured by HPLC analysis of dopamine metabolite
accumulation in the vitreous body. Form-deprivation did not reduce TH+
cell activation or vitreal dopamine metabolite accumulation any more
than did neutral-density filters of approximately equal transmittance.
TH+ cell activation and vitreal metabolite accumulation were not
affected significantly by exposure to 2, 5, 10, 15, or 20 Hz
stroboscopic stimulation on a dark background, or by sine-wave gratings
of 0.089, 0.44, 0.89, 1.04, or 3.13 cycles/deg compared to a
uniform gray target of equal mean luminance. These data indicate that
the retinal dopaminergic system does not respond readily to short-term
changes in visual stimulus parameters, other than light intensity,
under the conditions of these experiments.
Collapse
Affiliation(s)
- W A Luft
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
19
|
Sawada K, Ando M, Sakata-Haga H, Sun XZ, Jeong YG, Hisano S, Takeda N, Fukui Y. Abnormal expression of tyrosine hydroxylase not accompanied by phosphorylation at serine 40 in cerebellar Purkinje cells of ataxic mutant mice, rolling mouse Nagoya and dilute-lethal. Congenit Anom (Kyoto) 2004; 44:46-50. [PMID: 15008900 DOI: 10.1111/j.1741-4520.2003.00008.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study examined immunohistochemically the expression of an enzymatically active form of tyrosine hydroxylase (TH), phosphorylated TH at Ser40 (phospho-TH), in the cerebellum of ataxic mutant mice, rolling mouse Nagoya (RMN) and dilute-lethal (DL). TH immunostaining appeared in some Purkinje cells in RMN and DL, but in a few of the Purkinje cells of littermate controls for both mutants. In all groups of mice, there were no phospho-TH immunoreactive Purkinje cells in the cerebellum, although the subsets of TH immunoreactive Purkinje cells were found in the adjacent sections. The results suggest that TH expression in the Purkinje cells of ataxic mutants abnormally increases without activation of this enzyme by phosphorylation. This may mean that TH in Purkinje cells is not related to catecholamine synthesis.
Collapse
Affiliation(s)
- Kazuhiko Sawada
- Department of Anatomy and Developmental Neurobiology, University of Tokushima School of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ribelayga C, Mangel SC. Absence of circadian clock regulation of horizontal cell gap junctional coupling reveals two dopamine systems in the goldfish retina. J Comp Neurol 2003; 467:243-53. [PMID: 14595771 DOI: 10.1002/cne.10927] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In fish and other vertebrate retinas, although dopamine release is regulated by both light and an endogenous circadian (24-hour) clock, light increases dopamine release to a greater extent than the clock. The clock increases dopamine release during the subjective day so that D2-like receptors are activated. It is not known, however, whether the retinal clock also activates D1 receptors, which display a much lower sensitivity to dopamine in intact tissue. Because activation of the D1 receptors on fish cone horizontal (H1) cells uncouples the gap junctions between the cells, we studied whether the clock regulates the extent of biocytin tracer coupling in the goldfish retina. Tracer coupling between H1 cells was extensive under dark-adapted conditions (low scotopic range) and similar in the subjective day, subjective night, day, and night. An average of approximately 180 cells were coupled in each dark-adapted condition. However, bright light stimulation or application of the D1 agonist SKF38393 (10 microM) dramatically reduced H1 cell coupling. The D2 agonist quinpirole (1 microM) or application of the D1 antagonist SCH23390 (10 microM) and/or the D2 antagonist spiperone (10 microM) had no effect on H1 cell coupling in dark-adapted retinas. These observations demonstrate that H1 cell gap junctional coupling and thus D1 receptor activity are not affected by endogenous dopamine under dark-adapted conditions. The results suggest that two different dopamine systems are present in the goldfish retina. One system is controlled by an endogenous clock that activates low threshold D2-like receptors in the day, whereas the second system is controlled by light and involves activation of higher threshold D1 receptors.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neurobiology, Civitan International Research Center, University of Alabama School of Medicine, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
21
|
Gabriel R, Lesauter J, Silver R, Garcia-España A, Witkovsky P. Diurnal and circadian variation of protein kinase C immunoreactivity in the rat retina. J Comp Neurol 2001; 439:140-50. [PMID: 11596044 PMCID: PMC3271847 DOI: 10.1002/cne.1338] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We studied the dependence of the expression of protein kinase C immunoreactivity (PKC-IR) in the rat retina on the light:dark (LD) cycle and on circadian rhythmicity in complete darkness (DD). Two anti-PKC alpha antibodies were employed: One, which we call PKCalphabeta recognized the hinge region; the other, here termed PKCalpha, recognized the regulatory region of the molecule. Western blots showed that both anti-PKC antibodies stained an identical single band at approximately 80 kD. The retinal neurons showing PKC-IR were rod bipolar cells and a variety of amacrine neurons. After 3 weeks on an LD cycle, PKCalphabeta-IR in both rod bipolar and certain amacrine cells manifested a clear rhythm with a peak at zeitgeber time (ZT) of 06-10 hours and a minimum at ZT 18. No rhythm in total PKC-IR was observed when using the PKCalpha antibody, but, at ZT 06-10 hours, rod bipolar axon terminals showed increased immunostaining. After 48 hours in DD, with either antibody, rod bipolar cells showed increased PKC-IR. The PKCalpha antibody alone revealed that, after 48 hours, AII amacrine neurons, which lacked PKC-IR in an LD cycle, manifested marked PKC-IR, which became stronger after 72 hours. Light administered early in the dark period greatly increased PKCalphabeta-IR in rod bipolar and some amacrine neurons. Our data indicate that light and darkness exert a strong regulatory influence on PKC synthesis, activation, and transport in retinal neurons.
Collapse
Affiliation(s)
- Robert Gabriel
- Department of General Zoology and Neurobiology, University of Pecs, H-7604 Pecs, Hungary
- Department of Ophthalmology, New York University School of Medicine, New York, New York 10016
| | - Joseph Lesauter
- Department of Psychology, Barnard College, New York, New York 10027
| | - Rae Silver
- Department of Psychology, Barnard College, New York, New York 10027
- Department of Psychology, Columbia University, New York, New York 10027
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, New York, New York 10032
| | - Antonio Garcia-España
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Paul Witkovsky
- Department of Ophthalmology, New York University School of Medicine, New York, New York 10016
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016
- Correspondence to: Dr. Paul Witkovsky, Department of Ophthalmology, New York University School of Medicine, 550 First Ave., New York, NY 10016.
| |
Collapse
|
22
|
Marshak DW. Synaptic inputs to dopaminergic neurons in mammalian retinas. PROGRESS IN BRAIN RESEARCH 2001; 131:83-91. [PMID: 11420984 DOI: 10.1016/s0079-6123(01)31009-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- D W Marshak
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX 77225-0708, USA.
| |
Collapse
|