1
|
Miyamoto S, Lima RS, Inague A, Viviani LG. Electrophilic oxysterols: generation, measurement and protein modification. Free Radic Res 2021; 55:416-440. [PMID: 33494620 DOI: 10.1080/10715762.2021.1879387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cholesterol is an essential component of mammalian plasma membranes. Alterations in sterol metabolism or oxidation have been linked to various pathological conditions, including cardiovascular diseases, cancer, and neurodegenerative disorders. Unsaturated sterols are vulnerable to oxidation induced by singlet oxygen and other reactive oxygen species. This process yields reactive sterol oxidation products, including hydroperoxides, epoxides as well as aldehydes. These oxysterols, in particular those with high electrophilicity, can modify nucleophilic sites in biomolecules and affect many cellular functions. Here, we review the generation and measurement of reactive sterol oxidation products with emphasis on cholesterol hydroperoxides and aldehyde derivatives (electrophilic oxysterols) and their effects on protein modifications.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo S Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas G Viviani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Paes de Barros M, Casares Araujo-Chaves J, Marlise Mendes Brito A, Lourenço Nantes-Cardoso I. Oxidative/Nitrative Mechanism of Molsidomine Mitotoxicity Assayed by the Cytochrome c Reaction with SIN-1 in Models of Biological Membranes. Chem Res Toxicol 2020; 33:2775-2784. [DOI: 10.1021/acs.chemrestox.0c00122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcelo Paes de Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, Rua Galvão Bueno 868, São Paulo, São Paulo 01506-000, Brazil
| | | | | | | |
Collapse
|
3
|
Mano CM, Guaratini T, Cardozo KHM, Colepicolo P, Bechara EJH, Barros MP. Astaxanthin Restrains Nitrative-Oxidative Peroxidation in Mitochondrial-Mimetic Liposomes: A Pre-Apoptosis Model. Mar Drugs 2018; 16:md16040126. [PMID: 29649159 PMCID: PMC5923413 DOI: 10.3390/md16040126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 01/14/2023] Open
Abstract
Astaxanthin (ASTA) is a ketocarotenoid found in many marine organisms and that affords many benefits to human health. ASTA is particularly effective against radical-mediated lipid peroxidation, and recent findings hypothesize a “mitochondrial-targeted” action of ASTA in cells. Therefore, we examined the protective effects of ASTA against lipid peroxidation in zwitterionic phosphatidylcholine liposomes (PCLs) and anionic phosphatidylcholine: phosphatidylglycerol liposomes (PCPGLs), at different pHs (6.2 to 8.0), which were challenged by oxidizing/nitrating conditions that mimic the regular and preapoptotic redox environment of active mitochondria. Pre-apoptotic conditions were created by oxidized/nitr(osyl)ated cytochrome c and resulted in the highest levels of lipoperoxidation in both PCL and PCPGLs (pH 7.4). ASTA was less protective at acidic conditions, especially in anionic PCPGLs. Our data demonstrated the ability of ASTA to hamper oxidative and nitrative events that lead to cytochrome c-peroxidase apoptosis and lipid peroxidation, although its efficiency changes with pH and lipid composition of membranes.
Collapse
Affiliation(s)
- Camila M Mano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (IQUSP), 05508-000 São Paulo, SP, Brazil.
- Instituto de Ciências da Atividade Física e do Esporte (ICAFE), Universidade Cruzeiro do Sul, 01506-000 São Paulo, SP, Brazil.
- Superintendência da Polícia Técnico Científica, 05507-060 São Paulo, SP, Brazil.
| | - Thais Guaratini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (IQUSP), 05508-000 São Paulo, SP, Brazil.
- Lychnoflora Pesquisa e Desenvolvimento em Produtos Naturais LTDA, 14030-090 Ribeirão Preto, SP, Brazil.
| | - Karina H M Cardozo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (IQUSP), 05508-000 São Paulo, SP, Brazil.
- Grupo Fleury, 04344-070 São Paulo, SP, Brazil.
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (IQUSP), 05508-000 São Paulo, SP, Brazil.
| | - Etelvino J H Bechara
- Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, UNIFESP, 09972-270 Diadema, SP, Brazil.
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (IQUSP), 05508-000 São Paulo, SP, Brazil.
| | - Marcelo P Barros
- Instituto de Ciências da Atividade Física e do Esporte (ICAFE), Universidade Cruzeiro do Sul, 01506-000 São Paulo, SP, Brazil.
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Departamento de Ciencia de los Alimentos, Calle Catedrático Agustín Escardino 7, 46980 Paterna, Spain.
| |
Collapse
|
4
|
Tawa M, Okamura T. Soluble guanylate cyclase redox state under oxidative stress conditions in isolated monkey coronary arteries. Pharmacol Res Perspect 2016; 4:e00261. [PMID: 27713826 PMCID: PMC5045941 DOI: 10.1002/prp2.261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/23/2022] Open
Abstract
Coronary artery disease is associated with oxidative stress due to the excessive generation of free radicals in the vascular wall. This study investigated the impact of tert‐butyl hydroperoxide (t‐BuOOH), a peroxyl radical generator, on the redox state of soluble guanylate cyclase (sGC) in isolated monkey coronary arteries. Helically cut strips of endothelium‐intact monkey coronary arteries treated with the nitric oxide synthase inhibitor NG‐nitro‐L‐arginine (10 μmol/L) were exposed for approximately 60 min to either no drug or t‐BuOOH (100 μmol/L) in the presence and absence of α‐tocopherol (300 μmol/L). Relaxation and cGMP levels in response to the sGC stimulator BAY 41‐2272 and the sGC activator BAY 60‐2770 were assessed by organ chamber technique and enzyme immunoassay, respectively. The relaxant response to BAY 41‐2272 was significantly impaired by the exposure to t‐BuOOH, whereas the response to BAY 60‐2770 was significantly augmented. In addition, vascular cGMP accumulation caused by BAY 41‐2272 was decreased by the exposure to t‐BuOOH, whereas for BAY 60‐2770, it was increased. These effects of t‐BuOOH were abolished by coincubation with α‐tocopherol. Furthermore, correlations were observed between BAY compound‐induced relaxant magnitudes and cGMP levels. Therefore, it is concluded that increased oxidative stress leads to disruption of the sGC redox state in monkey coronary arteries. This finding is of great importance for understanding coronary physiology in primates.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pharmacology Shiga University of Medical Science Otsu Shiga Japan
| | - Tomio Okamura
- Department of Pharmacology Shiga University of Medical Science Otsu Shiga Japan
| |
Collapse
|
5
|
Genaro-Mattos TC, Queiroz RF, Cunha D, Appolinario PP, Di Mascio P, Nantes IL, Augusto O, Miyamoto S. Cytochrome c Reacts with Cholesterol Hydroperoxides To Produce Lipid- and Protein-Derived Radicals. Biochemistry 2015; 54:2841-50. [DOI: 10.1021/bi501409d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Thiago C. Genaro-Mattos
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Raphael F. Queiroz
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
- Departamento
de Química e Exatas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA 45200-000, Brazil
| | - Daniela Cunha
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Patricia P. Appolinario
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Paolo Di Mascio
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Iseli L. Nantes
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-580, Brazil
| | - Ohara Augusto
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Sayuri Miyamoto
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
6
|
Rokitskaya TI, Kotova EA, Agapov II, Moisenovich MM, Antonenko YN. Unsaturated lipids protect the integral membrane peptide gramicidin A from singlet oxygen. FEBS Lett 2014; 588:1590-5. [PMID: 24613917 DOI: 10.1016/j.febslet.2014.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/10/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
In contrast to expectations that unsaturated fatty acids contribute to oxidative stress by providing a source of lipid peroxides, we demonstrated the protective effect of double bonds in lipids on oxidative damage to membrane proteins. Photodynamic inactivation of gramicidin channels was decreased in unsaturated lipid compared to saturated lipid bilayers. By estimating photosensitizer (boronated chlorine e6 amide) binding to the membrane with the current relaxation technique, the decrease in gramicidin photoinactivation was attributed to singlet oxygen scavenging by double bonds in lipids rather than to the reduction in photosensitizer binding. Gramicidin protection by unsaturated lipids was also observed upon induction of oxidative stress with tert-butyl hydroperoxide.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Igor I Agapov
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation; Academician V.I.Shumakov Federal Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation
| | - Mikhail M Moisenovich
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
7
|
UV-light effects on cytochrome c modulated by the aggregation state of phenothiazines. PLoS One 2013; 8:e76857. [PMID: 24130798 PMCID: PMC3793907 DOI: 10.1371/journal.pone.0076857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/29/2013] [Indexed: 02/07/2023] Open
Abstract
The present study shows the factors that modulate the photodamage promoted by phenothiazines. Cytochrome c was irradiated with UV light for 120 min, over a pH range from 4.0 to 8.0, in the absence and in the presence of different concentrations of thioridazine (TR) and fluphenazine (FP). In the absence of phenothiazines, the maximal rate of a Soret band blue shift (nm/min) from 409 to 406 nm was obtained at pH 4.0 (0.028 nm/min). The presence of phenothiazines at the concentration range 10-25 µmol/L amplified and accelerated a cytochrome c blue shift (409 to 405 nm, at a rate = 0.041 nm/min). Above 25 µmol/L, crescent concentrations of phenothiazines contributed to cytochrome c protection with (maximal at 2500 µmol/L). Scanning electronic microscopy revealed the formation of nanostructures. The pH also influenced the effect of low phenothiazine concentrations on cytochrome c. Thus, the predominance of phenothiazine-promoted cytochrome c damage or protection depends on a balance of the following factors: the yield of photo-generated drug cation radicals, which is favored by acidic pH; the stability of the cation radicals, which is favored by the drug aggregation; and the cytochrome c structure, modulated by the pH.
Collapse
|
8
|
Sartori A, Mano CM, Mantovani MC, Dyszy FH, Massari J, Tokikawa R, Nascimento OR, Nantes IL, Bechara EJH. Ferricytochrome (c) directly oxidizes aminoacetone to methylglyoxal, a catabolite accumulated in carbonyl stress. PLoS One 2013; 8:e57790. [PMID: 23483930 PMCID: PMC3590289 DOI: 10.1371/journal.pone.0057790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/25/2013] [Indexed: 11/19/2022] Open
Abstract
Age-related diseases are associated with increased production of reactive oxygen and carbonyl species such as methylglyoxal. Aminoacetone, a putative threonine catabolite, is reportedly known to undergo metal-catalyzed oxidation to methylglyoxal, NH4(+) ion, and H2O2 coupled with (i) permeabilization of rat liver mitochondria, and (ii) apoptosis of insulin-producing cells. Oxidation of aminoacetone to methylglyoxal is now shown to be accelerated by ferricytochrome c, a reaction initiated by one-electron reduction of ferricytochrome c by aminoacetone without amino acid modifications. The participation of O2(•-) and HO (•) radical intermediates is demonstrated by the inhibitory effect of added superoxide dismutase and Electron Paramagnetic Resonance spin-trapping experiments with 5,5'-dimethyl-1-pyrroline-N-oxide. We hypothesize that two consecutive one-electron transfers from aminoacetone (E0 values = -0.51 and -1.0 V) to ferricytochrome c (E0 = 0.26 V) may lead to aminoacetone enoyl radical and, subsequently, imine aminoacetone, whose hydrolysis yields methylglyoxal and NH4(+) ion. In the presence of oxygen, aminoacetone enoyl and O2(•-) radicals propagate aminoacetone oxidation to methylglyoxal and H2O2. These data endorse the hypothesis that aminoacetone, putatively accumulated in diabetes, may directly reduce ferricyt c yielding methylglyoxal and free radicals, thereby triggering redox imbalance and adverse mitochondrial responses.
Collapse
Affiliation(s)
- Adriano Sartori
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Camila M. Mano
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Mariana C. Mantovani
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Fábio H. Dyszy
- Departamento de Física e Informática, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Júlio Massari
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Rita Tokikawa
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Otaciro R. Nascimento
- Departamento de Física e Informática, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Iseli L. Nantes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Etelvino J. H. Bechara
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
9
|
Elucidating the mechanism of ferrocytochrome c heme disruption by peroxidized cardiolipin. J Biol Inorg Chem 2012; 18:137-44. [PMID: 23160757 DOI: 10.1007/s00775-012-0958-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
The interaction of peroxidized cardiolipin with ferrocytochrome c induces two kinetically and chemically distinct processes. The first is a rapid oxidation of ferrocytochrome c, followed by a slower, irreversible disruption of heme c. The oxidation of ferrocytochrome c by peroxidized cardiolipin is explained by a Fenton-type reaction. Heme scission is a consequence of the radical-mediated reactions initiated by the interaction of ferric heme iron with peroxidized cardiolipin. Simultaneously with the heme c disruption, generation of hydroxyl radical is detected by EPR spectroscopy using the spin trapping technique. The resulting apocytochrome c sediments as a heterogeneous mixture of high aggregates, as judged by sedimentation analysis. Both the oxidative process and the destructive process were suppressed by nonionic detergents and/or high ionic strength. The mechanism for generating radicals and heme rupture is presented.
Collapse
|
10
|
Miyamoto Y, Iwao Y, Mera K, Watanabe H, Kadowaki D, Ishima Y, Chuang VTG, Sato K, Otagiri M, Maruyama T. A uremic toxin, 3-carboxy-4-methyl-5-propyl-2-furanpropionate induces cell damage to proximal tubular cells via the generation of a radical intermediate. Biochem Pharmacol 2012; 84:1207-14. [PMID: 22898098 DOI: 10.1016/j.bcp.2012.07.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
3-Carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF), a furan fatty acid uremic toxin (UT) and a substrate for organic ion transporters, contributes to the accumulation of CMPF in renal tubular cells. Although oxidative stress induced by UTs has been proposed as a mechanism of its toxicity in chronic kidney disease, little information is available regarding the redox property of CMPF and its relation to renal cell damage. The findings herein show that CMPF enhances the production of reactive oxygen species (ROS) in HK-2 cells in the presence of angiotensin II (A-II), an inducer of O(2)(·-). When iron is also present, CMPF and A-II induce the Fenton reaction, resulting in a further increase in ROS production. Such CMPF-induced oxidative stress increases TGF-β1 secretion in HK-2 cells, and a positive correlation between CMPF-induced ROS production and the secretion of active TGF-β1 was observed. CMPF caused a reduction in cell viability which was negatively correlated with intracellular ROS production. These negative effects of CMPF in HK-2 cells were completely suppressed by probenecid, an inhibitor of organic anion transport. Interestingly, in vitro ROS assays indicate that CMPF directly interacts with superoxide anion radicals (O(2)(·-)) and peroxy radicals (LOO) to produce CMPF radicals. The subsequent interaction of CMPF radicals with dissolved oxygen leads to the overproduction of O(2)(·-). Based on these findings, we conclude that CMPF, which accumulates in the renal cells, appears to play a prominent role as a pro-oxidant which subsequently leads to renal cellular damage via the overproduction of O(2)(·-).
Collapse
Affiliation(s)
- Yohei Miyamoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Moreira LM, Poli AL, Lyon JP, Aimbire F, Toledo JC, Costa-Filho AJ, Imasato H. Ligand changes in ferric species of the giant extracellular hemoglobin of Glossoscolex paulistusas function of pH: correlations between redox, spectroscopic and oligomeric properties and general implications with different hemoproteins. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s108842461000201x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present review is focused on the relationship between oligomeric and heme properties of HbGp, emphasizing the characteristics that can be generalized to other hemoproteins. This study represents the state-of-the-art with respect to the approaches for investigating giant extracellular hemoglobins as well as the correlation between oligomeric assembly alterations and their consequent changes in the first coordination sphere. A wide introduction focused on the properties of this hemoglobin is developed. Indeed, this hemoprotein is considered an interesting prototype of blood substitute and biosensor due to its peculiar properties, such as resistance to autoxidation and oligomeric stability. Previous studies by our group employing UV-vis, EPR and CD spectroscopies have been revised in a complete approach, in agreement with recent and relevant data from the literature. In fact, a consistent and inter-related spectroscopic study is described propitiating a wide assignment of "fingerprint" peaks found in the techniques evaluated in this paper. This review furnishes physicochemical information regarding the identification of ferric heme species of hemoproteins and metallic complexes through their spectroscopic bands. This effort at the attribution of UV-vis, EPR and CD peaks is not restricted to HbGp, and includes a comparative analysis of several hemoproteins involving relevant implications regarding several types of iron-porphyrin systems.
Collapse
Affiliation(s)
- Leonardo Marmo Moreira
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, 12244-000 São José dos Campos SP, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970 São Carlos SP, Brazil
- Instituto de Pesquisa e Qualidade Acadêmica (IPQA), Universidade Camilo Castelo Branco, São José dos Campos SP, Brazil
| | - Alessandra Lima Poli
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970 São Carlos SP, Brazil
| | - Juliana Pereira Lyon
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, 12244-000 São José dos Campos SP, Brazil
| | - Flávio Aimbire
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, 12244-000 São José dos Campos SP, Brazil
- Instituto de Pesquisa e Qualidade Acadêmica (IPQA), Universidade Camilo Castelo Branco, São José dos Campos SP, Brazil
| | | | | | - Hidetake Imasato
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970 São Carlos SP, Brazil
| |
Collapse
|
12
|
Dias CFB, Araújo-Chaves JC, Mugnol KCU, Trindade FJ, Alves OL, Caires ACF, Brochsztain S, Crespilho FN, Matos JR, Nascimento OR, Nantes IL. Photo-induced electron transfer in supramolecular materials of titania nanostructures and cytochrome c. RSC Adv 2012. [DOI: 10.1039/c2ra20996a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Biological effects of anionic meso-tetrakis (para-sulfonatophenyl) porphyrins modulated by the metal center. Studies in rat liver mitochondria. Chem Biol Interact 2009; 181:400-8. [DOI: 10.1016/j.cbi.2009.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 02/04/2023]
|
14
|
Mano CM, Barros MP, Faria PA, Prieto T, Dyszy FH, Nascimento OR, Nantes IL, Bechara EJH. Superoxide radical protects liposome-contained cytochrome c against oxidative damage promoted by peroxynitrite and free radicals. Free Radic Biol Med 2009; 47:841-9. [PMID: 19559788 DOI: 10.1016/j.freeradbiomed.2009.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/13/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
The effects of nitrosative species on cyt c structure and peroxidase activity were investigated here in the presence of O(2)(*-) and anionic and zwitterionic vesicles. Nitrosative species were generated by 3-morpholinesydnonymine (SIN1) decomposition, using cyt c heme iron and/or molecular oxygen as electron acceptor. Far- and near-UV CD spectra of SIN1-treated cyt c revealed respectively a slight decrease of alpha-helix content (from 39 to 34%) and changes in the tryptophan structure accompanied by increased fluorescence. The Soret CD spectra displayed a significant decrease of the positive signal at 403 nm. EPR spectra revealed the presence of a low-spin cyt c form (S=1/2) with g(1)=2.736, g(2)=2.465, and g(3)=2.058 after incubation with SIN1. These data suggest that the concomitant presence of NO(*) and O(2)(*-) generated from dissolved oxygen, in a system containing cyt c and liposomes, promotes chemical and conformational modifications in cyt c, resulting in a hypothetical bis-histidine hexacoordinated heme iron. We also show that, paradoxically, O(2)(*-) prevents not only membrane lipoperoxidation by peroxide-derived radicals but also oxidation of cyt c itself due to the ability of O(2)(*-) to reduce heme iron. Finally, lipoperoxidation measurements showed that, although it is a more efficient peroxidase, SIN1-treated cyt c is not more effective than native cyt c in promoting damage to anionic liposomes in the presence of tert-ButylOOH, probably due to loss of affinity with negatively charged lipids.
Collapse
Affiliation(s)
- Camila M Mano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Celano L, Gil M, Carballal S, Durán R, Denicola A, Banerjee R, Alvarez B. Inactivation of cystathionine beta-synthase with peroxynitrite. Arch Biochem Biophys 2009; 491:96-105. [PMID: 19733148 DOI: 10.1016/j.abb.2009.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/26/2009] [Accepted: 08/28/2009] [Indexed: 11/19/2022]
Abstract
Cystathionine beta-synthase (CBS) is a homocysteine metabolizing enzyme that contains pyridoxal phosphate (PLP) and a six-coordinate heme cofactor of unknown function. CBS was inactivated by peroxynitrite, the product of nitric oxide and superoxide radicals. The IC(50) was approximately 150microM for 5microM ferric CBS. Stopped-flow kinetics and competition experiments showed a direct reaction with a second-order rate constant of (2.4-5.0)x10(4)M(-1)s(-1) (pH 7.4, 37 degrees C). The radicals derived from peroxynitrite, nitrogen dioxide and carbonate radical, also inactivated CBS. Exposure to peroxynitrite did not modify bound PLP but led to nitration of Trp208, Trp43 and Tyr223 and alterations in the heme environment including loss of thiolate coordination, conversion to high-spin and bleaching, with no detectable formation of oxo-ferryl compounds nor promotion of one-electron processes. This study demonstrates the susceptibility of CBS to reactive oxygen/nitrogen species, with potential relevance to hyperhomocysteinemia, a risk factor for cardiovascular diseases.
Collapse
Affiliation(s)
- Laura Celano
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | | | |
Collapse
|
16
|
Cortés-Rojo C, Calderón-Cortés E, Clemente-Guerrero M, Estrada-Villagómez M, Manzo-Avalos S, Mejía-Zepeda R, Boldogh I, Saavedra-Molina A. Elucidation of the effects of lipoperoxidation on the mitochondrial electron transport chain using yeast mitochondria with manipulated fatty acid content. J Bioenerg Biomembr 2009; 41:15-28. [PMID: 19224349 DOI: 10.1007/s10863-009-9200-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 01/26/2009] [Indexed: 12/22/2022]
Abstract
Lipoperoxidative damage to the respiratory chain proteins may account for disruption in mitochondrial electron transport chain (ETC) function and could lead to an augment in the production of reactive oxygen species (ROS). To test this hypothesis, we investigated the effects of lipoperoxidation on ETC function and cytochromes spectra of Saccharomyces cerevisiae mitochondria. We compared the effects of Fe(2+) treatment on mitochondria isolated from yeast with native (lipoperoxidation-resistant) and modified (lipoperoxidation-sensitive) fatty acid composition. Augmented sensitivity to oxidative stress was observed in the complex III-complex IV segment of the ETC. Lipoperoxidation did not alter the cytochromes content. Under lipoperoxidative conditions, cytochrome c reduction by succinate was almost totally eliminated by superoxide dismutase and stigmatellin. Our results suggest that lipoperoxidation impairs electron transfer mainly at cytochrome b in complex III, which leads to increased resistance to antimycin A and ROS generation due to an electron leak at the level of the Q(O) site of complex III.
Collapse
Affiliation(s)
- Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3. CU, Morelia, Mich 58030, México
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Nantes IL, Mugnol KCU. Incorporation of Respiratory Cytochromes in Liposomes: An Efficient Strategy to Study the Respiratory Chain. J Liposome Res 2008; 18:175-94. [DOI: 10.1080/08982100802340367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Spectroscopic, structural, and functional characterization of the alternative low-spin state of horse heart cytochrome C. Biophys J 2008; 94:4066-77. [PMID: 18227133 DOI: 10.1529/biophysj.107.116483] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The alternative low-spin states of Fe(3+) and Fe(2+) cytochrome c induced by SDS or AOT/hexane reverse micelles exhibited the heme group in a less rhombic symmetry and were characterized by electron paramagnetic resonance, UV-visible, CD, magnetic CD, fluorescence, and Raman resonance. Consistent with the replacement of Met(80) by another strong field ligand at the sixth heme iron coordination position, Fe(3+) ALSScytc exhibited 1-nm Soret band blue shift and epsilon enhancement accompanied by disappearance of the 695-nm charge transfer band. The Raman resonance, CD, and magnetic CD spectra of Fe(3+) and Fe(2+) ALSScytc exhibited significant changes suggestive of alterations in the heme iron microenvironment and conformation and should not be assigned to unfold because the Trp(59) fluorescence remained quenched by the neighboring heme group. ALSScytc was obtained with His(33) and His(26) carboxyethoxylated horse cytochrome c and with tuna cytochrome c (His(33) replaced by Asn) pointing out Lys(79) as the probable heme iron ligand. Fe(3+) ALSScytc retained the capacity to cleave tert-butylhydroperoxide and to be reduced by dithiothreitol and diphenylacetaldehyde but not by ascorbate. Compatible with a more open heme crevice, ALSScytc exhibited a redox potential approximately 200 mV lower than the wild-type protein (+220 mV) and was more susceptible to the attack of free radicals.
Collapse
|
19
|
Rodrigues T, de França LP, Kawai C, de Faria PA, Mugnol KCU, Braga FM, Tersariol ILS, Smaili SS, Nantes IL. Protective Role of Mitochondrial Unsaturated Lipids on the Preservation of the Apoptotic Ability of Cytochrome c Exposed to Singlet Oxygen. J Biol Chem 2007; 282:25577-87. [PMID: 17567586 DOI: 10.1074/jbc.m700009200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c-mediated apoptosis in cells submitted to photodynamic therapy raises the question about the ability of photodynamically oxidized cytochrome c (cytc405) to trigger apoptosis as well as the effect of membranes on protein photo-oxidation. Cytochrome c was submitted to irradiation in the presence of MB+ in phosphate buffer and in the presence of four types of phosphatidylcholine/phosphatidylethanolamine/cardiolipin (PCPECL) liposomes (50/30/20%): totally saturated lipids (tsPCPECL), totally unsaturated lipids (tuPCPECL), partially unsaturated (80%) lipids, with unsaturation in the PC and PE content (puPCPECL80), and partially unsaturated (20%) lipids, with unsaturation in the CL content (puPCPECL20). Cytc405 was formed by irradiation in buffered water and in tsPCPECL and puPCPECL20 liposomes. In the presence of tuPCPECL and puPCPECL80, cytochrome c was protected from photodynamic damage (lipid-protected cytochrome c). In CL liposomes, 25% unsaturated lipids were enough to protect cytochrome c. The presence of unsaturated lipids, in amounts varying according to the liposome composition, are crucial to protect cytochrome c. Interesting findings corroborating the unsaturated lipids as cytochrome c protectors were obtained from the analysis of the lipid-oxidized derivatives of the samples. Native cytochrome c, lipid-protected cytochrome c, and cytc405 were microinjected in aortic smooth muscle cells. Apoptosis, characterized by nucleus blebbing and chromatin condensation, was detected in cells loaded with native and lipid protected cytochrome c but not in cells loaded with cytc405. These results suggest that photodynamic therapy-promoted apoptosis is feasible due to the protective effect of the mitochondrial lipids on the cytochrome c structure and function.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Centro Interdisciplinar de Investigação Bioquímica Universidade de Mogi das Cruzes, Prédio I, Sala 1S-15, Mogi das Cruzes 08780-911, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Osipov AN, Stepanov GO, Vladimirov YA, Kozlov AV, Kagan VE. Regulation of cytochrome C peroxidase activity by nitric oxide and laser irradiation. BIOCHEMISTRY (MOSCOW) 2007; 71:1128-32. [PMID: 17125462 DOI: 10.1134/s0006297906100117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Apoptosis can be induced by activation of so-called "death receptors" (extrinsic pathway) or multiple apoptotic factors (intrinsic pathway), which leads to release of cytochrome c from mitochondria. This event is considered to be a point of no return in apoptosis. One of the most important events in the development of apoptosis is the enhancement of cytochrome c peroxidase activity upon its interaction with cardiolipin, which modifies the active center of cytochrome c. In the present work, we have investigated the effects of nitric oxide on the cytochrome c peroxidase activity when cytochrome c is bound to cardiolipin or sodium dodecyl sulfate. We have observed that cytochrome c peroxidase activity, distinctly increased due to the presence of anionic lipids, is completely suppressed by nitric oxide. At the same time, nitrosyl complexes of cytochrome c, produced in the interaction with nitric oxide, demonstrated sensitivity to laser irradiation (441 nm) and were photolyzed during irradiation. This decomposition led to partial restoration of cytochrome c peroxidase activity. Finally, we conclude that nitric oxide and laser irradiation may serve as effective instruments for regulating the peroxidase activity of cytochrome c, and, probably, apoptosis.
Collapse
Affiliation(s)
- A N Osipov
- Department of Biophysics, Russian State Medical University, Moscow, 117513, Russia.
| | | | | | | | | |
Collapse
|
21
|
Vladimirov YA, Proskurnina EV, Izmailov DY, Novikov AA, Brusnichkin AV, Osipov AN, Kagan VE. Cardiolipin activates cytochrome c peroxidase activity since it facilitates H(2)O(2) access to heme. BIOCHEMISTRY (MOSCOW) 2006; 71:998-1005. [PMID: 17009954 DOI: 10.1134/s0006297906090082] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, the effect of liposomes consisting of tetraoleyl cardiolipin and dioleyl phosphatidylcholine (1 : 1, mol/mol) on the rate of three more reactions of Cyt c heme with H2O2 was studied: (i) Cyt c (Fe2+) oxidation to Cyt c (Fe3+), (ii) Fe...S(Met80) bond breaking, and (iii) heme porphyrin ring decomposition. It was revealed that the rates of all those reactions increased greatly in the presence of liposomes containing cardiolipin and not of those consisting of only phosphatidylcholine, and approximately to the same extent as peroxidase activity. These data suggest that cardiolipin activates specifically Cyt c peroxidase activity not only because it promotes Fe...S(Met80) bond breaking but also facilitates H2O2 penetration to the reaction center.
Collapse
Affiliation(s)
- Yu A Vladimirov
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow 117192, Russia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Marmo Moreira L, Lima Poli A, Costa-Filho AJ, Imasato H. Pentacoordinate and hexacoordinate ferric hemes in acid medium: EPR, UV–Vis and CD studies of the giant extracellular hemoglobin of Glossoscolex paulistus. Biophys Chem 2006; 124:62-72. [PMID: 16814451 DOI: 10.1016/j.bpc.2006.05.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/30/2006] [Accepted: 05/30/2006] [Indexed: 11/26/2022]
Abstract
The equilibrium complexity involving different axially coordinated hemes is peculiar to hemoglobins. The pH dependence of the spontaneous exchange of ligands in the extracellular hemoglobin from Glossoscolex paulistus was studied using UV-Vis, EPR, and CD spectroscopies. This protein has a complex oligomeric assembly with molecular weight of 3.1 MDa that presents an important cooperative effect. A complex coexistence of different species was observed in almost all pH values, except pH 7.0, where just aquomet species is present. Four new species were formed and coexist with the aquomethemoglobin upon acidification: (i) a "pure" low-spin hemichrome (Type II), also called hemichrome B, with an usual spin state (d(xy))(2)(d(xz),d(yz))(3); (ii) a strong g(max) hemichrome (Type I), also showing an usual spin state (d(xy))(2)(d(xz),d(yz))(3); (iii) a hemichrome with unusual spin state (d(xz),d(yz))(4)(d(xy))(1) (Type III); (iv) and a high-spin pentacoordinate species. CD measurements suggest that the mechanism of species formation could be related with an initial process of acid denaturation. However, it is worth mentioning that based on EPR the aquomet species remains even at acidic pH, indicating that the transitions are not complete. The "pure" low-spin hemichrome presents a parallel orientation of the imidazole ring planes but the strong g(max) hemichrome is a HALS (highly anisotropic low-spin) species indicating a reciprocally perpendicular orientation of the imidazole ring planes. The hemichromes and pentacoordinate formation mechanisms are discussed in detail.
Collapse
Affiliation(s)
- Leonardo Marmo Moreira
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13566-590, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
23
|
Everse J, Coates PW. Role of peroxidases in Parkinson disease: a hypothesis. Free Radic Biol Med 2005; 38:1296-310. [PMID: 15855048 DOI: 10.1016/j.freeradbiomed.2005.01.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/10/2005] [Accepted: 01/20/2005] [Indexed: 11/19/2022]
Abstract
Extensive research has been done to elucidate the underlying molecular events causing neurodegenerative diseases such as Parkinson disease, yet the cause and the individual steps in the progression of such diseases are still unknown. Here we advance the hypothesis that, rather than or in addition to inorganic radical molecules, heme-containing peroxidase enzymes may play a major role in the etiology of Parkinson disease. This hypothesis is based on the following considerations: (1) several heme-containing enzymes with peroxidase activity are present in the substantia nigra pars compacta; (2) these peroxidases have the ability to catalyze the oxidation of proteins and lipids; (3) certain heme peroxidases are known to destroy cells in vivo; (4) heme peroxidases have the stability and specificity that could account for the fact that specific molecules and cells are subject to damage in Parkinson disease, rather than a random destruction; (5) heme peroxidase activity could account for certain reactions in connection with parkinsonism that thus far have not been adequately explained; and (6) the participation of a heme peroxidase could explain some recent observations that are inconsistent with the oxyradical theory. The peroxidase-catalyzed oxidative pathway proposed here does not preclude the participation of apoptosis as an additional mechanism for cell destruction.
Collapse
Affiliation(s)
- Johannes Everse
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | |
Collapse
|
24
|
Estevam ML, Nascimento OR, Baptista MS, Di Mascio P, Prado FM, Faljoni-Alario A, Zucchi MDR, Nantes IL. Changes in the spin state and reactivity of cytochrome C induced by photochemically generated singlet oxygen and free radicals. J Biol Chem 2004; 279:39214-22. [PMID: 15247265 DOI: 10.1074/jbc.m402093200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This work compares the effect of photogenerated singlet oxygen (O(2)((1)Delta(g))) (type II mechanism) and free radicals (type I mechanism) on cytochrome c structure and reactivity. Both reactive species were obtained by photoexcitation of methylene blue (MB(+)) in the monomer and dimer forms, respectively. The monomer form is predominant at low dye concentrations (up to 8 microm) or in the presence of an excess of SDS micelles, while dimers are predominant at 0.7 mm SDS. Over a pH range in which cytochrome c is in the native form, O(2) ((1)Delta(g)) and free radicals induced a Soret band blue shift (from 409 to 405 nm), predominantly. EPR measurements revealed that the blue shift of the Soret band was compatible with conversion of the heme iron from its native low spin state to a high spin state with axial symmetry (g approximately 6.0). Soret band bleaching, due to direct attack on the heme group, was only detected under conditions that favored free radical production (MB(+) dimer in SDS micelles) or in the presence of a less structured form of the protein (above pH 9.3). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry of the heme group and the polypeptide chain of cytochrome c with Soret band at 405 nm (cytc405) revealed no alterations in the mass of the cytc405 heme group but oxidative modifications on methionine (Met(65) and Met(80)) and tyrosine (Tyr(74)) residues. Damage of cytc405 tyrosine residue impaired its reduction by diphenylacetaldehyde, but not by beta-mercaptoethanol, which was able to reduce cytc405, generating cytochrome c Fe(II) in the high spin state (spin 2).
Collapse
Affiliation(s)
- Mauren L Estevam
- Centro Interdisciplinar de Investigação Bioquímica CIIB Universidade de Mogi das Cruzes UMC, Mogi das Cruzes, SP, CEP 08780-911, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Prieto T, Nascimento OR, Tersariol ILS, Faljoni-Alario A, Nantes IL. Microperoxidase-8 Associated to CTAB Micelles: A New Catalyst with Peroxidase Activity. J Phys Chem B 2004. [DOI: 10.1021/jp037849x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tatiana Prieto
- Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, SP, Brazil, Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), São Carlos, São Carlos, SP, Brazil, and Instituto de Química (IQ), Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Otaciro R. Nascimento
- Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, SP, Brazil, Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), São Carlos, São Carlos, SP, Brazil, and Instituto de Química (IQ), Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ivarne L. S. Tersariol
- Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, SP, Brazil, Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), São Carlos, São Carlos, SP, Brazil, and Instituto de Química (IQ), Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adelaide Faljoni-Alario
- Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, SP, Brazil, Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), São Carlos, São Carlos, SP, Brazil, and Instituto de Química (IQ), Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Iseli L. Nantes
- Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, SP, Brazil, Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), São Carlos, São Carlos, SP, Brazil, and Instituto de Química (IQ), Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
26
|
Zucchi MR, Nascimento OR, Faljoni-Alario A, Prieto T, Nantes IL. Modulation of cytochrome c spin states by lipid acyl chains: a continuous-wave electron paramagnetic resonance (CW-EPR) study of haem iron. Biochem J 2003; 370:671-8. [PMID: 12429017 PMCID: PMC1223180 DOI: 10.1042/bj20021521] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Revised: 11/12/2002] [Accepted: 11/13/2002] [Indexed: 11/17/2022]
Abstract
This work is a systematic study, showing a clear correlation between the nature of the lipid acyl chain and the spin states of cytochrome c interacting with different types of lipid membranes. According to the lipid acyl chain type, and the head group charge present in the bilayer, three spin states of cytochrome c were observed in different proportions: the native cytochrome c low spin state with rhombic symmetry (spin 1/2, g axially=3.07 and g radially=2.23), a low spin state with less rhombic symmetry (spin 1/2, g(1)=2.902, g(2)=2.225, and g(3)=1.510) and the high spin state (spin 5/2, g axially=6.0 and g radially=2.0). The proportion of the spin states of cytochrome c bound to bilayers was also dependent on the lipid/protein ratio, suggesting the existence of two or more protein sites interacting with the lipids. The lipid-induced alterations in the symmetry and spin states of cytochrome c exhibited partial reversibility when the ionic strength was increased, which reinforces the crucial role played by the electrostatic interaction with the lipid bilayer. Different cytochrome c spin states exhibited corresponding modifications in the haemprotein UV/visible spectra, particularly in the Q-band associated with loss of the 695 nm band and appearance of a band in the region of 600-650 nm. The observed reactivity of cytochrome c with oxidized forms of unsaturated lipids reinforces the possibility of the acyl chain insertion in the haemprotein structure.
Collapse
Affiliation(s)
- Maria R Zucchi
- Instituto de Física de São Carlos, Universidade de São Paulo - São Carlos, SP, Brazil
| | | | | | | | | |
Collapse
|
27
|
Nantes IL, Zucchi MR, Nascimento OR, Faljoni-Alario A. Effect of heme iron valence state on the conformation of cytochrome c and its association with membrane interfaces. A CD and EPR investigation. J Biol Chem 2001; 276:153-8. [PMID: 11027687 DOI: 10.1074/jbc.m006338200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently cytochrome c has been mentioned as an important mediator in the events of cellular oxidative stress and apoptosis. To investigate the influence of charged interfaces on the conformation of cytochrome c, the CD and magnetic circular dichroic behavior of ferric and ferrous cytochrome c in homogeneous medium and in phosphatidylcholine/phosphatidylethanolamine/cardiolipin and dicetylphosphate liposomes was studied in the 300-600 and 200-320 nm wavelength region. EPR spectra demonstrate that the association of cytochrome c with membranes promotes alterations of the crystal field symmetry and spin state of the heme Fe(3+). The studies also include the effect of P(i), NaCl, and CaCl(2). Magnetic circular dichroism and CD results show that the interaction of both ferrous and ferric cytochrome c with charged interfaces promotes conformational changes in the alpha-helix content, tertiary structure, and heme iron spin state. Moreover, the association of cytochrome c with different liposomes is sensitive to the heme iron valence state. The more effective association with membranes occurs with ferrous cytochrome c. Dicetylphosphate liposomes, as a negatively charged membrane model, promoted a more pronounced conformational modification in the cytochrome c structure. A decrease in the lipid/protein association is detected in the presence of increasing amounts of CaCl(2), NaCl, and P(i), in response to the increase of the ionic strength.
Collapse
Affiliation(s)
- I L Nantes
- Centro Interdisciplinar de Investigação Bioquimica (CIIB), Prédio I, Sala 1S-15, Diretoria de Pesquisa e Pós-Graduação, Universidade de Mogi das Cruzes (UMC), CP 411, Mogi das Cruzes, São Paulo, CEP 08780-911, Brazil
| | | | | | | |
Collapse
|