1
|
Jalilvand N, Baghcheghi Y, Fani M, Beheshti F, Ebrahimzadeh-Bideskan A, Marefati N, Moghimian M, Hosseini M. The effects of olibanum on male reproductive system damage in a lipopolysaccharide induced systemic inflammation model in rat. Heliyon 2024; 10:e36033. [PMID: 39224335 PMCID: PMC11366910 DOI: 10.1016/j.heliyon.2024.e36033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Background Lipopolysaccharide (LPS) as a particle of Gram-negative bacteria is a main contributer in the pathogenesis of the male reproductive system infectious. Male infertility due to LPS is reported to be related to overproduction reactive oxygen species. This study aimed to investigate the effects of olibanum on oxidative stress and apoptosis in testes and sperm dysfunction induced by LPS. Methods The male (n = 28) rats were allocated in four groups: control, LPS (1 mg/kg, i.p., 14 days), LPS + Olibanum 100 (100 mg/kg, i.p., 14 days), and LPS + Olibanum 200 (200 mg/kg, i.p., 14 days). Germ cell apoptosis was determined by TUNEL assays and computed using the stereological method. Additionally, semen samples of the animals were analyzed for sperm count and morphology. Oxidative stress indicators were also determined. Results The count of TUNEL-positive germ cells in LPS-treated rats was more than that in the controls. Treatment of the animals with olibanum significantly attenuated the number of apoptotic cells compared to the LPS group. The sperm count and those with a normal morphology in LPS-treated rats was lower than that in the controls. Administration of olibanum significantly improved the sperms with normal morphology and sperm count. Olibanum treatment also improved superoxide dismutase, catalase, and total thiol in testicular tissue and decreased malondialdehyde. Conclusion Administering both doses of olibanum in LPS-treated rats had potentially a therapeutic value in reducing germ cell apoptosis, as well as improving sperm parameters.
Collapse
Affiliation(s)
- Narjes Jalilvand
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Baghcheghi
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Masoumeh Fani
- Department of Anatomy, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Moghimian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
- Department of Physiology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Aioub AAA, Abdelnour SA, Hashem AS, Maher M, Abdel-Wahab SIZ, Alkeridis LA, Shukry M, Sayed SM, Elsobki AEA. Cinnamon nanoemulsion mitigates acetamiprid-induced hepatic and renal toxicity in rats: biochemical, histopathological, immunohistochemical, and molecular docking analysis. BMC Vet Res 2024; 20:256. [PMID: 38867202 PMCID: PMC11167909 DOI: 10.1186/s12917-024-04084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Acetamiprid (ACDP) is a widely used neonicotinoid insecticide that is popular for its efficacy in controlling fleas in domestic settings and for pets. Our study aims to offer a comprehensive examination of the toxicological impacts of ACDP and the prophylactic effects of cinnamon nanoemulsions (CMNEs) on the pathological, immunohistochemical, and hematological analyses induced by taking ACDP twice a week for 28 days. Forty healthy rats were divided into four groups (n = 10) at random; the first group served as control rats; the second received CMNEs (2 mg/Kg body weight); the third group received acetamiprid (ACDP group; 21.7 mg/Kg body weight), and the fourth group was given both ACDP and CMNEs by oral gavage. Following the study period, tissue and blood samples were extracted and prepared for analysis. According to a GC-MS analysis, CMNEs had several bioactive ingredients that protected the liver from oxidative stress by upregulating antioxidant and anti-inflammatory agents. Our findings demonstrated that whereas ACDP treatment considerably boosted white blood cells (WBCs) and lymphocytes, it significantly lowered body weight gain (BWG), red blood cells (RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PLT). ACDP notably reduced antioxidant enzyme activities: superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) and elevated hydrogen peroxide and malondialdehyde levels compared with other groups. ACDP remarkably raised alanine aminotransferase (ALT), aspartate amino transaminase (AST), and alkaline phosphatase (ALP) levels.Moreover, the histopathological and immunohistochemistry assays discovered a severe toxic effect on the liver and kidney following ACDP delivery. Furthermore, cyclooxygenase 2 (COX-2) + immunoexpression was enhanced after treatment with CMNEs. All of the parameters above were returned to nearly normal levels by the coadministration of CMNEs. The molecular docking of cinnamaldehyde with COX-2 also confirmed the protective potential of CMNEs against ACDP toxicity. Our findings highlighted that the coadministration of CMNEs along with ACDP diminished its toxicity by cutting down oxidative stress and enhancing antioxidant capacity, demonstrating the effectiveness of CMNEs in lessening ACDP toxicity.
Collapse
Affiliation(s)
- Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed S Hashem
- Stored Product Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-Sheikh, 33717, Egypt
| | - Mohamed Maher
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Sarah I Z Abdel-Wahab
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Lamya Ahmed Alkeridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, kafrelsheikh University, kafrelsheikh, 33516, Egypt
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed E A Elsobki
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
3
|
Wang YY, Lin YH, Wu VC, Lin YH, Huang CY, Ku WC, Sun CY. Decreased Klotho Expression Causes Accelerated Decline of Male Fecundity through Oxidative Injury in Murine Testis. Antioxidants (Basel) 2023; 12:1671. [PMID: 37759974 PMCID: PMC10526093 DOI: 10.3390/antiox12091671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress is the etiology for 30-80% of male patients affected by infertility, which is a major health problem worldwide. Klotho protein is an aging suppressor that functions as a humoral factor modulating various cellular processes including antioxidation and anti-inflammation, and its dysregulation leads to human pathologies. Male mice lacking Klotho are sterile, and decreased Klotho levels in the serum are observed in men suffering from infertility with lower sperm counts. However, the mechanism by which Klotho maintains healthy male fertility remains unclear. Klotho haplodeficiency (Kl+/-) accelerates fertility reduction by impairing sperm quality and spermatogenesis in Kl+/- mice. Testicular proteomic analysis revealed that loss of Klotho predominantly disturbed oxidation and the glutathione-related pathway. We further focused on the glutathione-S-transferase (GST) family which counteracts oxidative stress in most cell types and closely relates with fertility. Several GST proteins, including GSTP1, GSTO2, and GSTK1, were significantly downregulated, which subsequently resulted in increased levels of the lipid peroxidation product 4-hydroxynonenal and apoptosis in murine testis with low or no expression of Klotho. Taken together, the loss of one Kl allele accelerates male fecundity loss because diminished antioxidant capability induces oxidative injury in mice. This is the first study that highlights a connection between Klotho and GST proteins.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-Y.W.); (Y.-H.L.)
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-Y.W.); (Y.-H.L.)
| | - Vin-Cent Wu
- Taiwan Consortium for Acute Kidney Injury and Renal Diseases (CAKs), Taipei 100, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yu-Hua Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan;
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City 231, Taiwan
| | - Chia-Yen Huang
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 106, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Chiao-Yin Sun
- Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
Men J, Zhang L, Peng R, Li Y, Li M, Wang H, Zhao L, Zhang J, Wang H, Xu X, Dong J, Wang J, Yao B, Guo J. Metformin Ameliorates 2.856 GHz Microwave- Radiation-Induced Reproductive Impairments in Male Rats via Inhibition of Oxidative Stress and Apoptosis. Int J Mol Sci 2023; 24:12250. [PMID: 37569626 PMCID: PMC10418945 DOI: 10.3390/ijms241512250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The reproductive system has been increasingly implicated as a sensitive target of microwave radiation. Oxidative stress plays a critical role in microwave radiation -induced reproductive damage, though precise mechanisms are obscure. Metformin, a widely used antidiabetic drug, has emerged as an efficient antioxidant against a variety of oxidative injuries. In the present study, we hypothesized that metformin can function as an antioxidant and protect the reproductive system from microwave radiation. To test this hypothesis, rats were exposed to 2.856 GHz microwave radiation for 6 weeks to simulate real-life exposure to high-frequency microwave radiation. Our results showed that exposure to 2.856 GHz microwave radiation elicited serum hormone disorder, decreased sperm motility, and depleted sperm energy, and it induced abnormalities of testicular structure as well as mitochondrial impairment. Metformin was found to effectively protect the reproductive system against structural and functional impairments caused by microwave radiation. In particular, metformin can ameliorate microwave-radiation-induced oxidative injury and mitigate apoptosis in the testis, as determined by glutathione/-oxidized glutathione (GSH/GSSG), lipid peroxidation, and protein expression of heme oxygenase-1 (HO-1). These findings demonstrated that exposure to 2.856 GHz microwave radiation induces obvious structural and functional impairments of the male reproductive system, and suggested that metformin can function as a promising antioxidant to inhibit microwave-radiation-induced harmful effects by inhibiting oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Junqi Men
- PLA Center for Disease Control and Prevention, Beijing 100071, China; (J.M.); (L.Z.)
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Li Zhang
- PLA Center for Disease Control and Prevention, Beijing 100071, China; (J.M.); (L.Z.)
| | - Ruiyun Peng
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Yanyang Li
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Meng Li
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Hui Wang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Li Zhao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Jing Zhang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Haoyu Wang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Xinping Xu
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Ji Dong
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Juan Wang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Binwei Yao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China; (R.P.); (Y.L.); (M.L.); (H.W.); (L.Z.); (J.Z.); (H.W.); (X.X.); (J.D.); (J.W.)
| | - Jiabin Guo
- PLA Center for Disease Control and Prevention, Beijing 100071, China; (J.M.); (L.Z.)
- School of Public Health, China Medical University, Shenyang 110122, China
| |
Collapse
|
5
|
Zhang Y, Zhou XQ, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Feng L. Vitamin D Promotes Mucosal Barrier System of Fish Skin Infected with Aeromonas hydrophila through Multiple Modulation of Physical and Immune Protective Capacity. Int J Mol Sci 2023; 24:11243. [PMID: 37511003 PMCID: PMC10379486 DOI: 10.3390/ijms241411243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The vertebrate mucosal barrier comprises physical and immune elements, as well as bioactive molecules, that protect organisms from pathogens. Vitamin D is a vital nutrient for animals and is involved in immune responses against invading pathogens. However, the effect of vitamin D on the mucosal barrier system of fish, particularly in the skin, remains unclear. Here, we elucidated the effect of vitamin D supplementation (15.2, 364.3, 782.5, 1167.9, 1573.8, and 1980.1 IU/kg) on the mucosal barrier system in the skin of grass carp (Ctenopharyngodon idella) challenged with Aeromonas hydrophila. Dietary vitamin D supplementation (1) alleviated A. hydrophila-induced skin lesions and inhibited oxidative damage by reducing levels of reactive oxygen species, malondialdehyde, and protein carbonyl; (2) improved the activities and transcription levels of antioxidant-related parameters and nuclear factor erythroid 2-related factor 2 signaling; (3) attenuated cell apoptosis by decreasing the mRNA and protein levels of apoptosis factors involved death receptor and mitochondrial pathway processes related to p38 mitogen-activated protein kinase and c-Jun N-terminal kinase signaling; (4) improved tight junction protein expression by inhibiting myosin light-chain kinase signaling; and (5) enhanced immune barrier function by promoting antibacterial compound and immunoglobulin production, downregulating pro-inflammatory cytokine expression, and upregulating anti-inflammatory cytokines expression, which was correlated with nuclear factor kappa B and the target of rapamycin signaling pathways. Vitamin D intervention for mucosal barrier via multiple signaling correlated with vitamin D receptor a. Overall, these results indicate that vitamin D supplementation enhanced the skin mucosal barrier system against pathogen infection, improving the physical and immune barriers in fish. This finding highlights the viability of vitamin D in supporting sustainable aquaculture.
Collapse
Affiliation(s)
- Yao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611100, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611100, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611100, China
| |
Collapse
|
6
|
Kopalli SR, Cha KM, Cho JY, Kim SK, Koppula S. Cordycepin mitigates spermatogenic and redox related expression in H 2O 2-exposed Leydig cells and regulates testicular oxidative apoptotic signalling in aged rats. PHARMACEUTICAL BIOLOGY 2022; 60:404-416. [PMID: 35175170 PMCID: PMC8863333 DOI: 10.1080/13880209.2022.2033275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
CONTEXT Cordycepin (COR), from Cordyceps militaris L., (Cordycipitaceae), is a valuable agent with immense health benefits. OBJECTIVE The protective effects of COR in ageing-associated oxidative and apoptosis events in vivo and hydrogen peroxide (H2O2)-exposed spermatogenesis gene alterations in TM3 Leydig cells was investigated. MATERIALS AND METHODS Male Sprague-Dawley rats were divided into young control (YC), aged control (AC) and COR treated (COR-20) aged groups. COR-20 group received daily doses of COR (20 mg/kg) for 6 months. Cell viability and hormone levels were analysed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and enzyme immunoassay kits with COR treated at 1, 5, and 10 μg/mL. Oxidative enzymes, spermatogenic, and apoptotic expression in testis tissues were evaluated by Western blotting and real-time RT-PCR. RESULTS COR treatment (1, 5, and 10 μg/mL) significantly (p < 0.05 ∼ p < 0.001) inhibited the H2O2-induced decrease in the percentage of viable cells (from 63.27% to 71.25%, 85.67% and 93.97%, respectively), and reduced the malondialdehyde (MDA) content (from 4.28 to 3.98, 3.14 and 1.78 nM MDA/mg protein, respectively). Further, the decreased antioxidant enzymes (glutathione-S-transferase mu5, glutathione peroxidase 4 and peroxiredoxin 3), spermatogenesis-related factors (nectin-2 and inhibin-α) and testosterone levels in H2O2-exposed TM3 cells were significantly (p < 0.05 ∼ p < 0.001) ameliorated by COR. In aged rats, COR (20 mg/kg) restored the altered enzymatic and non-enzymatic antioxidative status and attenuated the apoptotic p53 and Bax/Bcl-2 expression significantly (p < 0.05). CONCLUSION COR might be developed as a potential agent against ageing-associated and oxidative stress-induced male infertility.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Kyu-Min Cha
- Business Incubator Center 406, D&L Biochem, Chungju-Si, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Si-Kwan Kim
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
- CONTACT Sushruta Koppula Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju27381, Republic of Korea
| |
Collapse
|
7
|
Peña FJ, Gibb Z. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: Oxidative stress and the long-term storage of horse spermatozoa. Reproduction 2022; 164:F135-F144. [PMID: 36255038 DOI: 10.1530/rep-22-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
In brief The growing understanding of the mechanisms regulating redox homeostasis in the stallion spermatozoa, together with its interactions with energetic metabolism, is providing new clues applicable to the improvement of sperm conservation in horses. Based on this knowledge, new extenders, adapted to the biology of the stallion spermatozoa, are expected to be developed in the near future. Abstract The preservation of semen either by refrigeration or cryopreservation is a principal component of most animal breeding industries. Although this procedure has been successful in many species, in others, substantial limitations persist. In the last decade, mechanistic studies have shed light on the molecular changes behind the damage that spermatozoa experience during preservation. Most of this damage is oxidative, and thus in this review, we aim to provide an updated overview of recent discoveries about how stallion spermatozoa maintain redox homeostasis, and how the current procedures of sperm preservation disrupt redox regulation and cause sperm damage which affects viability, functionality, fertility and potentially the health of the offspring. We are optimistic that this review will promote new ideas for further research to improve sperm preservation technologies, promoting translational research with a wide scope for applicability not only in horses but also in other animal species and humans.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| |
Collapse
|
8
|
Braz JKFDS, Gomes VA, Siman VA, da Matta SLP, Clebis NK, de Oliveira MF, Assis AC, Morais DB, de Moura CEB. Intertubular morphometric and ultrastructural testes analyses in mdx mice. Anim Reprod 2022; 19:e20210124. [PMID: 36313597 PMCID: PMC9613355 DOI: 10.1590/1984-3143-ar2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) reproductive alterations and the influence of antioxidant treatments may aid in understanding morphometry testicular quantification. In this context, the aim of the present study was to characterize the intertubular compartment (ITC) morphometry of animal testes in mdx mice supplemented with ascorbic acid (AA). Sixteen mice were used, namely the C57BL/10 (non-dystrophic) and C57BL/10Mdx (dystrophic) lineages, distributed into the following groups: Control (C60), Dystrophic (D60), Control supplemented with AA (CS60), Dystrophic supplemented with AA (DS60). A total of 200 mg/kg of AA were administered to mice for 30 days. Subsequently, the testicles were collected, weighed, and fragmented. The obtained fragments were fixed in Karnovsky's solution (pH 7.2) and embedded in historesin for morphometric and transmission electron microscopy assessments. Leydig cells were hypertrophic in the D60 group, but was reverted by AA supplementation in the DS60 group. The DS60 group also exhibited increased intertubular volume compared to the CS60 group. The ultrastructural images identified multilamellar bodies in dystrophic animals (lipid storage) and telocyte cells (transport substances) in both control and dystrophic animals. Morphometric alterations were, therefore, noted in the intertubular compartment due to Duchenne muscular dystrophy (DMD), with AA administration capable of altering Leydig cells in this condition.
Collapse
Affiliation(s)
| | - Vilessa Araújo Gomes
- Departamento de Ciências da Saúde, Universidade Federal de Campina Grande, Campina Grande, PB, Brasil
| | | | | | - Naianne Kelly Clebis
- Departamento de Morfologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | | | - Antônio Chaves Assis
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Ciência Animal, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | |
Collapse
|
9
|
Aioub AAA, Abdelnour SA, Shukry M, Saad AM, El-Saadony MT, Chen Z, Elsobki AEA. Ameliorating effect of the biological Zinc nanoparticles in abamectin induced hepato-renal injury in a rat model: Implication of oxidative stress, biochemical markers and COX-2 signaling pathways. Front Pharmacol 2022; 13:947303. [PMID: 36172185 PMCID: PMC9510891 DOI: 10.3389/fphar.2022.947303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Extensive use of abamectin (ABM) as an anthelmintic in veterinary systems adversely affects the health and welfare of animals and humans. Zinc nanoparticles (ZnNPs) have therapeutic benefits and ameliorate the effect of environmental pollutants. In this study, we assessed the ameliorative effect of ZnNPs against the sub-lethal toxicity of ABM in rats. Forty healthy rats were randomly selected into four groups (n = 10); the control received normal saline and test rats were treated orally twice weekly with ABM (1 mg/kg bwt), ZnNPs (10 mg/kg bwt) and ABM + ZnNPs for 28 days. Upon completion of the study period, blood and tissue samples were collected and prepared for hematological, biochemical, pathological, and immunohistochemical analysis. Our results showed that ABM treatment significantly decreased body weight gain (BWG), red blood cells (RBCs), hemoglobin (Hb), hematocrit (HC), and platelet (PLT); while it significantly increased white blood cells (WBCs) and lymphocytes. ABM also significantly decreased antioxidant enzyme activities: superoxide dismuthase (SOD), glutathione peroxidase (GPx), and catalase (CAT) and increased hydrogen peroxide and malondialdehyde levels compared with other groups. ABM significantly raised alanine aminotransferase (ALT), aspartate amino transaminase (AST), and alkaline phosphatase (ALP) levels, which was restored by co-administration of ZnNPs. Moreover, ZnNPs ameliorated ABM-mediated negative histopathological changes in the liver and kidney tissues, exhibiting a significant protective effect. Cyclooxygenase 2 (COX-2) + immuno-expression were reduced after pretreatment with ZnNPs. These findings suggested that co-administration of ZnNPs with ABM mitigated its toxicity by combating oxidative stress and boosting antioxidant capacity, indicating the efficacy of ZnNPs in attenuating ABM toxicity.
Collapse
Affiliation(s)
- Ahmed A. A. Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sameh A. Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Eco-Environment, Chongqing University, Chongqing, China
- *Correspondence: Zhongli Chen,
| | - Ahmed E. A. Elsobki
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Zhao S, Xu J, Zhang W, Yan W, Li G. Paternal exposure to microcystin-LR triggers developmental neurotoxicity in zebrafish offspring via an epigenetic mechanism involving MAPK pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148437. [PMID: 34153754 DOI: 10.1016/j.scitotenv.2021.148437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-LR (MCLR) induced impairment to male reproductive system and revealed the effects of transgenerational toxicity on offspring. But very little is known about the inheritance of these effects to offspring and the mechanisms involved. Here, we used methylated DNA immunoprecipitation sequencing (MeDIP-Seq) and microarray to characterize whole-genome DNA methylation and mRNA expression patterns in zebrafish testis after 6-week exposure to 5 and 20 μg/L MCLR. Accompanied with these analyses it revealed that MAPK pathway and ER pathway significantly enriched in zebrafish testes. Apoptosis and testicular damage were also observed in testis. Next, we test the transmission of effects to compare control-father and MCLR exposure-father progenies. DNA methylation analyses (via reduced representation bisulfite sequencing) reveal that the enrichment of differentially methylated regions on neurodevelopment after paternal MCLR exposure. Meanwhile, several genes associated with neurodevelopment were markedly downregulated in zebrafish larvae, and swimming speed was also reduced in the larvae. Interestingly, paternal MCLR exposure also triggered activation the phosphorylation of mitogen-activated protein kinase (MAPK) pathway which is also associated with neurodevelopmental disorders. These results demonstrated the significant effect that paternal MCLR exposure may have on gene-specific DNA methylation patterns in testis. Inherited epigenetic alterations through the germline may be the mechanism leading to developmental neurotoxicity in the offspring.
Collapse
Affiliation(s)
- Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jiayi Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Weiyun Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Ham J, Yun BH, Lim W, Song G. Folpet induces mitochondrial dysfunction and ROS-mediated apoptosis in mouse Sertoli cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104903. [PMID: 34301364 DOI: 10.1016/j.pestbp.2021.104903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Folpet is a phthalimide type of fungicide and has been used to control several crop diseases. Although it has adverse effects on the gastrointestinal tract, its mechanism and toxic effects on testis have not been demonstrated. In the present study, we elucidated the cytotoxic effect of folpet on the mouse Sertoli cell line, TM4. Our results revealed that folpet suppressed viability and proliferative capacity of TM4 cells and further inhibited 3D spheroid formation. Moreover, folpet impeded appropriate cell cycle progression and induced apoptotic cell death in TM4 cells. It disrupted the electrochemical gradient of mitochondria and calcium homeostasis in TM4 cells. Furthermore, endoplasmic reticulum stress-related proteins were activated in folpet-treated TM4 cells, and relative reactive oxygen species (ROS) production was also increased. N-acetylcysteine (NAC) treatment reinstated the folpet-induced ROS generation in TM4 cells. Additionally, NAC restored the proliferative capacity and reduced the apoptotic cells in folpet-treated TM4 cells. Collectively, we demonstrated that folpet causes ROS-mediated apoptotic cell death with mitochondrial dysfunction and calcium dysregulation in TM4 cells.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Bo Hyun Yun
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Soliman GA, Abdel-Rahman RF, Ogaly HA, Althurwi HN, Abd-Elsalam RM, Albaqami FF, Abdel-Kader MS. Momordica charantia Extract Protects against Diabetes-Related Spermatogenic Dysfunction in Male Rats: Molecular and Biochemical Study. Molecules 2020; 25:molecules25225255. [PMID: 33187275 PMCID: PMC7698202 DOI: 10.3390/molecules25225255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
More than 90% of diabetic patients suffer from sexual dysfunction, including diminished sperm count, sperm motility, and sperm viability, and low testosterone levels. The effects of Momordica charantia (MC) were studied by estimating the blood levels of insulin, glucose, glycosylated hemoglobin (HbA1c), testosterone (TST), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in diabetic rats treated with 250 and 500 mg/kg b.w. of the total extract. Testicular antioxidants, epididymal sperm characteristics, testicular histopathology, and lesion scoring were also investigated. Testicular mRNA expression of apoptosis-related markers such as antiapoptotic B-cell lymphoma-2 (Bcl-2) and proapoptotic Bcl-2-associated X protein (Bax) were evaluated by real-time PCR. Furthermore, caspase-3 protein expression was evaluated by immunohistochemistry. MC administration resulted in a significant reduction in blood glucose and HbA1c and marked elevation of serum levels of insulin, TST, and gonadotropins in diabetic rats. It induced a significant recovery of testicular antioxidant enzymes, improved histopathological changes of the testes, and decreased spermatogenic and Sertoli cell apoptosis. MC effectively inhibited testicular apoptosis, as evidenced by upregulation of Bcl-2 and downregulation of Bax and caspase-3. Moreover, reduction in apoptotic potential in MC-treated groups was confirmed by reduction in the Bax/Bcl-2 mRNA expression ratio.
Collapse
Affiliation(s)
- Gamal A. Soliman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (G.A.S.); (H.N.A.); (F.F.A.)
- Department of Pharmacology, College of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | | | - Hanan A. Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Biochemistry, College of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hassan N. Althurwi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (G.A.S.); (H.N.A.); (F.F.A.)
| | - Reham M. Abd-Elsalam
- Department of Pathology, College of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Faisal F. Albaqami
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (G.A.S.); (H.N.A.); (F.F.A.)
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria 21215, Egypt
- Correspondence: ; Tel.: +966-545539145
| |
Collapse
|
13
|
Fernandez MC, O'Flaherty C. Peroxiredoxin 6 is the primary antioxidant enzyme for the maintenance of viability and DNA integrity in human spermatozoa. Hum Reprod 2020; 33:1394-1407. [PMID: 29912414 DOI: 10.1093/humrep/dey221] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 01/24/2023] Open
Abstract
STUDY QUESTION Are all components of the peroxiredoxins (PRDXs) system important to control the levels of reactive oxygen species (ROS) to maintain viability and DNA integrity in spermatozoa? SUMMARY ANSWER PRDX6 is the primary player of the PRDXs system for maintaining viability and DNA integrity in human spermatozoa. WHAT IS KNOWN ALREADY Mammalian spermatozoa are sensitive to high levels of ROS and PRDXs are antioxidant enzymes proven to control the levels of ROS generated during sperm capacitation to avoid oxidative damage in the spermatozoon. Low amounts of PRDXs are associated with male infertility. The absence of PRDX6 promotes sperm oxidative damage and infertility in mice. STUDY DESIGN, SIZE, DURATION Semen samples were obtained over a period of one year from a cohort of 20 healthy non-smoking volunteers aged 22-30 years old. PARTICIPANTS/MATERIALS, SETTING, METHODS Sperm from healthy donors was incubated for 2 h in the absence or presence of inhibitors for the 2-Cys PRDXs system (peroxidase, reactivation system and NADPH-enzymes suppliers) or the 1-Cys PRDX system (peroxidase and calcium independent-phospholipase A2 (Ca2+-iPLA2) activity). Sperm viability, DNA oxidation, ROS levels, mitochondrial membrane potential and 4-hydroxynonenal production were determined by flow cytometry. MAIN RESULTS AND THE ROLE OF CHANCE We observed a significant decrease in viable cells due to inhibitors of the 2-Cys PRDXs, PRDX6 Ca2+-iPLA2 activity or the PRDX reactivation system compared to controls (P ≤ 0.05). PRDX6 Ca2+-iPLA2 activity inhibition had the strongest detrimental effect on sperm viability and DNA oxidation compared to controls (P ≤ 0.05). The 2-Cys PRDXs did not compensate for the inhibition of PRDX6 peroxidase and Ca2+-iPLA2 activities. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION Players of the reactivation systems may differ among mammalian species. WIDER IMPLICATIONS OF THE FINDINGS The Ca2+-iPLA2 activity of PRDX6 is the most important and first line of defense against oxidative stress in human spermatozoa. Peroxynitrite is scavenged mainly by the PRDX6 peroxidase activity. These findings can help to design new diagnostic tools and therapies for male infertility. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by The Canadian Institutes of Health Research (MOP 133661 to C.O.), and by RI MUHC-Desjardins Studentship in Child Health Research awarded to M.C.F. The authors have nothing to disclose.
Collapse
Affiliation(s)
- Maria C Fernandez
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, QC, Canada
| | - Cristian O'Flaherty
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| |
Collapse
|
14
|
Haidari F, Mohammadi-Asl J, Kavianpour M, Dadfar M, Haghighian HK. Effect of lipoic acid supplementation on gene expression and activity of glutathione S-transferase enzyme in infertile men. HUM FERTIL 2019; 24:276-283. [PMID: 31291793 DOI: 10.1080/14647273.2019.1639221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress has become the focus of interest as a potential cause of male infertility. We evaluate effects of lipoic acid (LA) supplementation on glutathione S-transferase (GST) expression. This randomized, triple-blind, placebo-controlled clinical trial was conducted on 44 infertile males with idiopathic asthenozoospermia. Men were randomized to receive 600 mg LA or placebo once daily for 12 weeks and semen samples and venous blood samples were obtained. GST expression, reactive oxygen species (ROS) levels, GST activity and reproductive hormone profiles were also measured. GST expression in the intervention group were significantly higher than the control group. Also, at the end of the study, GST activity increased, and ROS levels decreased significantly compared to the baseline. Additionally, the intervention group showed an increase in testosterone and decrease in serum follicle-stimulating hormone (FSH), luteinizing hormone (LH) and prolactin after 12 weeks, but this difference was not significant. We conclude a 12-week treatment with LA leads to improvements in reproductive hormones in serum, and significantly reduces the generation of ROS and increases the gene expression and activity of GST in seminal fluid.
Collapse
Affiliation(s)
- Fatemeh Haidari
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Javad Mohammadi-Asl
- Department of Medical Genetics, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Maria Kavianpour
- Faculty of Advanced Technologies in Medicine, Department of Tissue Engineering and Applied Cell Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Dadfar
- Department of Urology, Imam Khomeini Hospital, School of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Hossein Khadem Haghighian
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran.,Faculty of Health, Department of Nutrition, Qazvin University of Medical Sciences, Qazvin, Iran.,Metabolic Diseases Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
15
|
Cordycepin, an Active Constituent of Nutrient Powerhouse and Potential Medicinal Mushroom Cordyceps militaris Linn., Ameliorates Age-Related Testicular Dysfunction in Rats. Nutrients 2019; 11:nu11040906. [PMID: 31018574 PMCID: PMC6520895 DOI: 10.3390/nu11040906] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 11/16/2022] Open
Abstract
Age-related male sexual dysfunction covers a wide variety of issues, together with spermatogenic and testicular impairment. In the present work, the effects of cordycepin (COR), an active constituent of a nutrient powerhouse Cordyceps militaris Linn, on senile testicular dysfunction in rats was investigated. The sperm kinematics, antioxidant enzymes, spermatogenic factors, sex hormone receptors, histone deacetylating sirtuin 1 (SIRT1), and autophagy-related mammalian target of rapamycin complex 1 (mTORC1) expression in aged rat testes were evaluated. Sprague Dawley rats were divided into young control (2-month-old; YC), aged control (12-month-old; AC), and aged plus COR-treated groups (5 (COR-5), 10 (COR-10), and 20 (COR-20) mg/kg). The AC group showed reduced sperm kinematics and altered testicular histomorphology compared with the YC group (p < 0.05). However, compared with the AC group, the COR-treated group exhibited improved sperm motility, progressiveness, and average path/straight line velocity (p < 0.05–0.01). Alterations in spermatogenesis-related protein and mRNA expression were significantly ameliorated (p < 0.05) in the COR-20 group compared with the AC group. The altered histone deacetylating SIRT1 and autophagy-related mTORC1 molecular expression in aged rats were restored in the COR-20 group (p < 0.05). In conclusion, the results suggest that COR holds immense nutritional potential and therapeutic value in ameliorating age-related male sexual dysfunctions.
Collapse
|
16
|
da Fonseca CAR, Paltian J, Dos Reis AS, Bortolatto CF, Wilhelm EA, Luchese C. Na +/K +-ATPase, acetylcholinesterase and glutathione S-transferase activities as new markers of postmortem interval in Swiss mice. Leg Med (Tokyo) 2018; 36:67-72. [PMID: 30415194 DOI: 10.1016/j.legalmed.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/12/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
Determining precisely the postmortem interval (PMI) is a key parameter for forensic researches, given that various physical, biochemical and metabolic changes begin to occur in the body after death. In the present study, the Na+/K+-ATPase, glutathione S-transferase (GST) and acetylcholinesterase (AChE) activities were evaluated. For this, male adult Swiss mice were killed by isoflurane inhalation anesthesia and divided into four groups according to time of death (0, 6, 24 and 48 h). The brain, liver, kidney and skeletal muscle tissues were removed. Our results revealed that at the time of 6 h, there was a decrease on Na+/K+-ATPase and GST activities in the brain and liver tissues, respectively. In addition, at this time point, an increase on renal GST activity was verified. At the time of 24 h, an increase on the cerebral AChE and renal GST activities was observed, while the cerebral Na+/K+-ATPase activity was decreased. Forty-eight hours after death, cerebral Na+/K+-ATPase and renal GST activities remained decreased and increased, respectively. In addition, no alteration was observed on the GST activity in the skeletal muscle and brain (in PMIs evaluated). The present study revealed that the brain and kidney (at the times of 24 and 48 h) were the tissues that suffered the most changes in almost all the enzymes evaluated. Our results demonstrated that enzyme activity assessments are reliable, easy-to-perform and low-cost determinations, and could be promising postmortem markers.
Collapse
Affiliation(s)
- Caren A R da Fonseca
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil; Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Jaini Paltian
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil; Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Angélica S Dos Reis
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Cristiani F Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Ethel A Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil; Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil.
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
17
|
Shahin S, Singh SP, Chaturvedi CM. 2.45 GHz microwave radiation induced oxidative and nitrosative stress mediated testicular apoptosis: Involvement of a p53 dependent bax-caspase-3 mediated pathway. ENVIRONMENTAL TOXICOLOGY 2018; 33:931-945. [PMID: 29968967 DOI: 10.1002/tox.22578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Deleterious effects of MW radiation on the male reproduction are well studied. Previous reports although suggest that 2.45 GHz MW irradiation induced oxidative and nitrosative stress adversely affects the male reproductive function but the detailed molecular mechanism occurring behind it has yet to be elucidated. The aim of present study was to investigate the underlying detailed pathway of the testicular apoptosis induced by free radical load and redox imbalance due to 2.45 GHz MW radiation exposure and the degree of severity along with the increased exposure duration. Twelve-week old male mice were exposed to 2.45 GHz MW radiation [continuous-wave (CW) with overall average Power density of 0.0248 mW/cm2 and overall average whole body SAR value of 0.0146 W/kg] for 2 hr/day over a period of 15, 30, and 60 days. Testicular histology, serum testosterone, ROS, NO, MDA level, activity of antioxidant enzymes, expression of pro-apoptotic proteins (p53 and Bax), anti-apoptotic proteins (Bcl-2 and Bcl-xL ), cytochrome-c, inactive/active caspase-3, and uncleaved PARP-1 were evaluated. Findings suggest that 2.45 GHz MW radiation exposure induced testicular redox imbalance not only leads to enhanced testicular apoptosis via p53 dependent Bax-caspase-3 mediated pathway, but also increases the degree of apoptotic severity in a duration dependent manner.
Collapse
Affiliation(s)
- Saba Shahin
- Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pal Singh
- Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
18
|
Akther L, Rahman MM, Bhuiyan MES, Hosen MB, Nesa A, Kabir Y. Association of glutathione S-transferase theta 1 and glutathione S-transferase mu 1 gene polymorphism with the risk of pre-eclampsia during pregnancy in Bangladesh. J Obstet Gynaecol Res 2018; 45:113-118. [PMID: 30152122 DOI: 10.1111/jog.13791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/29/2018] [Indexed: 11/28/2022]
Abstract
AIM In this study, we analyzed the risk of developing pre-eclampsia with respect to glutathione S-transferase theta 1 (GSTT1) and glutathione S-transferase mu 1 (GSTM1) genotypes. We also tried to find relationship between genotypes and biochemical parameter change in pre-eclampsia patients. METHODS In total, 104 pre-eclampsia patients and 200 healthy controls were recruited for the study. Peripheral venous blood was drawn from study subjects and DNA was extracted from whole blood and multiplex polymerase chain reaction method was used to identify genotypes of GSTT1 and GSTM1 gene. All biochemical parameters were measured using colorimetric method. RESULTS Serum glutamic pyruvic transaminase level was significantly higher (P < 0.01) and hemoglobin level was significantly lower (P < 0.001) in pre-eclampsia patients compared to control subjects. Significant association was found in GSTM1 null genotype with pre-eclampsia (P < 0.001) with an odds ratio (OR) analysis showing more than four-fold increased risk (OR = 4.75; 95% CI = 2.17-10.39; P <0.001). But for GSTT1 gene, null genotype was not associated with increased risk of developing pre-eclampsia (P > 0.05). In case of GSTT1 and GSTM1, the patients having both null genotypes for GSTT1 and GSTM1 showed significant (P < 0.001) higher risk of developing pre-eclampsia (OR = 7.64; 95% CI = 2.38-24.60; P < 0.001). CONCLUSION GSTM1 null genotype increases the risk of pre-eclampsia. Combined GSTT1 and GSTM1 null genotype, the risk was even higher.
Collapse
Affiliation(s)
- Lutfa Akther
- Reproductive and Health Services, Dhaka Medical College Hospital, Dhaka, Bangladesh
| | - Md Mostafijur Rahman
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Md Elias S Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Md Bayejid Hosen
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Ayatun Nesa
- Department of Laboratory Medicine, BIRDEM General Hospital, Dhaka, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
19
|
Martinez CS, Peçanha FM, Brum DS, Santos FW, Franco JL, Zemolin APP, Anselmo-Franci JA, Junior FB, Alonso MJ, Salaices M, Vassallo DV, Leivas FG, Wiggers GA. Reproductive dysfunction after mercury exposure at low levels: evidence for a role of glutathione peroxidase (GPx) 1 and GPx4 in male rats. Reprod Fertil Dev 2018; 29:1803-1812. [PMID: 27755963 DOI: 10.1071/rd16310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/22/2016] [Indexed: 01/26/2023] Open
Abstract
Mercury is a ubiquitous environmental pollutant and mercury contamination and toxicity are serious hazards to human health. Some studies have shown that mercury impairs male reproductive function, but less is known about its effects following exposure at low doses and the possible mechanisms underlying its toxicity. Herein we show that exposure of rats to mercury chloride for 30 days (first dose 4.6µgkg-1, subsequent doses 0.07µgkg-1day-1) resulted in mean (±s.e.m.) blood mercury concentrations of 6.8±0.3ngmL-1, similar to that found in human blood after occupational exposure or released from removal of amalgam fillings. Even at these low concentrations, mercury was deposited in reproductive organs (testis, epididymis and prostate), impaired sperm membrane integrity, reduced the number of mature spermatozoa and, in the testes, promoted disorganisation, empty spaces and loss of germinal epithelium. Mercury increased levels of reactive oxygen species and the expression of glutathione peroxidase (GPx) 1 and GPx4. These results suggest that the toxic effects of mercury on the male reproductive system are due to its accumulation in reproductive organs and that the glutathione system is its potential target. The data also suggest, for the first time, a possible role of the selenoproteins GPx1 and GPx4 in the reproductive toxicity of mercury chloride.
Collapse
Affiliation(s)
- Caroline S Martinez
- Postgraduate Program in Biochemistry, Postgraduate Program in Animal Science and Postgraduate Program in Biological Science, Universidade Federal do Pampa, BR 472 - Km 592 -118, 97500-970 Uruguaiana, Rio Grande do Sul, Brazil
| | - Franck M Peçanha
- Postgraduate Program in Biochemistry, Postgraduate Program in Animal Science and Postgraduate Program in Biological Science, Universidade Federal do Pampa, BR 472 - Km 592 -118, 97500-970 Uruguaiana, Rio Grande do Sul, Brazil
| | - Daniela S Brum
- Postgraduate Program in Biochemistry, Postgraduate Program in Animal Science and Postgraduate Program in Biological Science, Universidade Federal do Pampa, BR 472 - Km 592 -118, 97500-970 Uruguaiana, Rio Grande do Sul, Brazil
| | - Francielli W Santos
- Postgraduate Program in Biochemistry, Postgraduate Program in Animal Science and Postgraduate Program in Biological Science, Universidade Federal do Pampa, BR 472 - Km 592 -118, 97500-970 Uruguaiana, Rio Grande do Sul, Brazil
| | - Jeferson L Franco
- Postgraduate Program in Biochemistry, Postgraduate Program in Animal Science and Postgraduate Program in Biological Science, Universidade Federal do Pampa, BR 472 - Km 592 -118, 97500-970 Uruguaiana, Rio Grande do Sul, Brazil
| | - Ana Paula P Zemolin
- Postgraduate Program in Biochemistry, Postgraduate Program in Animal Science and Postgraduate Program in Biological Science, Universidade Federal do Pampa, BR 472 - Km 592 -118, 97500-970 Uruguaiana, Rio Grande do Sul, Brazil
| | - Janete A Anselmo-Franci
- Department of Physiology, School of Medicine, Universidade de São Paulo, Av. do Café s/n, 14040904, Ribeirão Preto, São Paulo, Brazil
| | - Fernando B Junior
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, 14049-903, Ribeirão Preto, São Paulo, Brazil
| | - María J Alonso
- Department of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Avda. Atenas s/n, 28922, Alcorcón, Spain
| | - Mercedes Salaices
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Dalton V Vassallo
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, 29040-090, Vitória, Espírito Santo, Brazil
| | - Fábio G Leivas
- Postgraduate Program in Biochemistry, Postgraduate Program in Animal Science and Postgraduate Program in Biological Science, Universidade Federal do Pampa, BR 472 - Km 592 -118, 97500-970 Uruguaiana, Rio Grande do Sul, Brazil
| | - Giulia A Wiggers
- Postgraduate Program in Biochemistry, Postgraduate Program in Animal Science and Postgraduate Program in Biological Science, Universidade Federal do Pampa, BR 472 - Km 592 -118, 97500-970 Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
20
|
Shahin S, Singh SP, Chaturvedi CM. 1800 MHz mobile phone irradiation induced oxidative and nitrosative stress leads to p53 dependent Bax mediated testicular apoptosis in mice,
Mus musculus. J Cell Physiol 2018; 233:7253-7267. [DOI: 10.1002/jcp.26558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/20/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Saba Shahin
- Department of ZoologyBanaras Hindu UniversityVaranasiIndia
| | - Surya P. Singh
- Department of Electronics Engineering, Indian Institute of TechnologyBanaras Hindu UniversityVaranasiIndia
| | | |
Collapse
|
21
|
Gdara NB, Belgacem A, Khemiri I, Mannai S, Bitri L. Protective effects of phycocyanin on ischemia/reperfusion liver injuries. Biomed Pharmacother 2018; 102:196-202. [PMID: 29558716 DOI: 10.1016/j.biopha.2018.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
In this study, phycocyanin (Pc) extracted from Spirulina platensis was used to evaluate its antioxidants effects after ischemia/reperfusion injury (IRI) using the ex-vivo model of isolated perfused rat liver. The rats were divided into eight groups : Control group, where livers were directly perfused after their removal; Cold Ischemia group (CI), livers were treated in the same way as the control group, except that after their collection, they were stored for 12 h and 24 h in the Krebs Henseleit (KH) preservation solution at 4 °C and Treated group (PHY), livers were preserved in the same way as the preceding group except that the KH solution was enriched with phycocyanin at two different concentrations. Pc, a powerful antioxidant, significantly reduced ischemia/reperfusion injury in the liver. In fact, the addition of phycocyanin to the preservation solution significantly decreased the activity of liver transaminases (AST) and (ALT), alkaline phosphatase (ALP), the rate of lipid peroxidation (MDA) and the activity of certain antioxidant enzymes, essentially glutathione-S-transferase (GST) and glutathione peroxidase (GPx). On the other hand, Pc increases the level of thiol groups in hepatic tissues. In conclusion, the results show the Pc-enriched KH conservation solution is effective in preserving the hepatic graft and protecting it against IRI by acting as a potent antioxidant against the products of oxidative stress.
Collapse
Affiliation(s)
- Neyla Ben Gdara
- Department of Biology, University of Tunis El Manar, Faculty of Sciences of Tunis, University Campus 2092, El Manar, Tunis, Tunisia.
| | - Amel Belgacem
- Department of Biology, University of Tunis El Manar, Faculty of Sciences of Tunis, University Campus 2092, El Manar, Tunis, Tunisia.
| | - Ikram Khemiri
- Department of Biology, University of Tunis El Manar, Faculty of Sciences of Tunis, University Campus 2092, El Manar, Tunis, Tunisia.
| | - Safa Mannai
- Department of Biology, University of Tunis El Manar, Faculty of Sciences of Tunis, University Campus 2092, El Manar, Tunis, Tunisia.
| | - Lotfi Bitri
- Department of Biology, University of Tunis El Manar, Faculty of Sciences of Tunis, University Campus 2092, El Manar, Tunis, Tunisia.
| |
Collapse
|
22
|
Label-free based quantitative proteomic analysis identifies proteins involved in the testis maturation of Bactrocera dorsalis (Hendel). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 25:9-18. [DOI: 10.1016/j.cbd.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 11/23/2022]
|
23
|
Mansour SA, Abbassy MA, Shaldam HA. Zinc Ameliorate Oxidative Stress and Hormonal Disturbance Induced by Methomyl, Abamectin, and Their Mixture in Male Rats. TOXICS 2017; 5:toxics5040037. [PMID: 29207507 PMCID: PMC5750565 DOI: 10.3390/toxics5040037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
Abstract
Exposure to mixtures of toxicants (e.g., pesticides) is common in real life and a subject of current concern. The present investigation was undertaken to assess some toxicological effects in male rats following exposure to methomyl (MET), abamectin (ABM), and their combination (MET+ABM), and to evaluate the ameliorative effect of zinc co-administration. Three groups of rats were designated for MET, ABM, and the mixture treatments. Three other groups were designated for zinc in conjunction with the pesticides. Additionally, one group received water only (control), and the other represented a positive zinc treatment. The obtained results revealed that MET was acutely more toxic than ABM. The tested pesticides induced significant elevation in lipid peroxidation and catalase levels, while declined the levels of the other tested parameters e.g., Superoxide dismutase (SOD), Glutathione-S-transferase (GST), Glutathione peroxidase (GPx), Glutathione reductase (GR), Cytochrome P450 (CYP450), testosterone, and thyroxine). Biochemical alterations induced by the mixture were greater than those recorded for each of the individual insecticides. The joint action analysis, based on the obtained biochemical data, revealed the dominance of antagonistic action among MET and ABM. Zinc supplementation achieved noticeable ameliorative effects. It was concluded that zinc may act as a powerful antioxidant, especially in individuals who are occupationally exposed daily to low doses of such pesticides.
Collapse
Affiliation(s)
- Sameeh A Mansour
- Environmental Toxicology Research Unit (ETRU), Pesticide Chemistry Department, National Research Centre, Dokki, Giza 12311, Egypt.
| | - Mostafa A Abbassy
- Department of Pest Control and Environmental Protection, Faculty of Agriculture, Damanhour University, Behira, Egypt.
| | - Hassan A Shaldam
- Department of Pest Control and Environmental Protection, Faculty of Agriculture, Damanhour University, Behira, Egypt.
| |
Collapse
|
24
|
Pode Z, Peri-Naor R, Georgeson JM, Ilani T, Kiss V, Unger T, Markus B, Barr HM, Motiei L, Margulies D. Protein recognition by a pattern-generating fluorescent molecular probe. NATURE NANOTECHNOLOGY 2017; 12:1161-1168. [PMID: 29035400 DOI: 10.1038/nnano.2017.175] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.
Collapse
Affiliation(s)
- Zohar Pode
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronny Peri-Naor
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Joseph M Georgeson
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vladimir Kiss
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Unger
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Barak Markus
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Haim M Barr
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
25
|
Angulski ABB, Capriglione LG, Batista M, Marcon BH, Senegaglia AC, Stimamiglio MA, Correa A. The Protein Content of Extracellular Vesicles Derived from Expanded Human Umbilical Cord Blood-Derived CD133 + and Human Bone Marrow-Derived Mesenchymal Stem Cells Partially Explains Why both Sources are Advantageous for Regenerative Medicine. Stem Cell Rev Rep 2017; 13:244-257. [PMID: 28054239 DOI: 10.1007/s12015-016-9715-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adult stem cells have beneficial effects when exposed to damaged tissue due, at least in part, to their paracrine activity, which includes soluble factors and extracellular vesicles (EVs). Given the multiplicity of signals carried by these vesicles through the horizontal transfer of functional molecules, human mesenchymal stem cell (hMSCs) and CD133+ cell-derived EVs have been tested in various disease models and shown to recover damaged tissues. In this study, we profiled the protein content of EVs derived from expanded human CD133+ cells and bone marrow-derived hMSCs with the intention of better understanding the functions performed by these vesicles/cells and delineating the most appropriate use of each EV in future therapeutic procedures. Using LC-MS/MS analysis, we identified 623 proteins for expanded CD133+-EVs and 797 proteins for hMSCs-EVs. Although the EVs from both origins were qualitatively similar, when protein abundance was considered, hMSCs-EVs and CD133+-EVs were different. Gene Ontology (GO) enrichment analysis in CD133+-EVs revealed proteins involved in a variety of angiogenesis-related functions as well proteins related to the cytoskeleton and highly implicated in cell motility and cellular activation. In contrast, when overrepresented proteins in hMSCs-EVs were analyzed, a GO cluster of immune response-related genes involved with immune response-regulating factors acting on phagocytosis and innate immunity was identified. Together our data demonstrate that from the point of view of protein content, expanded CD133+-EVs and hMSCs-EVs are in part similar but also sufficiently different to reflect the main beneficial paracrine effects widely reported in pre-clinical studies using expanded CD133+ cells and/or hBM-MSCs.
Collapse
Affiliation(s)
- Addeli B B Angulski
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Luiz G Capriglione
- Núcleo de Tecnologia Celular, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR, 80215-901, Brazil
| | - Michel Batista
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Bruna H Marcon
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Alexandra C Senegaglia
- Núcleo de Tecnologia Celular, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR, 80215-901, Brazil
| | - Marco A Stimamiglio
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil.
| | - Alejandro Correa
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil.
| |
Collapse
|
26
|
Melatonin ameliorates restraint stress-induced oxidative stress and apoptosis in testicular cells via NF-κB/iNOS and Nrf2/ HO-1 signaling pathway. Sci Rep 2017; 7:9599. [PMID: 28851995 PMCID: PMC5575312 DOI: 10.1038/s41598-017-09943-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/01/2017] [Indexed: 01/03/2023] Open
Abstract
Decline in semen quality has become a global public health concern. Psychological stress is common in the current modern society and is associated with semen decline. Increasing evidence demonstrated that melatonin has anti-apoptotic and antioxidant functions. Whether melatonin can ameliorate the damage in testes induced by psychological stress has never been investigated. Here, a mouse model of restraint stress demonstrated that melatonin normalized the sperm density decline, testicular cells apoptosis, and testicular oxidative stress in stressed male mice. Melatonin decreased reactive oxygen species (ROS) level, increased superoxide dismutase (SOD) and glutathione (GSH) activities, and downregulated inducible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α) activities in stressed mice testes. Furthermore, melatonin reduced the stress-induced activation of the NF-κB signaling pathway by decreasing the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and p65 nuclear translocation. In addition, melatonin upregulated the expression of anti-oxidant proteins including nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Meanwhile, in vitro studies also demonstrated melatonin could reduce oxidative apoptosis of testicular cells. Collectively, melatonin mitigated psychological stress-induced spermatogenic damage, which provides evidence for melatonin as a therapy against sperm impairment associated with psychological stress.
Collapse
|
27
|
Magalhães J, Ascensão A, Padrão AI, Aleixo IM, Santos-Alves E, Rocha-Rodrigues S, Ferreira A, Korrodi-Gregório L, Vitorino R, Ferreira R, Fardilha M. Can exercise training counteract doxorubicin-induced oxidative damage of testis proteome? Toxicol Lett 2017; 280:57-69. [PMID: 28818578 DOI: 10.1016/j.toxlet.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/02/2017] [Accepted: 08/10/2017] [Indexed: 02/04/2023]
Abstract
The use of the chemotherapeutic drug doxorubicin (DOX) is limited by its toxicity in several organs such as testes. So, we analyzed the effect of endurance treadmill exercise training (EX) performed before sub-chronic DOX treatment on sperm count and motility, testes markers of oxidative damage and apoptosis. Tissue profiling of proteins more susceptible to oxidation was made to identify the molecular pathways regulated by oxidative modifications, as nitration and carbonylation. Twenty-four adult male rats were divided into four groups (n=6/group): sedentary saline (SED+SAL), sedentary sub-chronically injected with DOX (2mg-kg-1 per week, during 7 weeks; SED+DOX), 12 weeks trained saline (EX+SAL) and trained treated with DOX (EX+DOX). DOX treatment started 5 weeks after the beginning of the exercise program. Testes caspase-3, -8 and -9, as well as aconitase activities, the content of malondialdehyde (MDA), sulfhydryl groups (-SH), carbonyl and nitrotyrosine derivatives were determined. Modified proteins were identified by 2D-Western blot followed by MALDI-TOF/TOF mass spectrometry, and bioinformatic analysis was performed to assess the biological processes regulated by these chemical modifications. The decreased sperm motility induced by DOX was not modified by exercise. Significant increases in MDA content in SED+DOX and in caspase-3 and -9 activities in EX+DOX were found. Despite no significant differences in the levels of carbonylated and nitrated proteins, exercise modulated testis proteome susceptibility to oxidation in DOX-treated group, with less modified proteins identified. Zinc finger Ran-binding domain-containing protein 2 (ZRAB2) and AN1-type zinc finger protein 3 (ZFAN3) were among the proteins found oxidativelly modified. Although no marked alterations in testes oxidative damage were noticed, proteomic analysis of oxidativelly modified proteins highlighted the protective role of exercise against oxidative damage of some proteins involved in metabolism and stress response against DOX.
Collapse
Affiliation(s)
- José Magalhães
- Research Centre in Physical Activity Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, R. Dr. Plácido da Costa 91, Porto, Portugal
| | - António Ascensão
- Research Centre in Physical Activity Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, R. Dr. Plácido da Costa 91, Porto, Portugal
| | - Ana I Padrão
- Research Centre in Physical Activity Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, R. Dr. Plácido da Costa 91, Porto, Portugal; QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Inês M Aleixo
- Research Centre in Physical Activity Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, R. Dr. Plácido da Costa 91, Porto, Portugal
| | - Estela Santos-Alves
- Research Centre in Physical Activity Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, R. Dr. Plácido da Costa 91, Porto, Portugal
| | - Sílvia Rocha-Rodrigues
- Research Centre in Physical Activity Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, R. Dr. Plácido da Costa 91, Porto, Portugal
| | - André Ferreira
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Medical Sciences Department, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Luis Korrodi-Gregório
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Medical Sciences Department, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Rui Vitorino
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Medical Sciences Department, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal; Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal.
| | - Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Medical Sciences Department, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
28
|
Comparative Proteomic Profiling Reveals Molecular Characteristics Associated with Oogenesis and Oocyte Maturation during Ovarian Development of Bactrocera dorsalis (Hendel). Int J Mol Sci 2017; 18:ijms18071379. [PMID: 28665301 PMCID: PMC5535872 DOI: 10.3390/ijms18071379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 01/16/2023] Open
Abstract
Time-dependent expression of proteins in ovary is important to understand oogenesis in insects. Here, we profiled the proteomes of developing ovaries from Bactrocera dorsalis (Hendel) to obtain information about ovarian development with particular emphasis on differentially expressed proteins (DEPs) involved in oogenesis. A total of 4838 proteins were identified with an average peptide number of 8.15 and sequence coverage of 20.79%. Quantitative proteomic analysis showed that a total of 612 and 196 proteins were differentially expressed in developing and mature ovaries, respectively. Furthermore, 153, 196 and 59 potential target proteins were highly expressed in early, vitellogenic and mature ovaries and most tested DEPs had the similar trends consistent with the respective transcriptional profiles. These proteins were abundantly expressed in pre-vitellogenic and vitellogenic stages, including tropomyosin, vitellogenin, eukaryotic translation initiation factor, heat shock protein, importin protein, vitelline membrane protein, and chorion protein. Several hormone and signal pathway related proteins were also identified during ovarian development including piRNA, notch, insulin, juvenile, and ecdysone hormone signal pathways. This is the first report of a global ovary proteome of a tephritid fruit fly, and may contribute to understanding the complicate processes of ovarian development and exploring the potentially novel pest control targets.
Collapse
|
29
|
Fu G, Dai J, Zhang D, Zhu L, Tang X, Zhang L, Zhou T, Duan P, Quan C, Zhang Z, Song S, Shi Y. Di(2-ethylhexyl) phthalate induces apoptosis through mitochondrial pathway in GC-2spd cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:1055-1064. [PMID: 27416487 PMCID: PMC5673478 DOI: 10.1002/tox.22304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 05/12/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a plasticizer of synthetic polymers, is a well-known endocrine disrupting chemical (EDC) and reproductive toxicant. Addressing the unclear mechanism of DEHP-induced reproductive dysfunction, this study used GC-2spd cells to investigate the molecular mechanism involved in the DEHP-induced toxicity in the male reproductive system. The results indicated that the apoptotic cell death was significantly induced by DEHP exposure over 100 μM. Furthermore, DEHP treatment could induce oxidative stress in GC-2spd cells involving in the decrease of superoxide dismutase (SOD) activity (200 μM) and glutathione peroxidase (GSH-Px) activity (50 and 100 μM). In addition, DEHP induction also caused the elevated ratios of Bax/Bcl-2, release of cytochrome c and decomposition of procaspase-3 and procaspase-9 in GC-2spd cells. Taken together, our work provided the evidence that DEHP exposure might induce apoptosis of GC-2spd cells via mitochondria pathway mediated by oxidative stress. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1055-1064, 2017.
Collapse
Affiliation(s)
- Guoqing Fu
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
| | - Juan Dai
- Department of Non-communicable chronic disease prevention and control, Wuhan Centers for Disease Prevention and Control, 24 Jianghan N.Road, Wuhan, 430015, People’s Republic of China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Lishan Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
| | - Xiao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
| | - Ting Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
| | - Peng Duan
- Department of Occupational and Environmental Health, School of Public Health, Huazhong University of Science and Technology, Tongji Medical College, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Chao Quan
- Department of Occupational and Environmental Health, School of Public Health, Huazhong University of Science and Technology, Tongji Medical College, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Zhibing Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Shizhen Song
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
| | - Yuqin Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
| |
Collapse
|
30
|
Rutin attenuates H 2O 2-induced oxidation damage and apoptosis in Leydig cells by activating PI3K/Akt signal pathways. Biomed Pharmacother 2017; 88:500-506. [PMID: 28126675 DOI: 10.1016/j.biopha.2017.01.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress is a primary factor in the pathology of male infertility. The strong antioxidative capacity of rutin has been proven by numerous studies, but a protective role in the context of male reproduction remains to be elucidated. To explore the biological role of rutin in protecting male reproductive function and the potential underlying mechanism, H2O2-induced Leydig cells were used as a cell model of oxidation damage. Our findings showed that rutin at concentrations of 10, 20, and 40μmol/L remarkably increased cell survival rate of H2O2-induced Leydig cells to 70.1%, 86.8%, and 80.3% respectively. Next, rutin with concentrations of 10, 20, and 40μmol/L decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels but increased the levels of glutathione (GSH) and testosterone in H2O2-induced Leydig cells. The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were remarkably increased by rutin treatment with concentrations of 20 and 40μmol/L, but glutathione peroxidase (GSH-Px) activity was notably decreased. Moreover, rutin with concentrations of 10, 20, and 40μmol/L increased Bcl-2 protein levels but decreased protein levels of Bax and caspase-3. Furthermore, 20μmol/L rutin significantly abrogated the decrease in levels of phosphoinositide 3-kinase (PI3K) and phosphorylated serine/threonine kinase (p-AKT) induced by H2O2. Pretreatment with LY294002, a PI3K inhibitor, antagonized protective action of 20μmol/L rutin against H2O2-induced cell activities, intracellular oxidant, testosterone, antioxidant enzyme activities, and the apoptosis related protein expression. Taken together, these results suggest that rutin attenuates H2O2-induced oxidation damage and apoptosis in Leydig cells by activating PI3K/Akt signal pathways, providing a promising strategy to decrease oxidative stress associated with male infertility.
Collapse
|
31
|
Tang X, Tong K, Zhu L, Fu G, Chang W, Zhou T, Zhang Z, Tong L, Zhang L, Shi Y. Di-2-ethylhexyl phthalate induced oxidative damage involving FasL-associated apoptotic pathway in mouse spermatogenic GC-2spd cells. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-016-0042-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Pectinase-treated Panax ginseng protects against chronic intermittent heat stress-induced testicular damage by modulating hormonal and spermatogenesis-related molecular expression in rats. J Ginseng Res 2016; 41:578-588. [PMID: 29021707 PMCID: PMC5628353 DOI: 10.1016/j.jgr.2016.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/01/2016] [Accepted: 12/05/2016] [Indexed: 11/23/2022] Open
Abstract
Background Elevated testicular temperature disrupts spermatogenesis and causes infertility. In the present study, the protective effect of enzymatically biotransformed Panax ginseng Meyer by pectinase (GINST) against chronic intermittent heat stress-induced testicular damage in rats was investigated. Methods Male Sprague–Dawley rats (4 wk old, 60–70 g) were divided into four groups: normal control (NC), heat-stress control (HC), heat-stress plus GINST-100 mg/kg (HG100), and heat-stress plus GINST-200 mg/kg (HG200) treatment groups. Each dose of GINST (100 mg/kg and 200 mg/kg) was mixed separately with a regular pellet diet and was administered orally for 24 wk. For inducing heat stress, rats in the NC group were maintained at 25°C, whereas rats in the HC, HG100, and HG200 groups were exposed to 32 ± 1°C for 2 h daily for 6 mo. At week 25, the testes and serum from each animal were analyzed for various parameters. Results Significant (p < 0.01) changes in the sperm kinematic values and blood chemistry panels were observed in the HC group. Furthermore, spermatogenesis-related molecules, sex hormone receptors, and selected antioxidant enzyme expression levels were also altered in the HC group compared to those in the NC group. GINST (HS100 and HS200) administration significantly (p < 0.05) restored these changes when compared with the HC group. For most of the parameters tested, the HG200 group exhibited potent effects compared with those exhibited by the HG100 group. Conclusion GINST may be categorized as an important medicinal herb and a potential therapeutic for the treatment of male subfertility or infertility caused by hyperthermia.
Collapse
|
33
|
Li H, Zhou X, Wu M, Deng M, Wang C, Hou J, Mou P. The cytotoxicity and protective effects of Astragalus membranaceus extracts and butylated hydroxyanisole on hydroxyl radical-induced apoptosis in fish erythrocytes. ACTA ACUST UNITED AC 2016; 2:376-382. [PMID: 29767041 PMCID: PMC5941053 DOI: 10.1016/j.aninu.2016.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Erythrocytes play an essential role in transporting O2 and CO2 for respiration in fish. However, erythrocytes continuously suffer from reactive oxygen species (ROS) -induced oxidative stress and apoptosis. Thus, it is essential to expand our knowledge of how to protect erythrocytes against ROS-induced oxidative stress and apoptosis in fish. In this study, we explored the cytotoxicity and the effects of butylated hydroxyanisole (BHA), ethyl ether extracts, ethyl acetate extracts, acetone extracts (AE), ethanol extracts, and aqueous extracts of Astragalus membranaceus (EAm) on hydroxyl radical (•OH)-induced apoptosis in carp erythrocytes. The rat hepatocytes and carp erythrocytes were incubated with different concentrations of BHA or EAm(0.125 to 1 mg/mL). The toxicity in rat hepatocytes and carp erythrocytes was then measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and a haemolysis assay, respectively. The carp erythrocytes were treated with BHA or EAm in the presence of 40 μmol/L FeSO4 and 20 μmol/L H2O2 at 37 °C, except for the control group. Oxidative stress and apoptosis parameters in the carp erythrocytes were then evaluated using the commercial kit. The results indicated that at high concentrations, BHA and EAm could induce toxicity in rat hepatocytes and fish erythrocytes. However, BHA was more toxic than EAm at the same concentrations. Moreover, the toxicity order of BHA and EAm in the fish erythrocytes approximately agreed with that for the rat hepatocytes. Butylated hydroxyanisole and EAm suppressed the •OH-induced phosphatidylserine exposure and DNA fragmentation (the biomarkers of apoptosis) by decreasing the generation of ROS, inhibiting the oxidation of cellular components, and restoring the activities of antioxidants in carp erythrocytes. Of all of the examined EAm, the AE showed the strongest effects. The effects of AE on superoxide anion, H2O2, met-haemoglobin and reduced glutathione levels, as well as glutathione reductase activity and apoptosis were equivalent to or stronger than those of BHA. These results revealed that the AE of Astragalus membranaceus could be used as a potential natural antioxidant or apoptosis inhibitor in fish erythrocytes.
Collapse
Affiliation(s)
- Huatao Li
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Wu
- Archives, Neijiang Normal University, Neijiang 641000, China
| | - Mengling Deng
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Chao Wang
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Jingjing Hou
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Pengju Mou
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| |
Collapse
|
34
|
Yang M, Hardin R, Ogutu S, Verghese M, Boateng J. Preliminary Analysis of in vitro Digestion and Bioactivity Assessment of Basil and Ginger in Human Liver Cancer Cell Line. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/jbs.2016.202.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Gibb Z, Lambourne SR, Curry BJ, Hall SE, Aitken RJ. Aldehyde Dehydrogenase Plays a Pivotal Role in the Maintenance of Stallion Sperm Motility. Biol Reprod 2016; 94:133. [PMID: 27103446 DOI: 10.1095/biolreprod.116.140509] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/12/2016] [Indexed: 01/30/2023] Open
Abstract
Although stallion spermatozoa produce significant quantities of reactive oxygen species, a lag between 4-hydroxynonenal (4HNE) adduction and the loss of motility in stallion spermatozoa suggests the presence of a robust aldehyde detoxification mechanism. Because there is a paucity of studies characterizing the role of aldehyde dehydrogenase (ALDH) in sperm functionality, the aim of this study was to ascertain the relationship between 4HNE production and motility and ALDH expression by stallion spermatozoa. PCR analysis revealed the presence of the ALDH1A3, ALDH1B1, and ALDH2 isoforms in these cells. Strong correlations (P < 0.001) were found between ALDH expression and various motility parameters of stallion spermatozoa including the percentage of progressive (r = 0.79) and rapidly motile (r = 0.79) spermatozoa, whereas repeated measurements over 24 h revealed highly significant correlations among progressive motility loss, 4HNE accumulation, and ALDH expression (P ≤ 0.001). ALDH inhibition resulted in a spontaneous increase in 4HNE levels in viable cells (21.1 ± 5.8% vs. 42.6 ± 5.2%; P ≤ 0.05) and a corresponding decrease in total motility (41.7 ± 6.2% vs. 6.4 ± 2.6%; P ≤ 0.001) and progressive motility (17.0 ± 4.1% vs. 0.7 ± 0.4%; P ≤ 0.001) of stallion spermatozoa over 24 h. Similarly, inhibition of ALDH in 4HNE-challenged spermatozoa significantly reduced total motility over 4 h (35.4 ± 9.7% vs. 15.3 ± 5.1%, respectively; P ≤ 0.05). This study contributes valuable information about the role of the ALDH enzymes in the maintenance of stallion sperm functionality, with potential diagnostic and in vitro applications for assisted reproductive technologies.
Collapse
Affiliation(s)
- Zamira Gibb
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sarah R Lambourne
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Benjamin J Curry
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sally E Hall
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Robert J Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
36
|
Kopalli SR, Cha KM, Jeong MS, Lee SH, Sung JH, Seo SK, Kim SK. Pectinase-treated Panax ginseng ameliorates hydrogen peroxide-induced oxidative stress in GC-2 sperm cells and modulates testicular gene expression in aged rats. J Ginseng Res 2016; 40:185-95. [PMID: 27158240 PMCID: PMC4845052 DOI: 10.1016/j.jgr.2015.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/19/2015] [Indexed: 11/28/2022] Open
Abstract
Background To investigate the effect of pectinase-treated Panax ginseng (GINST) in cellular and male subfertility animal models. Methods Hydrogen peroxide (H2O2)-induced mouse spermatocyte GC-2spd cells were used as an in vitro model. Cell viability was measured using MTT assay. For the in vivo study, GINST (200 mg/kg) mixed with a regular pellet diet was administered orally for 4 mo, and the changes in the mRNA and protein expression level of antioxidative and spermatogenic genes in young and aged control rats were compared using real-time reverse transcription polymerase chain reaction and western blotting. Results GINST treatment (50 μg/mL, 100 μg/mL, and 200 μg/mL) significantly (p < 0.05) inhibited the H2O2-induced (200 μM) cytotoxicity in GC-2spd cells. Furthermore, GINST (50 μg/mL and 100 μg/mL) significantly (p < 0.05) ameliorated the H2O2-induced decrease in the expression level of antioxidant enzymes (peroxiredoxin 3 and 4, glutathione S-transferase m5, and glutathione peroxidase 4), spermatogenesis-related protein such as inhibin-α, and specific sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor) in GC-2spd cells. Similarly, the altered expression level of the above mentioned genes and of spermatogenesis-related nectin-2 and cAMP response element-binding protein in aged rat testes was ameliorated with GINST (200 mg/kg) treatment. Taken together, GINST attenuated H2O2-induced oxidative stress in GC-2 cells and modulated the expression of antioxidant-related genes and of spermatogenic-related proteins and sex hormone receptors in aged rats. Conclusion GINST may be a potential natural agent for the protection against or treatment of oxidative stress-induced male subfertility and aging-induced male subfertility.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Kyu-Min Cha
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Min-Sik Jeong
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Sang-Ho Lee
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Jong-Hwan Sung
- Il Hwa Co., Ltd., Ginseng Research Institute, Guri, Korea
| | - Seok-Kyo Seo
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Si-Kwan Kim
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
- Corresponding author. Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea.
| |
Collapse
|
37
|
Korean red ginseng protects against doxorubicin-induced testicular damage: An experimental study in rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Ding X, Wang D, Li L, Ma H. Dehydroepiandrosterone ameliorates H2O2-induced Leydig cells oxidation damage and apoptosis through inhibition of ROS production and activation of PI3K/Akt pathways. Int J Biochem Cell Biol 2015; 70:126-39. [PMID: 26643608 DOI: 10.1016/j.biocel.2015.11.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/13/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023]
Abstract
Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement, and administration of DHEA produces a number of beneficial effects in the elderly. Many researchers have suggested that DHEA exerts it function after conversion into more biologically active hormones in peripheral target cells. The actions of DHEA in Leydig cells, a major target cell of DHEA biotransformation in males, are not clear. The present study found that DHEA increased cell viability and decreased reactive oxygen species (ROS) and malondialdehyde contents in H2O2-induced Leydig cells. DHEA significantly increased the activities of superoxide dismutase, catalase and peroxidase, and decreased the DNA damage in H2O2-induced Leydig cells. Apoptosis was significant decreased in H2O2-induced Leydig cells after DHEA treatment. DHEA inhibited the loss of mitochondrial membrane potential (ΔΨm) and the upregulation of the caspase-3 protein level induced by H2O2 in Leydig cells. DHEA also reversed the decrease in PI3K and p-Akt protein levels induced by H2O2. These data showed that DHEA could ameliorate H2O2-induced oxidative damage by increasing anti-oxidative enzyme activities, which resulted in reduced ROS content, and decreased apoptosis, mainly by preventing the loss of ΔΨm and inhibiting caspase-3 protein levels via activation of PI3K/Akt signaling pathways. These results increase our understanding of the molecular mechanism of the anti-ageing effect of DHEA.
Collapse
Affiliation(s)
- Xiao Ding
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Dian Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
39
|
Kandhare AD, Bodhankar SL, Mohan V, Thakurdesai PA. Effect of glycosides based standardized fenugreek seed extract in bleomycin-induced pulmonary fibrosis in rats: Decisive role of Bax, Nrf2, NF-κB, Muc5ac, TNF-α and IL-1β. Chem Biol Interact 2015; 237:151-65. [PMID: 26093215 DOI: 10.1016/j.cbi.2015.06.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/06/2015] [Accepted: 06/10/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic progressive multifactorial disease with limited therapeutic options. Glycosides based standardized fenugreek seed extract (SFSE-G) possesses potent anti-inflammatory and anti-oxidant property. AIM To evaluate the efficacy of SFSE-G against bleomycin (BLM) induced pulmonary fibrosis by assessing behavioral, biochemical, molecular and ultrastructural changes in the laboratory rats. MATERIALS AND METHODS IPF was induced in male Sprague-Dawley rats by single intratracheal BLM (6IU/kg) injection followed by SFSE-G (5, 10, 20 and 40mg/kg, p.o.) or methylprednisolone (10mg/kg, p.o.) treatment for 28day. Various parameters were analyzed in lung and bronchoalveolar lavage fluid (BALF) after 14 and 28days of the drug treatment. RESULTS SFSE-G (20 and 40mg/kg, p.o.) administration significantly prevented the BLM induced alteration in body weight, lung index, lung function test and hematology. The altered total and differential cell count in BALF and blood was significantly prevented by SFSE-G treatment. The decreased peripheral blood oxygen content after BLM instillation was significantly increased by SFSE-G treatment. SFSE-G significantly enhanced the BALF and lung antioxidant status, through modulating the SOD, GSH, T-AOC, MDA, NO level and Nrf2, HO-1 mRNA expression. There was a significant reduction in lung 5-HT level by SFSE-G treatment. The altered mRNA expression of biomarkers of lung inflammation (TNF-α, IL-1β, IL-6 and IL-8), fibrosis (TGF-β, collagen-1, ET-1, Muc5ac, NF-κB, VEGF, Smad-3) and apoptosis (Bax, Bcl-2 and Caspase-3) were significantly prevented by SFSE-G treatment. BLM induced histological inflammatory and fibrotic insult in the lung were reduced by SFSE-G treatment. It also ameliorated BLM induced lung ultrastructural changes as observed by transmission electron microscopic studies. However, administration of SFSE-G (5mg/kg, p.o.) failed to show any protective effect against BLM-induced PF whereas SFSE-G (10mg/kg, p.o.) showed significant amelioration in BLM-induced PF except lung function test, BALF and lung antioxidant level. CONCLUSION SFSE-G showed anti-fibrotic efficacy executed through induction of Nrf2, which in turn may modulate anti-inflammatory molecules, inhibit fibrogenic molecules and decreased apoptosis to ameliorate BLM induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Amit D Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune 411 038, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune 411 038, India.
| | - Vishwaraman Mohan
- Indus Biotech Private Limited, 1, Rahul Residency, Off Salunke Vihar Road, Kondhwa, Pune 411 048, India
| | - Prasad A Thakurdesai
- Indus Biotech Private Limited, 1, Rahul Residency, Off Salunke Vihar Road, Kondhwa, Pune 411 048, India
| |
Collapse
|
40
|
Nasiraei-Moghadam S, Parivar K, Ahmadiani A, Movahhedin M, Mahdavi MRV. Food deprivation and social inequality may lead to oxidative damage: a study on the preventive role of melatonin in the male rat reproductive system. Reprod Fertil Dev 2015; 28:RD14432. [PMID: 25682321 DOI: 10.1071/rd14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/13/2014] [Indexed: 11/23/2022] Open
Abstract
Spermatogenic cells are susceptible to oxidative stress and apoptosis. Food deprivation (FD) has been reported as a stressor that could increase reactive oxygen species. In the present study, FD-induced oxidative stress and apoptosis, as well as the protective effects of melatonin, were evaluated in the testes. Wistar rats in the control group were fed a standard diet, whereas a sham group was administered saline as the melatonin vehicle. A third group received daily injections of melatonin (5mgkg-1 bodyweight). These rats were further divided into four groups of rats that were either subjected to FD, FD + isolation, FD + melatonin injection and FD + melatonin injection + isolation. Testicular tissues were evaluated for malondialdehyde (MDA) and reduced glutathione (GSH) concentrations, as well as and DNA damage. FD increased MDA and reduced GSH concentrations, whereas melatonin treatment improved these parameters. Immunohistochemistry for capsase-3 and terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling revealed that the number of apoptotic cells was increased in rats subjected to FD alone. Melatonin treatment offset the number of apoptotic cells following FD. The results provide evidence that FD can increase oxidative stress, leading to activation of apoptosis, and that melatonin has the ability to protect the testes against oxidative damage induced by FD.
Collapse
|
41
|
Wu QF, Tang KF, Sun JH, Xing JP. Glutathione S-transferase T1: a potential marker for the selection of varicocelectomy in infertile male patients with varicocele. Asian J Androl 2015; 17:859-60. [PMID: 25677140 PMCID: PMC4577607 DOI: 10.4103/1008-682x.149179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | - Jun-Ping Xing
- Department of Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiao Tong University, Xi'an 710061, China
| |
Collapse
|
42
|
Long L, Wang J, Lu X, Xu Y, Zheng S, Luo C, Li Y. Protective effects of scutellarin on type II diabetes mellitus-induced testicular damages related to reactive oxygen species/Bcl-2/Bax and reactive oxygen species/microcirculation/staving pathway in diabetic rat. J Diabetes Res 2015; 2015:252530. [PMID: 25861655 PMCID: PMC4377542 DOI: 10.1155/2015/252530] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/22/2022] Open
Abstract
The goal of our study is to evaluate the effect of Scutellarin on type II diabetes-induced testicular disorder and show the mechanism of Scutellarin's action. We used streptozotocin and high-fat diet to establish type II diabetic rat model. TUNEL and haematoxylin and eosin staining were used to evaluate the testicular apoptotic cells and morphologic changes. Immunohistochemical staining was used to measure the expression level of vascular endothelial growth factor and blood vessel density in testes. Oxidative stress in testes and epididymis was tested by fluorescence spectrophotometer and ELISA. The expression of Bcl-2/Bax and blood flow rate in testicular vessels were measured by western blot and Doppler. Our results for the first time showed that hyperglycemia induced apoptotic cells and morphologic impairments in testes of rats, while administration of Scutellarin can significantly inhibit these damages. This effect of Scutellarin is controlled by two apoptotic triggers: ROS/Bcl-2/Bax and ROS/microcirculation/starving pathway.
Collapse
Affiliation(s)
- Lingli Long
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Jingnan Wang
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Xiaofang Lu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Yuxia Xu
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Shuhui Zheng
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Canqiao Luo
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
- *Canqiao Luo: and
| | - Yubin Li
- The Reproductive Center of the First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
- *Yubin Li:
| |
Collapse
|
43
|
Xu Y, Wang N, Yu Y, Li Y, Li YB, Yu YB, Zhou XQ, Sun ZW. Exposure to silica nanoparticles causes reversible damage of the spermatogenic process in mice. PLoS One 2014; 9:e101572. [PMID: 25003337 PMCID: PMC4086902 DOI: 10.1371/journal.pone.0101572] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 06/09/2014] [Indexed: 11/18/2022] Open
Abstract
Environmental exposure to nanomaterials is inevitable, as nanomaterials have become part of our daily life now. In this study, we firstly investigated the effects of silica nanoparticles on the spermatogenic process according to their time course in male mice. 48 male mice were randomly divided into control group and silica nanoparticle group with 24 mice per group, with three evaluation time points (15, 35 and 60 days after the first dose) per group. Mice were exposed to the vehicle control and silica nanoparticles at a dosage of 20 mg/kg every 3 days, five times over a 13-day period, and were sacrificed at 15, 35 and 60 days after the first dose. The results showed that silica nanoparticles caused damage to the mitochondrial cristae and decreased the levels of ATP, resulting in oxidative stress in the testis by days 15 and 35; however, the damage was repaired by day 60. DNA damage and the decreases in the quantity and quality of epididymal sperm were found by days 15 and 35; but these changes were recovered by day 60. In contrast, the acrosome integrity and fertility in epididymal sperm, the numbers of spermatogonia and sperm in the testes, and the levels of three major sex hormones were not significantly affected throughout the 60-day period. The results suggest that nanoparticles can cause reversible damage to the sperms in the epididymis without affecting fertility, they are more sensitive than both spermatogonia and spermatocytes to silica nanoparticle toxicity. Considering the spermatogenesis time course, silica nanoparticles primarily influence the maturation process of sperm in the epididymis by causing oxidative stress and damage to the mitochondrial structure, resulting in energy metabolism dysfunction.
Collapse
Affiliation(s)
- Ying Xu
- Department of Health Toxicology and Health Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Na Wang
- Department of Health Toxicology and Health Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Health Toxicology and Health Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Li
- Department of Health Toxicology and Health Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yan-Bo Li
- Department of Health Toxicology and Health Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yong-Bo Yu
- Department of Health Toxicology and Health Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Xian-Qing Zhou
- Department of Health Toxicology and Health Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- * E-mail: (XQZ); (ZWS)
| | - Zhi-Wei Sun
- Department of Health Toxicology and Health Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- * E-mail: (XQZ); (ZWS)
| |
Collapse
|
44
|
Won YJ, Kim BK, Shin YK, Jung SH, Yoo SK, Hwang SY, Sung JH, Kim SK. Pectinase-treated Panax ginseng extract (GINST) rescues testicular dysfunction in aged rats via redox-modulating proteins. Exp Gerontol 2014; 53:57-66. [DOI: 10.1016/j.exger.2014.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 02/12/2014] [Accepted: 02/20/2014] [Indexed: 12/20/2022]
|
45
|
De Gendt K, Verhoeven G, Amieux PS, Wilkinson MF. Genome-wide identification of AR-regulated genes translated in Sertoli cells in vivo using the RiboTag approach. Mol Endocrinol 2014; 28:575-91. [PMID: 24606126 DOI: 10.1210/me.2013-1391] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An understanding of the molecular mechanisms by which androgens drive spermatogenesis has been thwarted by the fact that few consistent androgen receptor (AR) target genes have been identified. Here, we addressed this issue using next-generation sequencing coupled with the RiboTag approach, which purifies translated mRNAs expressed in cells that express cyclic recombinase (CRE). Using RiboTag mice expressing CRE in Sertoli cells (SCs), we identified genes expressed specifically in SCs in both prepubertal and adult mice. Unexpectedly, this analysis revealed that the SC-specific gene program is already largely defined at the initiation of spermatogenesis despite the subsequent dramatic maturational changes known to occur in SCs. To identify AR-regulated genes, we generated triple-mutant mice in which the SCs express the RiboTag but lack ARs. RNA sequencing analysis revealed hundreds of SC-expressed AR-regulated genes that had previously gone unnoticed, including suppressed genes involved in ovarian development. Comparison of the SC-enriched dataset with that from the whole testes allowed us to classify genes in terms of their degree of expression in SCs. This revealed that a greater fraction of AR-up-regulated genes than AR-down-regulated genes were expressed predominantly in SCs. Our results also revealed that AR signaling in SCs causes a large number of genes not detectably expressed in SCs to undergo altered expression, thereby providing genome-wide evidence for wide-scale communication between SCs and other cells. Taken together, our results identified novel classes of genes expressed in a hormone-dependent manner in different testicular cell subsets and highlight a new approach to analyze cell type-specific gene regulation.
Collapse
Affiliation(s)
- Karel De Gendt
- Department of Reproductive Medicine and Institute of Genomic Medicine (M.F.W.), University of California, La Jolla, California 92093 (K.D.G., M.F.W.); Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium (K.D.G., G.V.); and Department of Biology, Western Washington University, Bellingham, Washington 98225 (P.S.A.)
| | | | | | | |
Collapse
|
46
|
Soleimani Rad S, Abbasalizadeh S, Ghorbani Haghjo A, Sadagheyani M, Montaseri A, Soleimani Rad J. Serum Levels of Melatonin and Oxidative Stress Markers and Correlation between Them in Infertile Men. J Caring Sci 2013; 2:287-94. [PMID: 25276737 DOI: 10.5681/jcs.2013.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 06/27/2013] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Infertility is the problem of 15% of young couples in different societies. One of the factors that could affect fertility is oxidative stress. Therefore, the aim of the present study is to investigate the level of Melatonin, a free radical scavenger, and its correlation with oxidative biomarkers in infertile men. METHODS For this purpose, fertile and infertile men in 2 groups, 30 people in each group, were studied. The fertile men were selected from husbands of patients admitted to Alzahra obstetric and gynecology hospital, according to WHO standards. The infertile men were selected from patients referred to infertility ward. Blood sampling from the participants carried out at a specific time, sera collected and the levels of malondialdehyde, total antioxidant capacity and Melatonin were detected in the sera. The data were analyzed using t-test and Sperman's correlation method. RESULTS Melatonin level in the sera from fertile men were 522 (39.32) ng/L and in infertile men were 511.78 (34.6) ng/L. MDA level in fertile and infertile men were 2.26 (0.34) vs 2.99 (0.44) nmol/ml which was significantly different. The level of TAC in the sera from fertile men were significantly higher than in infertile men. The result obtained for correlation coefficient Spearman's test revealed a significant, strong and direct correlation between Melatonin and TAC and a significant and reverse correlation between melatonin and MDA. CONCLUSION It is concluded that melatonin could be involved in infertility. In other word, melatonin treatment and antioxidant-rich nutrition could help fertility by combating oxidative stress.
Collapse
Affiliation(s)
- Sara Soleimani Rad
- Department of Obstetrics and Gynecology, Alzahra Hospital, Faculty of Medicine,Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shamsi Abbasalizadeh
- Women's Reproductive Health Research Center,Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbani Haghjo
- Department of Medical Biochemistry, Faculty of Medicine,Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehzad Sadagheyani
- Women's Reproductive Health Research Center,Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Montaseri
- Department of Anatomical Sciences, Faculty of Medicine,Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Faculty of Medicine,Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Li H, Zhang H, Xie Y, He Y, Miao G, Yang L, Di C, He Y. Proteomic analysis for testis of mice exposed to carbon ion radiation. Mutat Res 2013; 755:148-155. [PMID: 23827780 DOI: 10.1016/j.mrgentox.2013.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/10/2013] [Accepted: 06/21/2013] [Indexed: 06/02/2023]
Abstract
This paper investigates the mechanism of action of heavy ion radiation (HIR) on mouse testes. The testes of male mice subjected to whole body irradiation with carbon ion beam (0.5 and 4Gy) were analyzed at 7days after irradiation. A two-dimensional gel electrophoresis approach was employed to investigate the alteration of protein expression in the testes. Spot detection and matching were performed using the PDQuest 8.0 software. A difference of more than threefold in protein quantity (normalized spot volume) is the standard for detecting differentially expressed protein spots. A total of 11 differentially expressed proteins were found. Protein identification was performed using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF). Nine specific proteins were identified by searching the protein sequence database of the National Center for Biotechnology Information. These proteins were found involved in molecular chaperones, metabolic enzymes, oxidative stress, sperm function, and spermatogenic cell proliferation. HIR decreased glutathione activity and increased malondialdehyde content in the testes. Given that Pin1 is related to the cell cycle and that proliferation is affected by spermatogenesis, we analyzed testicular histological changes and Pin1 protein expression through immunoblotting and immunofluorescence. Alterations of multiple pathways may be associated with HIR toxicity to the testes. Our findings are essential for studies on the development, biology, and pathology of mouse testes after HIR in space or radiotherapy.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Shen W, Shi D, Wang D, Guo Y. Inhibitive effects of quinestrol on male testes in Mongolian gerbils (Meriones unguiculatus). Res Vet Sci 2012; 93:907-13. [DOI: 10.1016/j.rvsc.2011.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/29/2011] [Accepted: 10/16/2011] [Indexed: 10/14/2022]
|
49
|
Nandhakumar R, Salini K, Niranjali Devaraj S. Morin augments anticarcinogenic and antiproliferative efficacy against 7,12-dimethylbenz(a)-anthracene induced experimental mammary carcinogenesis. Mol Cell Biochem 2012; 364:79-92. [PMID: 22350814 DOI: 10.1007/s11010-011-1207-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 12/15/2011] [Indexed: 12/11/2022]
Abstract
In general, oxidative stress resulting from an imbalance between prooxidant and antioxidant systems plays an important role in the pathogenesis of cancer. Morin (3,5,7,2',4'-pentahydroxyflavone), a member of the flavanol group, has been shown to possess chemopreventive potential against hepatocellular and colon cancer in experimental animals. Given the demonstrated importance of morin, aim of the present study was to evaluate the effect of morin on antiproliferative and anticarcinogenic effect against DMBA-induced experimental mammary carcinogenesis. Oral administration of 7,12-dimethylbenz(a)-anthracene (25 mg/kg body weight) to rats resulted in significant reduction of body weight, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and nonenzymic antioxidants (reduced glutathione, vitamin C, and vitamin E). The levels of lipid peroxidation markers (thiobarbituric acid reactive substances and hydroperoxides) and tumor markers such as CA 15-3, AFP and CEA in serum were increased significantly in cancer-induced animals as compared to control rats. Oral supplementation of morin at a dose of 50 mg/kg body weight significantly improved the body weight, enzymic, and nonenzymic antioxidants and considerably decreased the lipid peroxidation marker and tumor markers levels. Histological observations also correlated with the biochemical parameters. Tumor bearing animals showed marked increase in proliferating cell nuclear antigen-positive cells and also the number of AgNOR/nuclei compared with control rats while this expression levels were significantly reduced upon morin treatment. Thus, this study reveals the possible beneficial effect of morin as chemopreventive agent against the oxidative stress induced during mammary carcinogenesis.
Collapse
Affiliation(s)
- Ramadass Nandhakumar
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025 Tamil Nadu, India.
| | | | | |
Collapse
|
50
|
Mil’ EM, Gurevich SM, Kozachenko AI, Nagler LG, Albantova AA, Fatkullina LD, Burlakova EB. Effects of smoking and tumor process on the contents of key proteins of apoptosis and activity of antioxidant enzymes in blood. BIOL BULL+ 2012. [DOI: 10.1134/s1062359011060094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|