1
|
Bora JR, Mahalakshmi R. Empowering canonical biochemicals with cross-linked novelty: Recursions in applications of protein cross-links. Proteins 2025; 93:11-25. [PMID: 37589191 PMCID: PMC7616502 DOI: 10.1002/prot.26571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Diversity in the biochemical workhorses of the cell-that is, proteins-is achieved by the innumerable permutations offered primarily by the 20 canonical L-amino acids prevalent in all biological systems. Yet, proteins are known to additionally undergo unusual modifications for specialized functions. Of the various post-translational modifications known to occur in proteins, the recently identified non-disulfide cross-links are unique, residue-specific covalent modifications that confer additional structural stability and unique functional characteristics to these biomolecules. We review an exclusive class of amino acid cross-links encompassing aromatic and sulfur-containing side chains, which not only confer superior biochemical characteristics to the protein but also possess additional spectroscopic features that can be exploited as novel chromophores. Studies of their in vivo reaction mechanism have facilitated their specialized in vitro applications in hydrogels and protein anchoring in monolayer chips. Furthering the discovery of unique canonical cross-links through new chemical, structural, and bioinformatics tools will catalyze the development of protein-specific hyperstable nanostructures, superfoods, and biotherapeutics.
Collapse
Affiliation(s)
- Jinam Ravindra Bora
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
2
|
Zhao J, Chen Y, Alford H, Franzen S. The mechanism of autoreduction in Dehaloperoxidase-A. Biochem Biophys Res Commun 2024; 745:151217. [PMID: 39729674 DOI: 10.1016/j.bbrc.2024.151217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Hemoglobin and myoglobin are known to undergo autoxidation, in which the oxyferrous form of the heme is oxidized to the ferric state by O2. Dehaloperoxidase-A (DHP-A), a multifunctional catalytic hemoglobin from Amphitrite ornata is an exception and is observed to undergo the reverse process, during which the ferric heme is spontaneously reduced to the oxyferrous form under aerobic conditions. The high reduction potential of DHP (+202 mV at pH 7.0) partially explains this unusual behavior, but the endogenous source of reducing equivalents has remained obscure. Cysteine, methionine, tyrosine, and tryptophan are the principal endogenous reducing agents in proteins that may explain the observed autoreduction in DHP-A. In fact, DHP-A has six methionines, which may be of particular importance for the observed autoreduction. To investigate the role of the sulfur-containing residues, we created seven mutants (C73S, C73 S/M49C, S78C, M63L, M64L, M63 L/M64L, and H55V) by site-directed mutagenesis and conducted a series of CO-driven autoreduction kinetic measurements. Mutational analysis suggests a role for the pair of methionines M63 and M64 increaing the autoreduction rate. Adding surface cysteines has little effect, but the C73S mutation that eliminates the only native surface cysteine accelerates the autoreduction process. The kinetics had a sigmoidal form which was found to be a result of anti-cooperative behavior. This observation suggests that DHP-A's monomer-dimer equilibrium in solution may play a role in regulating the autoreduction process.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yinglu Chen
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Hunter Alford
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
3
|
Knoke LR, Herrera SA, Heinrich S, Peeters FML, Lupilov N, Bandow JE, Pomorski TG. HOCl forms lipid N-chloramines in cell membranes of bacteria and immune cells. Free Radic Biol Med 2024; 224:588-599. [PMID: 39270945 DOI: 10.1016/j.freeradbiomed.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Neutrophils orchestrate a coordinated attack on bacteria, combining phagocytosis with a potent cocktail of oxidants, including the highly toxic hypochlorous acid (HOCl), renowned for its deleterious effects on proteins. Here, we examined the occurrence of lipid N-chloramines in vivo, their biological activity, and their neutralization. Using a chemical probe for N-chloramines, we demonstrate their formation in the membranes of bacteria and monocytic cells exposed to physiologically relevant concentrations of HOCl. N-chlorinated model membranes composed of phosphatidylethanolamine, the major membrane lipid in Escherichia coli and an important component of eukaryotic membranes, exhibited oxidative activity towards the redox-sensitive protein roGFP2, suggesting a role for lipid N-chloramines in protein oxidation. Conversely, glutathione a cellular antioxidant neutralized lipid N-chloramines by removing the chlorine moiety. In line with that, N-chloramine stability was drastically decreased in bacterial cells compared to model membranes. We propose that lipid N-chloramines, like protein N-chloramines, are involved in inflammation and accelerate the host immune response.
Collapse
Affiliation(s)
- Lisa R Knoke
- Faculty of Medicine, Department of Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Sara Abad Herrera
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sascha Heinrich
- Faculty of Biology and Biotechnology, Department of Applied Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Frank M L Peeters
- Faculty of Biology and Biotechnology, Department of Applied Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Natalie Lupilov
- Faculty of Medicine, Department of Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Julia E Bandow
- Faculty of Biology and Biotechnology, Department of Applied Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Mu B, Zeng Y, Luo L, Wang K. Oxidative stress-mediated protein sulfenylation in human diseases: Past, present, and future. Redox Biol 2024; 76:103332. [PMID: 39217848 PMCID: PMC11402764 DOI: 10.1016/j.redox.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Reactive Oxygen Species (ROS) refer to a variety of derivatives of molecular oxygen that play crucial roles in regulating a wide range of physiological and pathological processes. Excessive ROS levels can cause oxidative stress, leading to cellular damage and even cell demise. However, moderately elevated levels of ROS can mediate the oxidative post-translational modifications (oxPTMs) of redox-sensitive proteins, thereby affecting protein functions and regulating various cellular signaling pathways. Among the oxPTMs, ROS-induced reversible protein sulfenylation represents the initial form of cysteine oxidation for sensing redox signaling. In this review, we will summarize the discovery, chemical formation, and detection approaches of protein sulfenylation. In addition, we will highlight recent findings for the roles of protein sulfenylation in various diseases, including thrombotic disorders, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Baoquan Mu
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Zeng
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Pedre B. A guide to genetically-encoded redox biosensors: State of the art and opportunities. Arch Biochem Biophys 2024; 758:110067. [PMID: 38908743 DOI: 10.1016/j.abb.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Genetically-encoded redox biosensors have become invaluable tools for monitoring cellular redox processes with high spatiotemporal resolution, coupling the presence of the redox-active analyte with a change in fluorescence signal that can be easily recorded. This review summarizes the available fluorescence recording methods and presents an in-depth classification of the redox biosensors, organized by the analytes they respond to. In addition to the fluorescent protein-based architectures, this review also describes the recent advances on fluorescent, chemigenetic-based redox biosensors and other emerging chemigenetic strategies. This review examines how these biosensors are designed, the biosensors sensing mechanism, and their practical advantages and disadvantages.
Collapse
Affiliation(s)
- Brandán Pedre
- Biochemistry, Molecular and Structural Biology Unit, Department of Chemistry, KU Leuven, Belgium.
| |
Collapse
|
6
|
Murashevych B, Maslak H, Girenko D, Abraimova O, Netronina O, Shvets V. The effect of hypochlorous acid inhalation on the activity of antioxidant system enzymes in rats of different ages. Free Radic Res 2024; 58:441-457. [PMID: 39073910 DOI: 10.1080/10715762.2024.2386688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Hypochlorous acid HOCl is an effective disinfectant with a broad spectrum and high rate of microbicidal action. Its use for air treatment can be an effective tool for the prevention and therapy of infectious diseases. In this work, the in vivo study was conducted on 110 Wistar Han rats (12 and 72 weeks old) on the effect of a single inhalation of air containing gaseous HOCl on the activity of antioxidant system enzymes. For this, a special installation was designed to uniformly maintain the concentration of HOCl in the air and regulate it over a wide range. Inhalation exposure was carried out for 4 h at total chlorine concentrations in the air of approximately 2.0 mg/m3 and 5.0 mg/m3, after which the animals were observed for 14 days. The effect of inhalation on the antioxidant system activity varied significantly in animals of different ages. Catalase activity in young rats increased approximately 2-fold on days 1-2 after inhalation, regardless of the HOCl concentration, while in old animals a sharp dose-dependent decrease was initially observed. The glutathione peroxidase activity in animals of both ages increased upon inhalation of air with 5.0 mg/m3 HOCl, and in old animals this was more pronounced; when the HOCl concentration decreased to 2.0 mg/m3, this indicator increased slightly in old rats and remained virtually unchanged in young ones. The glutathione reductase activity when exposed to 2.0 mg/m3 HOCl did not change for both age groups, and with increasing HOCl concentration it increased by 1.5-2.0 times in all animals.
Collapse
Affiliation(s)
- Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Hanna Maslak
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Dmitry Girenko
- Department of Physical Chemistry, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Olha Abraimova
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Olha Netronina
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Volodymyr Shvets
- Department of Biochemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| |
Collapse
|
7
|
Lessa TLADS, Correia TML, Santos TCD, da Silva RP, Silva BPD, Cavallini MCM, Rocha LS, Souza Peixoto A, Cugnasca BS, Cervi G, Correra TC, Gonçalves AC, Festuccia WTL, Cunha TM, Yatsuda R, de Magalhães ACM, Dos Santos AA, Meotti FC, Queiroz RF. A novel diselenide attenuates the carrageenan-induced inflammation by reducing neutrophil infiltration and the resulting tissue damage in mice. Free Radic Res 2024; 58:229-248. [PMID: 38588405 DOI: 10.1080/10715762.2024.2336566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/06/2024] [Indexed: 04/10/2024]
Abstract
Selenium-containing compounds have emerged as promising treatment for redox-based and inflammatory diseases. This study aimed to investigate the in vitro and in vivo anti-inflammatory activity of a novel diselenide named as dibenzyl[diselanediyIbis(propane-3-1diyl)] dicarbamate (DD). DD reacted with HOCl (k = 9.2 x 107 M-1s-1), like glutathione (k = 1.2 x 108 M-1s-1), yielding seleninic and selenonic acid derivatives, and it also decreased HOCl formation by activated human neutrophils (IC50=4.6 μM) and purified myeloperoxidase (MPO) (IC50=3.8 μM). However, tyrosine, MPO-I and MPO-II substrates, did not restore HOCl formation in presence of DD. DD inhibited the oxidative burst in dHL-60 cells with no toxicity up to 25 µM for 48h. Next, an intraperitoneal administration of 25, 50, and 75 mg/kg DD decreased total leukocyte, neutrophil chemotaxis, and inflammation markers (MPO activity, lipid peroxidation, albumin exudation, nitrite, TNF-α, IL-1β, CXCL1/KC, and CXCL2/MIP-2) on a murine model of carrageenan-induced peritonitis. Likewise, 50 mg/kg DD (i.p.) decreased carrageenan-induced paw edema over 5h. Histological and immunohistochemistry analyses of the paw tissue showed decreased neutrophil count, edema area, and MPO, carbonylated, and nitrated protein staining. Furthermore, DD treatment decreased the fMLP-induced chemotaxis of human neutrophils (IC50=3.7 μM) in vitro with no toxicity. Lastly, DD presented no toxicity in a single-dose model using mice (50 mg/kg, i.p.) over 15 days and in Artemia salina bioassay (50 to 2000 µM), corroborating findings from in silico toxicological study. Altogether, these results demonstrate that DD attenuates carrageenan-induced inflammation mainly by reducing neutrophil migration and the resulting damage from MPO-mediated oxidative burst.
Collapse
Affiliation(s)
- Tássia Liz Araújo Dos Santos Lessa
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
| | - Thiago Macêdo Lopes Correia
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Talita Costa Dos Santos
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | | | | | - Maria Cláudia Magalhães Cavallini
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Leonardo Silva Rocha
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
| | | | | | - Gustavo Cervi
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago C Correra
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Regiane Yatsuda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Amélia Cristina Mendes de Magalhães
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | | | | | - Raphael Ferreira Queiroz
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
- Departamento de Ciências da Saúde, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
| |
Collapse
|
8
|
Sastre S, Manta B, Semelak JA, Estrin D, Trujillo M, Radi R, Zeida A. Catalytic Mechanism of Mycobacterium tuberculosis Methionine Sulfoxide Reductase A. Biochemistry 2024; 63:533-544. [PMID: 38286790 DOI: 10.1021/acs.biochem.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The oxidation of Met to methionine sulfoxide (MetSO) by oxidants such as hydrogen peroxide, hypochlorite, or peroxynitrite has profound effects on protein function. This modification can be reversed by methionine sulfoxide reductases (msr). In the context of pathogen infection, the reduction of oxidized proteins gains significance due to microbial oxidative damage generated by the immune system. For example, Mycobacterium tuberculosis (Mt) utilizes msrs (MtmsrA and MtmsrB) as part of the repair response to the host-induced oxidative stress. The absence of these enzymes makes Mycobacteria prone to increased susceptibility to cell death, pointing them out as potential therapeutic targets. This study provides a detailed characterization of the catalytic mechanism of MtmsrA using a comprehensive approach, including experimental techniques and theoretical methodologies. Confirming a ping-pong type enzymatic mechanism, we elucidate the catalytic parameters for sulfoxide and thioredoxin substrates (kcat/KM = 2656 ± 525 M-1 s-1 and 1.7 ± 0.8 × 106 M-1 s-1, respectively). Notably, the entropic nature of the activation process thermodynamics, representing ∼85% of the activation free energy at room temperature, is underscored. Furthermore, the current study questions the plausibility of a sulfurane intermediate, which may be a transition-state-like structure, suggesting the involvement of a conserved histidine residue as an acid-base catalyst in the MetSO reduction mechanism. This mechanistic insight not only advances our understanding of Mt antioxidant enzymes but also holds implications for future drug discovery and biotechnological applications.
Collapse
Affiliation(s)
- Santiago Sastre
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
- Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
- Programa de Doctorado en Química, Facultad de Química, Universidad de la República, Gral Flores 2124, CP 11800 Montevideo, Uruguay
| | - Bruno Manta
- Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
- Cátedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Gral Las Heras 1925, CP 11600 Montevideo, Uruguay
| | - Jonathan A Semelak
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Ciudad Universitaria, Intendente Güiraldes 2160, CP C1428EGA Buenos Aires, Argentina
| | - Dario Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Ciudad Universitaria, Intendente Güiraldes 2160, CP C1428EGA Buenos Aires, Argentina
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
| |
Collapse
|
9
|
da Cruz Nizer WS, Adams ME, Inkovskiy V, Beaulieu C, Overhage J. The secondary metabolite hydrogen cyanide protects Pseudomonas aeruginosa against sodium hypochlorite-induced oxidative stress. Front Microbiol 2023; 14:1294518. [PMID: 38033579 PMCID: PMC10687435 DOI: 10.3389/fmicb.2023.1294518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
The high pathogenicity of Pseudomonas aeruginosa is attributed to the production of many virulence factors and its resistance to several antimicrobials. Among them, sodium hypochlorite (NaOCl) is a widely used disinfectant due to its strong antimicrobial effect. However, bacteria develop many mechanisms to survive the damage caused by this agent. Therefore, this study aimed to identify novel mechanisms employed by P. aeruginosa to resist oxidative stress induced by the strong oxidizing agent NaOCl. We analyzed the growth of the P. aeruginosa mutants ΔkatA, ΔkatE, ΔahpC, ΔahpF, ΔmsrA at 1 μg/mL NaOCl, and showed that these known H2O2 resistance mechanisms are also important for the survival of P. aeruginosa under NaOCl stress. We then conducted a screening of the P. aeruginosa PA14 transposon insertion mutant library and identified 48 mutants with increased susceptibility toward NaOCl. Among them were 10 mutants with a disrupted nrdJa, bvlR, hcnA, orn, sucC, cysZ, nuoJ, PA4166, opmQ, or thiC gene, which also exhibited a significant growth defect in the presence of NaOCl. We focussed our follow-up experiments (i.e., growth analyzes and kill-kinetics) on mutants with defect in the synthesis of the secondary metabolite hydrogen cyanide (HCN). We showed that HCN produced by P. aeruginosa contributes to its resistance toward NaOCl as it acts as a scavenger molecule, quenching the toxic effects of NaOCl.
Collapse
Affiliation(s)
| | | | | | | | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
10
|
Curieses Andrés CM, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. From reactive species to disease development: Effect of oxidants and antioxidants on the cellular biomarkers. J Biochem Mol Toxicol 2023; 37:e23455. [PMID: 37437103 DOI: 10.1002/jbt.23455] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The influence of modern lifestyle, diet, exposure to chemicals such as phytosanitary substances, together with sedentary lifestyles and lack of exercise play an important role in inducing reactive stress (RS) and disease. The imbalance in the production and scavenging of free radicals and the induction of RS (oxidative, nitrosative, and halogenative) plays an essential role in the etiology of various chronic pathologies, such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. The implication of free radicals and reactive species injury in metabolic disturbances and the onset of many diseases have been accumulating for several decades, and are now accepted as a major cause of many chronic diseases. Exposure to elevated levels of free radicals can cause molecular structural impact on proteins, lipids, and DNA, as well as functional alteration of enzyme homeostasis, leading to aberrations in gene expression. Endogenous depletion of antioxidant enzymes can be mitigated using exogenous antioxidants. The current interest in the use of exogenous antioxidants as adjunctive agents for the treatment of human diseases allows a better understanding of these diseases, facilitating the development of new therapeutic agents with antioxidant activity to improve the treatment of various diseases. Here we examine the role that RS play in the initiation of disease and in the reactivity of free radicals and RS in organic and inorganic cellular components.
Collapse
Affiliation(s)
| | | | - Celia Andrés Juan
- Department of Organic Chemistry, Cinquima Institute, Faculty of Sciences, Valladolid University, Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, Madrid, Spain
| | | |
Collapse
|
11
|
Crompton ME, Gaessler LF, Tawiah PO, Polzer L, Camfield SK, Jacobson GD, Naudszus MK, Johnson C, Meurer K, Bennis M, Roseberry B, Sultana S, Dahl JU. Expression of RcrB confers resistance to hypochlorous acid in uropathogenic Escherichia coli. J Bacteriol 2023; 205:e0006423. [PMID: 37791752 PMCID: PMC10601744 DOI: 10.1128/jb.00064-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
To eradicate bacterial pathogens, neutrophils are recruited to the sites of infection, where they engulf and kill microbes through the production of reactive oxygen and chlorine species (ROS/RCS). The most prominent RCS is the antimicrobial oxidant hypochlorous acid (HOCl), which rapidly reacts with various amino acid side chains, including those containing sulfur and primary/tertiary amines, causing significant macromolecular damage. Pathogens like uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, have developed sophisticated defense systems to protect themselves from HOCl. We recently identified the RcrR regulon as a novel HOCl defense strategy in UPEC. Expression of the rcrARB operon is controlled by the HOCl-sensing transcriptional repressor RcrR, which is oxidatively inactivated by HOCl resulting in the expression of its target genes, including rcrB. The rcrB gene encodes a hypothetical membrane protein, deletion of which substantially increases UPEC's susceptibility to HOCl. However, the mechanism behind protection by RcrB is unclear. In this study, we investigated whether (i) its mode of action requires additional help, (ii) rcrARB expression is induced by physiologically relevant oxidants other than HOCl, and (iii) expression of this defense system is limited to specific media and/or cultivation conditions. We provide evidence that RcrB expression is sufficient to protect E. coli from HOCl. Furthermore, RcrB expression is induced by and protects from several RCS but not from ROS. RcrB plays a protective role for RCS-stressed planktonic cells under various growth and cultivation conditions but appears to be irrelevant for UPEC's biofilm formation. IMPORTANCE Bacterial infections pose an increasing threat to human health, exacerbating the demand for alternative treatments. Uropathogenic Escherichia coli (UPEC), the most common etiological agent of urinary tract infections (UTIs), are confronted by neutrophilic attacks in the bladder, and must therefore be equipped with powerful defense systems to fend off the toxic effects of reactive chlorine species. How UPEC deal with the negative consequences of the oxidative burst in the neutrophil phagosome remains unclear. Our study sheds light on the requirements for the expression and protective effects of RcrB, which we recently identified as UPEC's most potent defense system toward hypochlorous acid (HOCl) stress and phagocytosis. Thus, this novel HOCl stress defense system could potentially serve as an attractive drug target to increase the body's own capacity to fight UTIs.
Collapse
Affiliation(s)
- Mary E. Crompton
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Luca F. Gaessler
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Patrick O. Tawiah
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Lisa Polzer
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Sydney K. Camfield
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Grady D. Jacobson
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Maren K. Naudszus
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Colton Johnson
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Kennadi Meurer
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Mehdi Bennis
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Brendan Roseberry
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Sadia Sultana
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Jan-Ulrik Dahl
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| |
Collapse
|
12
|
Crompton ME, Gaessler LF, Tawiah PO, Pfirsching L, Camfield SK, Johnson C, Meurer K, Bennis M, Roseberry B, Sultana S, Dahl JU. Expression of RcrB confers resistance to hypochlorous acid in uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543251. [PMID: 37398214 PMCID: PMC10312555 DOI: 10.1101/2023.06.01.543251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
To eradicate bacterial pathogens, neutrophils are recruited to the sites of infection, where they engulf and kill microbes through the production of reactive oxygen and chlorine species (ROS/RCS). The most prominent RCS is antimicrobial oxidant hypochlorous acid (HOCl), which rapidly reacts with various amino acids side chains, including those containing sulfur and primary/tertiary amines, causing significant macromolecular damage. Pathogens like uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections (UTIs), have developed sophisticated defense systems to protect themselves from HOCl. We recently identified the RcrR regulon as a novel HOCl defense strategy in UPEC. The regulon is controlled by the HOCl-sensing transcriptional repressor RcrR, which is oxidatively inactivated by HOCl resulting in the expression of its target genes, including rcrB . rcrB encodes the putative membrane protein RcrB, deletion of which substantially increases UPEC's susceptibility to HOCl. However, many questions regarding RcrB's role remain open including whether (i) the protein's mode of action requires additional help, (ii) rcrARB expression is induced by physiologically relevant oxidants other than HOCl, and (iii) expression of this defense system is limited to specific media and/or cultivation conditions. Here, we provide evidence that RcrB expression is sufficient to E. coli 's protection from HOCl and induced by and protects from several RCS but not from ROS. RcrB plays a protective role for RCS-stressed planktonic cells under various growth and cultivation conditions but appears to be irrelevant for UPEC's biofilm formation. IMPORTANCE Bacterial infections pose an increasing threat to human health exacerbating the demand for alternative treatment options. UPEC, the most common etiological agent of urinary tract infections (UTIs), are confronted by neutrophilic attacks in the bladder, and must therefore be well equipped with powerful defense systems to fend off the toxic effects of RCS. How UPEC deal with the negative consequences of the oxidative burst in the neutrophil phagosome remains unclear. Our study sheds light on the requirements for the expression and protective effects of RcrB, which we recently identified as UPEC's most potent defense system towards HOCl-stress and phagocytosis. Thus, this novel HOCl-stress defense system could potentially serve as an attractive drug target to increase the body's own capacity to fight UTIs.
Collapse
Affiliation(s)
- Mary E. Crompton
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Luca F. Gaessler
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Patrick O. Tawiah
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Lisa Pfirsching
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Sydney K. Camfield
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Colton Johnson
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Kennadi Meurer
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Mehdi Bennis
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Brendan Roseberry
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Sadia Sultana
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| |
Collapse
|
13
|
Stropoli SJ, Greis K, Schleif T, Johnson MA. Characterization of Oxidation Products from HOCl Uptake by Microhydrated Methionine Anions Using Cryogenic Ion Vibrational Spectroscopy. J Phys Chem A 2023; 127:4269-4276. [PMID: 37133983 DOI: 10.1021/acs.jpca.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The oxidation of the amino acid methionine (Met) by hypochlorous acid (HOCl) to yield methionine sulfoxide (MetO) has been implicated in both the interfacial chemistry of tropospheric sea spray aerosols and the destruction of pathogens in the immune system. Here, we investigate the reaction of deprotonated methionine water clusters, Met-·(H2O)n, with HOCl and characterize the resulting products using cryogenic ion vibrational spectroscopy and electronic structure calculations. Capture of the MetO- oxidation product in the gas phase requires the presence of water molecules attached to the reactant anion. Analysis of its vibrational band pattern confirms that the sulfide group of Met- has indeed been oxidized. Additionally, the vibrational spectrum of the anion corresponding to the uptake of HOCl by Met-·(H2O)n indicates that it exists as an "exit-channel" complex in which the Cl- product ion is bound to the COOH group following the formation of the S═O motif.
Collapse
Affiliation(s)
- Santino J Stropoli
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kim Greis
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23A, 14195 Berlin, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Tim Schleif
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
14
|
Jütte M, Abdighahroudi MS, Waldminghaus T, Lackner S, V Lutze H. Bacterial inactivation processes in water disinfection - mechanistic aspects of primary and secondary oxidants - A critical review. WATER RESEARCH 2023; 231:119626. [PMID: 36709565 DOI: 10.1016/j.watres.2023.119626] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/14/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Water disinfection during drinking water production is one of the most important processes to ensure safe drinking water, which is gaining even more importance due to the increasing impact of climate change. With specific reaction partners, chemical oxidants can form secondary oxidants, which can cause additional damage to bacteria. Cases in point are chlorine dioxide which forms free available chlorine (e.g., in the reaction with phenol) and ozone which can form hydroxyl radicals (e.g., during the reaction with natural organic matter). The present work reviews the complex interplay of all these reactive species which can occur in disinfection processes and their potential to affect disinfection processes. A quantitative overview of their disinfection strength based on inactivation kinetics and typical exposures is provided. By unifying the current data for different oxidants it was observable that cultivated wild strains (e.g., from wastewater treatment plants) are in general more resistant towards chemical oxidants compared to lab-cultivated strains from the same bacterium. Furthermore, it could be shown that for selective strains chlorine dioxide is the strongest disinfectant (highest maximum inactivation), however as a broadband disinfectant ozone showed the highest strength (highest average inactivation). Details in inactivation mechanisms regarding possible target structures and reaction mechanisms are provided. Thereby the formation of secondary oxidants and their role in inactivation of pathogens is decently discussed. Eventually, possible defense responses of bacteria and additional effects which can occur in vivo are discussed.
Collapse
Affiliation(s)
- Mischa Jütte
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Mohammad Sajjad Abdighahroudi
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Torsten Waldminghaus
- Technical University of Darmstadt, Centre for synthetic biology, Chair of molecular microbiology, Schnittspahnstraße 12, D-64287 Darmstadt, Germany
| | - Susanne Lackner
- Technical University of Darmstadt, Institute IWAR, Chair of water and environmental biotechnology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Holger V Lutze
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany; IWW Water Centre, Moritzstraße 26, D-45476 Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, D-45141 Essen, Germany.
| |
Collapse
|
15
|
Wang Y, Hammer A, Hoefler G, Malle E, Hawkins CL, Chuang CY, Davies MJ. Hypochlorous Acid and Chloramines Induce Specific Fragmentation and Cross-Linking of the G1-IGD-G2 Domains of Recombinant Human Aggrecan, and Inhibit ADAMTS1 Activity. Antioxidants (Basel) 2023; 12:antiox12020420. [PMID: 36829979 PMCID: PMC9952545 DOI: 10.3390/antiox12020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease and a leading cause of mortality. It is characterized by arterial wall plaques that contain high levels of cholesterol and other lipids and activated leukocytes covered by a fibrous cap of extracellular matrix (ECM). The ECM undergoes remodelling during atherogenesis, with increased expression of aggrecan, a proteoglycan that binds low-density-lipoproteins (LDL). Aggrecan levels are regulated by proteases, including a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1). Activated leukocytes release myeloperoxidase (MPO) extracellularly, where it binds to proteins and proteoglycans. Aggrecan may therefore mediate colocalization of MPO and LDL. MPO generates hypochlorous acid (HOCl) and chloramines (RNHCl species, from reaction of HOCl with amines on amino acids and proteins) that damage LDL and proteins, but effects on aggrecan have not been examined. The present study demonstrates that HOCl cleaves truncated (G1-IGD-G2) recombinant human aggrecan at specific sites within the IGD domain, with these being different from those induced by ADAMTS1 which also cleaves within this region. Irreversible protein cross-links are also formed dose-dependently. These effects are limited by the HOCl scavenger methionine. Chloramines including those formed on amino acids, proteins, and ECM materials induce similar damage. HOCl and taurine chloramines inactivate ADAMTS1 consistent with a switch from proteolytic to oxidative aggrecan fragmentation. Evidence is also presented for colocalization of aggrecan and HOCl-generated epitopes in advanced human atherosclerotic plaques. Overall, these data show that HOCl and chloramines can induce specific modifications on aggrecan, and that these effects are distinct from those of ADAMTS1.
Collapse
Affiliation(s)
- Yihe Wang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Clare L. Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christine Y. Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (C.Y.C.); (M.J.D.)
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (C.Y.C.); (M.J.D.)
| |
Collapse
|
16
|
Fritsch VN, Linzner N, Busche T, Said N, Weise C, Kalinowski J, Wahl MC, Antelmann H. The MerR-family regulator NmlR is involved in the defense against oxidative stress in Streptococcus pneumoniae. Mol Microbiol 2023; 119:191-207. [PMID: 36349475 DOI: 10.1111/mmi.14999] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Streptococcus pneumoniae has to cope with the strong oxidant hypochlorous acid (HOCl), during host-pathogen interactions. Thus, we analyzed the global gene expression profile of S. pneumoniae D39 towards HOCl stress. In the RNA-seq transcriptome, the NmlR, SifR, CtsR, HrcA, SczA and CopY regulons and the etrx1-ccdA1-msrAB2 operon were most strongly induced under HOCl stress, which participate in the oxidative, electrophile and metal stress response in S. pneumoniae. The MerR-family regulator NmlR harbors a conserved Cys52 and controls the alcohol dehydrogenase-encoding adhC gene under carbonyl and NO stress. We demonstrated that NmlR senses also HOCl stress to activate transcription of the nmlR-adhC operon. HOCl-induced transcription of adhC required Cys52 of NmlR in vivo. Using mass spectrometry, NmlR was shown to be oxidized to intersubunit disulfides or S-glutathionylated under oxidative stress in vitro. A broccoli-FLAP-based assay further showed that both NmlR disulfides significantly increased transcription initiation at the nmlR promoter by RNAP in vitro, which depends on Cys52. Phenotype analyses revealed that NmlR functions in the defense against oxidative stress and promotes survival of S. pneumoniae during macrophage infections. In conclusion, NmlR was characterized as HOCl-sensing transcriptional regulator, which activates transcription of adhC under oxidative stress by thiol switches in S. pneumoniae.
Collapse
Affiliation(s)
| | - Nico Linzner
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Busche
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany.,NGS Core Facility, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Nelly Said
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany.,Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
Baroni L, Abreu-Filho PG, Pereira LM, Nagl M, Yatsuda AP. Recombinant actin-depolymerizing factor of the apicomplexan Neospora caninum (NcADF) is susceptible to oxidation. Front Cell Infect Microbiol 2022; 12:952720. [PMID: 36601306 PMCID: PMC9806845 DOI: 10.3389/fcimb.2022.952720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
Neospora caninum is a member of Apicomplexa Phylum and the causative agent of neosporosis, a disease responsible for abortions in cattle. Apicomplexan parasites have a limited set of actin-binding proteins conducting the regulation of the dynamics of nonconventional actin. The parasite actin-based motility is implicated in the parasite invasion process in the host cell. Once no commercial strategy for the neosporosis control is available, the interference in the parasite actin function may result in novel drug targets. Actin-depolymerization factor (ADF) is a member of the ADF/cofilin family, primarily known for its function in actin severing and depolymerization. ADF/cofilins are versatile proteins modulated by different mechanisms, including reduction and oxidation. In apicomplexan parasites, the mechanisms involved in the modulation of ADF function are barely explored and the effects of oxidation in the protein are unknown so far. In this study, we used the oxidants N-chlorotaurine (NCT) and H2O2 to investigate the susceptibility of the recombinant N. caninum ADF (NcADF) to oxidation. After exposing the protein to either NCT or H2O2, the dimerization status and cysteine residue oxidation were determined. Also, the interference of NcADF oxidation in the interaction with actin was assessed. The treatment of the recombinant protein with oxidants reversibly induced the production of dimers, indicating that disulfide bonds between NcADF cysteine residues were formed. In addition, the exposure of NcADF to NCT resulted in more efficient oxidation of the cysteine residues compared to H2O2. Finally, the oxidation of NcADF by NCT reduced the ability of actin-binding and altered the function of NcADF in actin polymerization. Altogether, our results clearly show that recombinant NcADF is sensitive to redox conditions, indicating that the function of this protein in cellular processes involving actin dynamics may be modulated by oxidation.
Collapse
Affiliation(s)
- Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Péricles Gama Abreu-Filho
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Markus Nagl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ana Patricia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil,*Correspondence: Ana Patricia Yatsuda,
| |
Collapse
|
18
|
Impact of Reactive Species on Amino Acids-Biological Relevance in Proteins and Induced Pathologies. Int J Mol Sci 2022; 23:ijms232214049. [PMID: 36430532 PMCID: PMC9692786 DOI: 10.3390/ijms232214049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
This review examines the impact of reactive species RS (of oxygen ROS, nitrogen RNS and halogens RHS) on various amino acids, analyzed from a reactive point of view of how during these reactions, the molecules are hydroxylated, nitrated, or halogenated such that they can lose their capacity to form part of the proteins or peptides, and can lose their function. The reactions of the RS with several amino acids are described, and an attempt was made to review and explain the chemical mechanisms of the formation of the hydroxylated, nitrated, and halogenated derivatives. One aim of this work is to provide a theoretical analysis of the amino acids and derivatives compounds in the possible positions. Tyrosine, methionine, cysteine, and tryptophan can react with the harmful peroxynitrite or •OH and •NO2 radicals and glycine, serine, alanine, valine, arginine, lysine, tyrosine, histidine, cysteine, methionine, cystine, tryptophan, glutamine and asparagine can react with hypochlorous acid HOCl. These theoretical results may help to explain the loss of function of proteins subjected to these three types of reactive stresses. We hope that this work can help to assess the potential damage that reactive species can cause to free amino acids or the corresponding residues when they are part of peptides and proteins.
Collapse
|
19
|
Hallberg LAE, Thorsen NW, Hartsema EA, Hägglund PM, Hawkins CL. Mapping the modification of histones by the myeloperoxidase-derived oxidant hypochlorous acid (HOCl). Free Radic Biol Med 2022; 192:152-164. [PMID: 36152914 DOI: 10.1016/j.freeradbiomed.2022.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 09/17/2022] [Indexed: 01/02/2023]
Abstract
Histones are critical for the packaging of nuclear DNA and chromatin assembly, which is facilitated by the high abundance of Lys and Arg residues within these proteins. These residues are also the site of a range of post-translational modifications, which influence the regulatory function of histones. Histones are also present in the extracellular environment, following release by various pathways, particularly neutrophil extracellular traps (NETs). NETs contain myeloperoxidase, which retains its enzymatic activity and produces hypochlorous acid (HOCl). This suggests that histones could be targets for HOCl under conditions where aberrant NET release is prevalent, such as chronic inflammation. In this study, we examine the reactivity of HOCl with a mixture of linker (H1) and core (H2A, H2B, H3 and H4) histones. HOCl modified the histones in a dose- and time-dependent manner, resulting in structural changes to the proteins and the formation of a range of post-translational modification products. N-Chloramines are major products following exposure of the histones to HOCl and decompose over 24 h forming Lys nitriles and carbonyls (aminoadipic semialdehydes). Chlorination and dichlorination of Tyr, but not Trp residues, is also observed. Met sulfoxide and Met sulfones are formed, though these oxidation products are also detected albeit at a lower extent, in the non-treated histones. Evidence for histone fragmentation and aggregation was also obtained. These results could have implications for the development of chronic inflammatory diseases, given the key role of Lys residues in regulating histone function.
Collapse
Affiliation(s)
- Line A E Hallberg
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark
| | - Nicoline W Thorsen
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark
| | - Els A Hartsema
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark
| | - Per M Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark.
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark.
| |
Collapse
|
20
|
Hypochlorous Acid Chemistry in Mammalian Cells—Influence on Infection and Role in Various Pathologies. Int J Mol Sci 2022; 23:ijms231810735. [PMID: 36142645 PMCID: PMC9504810 DOI: 10.3390/ijms231810735] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022] Open
Abstract
This review discusses the formation of hypochlorous acid HOCl and the role of reactive chlorinated species (RCS), which are catalysed by the enzyme myeloperoxidase MPO, mainly located in leukocytes and which in turn contribute to cellular oxidative stress. The reactions of RCS with various organic molecules such as amines, amino acids, proteins, lipids, carbohydrates, nucleic acids, and DNA are described, and an attempt is made to explain the chemical mechanisms of the formation of the various chlorinated derivatives and the data available so far on the effects of MPO, RCS and halogenative stress. Their presence in numerous pathologies such as atherosclerosis, arthritis, neurological and renal diseases, diabetes, and obesity is reviewed and were found to be a feature of debilitating diseases.
Collapse
|
21
|
Red-emitting rhodamine-based probe with large Stokes shift for ClO− detection. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Wang Y, Chuang CY, Hawkins CL, Davies MJ. Activation and Inhibition of Human Matrix Metalloproteinase-9 (MMP9) by HOCl, Myeloperoxidase and Chloramines. Antioxidants (Basel) 2022; 11:antiox11081616. [PMID: 36009335 PMCID: PMC9405048 DOI: 10.3390/antiox11081616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP9, gelatinase B) plays a key role in the degradation of extracellular-matrix (ECM) proteins in both normal physiology and multiple pathologies, including those linked with inflammation. MMP9 is excreted as an inactive proform (proMMP9) by multiple cells, and particularly neutrophils. The proenzyme undergoes subsequent processing to active forms, either enzymatically (e.g., via plasmin and stromelysin-1/MMP3), or via the oxidation of a cysteine residue in the prodomain (the “cysteine-switch”). Activated leukocytes, including neutrophils, generate O2− and H2O2 and release myeloperoxidase (MPO), which catalyzes hypochlorous acid (HOCl) formation. Here, we examine the reactivity of HOCl and a range of low-molecular-mass and protein chloramines with the pro- and activated forms of MMP9. HOCl and an enzymatic MPO/H2O2/Cl− system were able to generate active MMP9, as determined by fluorescence-activity assays and gel zymography. The inactivation of active MMP9 also occurred at high HOCl concentrations. Low (nM—low μM) concentrations of chloramines formed by the reaction of HOCl with amino acids (taurine, lysine, histidine), serum albumin, ECM proteins (laminin and fibronectin) and basement membrane extracts (but not HEPES chloramines) also activate proMMP9. This activation is diminished by the competitive HOCl-reactive species, methionine. These data indicate that HOCl-mediated oxidation and MMP-mediated ECM degradation are synergistic and interdependent. As previous studies have shown that modified ECM proteins can also stimulate the cellular expression of MMP proteins, these processes may contribute to a vicious cycle of increasing ECM degradation during disease development.
Collapse
Affiliation(s)
- Yihe Wang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
23
|
The Use of Thiocyanate Formulations to Create Manganese Porphyrin Antioxidants That Supplement Innate Immunity. Antioxidants (Basel) 2022; 11:antiox11071252. [PMID: 35883743 PMCID: PMC9311894 DOI: 10.3390/antiox11071252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 01/25/2023] Open
Abstract
The innate immune response to infection results in inflammation and oxidative damage, creating a paradox where most anti-inflammatory and antioxidant therapies can further suppress an already inadequate immune response. We have previously reported the beneficial effects of the exogenous supplementation of innate immunity with small pseudohalide thiocyanate (−SCN) in a mouse model of a cystic fibrosis (CF) lung infection and inflammation. The object of this study was to evaluate the use of −SCN as a counter anion for cationic manganese porphyrin (MnP) catalytic antioxidants, which could increase the parent compound’s antioxidant spectrum against hypohalous acids while supplementing innate immunity. The antioxidant activities of the parent compound were examined, as its chloride salt was compared with the −SCN-anion exchanged compound, (MnP(SCN) versus MnP(Cl)). We measured the superoxide dismutase activity spectrophotometrically and performed hydrogen peroxide scavenging using oxygen and hydrogen peroxide electrodes. Peroxidase activity was measured using an amplex red assay. The inhibition of lipid peroxidation was assessed using a thiobarbituric acid reactive species (TBARS) assay. The effects of the MnP compounds on macrophage phagocytosis were assessed by flow cytometry. The abilities of the MnP(Cl) formulations to protect human bronchiolar epithelial cells against hypochlorite (HOCl) and glycine chloramine versus their MnP(SCN) formulations were assessed using a cell viability assay. We found that anions exchanging out the chloride for −SCN improved the cellular bioavailability but did not adversely affect the cell viability or phagocytosis and that they switched hydrogen-peroxide scavenging from a dismutation reaction to a peroxidase reaction. In addition, the −SCN formulations improved the ability of MnPs to protect human bronchiolar epithelial cells against hypochlorous acid (HOCl) and glycine chloramine toxicity. These novel types of antioxidants may be more beneficial in treating lung disease that is associated with chronic infections or acute infectious exacerbations.
Collapse
|
24
|
Varatnitskaya M, Fasel J, Müller A, Lupilov N, Shi Y, Fuchs K, Krewing M, Jung C, Jacob T, Sitek B, Bandow JE, Carroll KS, Hoffmann E, Leichert LI. An increase in surface hydrophobicity mediates chaperone activity in N-chlorinated RidA. Redox Biol 2022; 53:102332. [PMID: 35598378 PMCID: PMC9126958 DOI: 10.1016/j.redox.2022.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli's proteome during oxidative stress. However, it is unknown, which residues need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidAHOCl, we obtained direct evidence of the chlorination of one arginine residue. To overcome the instability of the N-chloramine modification, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO2H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and/or R128 led to a substantial reduction of RidAHOCl's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidAHOCl and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones.
Collapse
|
25
|
Han Y, Zhou Y, Liu YD, Zhong R. Reaction Mechanisms of Histidine and Carnosine with Hypochlorous Acid Along with Chlorination Reactivity of N-Chlorinated Intermediates: A Computational Study. Chem Res Toxicol 2022; 35:750-759. [PMID: 35436107 DOI: 10.1021/acs.chemrestox.1c00389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypochlorous acid (HOCl) released from activated leukocytes not only plays a significant role in the human immune system but is also implicated in numerous diseases including atherosclerosis and some cancers due to its inappropriate production. Histidine (His) and carnosine (Car), as a respective mediator and protective agent of HOCl damage, have attracted considerable attention; however, their detailed reaction mechanisms are still unclear. In this study, using a His residue with two peptide bond groups (HisRes) as a model, the reaction mechanisms of HisRes and Car including NεH and NδH tautomers with HOCl along with the chlorination reactivity of N-chlorinated intermediates were investigated by quantum chemical methods. The obtained results indicate that in the imidazole side chain, the pyridine-like N is the most reactive site rather than the pyrrole-like N, and the kinetic order of all of the possible reaction sites in HisRes follows pyridine-like N > imidazole Cδ ≫ imidazole Cε > pyrrole-like N, while that in Car is pyridine-like N ≫ imidazole Cδ ≫ amide N. As for N-chlorinated intermediates at imidazole, although the unprotonated form has a low chlorination reactivity as expected, it can still chlorinate tyrosine. Especially, the protonated form exhibits similar ability to HOCl, causing secondary damage in vivo. N-Chlorinated Car features higher internal chlorine migration ability than its intermolecular transchlorination, preventing further HOCl-induced damage. Additionally, a generally overlooked nucleophilic Cl- shift is also found in N-chlorinated Car/HisRes, indicating that nucleophilic sites in biomolecules also need to be considered. The outcomes of this study are expected to expand our understanding of secondary damage and protective mechanisms involved in HOCl in humans.
Collapse
Affiliation(s)
- Yuzhou Han
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yingying Zhou
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yong Dong Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
26
|
Burgess ER, Crake RLI, Phillips E, Morrin HR, Royds JA, Slatter TL, Wiggins GAR, Vissers MCM, Robinson BA, Dachs GU. Increased Ascorbate Content of Glioblastoma Is Associated With a Suppressed Hypoxic Response and Improved Patient Survival. Front Oncol 2022; 12:829524. [PMID: 35419292 PMCID: PMC8995498 DOI: 10.3389/fonc.2022.829524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme is a challenging disease with limited treatment options and poor survival. Glioblastoma tumours are characterised by hypoxia that activates the hypoxia inducible factor (HIF) pathway and controls a myriad of genes that drive cancer progression. HIF transcription factors are regulated at the post-translation level via HIF-hydroxylases. These hydroxylases require oxygen and 2-oxoglutarate as substrates, and ferrous iron and ascorbate as cofactors. In this retrospective observational study, we aimed to determine whether ascorbate played a role in the hypoxic response of glioblastoma, and whether this affected patient outcome. We measured the ascorbate content and members of the HIF-pathway of clinical glioblastoma samples, and assessed their association with clinicopathological features and patient survival. In 37 samples (37 patients), median ascorbate content was 7.6 μg ascorbate/100 mg tissue, range 0.8 – 20.4 μg ascorbate/100 mg tissue. In tumours with above median ascorbate content, HIF-pathway activity as a whole was significantly suppressed (p = 0.005), and several members of the pathway showed decreased expression (carbonic anhydrase-9 and glucose transporter-1, both p < 0.01). Patients with either lower tumour HIF-pathway activity or higher tumour ascorbate content survived significantly longer than patients with higher HIF-pathway or lower ascorbate levels (p = 0.011, p = 0.043, respectively). Median survival for the low HIF-pathway score group was 362 days compared to 203 days for the high HIF-pathway score group, and median survival for the above median ascorbate group was 390 days, compared to the below median ascorbate group with 219 days. The apparent survival advantage associated with higher tumour ascorbate was more prominent for the first 8 months following surgery. These associations are promising, suggesting an important role for ascorbate-regulated HIF-pathway activity in glioblastoma that may impact on patient survival.
Collapse
Affiliation(s)
- Eleanor R Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Rebekah L I Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.,Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liege, Belgium
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Helen R Morrin
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.,Cancer Society Tissue Bank, University of Otago Christchurch, Christchurch, New Zealand
| | - Janice A Royds
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - George A R Wiggins
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Bridget A Robinson
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.,Canterbury Regional Cancer and Haematology Service, Canterbury District Health Board, and Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
27
|
N-Chlorotaurine Reduces the Lung and Systemic Inflammation in LPS-Induced Pneumonia in High Fat Diet-Induced Obese Mice. Metabolites 2022; 12:metabo12040349. [PMID: 35448536 PMCID: PMC9030051 DOI: 10.3390/metabo12040349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
Lung infection can evoke pulmonary and systemic inflammation, which is associated with systemic severe symptoms, such as skeletal muscle wasting. While N-chlorotaurine (also known as taurine chloramine; TauCl) has anti-inflammatory effects in cells, its effects against pulmonary and systemic inflammation after lung infection has not been elucidated. In the present study, we evaluated the anti-inflammatory effect of the taurine derivative, TauCl against Escherichia coli-derived lipopolysaccharide (LPS)-induced pneumonia in obese mice maintained on a high fat diet. In this study, TauCl was injected intraperitoneally 1 h before intratracheal LPS administration. While body weight was decreased by 7.5% after LPS administration, TauCl treatment suppressed body weight loss. TauCl also attenuated the increase in lung weight due to lung edema. While LPS-induced acute pneumonia caused an increase in cytokine/chemokine mRNA expression, including that of IL-1β, -6, TNF-α, MCP-1, TauCl treatment attenuated IL-6, and TNF-alpha expression, but not IL-1β and MCP-1. TauCl treatment partly attenuated the elevation of the serum cytokines. Furthermore, TauCl treatment alleviated skeletal muscle wasting. Importantly, LPS-induced expression of Atrogin-1, MuRF1 and IκB, direct or indirect targets for NFκB, were suppressed by TauCl treatment. These findings suggest that intraperitoneal TauCl treatment attenuates acute pneumonia-related pulmonary and systemic inflammation, including muscle wasting, in vivo.
Collapse
|
28
|
Kuldyushev N, Schönherr R, Coburger I, Ahmed M, Hussein RA, Wiesel E, Godbole A, Pfirrmann T, Hoshi T, Heinemann SH. A GFP-based ratiometric sensor for cellular methionine oxidation. Talanta 2022; 243:123332. [PMID: 35276500 DOI: 10.1016/j.talanta.2022.123332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
Abstract
Methionine oxidation is a reversible post-translational protein modification, affecting protein function, and implicated in aging and degenerative diseases. The detection of accumulating methionine oxidation in living cells or organisms, however, has not been achieved. Here we introduce a genetically encoded probe for methionine oxidation (GEPMO), based on the super-folder green fluorescent protein (sfGFP), as a specific, versatile, and integrating sensor for methionine oxidation. Placed at amino-acid position 147 in an otherwise methionine-less sfGFP, the oxidation of this specific methionine to methionine sulfoxide results in a ratiometric fluorescence change when excited with ∼400 and ∼470 nm light. The strength and homogeneity of the sensor expression is suited for live-cell imaging as well as fluorescence-activated cell sorting (FACS) experiments using standard laser wavelengths (405/488 nm). Expressed in mammalian cells and also in S. cerevisiae, the sensor protein faithfully reports on the status of methionine oxidation in an integrating manner. Variants targeted to membranes and the mitochondria provide subcellular resolution of methionine oxidation, e.g. reporting on site-specific oxidation by illumination of endogenous protoporphyrin IX.
Collapse
Affiliation(s)
- Nikita Kuldyushev
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Ina Coburger
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Marwa Ahmed
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Rama A Hussein
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Eric Wiesel
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Amod Godbole
- Center for Molecular Biomedicine, Institute for Molecular Cell Biology, Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Thorsten Pfirrmann
- Institute for Physiological Chemistry, Martin Luther University Halle-Wittenberg, Hollystr. 1, 06144, Halle/Saale, Germany; Department of Medicine, Health and Medical University, Olympischer Weg 1, 14471 Potsdam, Germany
| | - Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104-6085, USA
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany.
| |
Collapse
|
29
|
Kabanda MM, Bahadur I. A DFT and MP2 mechanistic and kinetic study on hypohalogenation reaction of cysteine and N-acetylcysteine in aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Liu R, Verma N, Henderson JA, Zhan S, Shen J. Profiling MAP kinase cysteines for targeted covalent inhibitor design. RSC Med Chem 2022; 13:54-63. [PMID: 35224496 PMCID: PMC8792824 DOI: 10.1039/d1md00277e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 07/20/2023] Open
Abstract
Mitogen-activated protein kinases (MAPK) are important therapeutic targets, and yet no inhibitors have advanced to the market. Here we applied the GPU-accelerated continuous constant pH molecular dynamics (CpHMD) to calculate the pK a's and profile the cysteine reactivities of all 14 MAPKs for assisting the targeted covalent inhibitor design. The simulations not only recapitulated but also rationalized the reactive cysteines in the front pocket of JNK1/2/3 and the extended front pocket of p38α. Interestingly, the DFG - 1 cysteine in the DFG-in conformation of ERK1/ERK2 was found somewhat reactive or unreactive; however, simulations of MKK7 showed that switching to the DFG-out conformation makes the DFG - 1 cysteine reactive, suggesting the advantage of type II covalent inhibitors. Additionally, the simulations prospectively predicted several druggable cysteine and lysine sites, including the αH head cysteine in JNK1/3 and DFG + 6 cysteine in JNK2, corroborating the chemical proteomic screening data. Given the low cost and the ability to offer physics-based rationales, we envision CpHMD simulations to complement the chemo-proteomic platform for systematic profiling cysteine reactivities for targeted covalent drug discovery.
Collapse
Affiliation(s)
- Ruibin Liu
- University of Maryland School of Pharmacy Baltimore MD USA
| | - Neha Verma
- University of Maryland School of Pharmacy Baltimore MD USA
| | | | - Shaoqi Zhan
- University of Maryland School of Pharmacy Baltimore MD USA
| | - Jana Shen
- University of Maryland School of Pharmacy Baltimore MD USA
| |
Collapse
|
31
|
Kostyuk AI, Tossounian MA, Panova AS, Thauvin M, Raevskii RI, Ezeriņa D, Wahni K, Van Molle I, Sergeeva AD, Vertommen D, Gorokhovatsky AY, Baranov MS, Vriz S, Messens J, Bilan DS, Belousov VV. Hypocrates is a genetically encoded fluorescent biosensor for (pseudo)hypohalous acids and their derivatives. Nat Commun 2022; 13:171. [PMID: 35013284 PMCID: PMC8748444 DOI: 10.1038/s41467-021-27796-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
The lack of tools to monitor the dynamics of (pseudo)hypohalous acids in live cells and tissues hinders a better understanding of inflammatory processes. Here we present a fluorescent genetically encoded biosensor, Hypocrates, for the visualization of (pseudo)hypohalous acids and their derivatives. Hypocrates consists of a circularly permuted yellow fluorescent protein integrated into the structure of the transcription repressor NemR from Escherichia coli. We show that Hypocrates is ratiometric, reversible, and responds to its analytes in the 106 M-1s-1 range. Solving the Hypocrates X-ray structure provided insights into its sensing mechanism, allowing determination of the spatial organization in this circularly permuted fluorescent protein-based redox probe. We exemplify its applicability by imaging hypohalous stress in bacteria phagocytosed by primary neutrophils. Finally, we demonstrate that Hypocrates can be utilized in combination with HyPerRed for the simultaneous visualization of (pseudo)hypohalous acids and hydrogen peroxide dynamics in a zebrafish tail fin injury model.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Maria-Armineh Tossounian
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium.,Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.,Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Anastasiya S Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, 75231, France.,Sorbonne Université, Collège Doctoral, Paris, 75005, France
| | - Roman I Raevskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium.,Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium.,Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Inge Van Molle
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Anastasia D Sergeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia.,Biological Department, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Didier Vertommen
- de Duve Institute, MASSPROT platform, UCLouvain, 1200, Brussels, Belgium
| | | | - Mikhail S Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia.,Laboratory of Medicinal Substances Chemistry, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, 75231, France.,Université de Paris, Paris, 75006, France.,Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium. .,Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium. .,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia. .,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia. .,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia. .,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia. .,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia. .,Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia.
| |
Collapse
|
32
|
Nguyen KH, Murakami S, Schaffer SW, Ito T. Examination of Taurine Chloramine and Taurine on LPS-Induced Acute Pulmonary Inflammatory in Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:23-29. [DOI: 10.1007/978-3-030-93337-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
33
|
Robins LI, Keim EK, Robins DB, Edgar JS, Meschke JS, Gafken PR, Williams JF. Modifications of IL-6 by Hypochlorous Acids: Effects on Receptor Binding. ACS OMEGA 2021; 6:35593-35599. [PMID: 34984290 PMCID: PMC8717532 DOI: 10.1021/acsomega.1c05297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/03/2021] [Indexed: 05/16/2023]
Abstract
Interleukin-6 (IL-6) has been implicated in the pathogenesis of inflammatory events including those seen with COVID-19 patients. Positive clinical responses to monoclonal antibodies directed against IL-6 receptors (IL-6Rs) suggest that interference with IL-6-dependent activation of pro-inflammatory pathways offers a useful approach to therapy. We exposed IL-6 to hypochlorous acid (HOCl) in vitro at concentrations reported to develop in vivo. After HOCl treatment, binding of IL-6 to IL-6R was reduced in a dose-dependent manner using a bioassay with human cells engineered to provide a luminescence response to signal transduction upon receptor activation. Similar results followed the exposure of IL-6 to N-chlorotaurine (NCT) and hypobromous acid (HOBr), two other reactive species produced in vivo. SDS-PAGE analysis of HOCl-treated IL-6 showed little to no fragmentation or aggregation up to 1.75 mM HOCl, suggesting that the modifications induced at concentrations below 1.75 mM took place on the intact protein. Mass spectrometry of trypsin-digested fragments identified oxidative changes to two amino acid residues, methionine 161 and tryptophan 157, both of which have been implicated in receptor binding of the cytokine. Our findings suggest that exogenous HOCl and NCT might bring about beneficial effects in the treatment of COVID-19. Further studies on how HOCl and HOBr and their halogenated amine derivatives interact with IL-6 and related cytokines in vivo may open up alternative therapeutic interventions with these compounds in COVID-19 and other hyperinflammatory diseases.
Collapse
Affiliation(s)
- Lori I. Robins
- Department
of Physical Sciences, University of Washington
Bothell, 18115 Campus Way NE, Bothell, Washington 98011, United States
- . Tel.: +1(425)352-3208
| | - Erika K. Keim
- Department
of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, Washington 98195, United States
| | - Deborah B. Robins
- Issaquah
High School, 700 2nd Ave SE, Issaquah, Washington 98027, United States
| | - John S. Edgar
- Department
of Medicinal Chemistry, University of Washington, H172 Health Science Building, Seattle, Washington 98195, United States
| | - John S. Meschke
- Department
of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, Washington 98195, United States
| | - Philip R. Gafken
- Fred
Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington 98109, United States
| | - Jeffrey F. Williams
- Briotech
Inc., 14120 NE 200th
St, Woodinville, Washington 98072, United States
| |
Collapse
|
34
|
Papanicolaou M, He P, Rutting S, Ammit A, Xenaki D, van Reyk D, Oliver BG. Extracellular Matrix Oxidised by the Granulocyte Oxidants Hypochlorous and Hypobromous Acid Reduces Lung Fibroblast Adhesion and Proliferation In Vitro. Cells 2021; 10:3351. [PMID: 34943857 PMCID: PMC8699380 DOI: 10.3390/cells10123351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic airway inflammation and oxidative stress play crucial roles in the pathogenesis of chronic inflammatory lung diseases, with airway inflammation being a key driving mechanism of oxidative stress in the lungs. Inflammatory responses in the lungs activate neutrophils and/or eosinophils, leading to the generation of hypohalous acids (HOX). These HOX oxidants can damage the extracellular matrix (ECM) structure and may influence cell-ECM interactions. The ECM of the lung provides structural, mechanical, and biochemical support for cells and determines the airway structure. One of the critical cells in chronic respiratory disease is the fibroblast. Thus, we hypothesised that primary human lung fibroblasts (PHLF) exposed to an oxidised cell-derived ECM will result in functional changes to the PHLF. Here, we show that PHLF adhesion, proliferation, and inflammatory cytokine secretion is affected by exposure to HOX-induced oxidisation of the cell-derived ECM. Furthermore, we investigated the impact on fibroblast function from the presence of haloamines in the ECM. Haloamines are chemical by-products of HOX and, like the HOX, haloamines can also modify the ECM. In conclusion, this study revealed that oxidising the cell-derived ECM might contribute to functional changes in PHLF, a key mechanism behind the pathogenesis of inflammatory lung diseases.
Collapse
Affiliation(s)
- Michael Papanicolaou
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Patrick He
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2037, Australia
| | - Sandra Rutting
- Woolcock Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (S.R.); (D.X.)
| | - Alaina Ammit
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2037, Australia
| | - Dikaia Xenaki
- Woolcock Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (S.R.); (D.X.)
| | - David van Reyk
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Woolcock Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (S.R.); (D.X.)
| | - Brian G. Oliver
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Woolcock Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (S.R.); (D.X.)
| |
Collapse
|
35
|
Long MJC, Huang KT, Aye Y. The not so identical twins: (dis)similarities between reactive electrophile and oxidant sensing and signaling. Chem Soc Rev 2021; 50:12269-12291. [PMID: 34779447 DOI: 10.1039/d1cs00467k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this tutorial review, we compare and contrast the chemical mechanisms of electrophile/oxidant sensing, and the molecular mechanisms of signal propagation. We critically analyze biological systems in which these different pathways are believed to be manifest and what the data really mean. Finally, we discuss applications of this knowledge to disease treatment and drug development.
Collapse
Affiliation(s)
| | - Kuan-Ting Huang
- Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Yimon Aye
- Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
36
|
Liu R, Zhan S, Che Y, Shen J. Reactivities of the Front Pocket N-Terminal Cap Cysteines in Human Kinases. J Med Chem 2021; 65:1525-1535. [PMID: 34647463 DOI: 10.1021/acs.jmedchem.1c01186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The front pocket (FP) N-terminal cap (Ncap) cysteine is the most popular site of covalent modification in kinases. A long-standing hypothesis associates the Ncap position with cysteine hyper-reactivity; however, traditional computational predictions suggest that the FP Ncap cysteines are predominantly unreactive. Here we applied the state-of-the-art continuous constant pH molecular dynamics (CpHMD) to test the Ncap hypothesis. Simulations found that the Ncap cysteines of BTK/BMX/TEC/ITK/TXK, JAK3, and MKK7 are reactive to varying degrees; however, those of BLK and EGFR/ERBB2/ERBB4 possessing a Ncap+3 aspartate are unreactive. Analysis suggested that hydrogen bonding and electrostatic interactions drive the reactivity, and their absence renders the Ncap cysteine unreactive. To further test the Ncap hypothesis, we examined the FP Ncap+2 cysteines in JNK1/JNK2/JNK3 and CASK. Our work offers a systematic understanding of the cysteine structure-reactivity relationship and illustrates the use of CpHMD to differentiate cysteines toward the design of targeted covalent inhibitors with reduced chemical reactivities.
Collapse
Affiliation(s)
- Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Shaoqi Zhan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Ye Che
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
37
|
Characterization and mitigation of chemical oxygen demand and chlorine demand from fresh produce wash water. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med 2021; 172:633-651. [PMID: 34246778 DOI: 10.1016/j.freeradbiomed.2021.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
The heme peroxidase family generates a battery of oxidants both for synthetic purposes, and in the innate immune defence against pathogens. Myeloperoxidase (MPO) is the most promiscuous family member, generating powerful oxidizing species including hypochlorous acid (HOCl). Whilst HOCl formation is important in pathogen removal, this species is also implicated in host tissue damage and multiple inflammatory diseases. Significant oxidant formation and damage occurs extracellularly as a result of MPO release via phagolysosomal leakage, cell lysis, extracellular trap formation, and inappropriate trafficking. MPO binds strongly to extracellular biomolecules including polyanionic glycosaminoglycans, proteoglycans, proteins, and DNA. This localizes MPO and subsequent damage, at least partly, to specific sites and species, including extracellular matrix (ECM) components and plasma proteins/lipoproteins. Biopolymer-bound MPO retains, or has enhanced, catalytic activity, though evidence is also available for non-catalytic effects. These interactions, particularly at cell surfaces and with the ECM/glycocalyx induce cellular dysfunction and altered gene expression. MPO binds with higher affinity to some damaged ECM components, rationalizing its accumulation at sites of inflammation. MPO-damaged biomolecules and fragments act as chemo-attractants and cell activators, and can modulate gene and protein expression in naïve cells, consistent with an increasing cycle of MPO adhesion, activity, damage, and altered cell function at sites of leukocyte infiltration and activation, with subsequent tissue damage and dysfunction. MPO levels are used clinically both diagnostically and prognostically, and there is increasing interest in strategies to prevent MPO-mediated damage; therapeutic aspects are not discussed as these have been reviewed elsewhere.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
39
|
Murina MA, Roshchupkin DI, Sergienko VI. The Antiplatelet Effect and Chemical Activity of N6-Chloroadenosine Phosphate. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921040151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
40
|
Das AB, Seddon AR, O'Connor KM, Hampton MB. Regulation of the epigenetic landscape by immune cell oxidants. Free Radic Biol Med 2021; 170:131-149. [PMID: 33444713 DOI: 10.1016/j.freeradbiomed.2020.12.453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Excessive production of microbicidal oxidants by neutrophils can damage host tissue. The short-term response of cells to oxidative stress is well understood, but the mechanisms behind long-term consequences require further clarification. Epigenetic pathways mediate cellular adaptation, and are therefore a potential target of oxidative stress. Indeed, there is evidence that many proteins and metabolites involved in epigenetic pathways are redox sensitive. In this review we provide an overview of the epigenetic landscape and discuss the potential for redox regulation. Using this information, we highlight specific examples where neutrophil oxidants react with epigenetic pathway components. We also use published data from redox proteomics to map out known intersections between oxidative stress and epigenetics that may signpost helpful directions for future investigation. Finally, we discuss the role neutrophils play in adaptive pathologies with a focus on tumour initiation and progression. We hope this information will stimulate further discourse on the emerging field of redox epigenomics.
Collapse
Affiliation(s)
- Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Annika R Seddon
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Karina M O'Connor
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
41
|
Bleau JR, Spoel SH. Selective redox signaling shapes plant-pathogen interactions. PLANT PHYSIOLOGY 2021; 186:53-65. [PMID: 33793940 PMCID: PMC8154045 DOI: 10.1093/plphys/kiaa088] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
A review of recent progress in understanding the mechanisms whereby plants utilize selective and reversible redox signaling to establish immunity.
Collapse
Affiliation(s)
- Jade R Bleau
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Author for communication:
| |
Collapse
|
42
|
Dereven'kov IA, Osokin VS, Hannibal L, Makarov SV, Khodov IA, Koifman OI. Mechanism of cyanocobalamin chlorination by hypochlorous acid. J Biol Inorg Chem 2021; 26:427-434. [PMID: 33914169 DOI: 10.1007/s00775-021-01869-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
Abstract
Hypochlorous acid (HOCl) is a strong oxidant produced by myeloperoxidase. Previous work suggested that HOCl modifies the corrin ring of cobalamins to yield chlorinated species via mechanisms that are incompletely understood. Herein, we report a mechanistic study on the reaction between cyanocobalamin (CNCbl, vitamin B12) and HOCl. Under weakly acidic, neutral and weakly alkaline conditions, the reaction produces the c-lactone derivative of CNCbl chlorinated at the C10-position of corrin ring (C10-Cl-CNCbl-c-lactone). Formation of C10-Cl-CNCbl-c-lactone was not observed at pH ≥ 9.9. The chlorination of CNCbl by HOCl proceeds via two pathways involving one and two HOCl molecules: the reaction is initiated by the very fast formation of a complex between CNCbl and HOCl, which either undergoes slow transformation to chlorinated species, or rapidly reacts with a second HOCl molecule to produce C10-Cl-CNCbl. Subsequent reaction of C10-Cl-CNCbl with HOCl proceeds rapidly toward lactone ring formation by H-atom abstraction at position C8. This work uncovered mechanisms and products of the reaction of a biologically active and therapeutically used cobalamin, CNCbl and the endogenous oxidant HOCl. Binding and reactivity studies of C10-Cl-CNCbl and C10-Cl-CNCbl-c-lactone with relevant proteins of the cobalamin pathway and with cultured cells are necessary to elucidate the potential physiological effects of these species.
Collapse
Affiliation(s)
- Ilia A Dereven'kov
- Ivanovo State University of Chemistry and Technology, Sheremetevskiy Str. 7, 153000, Ivanovo, Russian Federation.
| | - Vladimir S Osokin
- Ivanovo State University of Chemistry and Technology, Sheremetevskiy Str. 7, 153000, Ivanovo, Russian Federation
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center-University of Freiburg, 79106, Freiburg, Germany
| | - Sergei V Makarov
- Ivanovo State University of Chemistry and Technology, Sheremetevskiy Str. 7, 153000, Ivanovo, Russian Federation
| | - Ilya A Khodov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya Str. 1, 153045, Ivanovo, Russian Federation
| | - Oskar I Koifman
- Ivanovo State University of Chemistry and Technology, Sheremetevskiy Str. 7, 153000, Ivanovo, Russian Federation
| |
Collapse
|
43
|
Sharma AK, Shukla SK, Kalonia A, Shaw P, Khanna K, Gupta R, Yashavarddhan MH, Bhatnagar A. Evaluation of decontamination efficacy of electrolytically generated hypochlorous acid for vesicating agent: A multimodel Study. Curr Pharm Biotechnol 2021; 23:287-299. [PMID: 33719970 DOI: 10.2174/1389201022666210311140922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/06/2020] [Accepted: 01/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sulfur Mustard is a strong vesicant and chemical warfare agent that imposes toxicity to the lungs, eyes, and skin after accidental or intended exposure. OBJECTIVES The current study was intended to explore in vitro and in vivo decontamination properties of electrolytically generated HOCl (hypochlorous acid) against CEES (2-chloroethyle ethyle sulphide), a known sulfur mustard simulant & vesicating agent. METHODS In vitro studies were carried out using UV spectroscopy and GC-MS methods. In vivo studies were perfomred in Strain A and immune compromised mice by subcutaneous as well as prophylactic topical administrion of HOCl pretreated CEES. The blister formation and mortality were considered as end-point. Histopathological study was conducted on skin samples by H & E method. DNA damage studies measuring γ-H2AX and ATM has been carried out in human blood using flow cytometry. Anti-bacterial action was tested by employing broth micro dilution methods. Comparative study was also carried out with known oxidizing agents. RESULTS The topical application of pre-treated CEES at 5, 30 min and 1 h time points showed significant (p<0.001) inhibition of blister formation. DNA damage study showed reduced mean flourences intensity of DSBs nearly 17-20 times, suggesting that HOCl plays a protective role against DNA damage. Histopathology showed no sign of necrosis in the epidermis upto 5 min although moderate changes were observed at 30 min. Pretreated samples were analyzed for detection of reaction products with m/z value of 75.04, 69.08, 83.93, 85.95, 123.99, 126.00, and 108.97. HOCl showed strong bactericidal effect at 40 ppm. The absorbance spectra of HOCl treated CEES showed lowered peaks in comparison to CEES alone and other oxidizing agents Conclusion: In a nutshell, our results signify the decontamination role of HOCl for biological surface application.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Sandeep Kumar Shukla
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Aman Kalonia
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Priyanka Shaw
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Kushagra Khanna
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Richa Gupta
- Graphic Era Deemed to be University, Dehradun. India
| | - M H Yashavarddhan
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Assem Bhatnagar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| |
Collapse
|
44
|
Myeloperoxidase: Mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther 2021; 218:107685. [DOI: 10.1016/j.pharmthera.2020.107685] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
|
45
|
Königstorfer A, Ashby LV, Bollar GE, Billiot CE, Gray MJ, Jakob U, Hampton MB, Winterbourn CC. Induction of the reactive chlorine-responsive transcription factor RclR in Escherichia coli following ingestion by neutrophils. Pathog Dis 2021; 79:ftaa079. [PMID: 33351093 PMCID: PMC7797021 DOI: 10.1093/femspd/ftaa079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023] Open
Abstract
Neutrophils generate hypochlorous acid (HOCl) and related reactive chlorine species as part of their defence against invading microorganisms. In isolation, bacteria respond to reactive chlorine species by upregulating responses that provide defence against oxidative challenge. Key questions are whether these responses are induced when bacteria are phagocytosed by neutrophils, and whether this provides them with a survival advantage. We investigated RclR, a transcriptional activator of the rclABC operon in Escherichia coli that has been shown to be specifically activated by reactive chlorine species. We first measured induction by individual reactive chlorine species, and showed that HOCl itself activates the response, as do chloramines (products of HOCl reacting with amines) provided they are cell permeable. Strong RclR activation was seen in E. coli following phagocytosis by neutrophils, beginning within 5 min and persisting for 40 min. RclR activation was suppressed by inhibitors of NOX2 and myeloperoxidase, providing strong evidence that it was due to HOCl production in the phagosome. RclR activation demonstrates that HOCl, or a derived chloramine, enters phagocytosed bacteria in sufficient amount to induce this response. Although RclR was induced in wild-type bacteria following phagocytosis, we detected no greater sensitivity to neutrophil killing of mutants lacking genes in the rclABC operon.
Collapse
Affiliation(s)
- Andreas Königstorfer
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Louisa V Ashby
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Gretchen E Bollar
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, 845 19th St, Birmingham AL 35294, United States
| | - Caitlin E Billiot
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, 845 19th St, Birmingham AL 35294, United States
| | - Michael J Gray
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, 845 19th St, Birmingham AL 35294, United States
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N-University, Ann Arbor MI 48109-1085, United States
| | - Mark B Hampton
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Christine C Winterbourn
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| |
Collapse
|
46
|
Zhou L, Li T, Sun Y, Tian H, Gao C, Liu C, Kong L, Zhang G, Shi T. Mechanistic scrutiny of the oxidations of thiol‐containing drugs cysteamine and
d
‐penicillamine by
cis
‐diamminetetrachloroplatinum(IV). INT J CHEM KINET 2020. [DOI: 10.1002/kin.21464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Li Zhou
- College of Chemistry, Chemical Engineering and Materials Science Zaozhuang University Zaozhuang Shandong Province 277160 China
| | - Tiejian Li
- National Engineering Technology Center of Chirality Pharmaceuticals Lunan Pharmaceutical Group Co., Ltd. Linyi Shandong Province 276006 China
- Shandong New Time Pharmaceutical Co., Ltd. Feixian Shandong Province 273400 China
| | - Ying Sun
- National Engineering Technology Center of Chirality Pharmaceuticals Lunan Pharmaceutical Group Co., Ltd. Linyi Shandong Province 276006 China
| | - Hongwu Tian
- Shandong New Time Pharmaceutical Co., Ltd. Feixian Shandong Province 273400 China
| | - Cunxiu Gao
- National Engineering Technology Center of Chirality Pharmaceuticals Lunan Pharmaceutical Group Co., Ltd. Linyi Shandong Province 276006 China
| | - Chunli Liu
- College of Chemistry, Chemical Engineering and Materials Science Zaozhuang University Zaozhuang Shandong Province 277160 China
| | - Lingli Kong
- College of Chemistry, Chemical Engineering and Materials Science Zaozhuang University Zaozhuang Shandong Province 277160 China
| | - Guimin Zhang
- National Engineering Technology Center of Chirality Pharmaceuticals Lunan Pharmaceutical Group Co., Ltd. Linyi Shandong Province 276006 China
- Shandong New Time Pharmaceutical Co., Ltd. Feixian Shandong Province 273400 China
| | - Tiesheng Shi
- College of Chemistry, Chemical Engineering and Materials Science Zaozhuang University Zaozhuang Shandong Province 277160 China
| |
Collapse
|
47
|
Ashby LV, Springer R, Hampton MB, Kettle AJ, Winterbourn CC. Evaluating the bactericidal action of hypochlorous acid in culture media. Free Radic Biol Med 2020; 159:119-124. [PMID: 32739594 DOI: 10.1016/j.freeradbiomed.2020.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/04/2023]
Abstract
The bactericidal activity of the physiological oxidant hypochlorous acid (HOCl) is commonly studied in a variety of laboratory media. Reactive with numerous targets, HOCl will rapidly lose its toxicity via reduction or be converted to chloramines and other less toxic species. The objective of this study was to test the influence of various media, temperature and reaction time on the toxicity of HOCl. After incubating bacteria in media dosed with reagent HOCl, the bactericidal outcome was measured by colony forming ability. In parallel, we determined the HOCl and chloramine content after dosing media alone. Our results showed that more reagent HOCl was required to kill bacteria in culture media than in aqueous buffer, and this corresponded to the lower concentration of reactive chlorine species achieved in the media. RPMI and MOPS minimal medium retained significant oxidising equivalents after HOCl-dosing, but more nutrient-rich media such as MEM, DMEM, LB and TSB, had higher scavenging capacity. Other factors that lowered the bactericidal strength of HOCl were longer lag-times and raised temperature when pre-dosing media, and insufficient incubation time of cells with the HOCl-treated media. In summary, we demonstrate that the choice of media as well as procedural details within experiments crucially impact the cellular toxicity of HOCl. These factors influence the nature and concentration of oxidants generated, and therefore are critical in affecting cellular responses.
Collapse
Affiliation(s)
- Louisa V Ashby
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, P.O. Box 4345, Christchurch, New Zealand.
| | - Reuben Springer
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, P.O. Box 4345, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, P.O. Box 4345, Christchurch, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, P.O. Box 4345, Christchurch, New Zealand
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, P.O. Box 4345, Christchurch, New Zealand
| |
Collapse
|
48
|
Liu X, Lin Y, Ruan T, Jiang G. Identification of N-Nitrosamines and Nitrogenous Heterocyclic Byproducts during Chloramination of Aromatic Secondary Amine Precursors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12949-12958. [PMID: 32966056 DOI: 10.1021/acs.est.0c02142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With diminishing pristine water, wastewater-affected waters that contain complex anthropogenic compounds are becoming important sources of drinking water and the compounds will inevitably react with disinfectants to form disinfection byproducts (DBPs). Secondary amines such as diphenylamine (DPA) analogues are considered as potential precursors of N-nitrosamines. In this study, an in situ 14N/15N-labeling and screening workflow was used to systematically investigate the formation of nitrogenous DBPs (N-DBPs) and putative reaction pathways. Twenty-four pairs of N-DBPs were generated and identified from chloramination of DPA through two main pathways, in which chloramines reacted with the amino and phenyl functional groups to form N-nitrosodiphenylamine and monochlorinated 5,10-dihydro-phenazine (Cl-DiH-Phe), respectively. Cl-DiH-Phe could further produce phenazine and the coupling products with another DPA molecule. Selective N-DBP formation was pH and dose-dependent, and the same reactions were observed for additional two aromatic DPA analogues. Effects of alkyl substituents on the formation pathways were investigated using a series of dialkyl and N-alkyl aromatic analogues. Only the amino pathway to form nitrosamines was noticed for dialkyl amines, nevertheless, both the main reactions occurred for N-alkyl aromatic amines. These findings suggested that the reaction with chloramines through a phenyl pathway was likely to be crucial for novel nitrogenous heterocyclic byproducts.
Collapse
Affiliation(s)
- Xueke Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongfeng Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Varatnitskaya M, Degrossoli A, Leichert LI. Redox regulation in host-pathogen interactions: thiol switches and beyond. Biol Chem 2020; 402:299-316. [PMID: 33021957 DOI: 10.1515/hsz-2020-0264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Our organism is exposed to pathogens on a daily basis. Owing to this age-old interaction, both pathogen and host evolved strategies to cope with these encounters. Here, we focus on the consequences of the direct encounter of cells of the innate immune system with bacteria. First, we will discuss the bacterial strategies to counteract powerful reactive species. Our emphasis lies on the effects of hypochlorous acid (HOCl), arguably the most powerful oxidant produced inside the phagolysosome of professional phagocytes. We will highlight individual examples of proteins in gram-negative bacteria activated by HOCl via thiol-disulfide switches, methionine sulfoxidation, and N-chlorination of basic amino acid side chains. Second, we will discuss the effects of HOCl on proteins of the host. Recent studies have shown that both host and bacteria address failing protein homeostasis by activation of chaperone-like holdases through N-chlorination. After discussing the role of individual proteins in the HOCl-defense, we will turn our attention to the examination of effects on host and pathogen on a systemic level. Recent studies using genetically encoded redox probes and redox proteomics highlight differences in redox homeostasis in host and pathogen and give first hints at potential cellular HOCl signaling beyond thiol-disulfide switch mechanisms.
Collapse
Affiliation(s)
- Marharyta Varatnitskaya
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Adriana Degrossoli
- Faculty of Health Science - Health Science Department, Federal University of Lavras, Lavras, Brazil
| | - Lars I Leichert
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
50
|
Nazi N, Humblot V, Debiemme-Chouvy C. A New Antibacterial N-Halamine Coating Based on Polydopamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11005-11014. [PMID: 32830496 DOI: 10.1021/acs.langmuir.0c01856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To prevent the formation of biofilms on material surfaces, the latter must have antibacterial properties. The aim of this study is to investigate the synthesis and the antibacterial effect of a new N-halamine coating based on polydopamine (PDA). The benefits of this coating are multiple, notably the green process used to prepare it and the wide variety of organic or inorganic materials that can be functionalized. First, the formation of the PDA coating by oxidative polymerization of dopamine in weak alkaline aqueous solution was studied and characterized. Then, these PDA films were exposed to a NaOCl solution in order to form chloramine functions into the coating, i.e., to immobilize oxidative chlorine on and into the coating. The PDA film chlorination was notably followed in situ by a quartz crystal microbalance (QCM). The influence of the NaOCl solution pH and concentration on chlorination kinetics and on PDA film degradation was evidenced. Finally, the antibacterial properties of the modified PDA coatings were highlighted by testing their antiadhesion and bactericidal properties toward the Escherichia coli bacterial strain.
Collapse
Affiliation(s)
- Nadia Nazi
- Sorbonne Université, Laboratoire de Réactivité de Surface, UMR CNRS 7197, 4 place Jussieu, Paris 75005, France
- Sorbonne Université, Laboratoire Interfaces et Systèmes Electrochimiques, UMR CNRS 8235, 4 place Jussieu, Paris 75005, France
| | - Vincent Humblot
- Sorbonne Université, Laboratoire de Réactivité de Surface, UMR CNRS 7197, 4 place Jussieu, Paris 75005, France
- FEMTO-ST Institute, UMR CNRS 6174, Université Bourgogne Franche-Comté, 15B avenue des Montboucons, Besançon Cedex 25030, France
| | - Catherine Debiemme-Chouvy
- Sorbonne Université, Laboratoire Interfaces et Systèmes Electrochimiques, UMR CNRS 8235, 4 place Jussieu, Paris 75005, France
| |
Collapse
|