1
|
Baloghová J, Michalková R, Baranová Z, Mojžišová G, Fedáková Z, Mojžiš J. Spice-Derived Phenolic Compounds: Potential for Skin Cancer Prevention and Therapy. Molecules 2023; 28:6251. [PMID: 37687080 PMCID: PMC10489044 DOI: 10.3390/molecules28176251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Skin cancer is a condition characterized by the abnormal growth of skin cells, primarily caused by exposure to ultraviolet (UV) radiation from the sun or artificial sources like tanning beds. Different types of skin cancer include melanoma, basal cell carcinoma, and squamous cell carcinoma. Despite the advancements in targeted therapies, there is still a need for a safer, highly efficient approach to preventing and treating cutaneous malignancies. Spices have a rich history dating back thousands of years and are renowned for their ability to enhance the flavor, taste, and color of food. Derived from various plant parts like seeds, fruits, bark, roots, or flowers, spices are important culinary ingredients. However, their value extends beyond the culinary realm. Some spices contain bioactive compounds, including phenolic compounds, which are known for their significant biological effects. These compounds have attracted attention in scientific research due to their potential health benefits, including their possible role in disease prevention and treatment, such as cancer. This review focuses on examining the potential of spice-derived phenolic compounds as preventive or therapeutic agents for managing skin cancers. By compiling and analyzing the available knowledge, this review aims to provide insights that can guide future research in identifying new anticancer phytochemicals and uncovering additional mechanisms for combating skin cancer.
Collapse
Affiliation(s)
- Janette Baloghová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Baranová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Fedáková
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| |
Collapse
|
2
|
Araujo JRDS, de Barros Arcoverde JV, de Farias Silva MG, Barros de Santana ER, da Silva PA, de Sousa S, Araujo, Santos N, de Almeida PM, de Andrade Lima CS, Benko-Iseppon AM, Aracati Padilha RJS, Alves M, Brasileiro-Vidal AC. Antioxidant and in vitro cytogenotoxic properties of Amburana cearensis (Allemão) A.C.Sm. leaf extract. Drug Chem Toxicol 2023; 46:104-112. [PMID: 34906022 DOI: 10.1080/01480545.2021.2011313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amburana cearensis leaves have been used in folk medicine to treat respiratory diseases and inflammations. This study aimed to evaluate the biological potential of A. cearensis leaves by antioxidant and in vitro cytogenotoxic analyses of ethanolic crude extract (EE) and its fractions in healthy human cells. The EE was obtained by percolation, followed by fractionation using dichloromethane, cyclohexane, ethyl acetate (EtOAc), and methanol (MeOH) as organic solvents. Extract and all fractions were evaluated for their antioxidant potential by DPPH and reducing power tests. In vitro cytotoxic activity was determined in human peripheral blood mononuclear cells by MTT assay for the extract, EtOAc and MeOH fractions. In turn, the genotoxic activity was determined in human lymphocytes by the Cytokinesis Block Micronucleus assay only for the EtOAc fraction. Only EtOAc fraction was analyzed via gas chromatography coupled to mass spectrometry due to its higher biological activity. Considering the antioxidant potential, the EtOAc fraction was most effective in DPPH (EC50 43.37 µg/mL) and reducing power (EC50 89.80 µg/mL) assays. GC-MS analysis of the EtOAc fraction led to the identification of guaiacol, 2,3-dihydro-benzofuran, 2-methoxy-4-vinylphenol, isovanillic acid methyl ester, 4-hydroxybenzaldehyde, and 4-(ethoxymethyl)-phenol. The EE (400-1000 µg/mL), EtOAc (≤150 µg/mL) and MeOH (50 and 150-600 µg/mL) fractions were not cytotoxic by MTT test. Additionally, the EtOAc fraction (100-400 µg/mL) did not induce significant genotoxic damage. Concentrations of the EtOAc fraction with antioxidant activity showed no cytotoxicity, nor genotoxicity potential, indicating them as a nontoxic natural antioxidant source.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Araujo
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | - Neide Santos
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | | | - Marccus Alves
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil
| | | |
Collapse
|
3
|
Koza LA, Winter AN, Holsopple J, Baybayon-Grandgeorge AN, Pena C, Olson JR, Mazzarino RC, Patterson D, Linseman DA. Protocatechuic Acid Extends Survival, Improves Motor Function, Diminishes Gliosis, and Sustains Neuromuscular Junctions in the hSOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis. Nutrients 2020; 12:nu12061824. [PMID: 32570926 PMCID: PMC7353311 DOI: 10.3390/nu12061824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disorder characterized by motor neuron apoptosis and subsequent skeletal muscle atrophy caused by oxidative and nitrosative stress, mitochondrial dysfunction, and neuroinflammation. Anthocyanins are polyphenolic compounds found in berries that possess neuroprotective and anti-inflammatory properties. Protocatechuic acid (PCA) is a phenolic acid metabolite of the parent anthocyanin, kuromanin, found in blackberries and bilberries. We explored the therapeutic effects of PCA in a transgenic mouse model of ALS that expresses mutant human Cu, Zn-superoxide dismutase 1 with a glycine to alanine substitution at position 93. These mice display skeletal muscle atrophy, hindlimb weakness, and weight loss. Disease onset occurs at approximately 90 days old and end stage is reached at approximately 120 days old. Daily treatment with PCA (100 mg/kg) by oral gavage beginning at disease onset significantly extended survival (121 days old in untreated vs. 133 days old in PCA-treated) and preserved skeletal muscle strength and endurance as assessed by grip strength testing and rotarod performance. Furthermore, PCA reduced astrogliosis and microgliosis in spinal cord, protected spinal motor neurons from apoptosis, and maintained neuromuscular junction integrity in transgenic mice. PCA lengthens survival, lessens the severity of pathological symptoms, and slows disease progression in this mouse model of ALS. Given its significant preclinical therapeutic effects, PCA should be further investigated as a treatment option for patients with ALS.
Collapse
Affiliation(s)
- Lilia A. Koza
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
- Knoebel Institute for Healthy Aging, Engineering Computer Science, Suite 579, University of Denver, 2155 E. Wesley Ave, Denver, CO 80208, USA
| | - Aimee N. Winter
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
| | - Jessica Holsopple
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
| | - Angela N. Baybayon-Grandgeorge
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
| | - Claudia Pena
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
- Knoebel Institute for Healthy Aging, Engineering Computer Science, Suite 579, University of Denver, 2155 E. Wesley Ave, Denver, CO 80208, USA
| | - Jeffrey R. Olson
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
- Knoebel Institute for Healthy Aging, Engineering Computer Science, Suite 579, University of Denver, 2155 E. Wesley Ave, Denver, CO 80208, USA
| | - Randall C. Mazzarino
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
- Knoebel Institute for Healthy Aging, Engineering Computer Science, Suite 579, University of Denver, 2155 E. Wesley Ave, Denver, CO 80208, USA
| | - David Patterson
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
- Knoebel Institute for Healthy Aging, Engineering Computer Science, Suite 579, University of Denver, 2155 E. Wesley Ave, Denver, CO 80208, USA
- Eleanor Roosevelt Institute, University of Denver, 2101 E. Wesley Ave, Denver, CO 80210, USA
| | - Daniel A. Linseman
- Department of Biological Sciences, F. W. Olin Hall, Room 102, University of Denver, 2190 E. Iliff Ave, Denver, CO 80208, USA; (L.A.K.); (A.N.W.); (J.H.); (A.N.B.-G.); (C.P.); (J.R.O.); (R.C.M.); (D.P.)
- Knoebel Institute for Healthy Aging, Engineering Computer Science, Suite 579, University of Denver, 2155 E. Wesley Ave, Denver, CO 80208, USA
- Eleanor Roosevelt Institute, University of Denver, 2101 E. Wesley Ave, Denver, CO 80210, USA
- Correspondence: ; Tel.: +1-(303)-871-4663
| |
Collapse
|
4
|
Muñoz-Pina S, Ros-Lis JV, Argüelles Á, Martínez-Máñez R, Andrés A. Influence of the functionalisation of mesoporous silica material UVM-7 on polyphenol oxidase enzyme capture and enzymatic browning. Food Chem 2020; 310:125741. [DOI: 10.1016/j.foodchem.2019.125741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022]
|
5
|
Genethliou C, Kornaros M, Dailianis S. Biodegradation of olive mill wastewater phenolic compounds in a thermophilic anaerobic upflow packed bed reactor and assessment of their toxicity in digester effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109882. [PMID: 31783209 DOI: 10.1016/j.jenvman.2019.109882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/03/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The extent of phenolic compounds' biodegradation was assessed utilizing un-treated olive mill wastewater (OMWW) fed to a high-rate thermophilic (55 οC) anaerobic upflow packed bed reactor (UPBR) and digester effluents (DEs) collected in different hydraulic retention times (HRTs) under steady-state operating conditions. In parallel, the toxicity of each sample was evaluated by performing the microbiotest Thamnotoxkit F™. The outcomes indicate complete biodegradation of 6 phenolic compounds-vanillic acid (VA), caffeic acid (CA), syringic acid (SA), o-coumaric acid (o-CA), oleuropein (OLEU), 4-ethylphenol (4-EP)-and notable removals of hydroxytyrosol (HT) and tyrosol (TYR), reaching up to 94.87 ± 0.04% and 93.92 ± 0.33%, respectively. 4-hydroxybenzoic acid (PHBA), p-coumaric acid (p-CA) and 3,4-dihydroxybenzoic acid (DBA) were recognized as the most recalcitrant and persistent compounds in the anaerobic effluents, being capable of modulating the toxic potential of DEs.
Collapse
Affiliation(s)
- C Genethliou
- Department of Chemistry, University of Patras, GR 26504, Rion, Patras, Greece
| | - M Kornaros
- Department of Chemical Engineering, University of Patras, GR 26504, Rion, Patras, Greece.
| | - S Dailianis
- Department of Biology, University of Patras, GR 26500, Rion, Patras, Greece
| |
Collapse
|
6
|
Protocatechuic acid inhibits Toll-like receptor-4-dependent activation of NF-κB by suppressing activation of the Akt, mTOR, JNK and p38-MAPK. Int Immunopharmacol 2018; 55:272-281. [DOI: 10.1016/j.intimp.2017.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/04/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022]
|
7
|
Krzysztoforska K, Mirowska-Guzel D, Widy-Tyszkiewicz E. Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: Review on the basis of in vitro and in vivo studies in rodents and humans. Nutr Neurosci 2017; 22:72-82. [PMID: 28745142 DOI: 10.1080/1028415x.2017.1354543] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protocatechuic acid has very promising properties potentially useful in the inhibition of neurodegenerative diseases progression. It is the main metabolite of the complex polyphenolic compounds and is believed to be responsible for beneficial effects associated with consumption of the food products rich in polyphenols. Protocatechuic acid is present in the circulation significantly longer and at higher concentrations than parent compounds and easily crosses the blood brain barrier. The aim of the following paper is to provide an extensive and actual report on protocatechuic acid and its pharmacological potential in prevention and/or treatment of neurodegenerative diseases in humans based on existing data from both in vitro and in vivo studies. Experimental studies strongly support the role of protocatechuic acid in the prevention of neurodegenerative processes, including Alzheimer's and Parkinson's diseases, due to its favorable influence on processes underlying cognitive and behavioral impairment, namely accumulation of the β-amyloid plaques in brain tissues, hyperphosphorylation of tau protein in neurons, excessive formation of reactive oxygen species and neuroinflammation. There is a growing evidence that protocatechuic acid may become in the future efficacious and safe substance that protects against neurodegenerative disorders.
Collapse
Affiliation(s)
- Kinga Krzysztoforska
- a Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| | - Dagmara Mirowska-Guzel
- a Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| | - Ewa Widy-Tyszkiewicz
- a Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
8
|
CYTOTOXIC AND GENOTOXIC ACTIVITY OF PHENOLIC FRACTIONS FROM Ulomoides dermestoides FAIRMAIRE, 1893 (COLEOPTERA, TENEBRIONIDAE), IN HACAT CELLS. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2016. [DOI: 10.1016/j.recqb.2016.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
9
|
Electrophiles in Foods: The Current Status of Isothiocyanates and Their Chemical Biology. Biosci Biotechnol Biochem 2014; 74:242-55. [DOI: 10.1271/bbb.90731] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Song Y, Cui T, Xie N, Zhang X, Qian Z, Liu J. Protocatechuic acid improves cognitive deficits and attenuates amyloid deposits, inflammatory response in aged AβPP/PS1 double transgenic mice. Int Immunopharmacol 2014; 20:276-81. [PMID: 24667368 DOI: 10.1016/j.intimp.2014.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/22/2014] [Accepted: 03/05/2014] [Indexed: 01/14/2023]
Abstract
Protocatechuic acid (PCA), a phenolic compound of Radix Salviae Miltiorrhizae (RSM), has been found to have a protective effect on improving cognitive deficits in STZ-induced AD rats. The present study aimed to evaluate the potential protection activity of PCA on improving cognitive deficits and attenuating Aβ deposition and inflammatory responses in aged AβPP/PS1 double transgenic AD-model mice. The results of Morris water maze test showed that PCA (100mg/kg) significantly prolonged the mean latency time and the path length of AβPP/PS1 mice. PCA could significantly reduce the number of Aβ positive expressions in the hippocampus and cerebral cortex of AβPP/PS1 mice by immunocytochemical assay with Congo red staining and decrease remarkably APP expression level by Western blot analysis (P<0.01). The results from ELISA and Western blot analysis showed that the levels of inflammatory cytokines including TNF-α, IL-1β, IL-6 and IL-8 decreased remarkably by the treatment with PCA (P<0.01). Further, there was a substantial increase of brain derived neurotrophic factor (BDNF) in the hippocampus and cerebral cortex of AβPP/PS1 mice treated with PCA (P<0.01). The present study provided confirmatory evidence that PCA significantly decreased Aβ deposits, APP and inflammatory response, whereas increased learning and memory ability, as well as enhanced BDNF level. Our findings indicated that PCA is an effective neuroprotective agent for AD therapy. It might be associated with the attenuation on Aβ deposits and inflammation responses involved in the process.
Collapse
Affiliation(s)
- Yu Song
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Taizhen Cui
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Na Xie
- The Cardiology Department of the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Xiaoyi Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Zhibin Qian
- The Cardiology Department of the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Juyuan Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China.
| |
Collapse
|
11
|
In vitro cultures of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine)--a potential biotechnological rich source of therapeutically important phenolic acids. Appl Biochem Biotechnol 2012; 166:1941-8. [PMID: 22399445 PMCID: PMC3324685 DOI: 10.1007/s12010-012-9622-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/20/2012] [Indexed: 10/31/2022]
Abstract
The contents of free phenolic acids and cinnamic acid were determined using an HPLC method in methanolic extracts from biomass of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) at different stages of organogenesis, cultured in vitro on a few variants of Murashige and Skoog (MS) medium, containing different concentrations of plant growth regulators 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) (from 0.1 to 3.0 mg/l) and in extracts from overground parts of plants growing in vivo. Six of 12 analysed compounds were detected in all extracts: chlorogenic, p-coumaric, p-hydroxybenzoic, protocatechuic, salicylic and syringic acids. Total contents of the examined metabolites in biomass of shoot-differentiating callus culture cultivated on six MS medium variants were dependent on concentrations of growth regulators in the media and ranged from 14.90 to 60.05 mg/100 g d.w. Total contents of the compounds in biomass extracts from undifferentiating callus culture maintained only on two of six MS medium variants were higher and amounted to 74.54 and 78.24 mg/100 g d.w. Maximum total contents of phenolic acids in both types of in vitro cultures were greater than in fruits (55.73 mg/100 g d.w.) and leaves (4.55 mg/100 g d.w.) of plants gowning in vivo. Chlorogenic acid and salicylic acid were the main compounds identified in biomass extracts of shoot-differentiating callus cultures (max 22.60 and 21.17 mg/100 g d.w., respectively), while chlorogenic acid (max 38.43 mg/100 g d.w.) and protocatechuic acid (max 20.95 mg/100 g d.w.) prevailed in the extracts from undifferentiating callus cultures. Other compounds dominated in fruits, namely p-coumaric acid (23.36 mg/100 g d.w.) and syringic acid (14.96 mg/100 g d.w.). This is the first report on biochemical potential of cells from S. chinensis in vitro cultures to produce the biologically active phenolic acids. These are the first results on the analysis of this group of metabolites in overground parts of plants growing in vivo, too.
Collapse
|
12
|
Anti-inflammatory and analgesic activity of protocatechuic acid in rats and mice. Inflammopharmacology 2011; 19:255-63. [DOI: 10.1007/s10787-011-0086-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 05/02/2011] [Indexed: 02/06/2023]
|
13
|
|
14
|
|
15
|
Anter J, Romero-Jiménez M, Fernández-Bedmar Z, Villatoro-Pulido M, Analla M, Alonso-Moraga A, Muñoz-Serrano A. Antigenotoxicity, cytotoxicity, and apoptosis induction by apigenin, bisabolol, and protocatechuic acid. J Med Food 2010; 14:276-83. [PMID: 21182433 DOI: 10.1089/jmf.2010.0139] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Medicinal plants represent an important resource in new drug research. Antioxidant properties of plants can help to scavenge reactive oxygen species. The objective of this work was to evaluate the genotoxic, antigenotoxic, tumoricidal, and apoptotic effect of some major phenols (apigenin, bisabolol, and protocatechuic acid) from two medicinal plants, Matricaria chamomilla and Uncaria tomentosa. The wing spot test of Drosophila melanogaster was used to evaluate the genotoxicity and antigenotoxicity of the three phenols. The human model of HL-60 leukemia cells was used for the assessment of the cytotoxic effect, growth, and cellular viability. The apoptotic effect was evaluated using a DNA fragmentation assay based on the formation of internucleosomal units. Protocatechuic acid (0.25 and 1 mM), apigenin (0.46 and 1.85 mM), and bisabolol (0.56 and 2.24 mM) did not exhibit any genotoxic effect. The three phenols showed an antigenotoxic effect against the hydrogen peroxide effect and also exhibited tumoricidal activity. Apigenin (2.24-35.96 mM) showed a lower 50% inhibitory concentration (0.75 and 3.87 mM for the trypan blue test and WST-8 colorimetric assay, respectively) than bisabolol and protocatechuic acid. These phenolics also induced apoptosis in HL-60 leukemia cells. This study suggests that the antioxidant activity of Chamomilla and Uncaria could be partially responsible of their beneficial activity.
Collapse
Affiliation(s)
- Jaouad Anter
- Department of Genetics, University of Córdoba, Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Chou TH, Ding HY, Lin RJ, Liang JY, Liang CH. Inhibition of melanogenesis and oxidation by protocatechuic acid from Origanum vulgare (oregano). JOURNAL OF NATURAL PRODUCTS 2010; 73:1767-1774. [PMID: 20973550 DOI: 10.1021/np100281g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Antioxidant and antimelanogenesis activities of protocatechuic acid (1) from Origanum vulgare (oregano) were investigated. The antioxidative capacity of 1 was confirmed from its free-radical-scavenging activities, inhibition of lipid peroxidation, and suppression of reactive oxygen species in H(2)O(2)-induced BNLCL2 cells. The inhibition by 1 of tyrosinase and DOPA oxidase activity and melanin production was possibly related to the down-regulation of melanocortin-1 receptor, microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related proteins-2, and tyrosinase-related proteins-1 expression in α-melanocyte-stimulating hormone-induced B16 cells. After a gel containing 1 was applied to mice, the values of L* slightly increased, and a* and erythema-melanin levels of skin were reduced by comparing the values of untreated control groups, indicating 1 can reduce melanin production. These results suggest that 1 may act as an effective quencher of oxidative attackers with antimelanogenesis properties.
Collapse
Affiliation(s)
- Tzung-Han Chou
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
17
|
Hatzipanayioti D, Petropouleas P. Theoretical and experimental investigation of the semiquinone forms of protocatechuic acid. The effect of manganese. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 75:997-1007. [PMID: 20080058 DOI: 10.1016/j.saa.2009.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 05/28/2023]
Abstract
Ten oxidized, oxygenated and dimeric forms of protocatechuic acid (PCA, 3,4-dihydroxybenzoic acid, 3,4-DHBA) have been studied using DFT calculations (at the B3LYP/TZVP level of theory) and their structural and spectroscopic parameters (electronic transitions, NMR resonances) have been calculated. Combination with experimental results (under anaerobic or aerobic environment) determines the conditions for the existence of protonated, fully deprotonate and/or oxygenated semiquinones of PCA. Several energy optimized conformers containing manganese-(PCA-semiquinones) and water or/and peroxo-groups have been drawn (species 11-16) and their structural and spectroscopic properties have been calculated at the same level of theory. Experimental parallel to the theoretical results provide evidence for the existence of Mn(II)- and Mn(III)-[PCA-semiquinone] as well the conditions of dioxygen activation. Two of the blue solids (17 and 18) isolated from these solutions, have been characterized. Elemental analyzes, TGA, IR and ESR spectra support the formulation Mn(2)(PCA)(2)(O(2))(OH)(2)(AcO)(ClO(4))(2)(H(2)O)(3) (17), and Mn(2)(PCA)(2)(O(2))(2)(OH)(2)(AcO)H(2)O (18). Their ESR spectra, in solution (blue solutions), are almost identical and indicative of Mn(IV) existence. From the whole investigation, the activation of dioxygen by the PCA, its relocation on manganese and the oxidation of the metal ion have been provided.
Collapse
|
18
|
Ishii T, Ishikawa M, Miyoshi N, Yasunaga M, Akagawa M, Uchida K, Nakamura Y. Catechol Type Polyphenol Is a Potential Modifier of Protein Sulfhydryls: Development and Application of a New Probe for Understanding the Dietary Polyphenol Actions. Chem Res Toxicol 2009; 22:1689-98. [DOI: 10.1021/tx900148k] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takeshi Ishii
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food and Nutritional Sciences, and Global COE Program, University of Shizuoka, Shizuoka 422-8526, Japan, Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan, and Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology
| | - Miki Ishikawa
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food and Nutritional Sciences, and Global COE Program, University of Shizuoka, Shizuoka 422-8526, Japan, Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan, and Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology
| | - Noriyuki Miyoshi
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food and Nutritional Sciences, and Global COE Program, University of Shizuoka, Shizuoka 422-8526, Japan, Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan, and Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology
| | - Mayuko Yasunaga
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food and Nutritional Sciences, and Global COE Program, University of Shizuoka, Shizuoka 422-8526, Japan, Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan, and Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology
| | - Mitsugu Akagawa
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food and Nutritional Sciences, and Global COE Program, University of Shizuoka, Shizuoka 422-8526, Japan, Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan, and Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology
| | - Koji Uchida
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food and Nutritional Sciences, and Global COE Program, University of Shizuoka, Shizuoka 422-8526, Japan, Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan, and Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology
| | - Yoshimasa Nakamura
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food and Nutritional Sciences, and Global COE Program, University of Shizuoka, Shizuoka 422-8526, Japan, Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan, and Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology
| |
Collapse
|
19
|
Olvera-García V, Castaño-Tostado E, Rezendiz-Lopez RI, Reynoso-Camacho R, González de Mejía E, Elizondo G, Loarca-Piña G. Hibiscus sabdariffa L. Extracts Inhibit the Mutagenicity in Microsuspension Assay and the Proliferation of HeLa Cells. J Food Sci 2008; 73:T75-81. [DOI: 10.1111/j.1750-3841.2008.00781.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Hatzipanayioti D, Tzeferakos G, Petropouleas P. DFT and experimental investigation of catecholate derivatives of benzoic acid and pyridine. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Litos C, Aletras V, Hatzipanayioti D, Kamariotaki M, Lymberopoulou-Karaliota A. CV and NMR study on the reaction of Mo(VI) with 3,4-dihydroxybenzoic acid and ascorbic acid in aqueous solution. Inorganica Chim Acta 2007. [DOI: 10.1016/j.ica.2006.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Hatzipanayioti D, Karaliota A, Kamariotaki M, Aletras V, Petropouleas P. Theoretical and spectroscopic investigation of the oxidation and degradation of protocatechuic acid. Chem Phys 2006. [DOI: 10.1016/j.chemphys.2005.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Babich H, Sedletcaia A, Kenigsberg B. In vitro cytotoxicity of protocatechuic acid to cultured human cells from oral tissue: involvement in oxidative stress. PHARMACOLOGY & TOXICOLOGY 2002; 91:245-53. [PMID: 12570031 DOI: 10.1034/j.1600-0773.2002.910505.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Data on the biologic activity of protocatechuic acid are contradictory; some studies have shown that it acts as an antioxidant and suppresses chemical-induced carcinogenesis and others that it induces oxidative stress and promotes tumour formation. The anticarcinogenicity of protocatechuic acid was postulated to be related, in part, to its specific suppression of neoplastic hyperproliferation. To determine whether protocatechuic acid was preferentially antiproliferative to malignant cells, non-malignant and carcinoma cells were exposed for 24 hr to protocatechuic acid (2.5 to 25 mM) and viability was assessed with the neutral red assay. The cell lines were derived from tissues of the human oral cavity, the initial site of exposure upon ingestion of dietary protocatechuic acid, and included normal GN61 gingival fibroblasts, immortalized, non-tumorigenic S-G gingival epithelial cells, and malignant HSG1 cells derived from the salivary gland, HSC-2 cells from the floor of the oral cavity, and CAL27 cells from the tongue. Selective toxicity of protocatechuic acid to malignant cells was not observed. Furthermore, using a total cellular protein determination to quantitate cell growth, no differences in comparative sensitivities of S-G epithelial cells and HSG1 carcinoma cells were noted in a 3 day continuous exposure to 2.5 to 12.5 mM protocatechuic acid and in recovery from a 24 hr exposure to 3 to 15 mM protocatechuic acid. The S-G and HSG1 cells were then used to study the effects of elevated concentrations of protocatechuic acid on oxidative stress. For both cell types, protocatechuic acid induced oxidative stress, presumably through its bioactivation by a tyrosinase pathway. A brief exposure to 25 mM protocatechuic acid lowered the levels of intracellular glutathione and potentiated Fe2+-induced lipid peroxidation of the cells. As determined with the neutral red assay, S-G and HSG1 cells exposed briefly to a non-toxic level (0.5 mM) of the glutathione depleter, 1,3-bis(2-chloroethyl)-N-nitrosourea, were hypersensitive to a subsequent challenge with 10 mM protocatechuic acid and preexposure of the S-G and HSG1 cells to a nontoxic level of protocatechuic acid (2.5 mM) enhanced their sensitivity to a subsequent exposure to tert-butyl hydroperoxide. These findings were consistent with protocatechuic acid, at high levels (> or = 10 mM), acting as an inducer of oxidative stress.
Collapse
Affiliation(s)
- Harvey Babich
- Stern College for Women, Yeshiva University, Department of Biology, 245 Lexington Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
24
|
Sang S, Lapsley K, Jeong WS, Lachance PA, Ho CT, Rosen RT. Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalus Batsch). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:2459-2463. [PMID: 11929314 DOI: 10.1021/jf011533+] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nine phenolic compounds were isolated from the ethyl acetate and n-butanol fractions of almond (Prunus amygdalus) skins. On the basis of NMR data, MS data, and comparison with the literature, these compounds were identified as 3'-O-methylquercetin 3-O-beta-D-glucopyranoside (1); 3'-O-methylquercetin 3-O-beta-D-galactopyranoside (2); 3'-O-methylquercetin 3-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (3); kaempferol 3-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (4); naringenin 7-O-beta-D-glucopyranoside (5); catechin (6); protocatechuic acid (7); vanillic acid (8); and p-hydroxybenzoic acid (9). All of these compounds have been isolated from almond skins for the first time. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activities for compounds 1-9 were determined. Compounds 6 and 7 show very strong DPPH radical scavenging activity. Compounds 1-3, 5, 8, and 9 show strong activity, whereas compound 4 has very weak activity.
Collapse
Affiliation(s)
- Shengmin Sang
- Department of Food Science and Center for Advanced Food Technology, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901-8520, USA
| | | | | | | | | | | |
Collapse
|
25
|
Nakamura Y, Kawakami M, Yoshihiro A, Miyoshi N, Ohigashi H, Kawai K, Osawa T, Uchida K. Involvement of the mitochondrial death pathway in chemopreventive benzyl isothiocyanate-induced apoptosis. J Biol Chem 2002; 277:8492-9. [PMID: 11751909 DOI: 10.1074/jbc.m109760200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we studied the molecular mechanism underlying cell death induced by a cancer chemoprotective compound benzyl isothiocyanate (BITC). The cytotoxic effect of BITC was examined in rat liver epithelial RL34 cells. Apoptosis was induced when the cells were treated with 20 mum BITC, characterized by the appearance of phosphatidylserine on the outer surface of the plasma membrane and caspase-3 activation, whereas no caspase activation and propidium iodide incorporation into cell were detected with 50 mum BITC that induced necrosis. The mitochondrial death pathway was suggested to be involved in BITC-induced apoptosis because the treatment of cells with BITC-induced caspase-9-dependent apoptosis and mitochondrial transmembrane potential (Delta Psi m) alteration. We demonstrated here for the first time that BITC directly modifies mitochondrial functions, including inhibition of respiration, mitochondrial swelling, and release of cytochrome c. Moreover, glutathione depletion by diethyl maleate significantly accelerated BITC-triggered apoptosis, suggesting the involvement of a redox-dependent mechanism. This was also implicated by the observations that intracellular accumulation of reactive oxygen species, including superoxide (O(2)) and hydroperoxides (HPOs), was indeed detected in the cells treated with BITC and that the intracellular HPO level was significantly attenuated by pretreatment with N-acetylcysteine. The treatment with a pharmacological scavenger of O(2), Tiron, also diminished the HPO formation by approximately 80%, suggesting that most of the HPOs were H(2)O(2) derived from the dismutation of O(2). These results suggest that BITC induces apoptosis through a mitochondrial redox-sensitive mechanism.
Collapse
Affiliation(s)
- Yoshimasa Nakamura
- Laboratory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sang S, Lapsley K, Rosen RT, Ho CT. New prenylated benzoic acid and other constituents from almond hulls (Prunus amygdalus Batsch). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:607-9. [PMID: 11804537 DOI: 10.1021/jf0110194] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
One new prenylated benzoic acid derivative, 3-prenyl-4-O-beta-D-glucopyranosyloxy-4-hydroxylbenzoic acid, and three known constituents, catechin, protocatechuic acid, and ursolic acid, have been isolated from the hulls of almond (Prunus amygdalus). Complete assignments of the proton and carbon chemical shifts for the new prenylated benzoic acid derivative were accomplished on the basis of high-resolution 1D and 2D nuclear magnetic resonance data. All of these compounds except ursolic acid are being reported from almond hulls (P. amygdalus) for the first time.
Collapse
Affiliation(s)
- Shengmin Sang
- Department of Food Science and Center for Advanced Food Technology, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901-8520, USA
| | | | | | | |
Collapse
|
27
|
Nakamura Y, Feng Q, Kumagai T, Torikai K, Ohigashi H, Osawa T, Noguchi N, Niki E, Uchida K. Ebselen, a glutathione peroxidase mimetic seleno-organic compound, as a multifunctional antioxidant. Implication for inflammation-associated carcinogenesis. J Biol Chem 2002; 277:2687-94. [PMID: 11714717 DOI: 10.1074/jbc.m109641200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ebselen, a seleno-organic compound showing glutathione peroxidase-like activity, is one of the promising synthetic antioxidants. In the present study, we investigated the antioxidant activities of ebselen using a 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated mouse skin model. Double pretreatments of mouse skin with ebselen significantly inhibited TPA-induced formation of thiobarbituric acid-reacting substance, known as an overall oxidative damage biomarker, in mouse epidermis, suggesting that ebselen indeed acts as an antioxidant in mouse skin. The antioxidative effect of ebselen is attributed to its selective blockade of leukocyte infiltration and activation leading to attenuation of the H(2)O(2) level. In in vitro studies, ebselen inhibited TPA-induced superoxide generation in differentiated HL-60 cells and lipopolysaccharide-induced cyclooxygenase-2 protein expression in RAW 264.7 cells. In addition, we demonstrated for the first time that ebselen potentiated phase II enzyme activities, including NAD(P)H:(quinone-acceptor) oxidoreductase1 and glutathione S-transferase in cultured hepatocytes and in mouse skin. These results strongly suggest that ebselen, a multifunctional antioxidant, is a potential chemopreventive agent in inflammation-associated carcinogenesis.
Collapse
Affiliation(s)
- Yoshimasa Nakamura
- Laboratory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lim EK, Doucet CJ, Li Y, Elias L, Worrall D, Spencer SP, Ross J, Bowles DJ. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem 2002; 277:586-92. [PMID: 11641410 DOI: 10.1074/jbc.m109287200] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Benzoates are a class of natural products containing compounds of industrial and strategic importance. In plants, the compounds exist in free form and as conjugates to a wide range of other metabolites such as glucose, which can be attached to the carboxyl group or to specific hydroxyl groups on the benzene ring. These glucosylation reactions have been studied for many years, but to date only one gene encoding a benzoate glucosyltransferase has been cloned. A phylogenetic analysis of sequences in the Arabidopsis genome revealed a large multigene family of putative glycosyltransferases containing a consensus sequence typically found in enzymes transferring glucose to small molecular weight compounds such as secondary metabolites. Ninety of these sequences have now been expressed as recombinant proteins in Escherichia coli, and their in vitro catalytic activities toward benzoates have been analyzed. The data show that only 14 proteins display activity toward 2-hydroxybenzoic acid, 4-hydroxybenzoic acid, and 3,4-dihydroxybenzoic acid. Of these, only two enzymes are active toward 2-hydroxybenzoic acid, suggesting they are the Arabidopsis salicylic acid glucosyltransferases. All of the enzymes forming glucose esters with the metabolites were located in Group L of the phylogenetic tree, whereas those forming O-glucosides were dispersed among five different groups. Catalytic activities were observed toward glucosylation of the 2-, 3-, or 4-hydroxyl group on the ring. To further explore their regioselectivity, the 14 enzymes were analyzed against benzoic acid, 3-hydroxybenzoic acid, 2,3-, 2,4-, 2,5-, and 2,6-dihydroxybenzoic acid. The data showed that glycosylation of specific sites could be positively or negatively influenced by the presence of additional hydroxyl groups on the ring. This study provides new tools for biotransformation reactions in vitro and a basis for engineering benzoate metabolism in plants.
Collapse
Affiliation(s)
- Eng-Kiat Lim
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 SDD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nakamura Y, Torikai K, Ohigashi H. Toxic dose of a simple phenolic antioxidant, protocatechuic acid, attenuates the glutathione level in ICR mouse liver and kidney. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:5674-5678. [PMID: 11714376 DOI: 10.1021/jf0106594] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It has previously been reported that a toxic dose of protocatechuic acid (PA), a naturally occurring simple phenolic antioxidant in dietary plant foodstuff, has a potential to enhance tumorigenesis and induce contact hypersensitivity in mouse skin. In this study, the modifying effect of a toxic dose of PA on the glutathione (GSH) level in mouse liver and kidney was examined. Intraperitoneal administration of PA (500 mg/kg) caused significant hepatic and nephrotic GSH depletion. Interestingly, slight but significant hepatotoxicity and nephrotoxicity, characterized by the enhancement of plasmic alanine aminotrasferase (ALT) activity and urea level, respectively, were also observed. The subchronic administration of PA (0.1% in drinking water) for 60 days showed not only a significant decrease in the GSH level in kidney but also a significant enhancement of ALT activity in plasma. The protective role of GSH for acute hepatotoxicity using GSH-depleted mice administered a GSH synthesis inhibitor buthionine sulfoximine was also demonstrated. Thus, it is suggested that overdoses of PA can disturb the detoxification of other electrophilic toxicants including ultimate carcinogens.
Collapse
Affiliation(s)
- Y Nakamura
- Laboratory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya 464-8601, Japan
| | | | | |
Collapse
|