1
|
Mitchell SE, Simpson M, Coulet L, Gouedard S, Hambly C, Morimoto J, Allison DB, Speakman JR. Reproduction has immediate effects on female mortality, but no discernible lasting physiological impacts: A test of the disposable soma theory. Proc Natl Acad Sci U S A 2024; 121:e2408682121. [PMID: 39374394 PMCID: PMC11494338 DOI: 10.1073/pnas.2408682121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 10/09/2024] Open
Abstract
The disposable soma theory (DST) posits that organisms age and die because of a direct trade-off in resource allocation between reproduction and somatic maintenance. DST predicts that investments in reproduction accentuate somatic damage which increase senescence and shortens lifespan. Here, we directly tested DST predictions in breeding and nonbreeding female C57BL/6J mice. We measured reproductive outputs, body composition, daily energy expenditure, and oxidative stress at peak lactation and over lifetime. We found that reproduction had an immediate and negative effect on survival due to problems encountered during parturition for some females. However, there was no statistically significant residual effect on survival once breeding had ceased, indicating no trade-off with somatic maintenance. Instead, higher mortality appeared to be a direct consequence of reproduction without long-term physiological consequences. Reproduction did not elevate oxidative stress. Our findings do not provide support for the predictions of the DST.
Collapse
Affiliation(s)
- Sharon E. Mitchell
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
| | - Megan Simpson
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
| | - Lena Coulet
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
- L'Institut Agro Dijon, Dijon Cedex21079, France
| | - Solenn Gouedard
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
- L'Institut Agro Dijon, Dijon Cedex21079, France
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
| | - Juliano Morimoto
- Institute of Mathematics, School of Natural and Computer Sciences, University of Aberdeen, AberdeenAB24 3UE, Scotland, United Kingdom
- Programa de Pós-Graduação em Ecologia e Conservação, Department of Ecology, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná81531-980, Brazil
| | - David B. Allison
- School of Public Health, Indiana University-Bloomington, Bloomington, IN47405
| | - John R. Speakman
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, Scotland, United Kingdom
- Shenzhen key laboratory of metabolic health, Center for Energy metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong province1068, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Institute of Health Sciences, China Medical University, Liaoning Province, Shenyang110052, China
| |
Collapse
|
2
|
Petrachkova T, Soldatkina O, Leduy L, Nepveu A. The BCL11A transcription factor stimulates the enzymatic activities of the OGG1 DNA glycosylase. Biol Chem 2024:hsz-2024-0088. [PMID: 39272221 DOI: 10.1515/hsz-2024-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
The BCL11A transcription factor has previously been shown to interact with and stimulate the enzymatic activities of the NTHL1 DNA glycosylase and Pol β polymerase. Here we show that BCL11A and a smaller peptide encompassing amino acids 160 to 520 can interact with the 8-oxoguanine DNA glycosylase, OGG1, increase the binding of OGG1 to DNA that contains an 8-oxoguanine base and stimulate the glycosylase activity of OGG1. Following BCL11A knockdown, we observed an increase in oxidized purines in the genome using comet assays, while immunoassays reveal an increase in 8-oxoG bases. Structure-function analysis indicates that the stimulation of OGG1 by BCL11A requires the zinc fingers 1, 2 and 3 as well as the proline-rich region between the first and second zing finger, but a glutamate-rich region downstream of zinc finger 3 is dispensable. Ectopic expression of a small peptide that contains the three zinc fingers can rescue the increase in 8-oxoguanine caused by BCL11A knockdown. These findings, together with previous results showing that BCL11A stimulates the enzymatic activities of NTHL1 and the Pol β polymerase, suggest that high expression of BCL11A is important to protect cancer cells against oxidative DNA damage.
Collapse
Affiliation(s)
- Tetiana Petrachkova
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Olha Soldatkina
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Alain Nepveu
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Medicine, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Oncology, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| |
Collapse
|
3
|
Hafez HA, Atoom AM, Khafaga RHM, Shaker SA, Kamel MA, Assem NM, Mahmoud SA. Direct-Acting Antiviral Drug Modulates the Mitochondrial Biogenesis in Different Tissues of Young Female Rats. Int J Mol Sci 2023; 24:15844. [PMID: 37958828 PMCID: PMC10647297 DOI: 10.3390/ijms242115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
(1) Background: Hepatitis C virus (HCV) infection is endemic in Egypt, with the highest prevalence rate worldwide. Sofosbuvir (SOF) is a nucleos(t)ide analog that specifically inhibits HCV replication. This study aimed to explore the possible effects of the therapeutic dose of SOF on the mitochondrial biogenesis and functions of the liver, muscle, and ovarian tissues of young normal female rats. (2) Methods: This study was conducted on 20 female Wistar rats, classified into two groups, the control group and the exposed group; the latter was orally supplemented with 4 mg/kg/day of SOF for 3 months. (3) Results: The exposure to SOF impairs mitochondrial biogenesis via mitochondrial DNA copy number decline and suppressed mitochondrial biogenesis-regulated parameters at mRNA and protein levels. Also, SOF suppresses the DNA polymerase γ (POLG) expression, citrate synthase activity, and mitochondrial NADH dehydrogenase subunit-5 (ND5) content, which impairs mitochondrial functions. SOF increased lipid peroxidation and oxidative DNA damage markers and decreased tissue expression of nuclear factor erythroid 2-related factor 2 (Nfe2l2). (4) Conclusions: The present findings demonstrate the adverse effects of SOF on mitochondrial biogenesis and function in different tissues of young female rats, which mostly appeared in ovarian tissues.
Collapse
Affiliation(s)
- Hala A. Hafez
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (R.H.M.K.); (S.A.S.); (N.M.A.); (S.A.M.)
| | - Ali M. Atoom
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19111, Jordan;
| | - Rana H. M. Khafaga
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (R.H.M.K.); (S.A.S.); (N.M.A.); (S.A.M.)
| | - Sara A. Shaker
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (R.H.M.K.); (S.A.S.); (N.M.A.); (S.A.M.)
| | - Maher A. Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (R.H.M.K.); (S.A.S.); (N.M.A.); (S.A.M.)
| | - Nagwa M. Assem
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (R.H.M.K.); (S.A.S.); (N.M.A.); (S.A.M.)
| | - Shimaa A. Mahmoud
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (R.H.M.K.); (S.A.S.); (N.M.A.); (S.A.M.)
| |
Collapse
|
4
|
Standards for Quantitative Measurement of DNA Damage in Mammalian Cells. Int J Mol Sci 2023; 24:ijms24065427. [PMID: 36982502 PMCID: PMC10051712 DOI: 10.3390/ijms24065427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
As the potential applications of DNA diagnostics continue to expand, there is a need for improved methods and standards for DNA analysis. This report describes several methods that could be considered for the production of reference materials for the quantitative measurement of DNA damage in mammalian cells. With the focus on DNA strand breaks, potentially useful methods for assessing DNA damage in mammalian cells are reviewed. The advantages and limitations of each method, as well as additional concerns with respect to reference material development, are also discussed. In conclusion, we outline strategies for developing candidate DNA damage reference materials that could be adopted by research laboratories in a wide variety of applications.
Collapse
|
5
|
Rout D, Dash UC, Kanhar S, Swain SK, Sahoo AK. Homalium zeylanicum attenuates streptozotocin-induced hyperglycemia and cellular stress in experimental rats via attenuation of oxidative stress imparts inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114649. [PMID: 34536517 DOI: 10.1016/j.jep.2021.114649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Homalium zeylanicum (Gardner) Benth (Salicaceae) leaves are being used as folklore medicine to treat diabetes by the local folk of Andhra Pradesh, India. The medicinal claim of this plant with hypoglycaemic effects was initially studied by the authors. Results demonstrated the important antioxidant activities of the hydroalcohol fraction of leaves of H. zeylanicum leaves (HAHZL) were positively correlated with phenols and flavonoids contents. AIM OF THE STUDY Based on the previous findings, additional research is needed to examine the efficacy of using HAHZL to treat hyperglycemia. We therefore investigated in vitro and in vivo glycemic response of HAHZL, and evaluation of possible mechanism of bioactive molecules in mitigating streptozotocin-induced cellular stress in experimental rats via attenuation of oxidative stress imparts inflammation. METHODS GC-MS/MS analysis of HAHZL was carried out to identify bioactive constituents. In vitro antidiabetic (α-glucosidase, α-amylase) and anti-inflammatory activities were investigated. HFD/low-STZ-prompted diabetic Wistar rats were administered with HAHZL (300 and 400 mg/kg; oral) for 28 days. Blood serum, oxidative stress, inflammation, DNA damage, and antidiabetic markers of pancreas and liver were determined. Histopathological studies of liver and pancreas were performed to assess the protective role of HAHZL. RESULTS GC-MS/MS study revealed 7 bioactive compounds e.g., Phenol, 4-ethenyl-, acetate (28.68%), hydroquinone (9.10%), n-hexadecanoic acid (0.55%), phytol (0.57%), arbutin (17.65%), Vitamin E (1.04%), β-Sitosterol (1.54%) which possess antioxidant, anti-inflammatory and anti-diabetic activities. HAHZL showed significant in vitro glycemic response as evidenced by the inhibition of α-amylase, and α-glucosidase activities. Lineweaver-Burk plot revealed that HAHZL exhibited competitive and mixed competitive inhibition towards α-amylase and α-glucosidase, respectively. HAHZL at 400 mg/kg modulated the pathophysiology associated with HFD/STZ-induced type2 diabetes mellitus and significantly (p < 0.001) improved antihyperglycemic (SG, SI, HOMA-IR, and HbA1C), antidyslipidemic (TC, HDL-C, LDL-C, and TG), antioxidative (MDA, SOD, CAT, GSH, and 8-OHdG) and anti-inflammatory (TNF-α, and CRP) markers in serum, pancreas and liver. In vitro and in vivo test results were corroborated by the improvement of pancreatic and hepatic tissue architecture in diabetic rats. CONCLUSION HAHZL bearing bioactive components phenol, 4-ethenyl-,acetate, hydroquinone, n-hexadecanoic acid, arbutin, phytol, vitamin E and β-sitosterol balanced glycemic level by normalising the levels of glycaemic indices, lipid profile, pancreas and liver functional markers in STZ-induced T2DM rats.
Collapse
Affiliation(s)
- Deeptimayee Rout
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Umesh Chandra Dash
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Satish Kanhar
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Sandeep Kumar Swain
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Atish Kumar Sahoo
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India.
| |
Collapse
|
6
|
Mehling R, Schwenck J, Lemberg C, Trautwein C, Zizmare L, Kramer D, Müller A, Fehrenbacher B, Gonzalez-Menendez I, Quintanilla-Martinez L, Schröder K, Brandes RP, Schaller M, Ruf W, Eichner M, Ghoreschi K, Röcken M, Pichler BJ, Kneilling M. Immunomodulatory role of reactive oxygen species and nitrogen species during T cell-driven neutrophil-enriched acute and chronic cutaneous delayed-type hypersensitivity reactions. Theranostics 2021; 11:470-490. [PMID: 33391487 PMCID: PMC7738859 DOI: 10.7150/thno.51462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Rationale: Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important regulators of inflammation. The exact impact of ROS/RNS on cutaneous delayed-type hypersensitivity reaction (DTHR) is controversial. The aim of our study was to identify the dominant sources of ROS/RNS during acute and chronic trinitrochlorobenzene (TNCB)-induced cutaneous DTHR in mice with differently impaired ROS/RNS production. Methods: TNCB-sensitized wild-type, NADPH oxidase 2 (NOX2)- deficient (gp91phox-/-), myeloperoxidase-deficient (MPO-/-), and inducible nitric oxide synthase-deficient (iNOS-/-) mice were challenged with TNCB on the right ear once to elicit acute DTHR and repetitively up to five times to induce chronic DTHR. We measured ear swelling responses and noninvasively assessed ROS/RNS production in vivo by employing the chemiluminescence optical imaging (OI) probe L-012. Additionally, we conducted extensive ex vivo analyses of inflamed ears focusing on ROS/RNS production and the biochemical and morphological consequences. Results: The in vivo L-012 OI of acute and chronic DTHR revealed completely abrogated ROS/RNS production in the ears of gp91phox-/- mice, up to 90 % decreased ROS/RNS production in the ears of MPO-/- mice and unaffected ROS/RNS production in the ears of iNOS-/- mice. The DHR flow cytometry analysis of leukocytes derived from the ears with acute DTHR confirmed our in vivo L-012 OI results. Nevertheless, we observed no significant differences in the ear swelling responses among all the experimental groups. The histopathological analysis of the ears of gp91phox-/- mice with acute DTHRs revealed slightly enhanced inflammation. In contrast, we observed a moderately reduced inflammatory immune response in the ears of gp91phox-/- mice with chronic DTHR, while the inflamed ears of MPO-/- mice exhibited the strongest inflammation. Analyses of lipid peroxidation, 8-hydroxy-2'deoxyguanosine levels, redox related metabolites and genomic expression of antioxidant proteins revealed similar oxidative stress in all experimental groups. Furthermore, inflamed ears of wild-type and gp91phox-/- mice displayed neutrophil extracellular trap (NET) formation exclusively in acute but not chronic DTHR. Conclusions: MPO and NOX2 are the dominant sources of ROS/RNS in acute and chronic DTHR. Nevertheless, depletion of one primary source of ROS/RNS exhibited only marginal but conflicting impact on acute and chronic cutaneous DTHR. Thus, ROS/RNS are not a single entity, and each species has different properties at certain stages of the disease, resulting in different outcomes.
Collapse
|
7
|
Rout D, Chandra Dash U, Kanhar S, Swain SK, Sahoo AK. The modulatory role of prime identified compounds in the bioactive fraction of Homalium zeylanicum in high-fat diet fed-streptozotocin-induced type 2 diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113099. [PMID: 32535241 DOI: 10.1016/j.jep.2020.113099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Homalium zeylanicum (Gardner) Benth. is a medicinal plant traditionally used in controlling diabetes which thus far has been assessed by the authors only to a very limited extent. PURPOSE To fill the research gap in the literature review, we investigated the antihyperglycemic effects of hydro alcohol fraction of bark of H. zeylanicum (HAHZB) by modulating oxidative stress and inflammation in high-fat diet fed-streptozotocin (HFD/STZ)-induced type-2 diabetic rats. MATERIALS AND METHODS To understand the antioxidant capacity of HAHZB, oxygen radical absorbance capacity (ORAC) and cell-based antioxidant protection in erythrocytes (CAP-e) were performed. GC-MS/MS analysis was performed to assess the bioactive components in HAHZB. HFD/STZ-induced diabetic rats were treated orally with HAHZB (300 and 400 mg/kg) for 28 days. After the end of the experiment, marker profiling and histopathological observation of blood and pancreas were examined. The study also highlights interaction between diabetes, oxidative stress and inflammation by examining the increased pro-inflammatory cytokines e.g. TNF-α and C-reactive protein (CRP) promotes DNA damage e.g. oxidation of 8-hydroxy-2-deoxyguanosine (8-OHdG) in chronic hyperglycaemia. RESULTS In ex vivo cellular antioxidant capacity of -CAP-e and ORAC assays, HAHZB showed remarkable free radical scavenging ability in a dose dependent manner. GC-MS/MS analysis identified 28 no. of compounds and out of which, oleic acid (1.03%), ethyl tridecanoate (11.77%), phytol (1.29), 9,12-octadecadienoic acid, methyl ester, (E,E)-(5.97%), stigmasterol (1.30%) and β-sitosterol (2.86%) have antioxidant, anti-inflammatory and anti-diabetic activities. HAHZB 400 mg/kg significantly (p < 0.001) improved the lipid profile (TC: 74.66 ± 0.59, HDL-C: 22.08 ± 0.46, LDL-C: 38.06 ± 0.69, and TG: 171.92 ± 1.01 mg/dL) as well as restoring antidiabetic markers (SG: 209.62 ± 1.05 mg/dL, SI: 15.07 ± 0.11 μIU/mL, HOMA-IR: 7.79 ± 0.04 %, and HbA1C: 8.93 ± 0.03 %) and renal functional markers (Tg: 291.26 ± 0.57 pg/mL, BUN: 23.79 ± 0.14 mg/dL, and Cr: 1.34 ± 0.04 mg/dL) in diabetic rats. Oxidative stress markers of pancreas (MDA: 3.65 ± 0.17 nM TBARS /mg protein, SOD: 3.14 ± 0.28 U/mg protein, CAT: 7.88 ± 0.23 U/mg protein, GSH: 12.63 ± 0.28 µM/g of tissue) were restored to normal as evidenced by histological architecture of pancreatic islet cells. The increased level of pro-inflammatory cytokines and oxidative DNA damage were significantly restored (TNF-α: 54.48 ± 3.19 pg/mL, CRP: 440.22 ± 7.86 ng/mL, and 8-OHdG: 63.65 ± 1.84 ng/mL) by HAHZB in diabetic rats. CONCLUSION The present findings confirm that the presence of bioactive compounds in HAHZB exert therapeutic protective effect by decreasing oxidative, inflammation and pancreatic β-cell damage in oxidative stress induced diabetic rats.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine/blood
- Animals
- Anti-Inflammatory Agents/isolation & purification
- Anti-Inflammatory Agents/pharmacology
- Antioxidants/isolation & purification
- Antioxidants/pharmacology
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cytokines/blood
- DNA Damage
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat
- Female
- Hypoglycemic Agents/isolation & purification
- Hypoglycemic Agents/pharmacology
- Inflammation Mediators/blood
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Male
- Oxidative Stress/drug effects
- Plant Bark
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Rats, Wistar
- Salicaceae/chemistry
- Streptozocin
Collapse
Affiliation(s)
- Deeptimayee Rout
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Umesh Chandra Dash
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Satish Kanhar
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Sandeep Kumar Swain
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Atish Kumar Sahoo
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India.
| |
Collapse
|
8
|
Li H, Yang P, Knight W, Guo Y, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. The interactions of dopamine and oxidative damage in the striatum of patients with neurodegenerative diseases. J Neurochem 2020; 152:235-251. [PMID: 31613384 PMCID: PMC6981021 DOI: 10.1111/jnc.14898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 09/20/2019] [Accepted: 10/14/2019] [Indexed: 01/16/2023]
Abstract
The striatum with a number of dopamine containing neurons, receiving projections from the substantia nigra and ventral tegmental area; plays a critical role in neurodegenerative diseases of motor and memory function. Additionally, oxidative damage to nucleic acid may be vital in the development of age-associated neurodegeneration. The metabolism of dopamine is recognized as one of the sources of reactive oxygen species through the Fenton mechanism. The proposed interactions of oxidative insults and dopamine in the striatum during the progression of diseases are the hypotheses of most interest to our study. This study investigated the possibility of significant interactions between these molecules that are involved in the late-stage of Alzheimer's disease (AD), Parkinson disease (PD), Parkinson disease dementia, dementia with Lewy bodies, and controls using ELISA assays, autoradiography, and mRNA in situ hybridization assay. Interestingly, lower DNA/RNA oxidative adducts levels in the caudate and putamen of diseased brains were observed with the exception of an increased DNA oxidative product in the caudate of AD brains. Similar changes were found for dopamine concentration and vesicular monoamine transporter 2 densities. We also found that downstream pre-synaptic dopamine D1 Receptor binding correlated with dopamine loss in Lewy body disease groups, and RNA damage and β-site APP cleaving enzyme 1 in the caudate of AD. This is the first demonstration of region-specific alterations of DNA/RNA oxidative damage which cannot be viewed in isolation, but rather in connection with the interrelationship between different neuronal events; chiefly DNA oxidative adducts and density of vesicular monoamine transporter 2 densities in AD and PD patients.
Collapse
Affiliation(s)
- Huifangjie Li
- Department of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Pengfei Yang
- Department of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - William Knight
- Department of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Yingqiu Guo
- Department of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Joel S. Perlmutter
- Department of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of NeuroscienceWashington University School of MedicineSt. LouisMissouriUSA
- Department of Physical TherapyWashington University School of MedicineSt. LouisMissouriUSA
- Department of Occupational TherapyWashington University School of MedicineSt. LouisMissouriUSA
| | | | - John C. Morris
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Jinbin Xu
- Department of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
9
|
Ozten N, Vega K, Liehr J, Huang X, Horton L, Cavalieri EL, Rogan EG, Bosland MC. Role of Estrogen in Androgen-Induced Prostate Carcinogenesis in NBL Rats. Discov Oncol 2019; 10:77-88. [PMID: 30877616 DOI: 10.1007/s12672-019-00360-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/27/2019] [Indexed: 01/27/2023] Open
Abstract
Androgens are thought to cause prostate cancer, but the underlying mechanisms are unclear. Data from animal studies suggest that for androgens to cause prostate cancer, they must be aromatized to estrogen and act in concert with estrogen metabolites. We tested the hypothesis that androgen-receptor and estrogen receptor-mediated effects of androgen and estrogen are necessary, as well as genotoxicity of estrogen metabolites. NBL rats were treated with androgenic and estrogenic compounds for 16-75 weeks through slow-release silastic implants or pellets. Testosterone alone induced cancer in the prostate of 37% of rats. 5α-Dihydrotestosterone, which cannot be converted to estradiol or testosterone, did not cause a significant prostate cancer incidence (4%). Addition of estradiol to 5α-dihydrotestosterone treatment did not markedly enhance prostate cancer incidence (14%), unlike adding estradiol to testosterone treatment which induced a 100% tumor incidence. Testosterone plus estradiol treatment induced a DNA adduct detectable by 32P-postlabeling, oxidative DNA damage (8-hydroxyguanosine), and lipid peroxidation at the site within the prostate where this treatment causes cancers, preceding later cancer formation. The non-estrogenic 4-hydroxy metabolite of estradiol, when combined with testosterone, induced prostatic dysplasia within 16 weeks and, after long-term treatment, a very low incidence of prostate cancer (21%). When an estrogen that cannot be hydroxylated (2-fluoroestradiol) was added to this combined treatment with testosterone and 4-hydroxyestradiol, dysplasia frequency after 16 weeks was doubled. These results strongly support the hypothesis, but additional definitive studies are needed which may identify new targets to interfere with these mechanisms that are clinically feasible in humans.
Collapse
Affiliation(s)
- Nur Ozten
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Katherine Vega
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10003, USA
- DSM, Parsippany, NJ, 07054, USA
| | - Joachim Liehr
- Christus Stehlin Foundation for Cancer Research, Houston, TX, 77025, USA
| | - Xi Huang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10003, USA
- Ex Vivo Dynamics, New York, NY, 10027, USA
| | - Lori Horton
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10003, USA
| | - Ercole L Cavalieri
- Eppley Institute and Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, 69198-4388, USA
| | - Eleanor G Rogan
- Eppley Institute and Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, 69198-4388, USA
| | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10003, USA.
| |
Collapse
|
10
|
El-Gazzar AM, Abdelgied M, Alexander DB, Alexander WT, Numano T, Iigo M, Naiki A, Takahashi S, Takase H, Hirose A, Kannno J, Elokle OS, Nazem AM, Tsuda H. Comparative pulmonary toxicity of a DWCNT and MWCNT-7 in rats. Arch Toxicol 2018; 93:49-59. [PMID: 30341734 PMCID: PMC6343020 DOI: 10.1007/s00204-018-2336-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022]
Abstract
Very little is known about the in vivo toxicity of inhaled double-walled carbon nanotubes (DWCNTs). In the present study, we compared the pulmonary toxicity of DWCNT to MWCNT-7, a well-known multi-walled carbon nanotube. Rats were divided into six groups: untreated, vehicle, low-dose DWCNT, high-dose DWCNT, low-dose MWCNT-7, and high-dose MWCNT-7. The test materials were administered by intra-tracheal intra-pulmonary spraying (TIPS) every other day for 15 days: the low-dose and high-dose groups were administered final total doses of 0.25 and 0.50 mg/rat of the test material. The animals were sacrificed 1 and 6 weeks after the final TIPS administration. Six weeks after the final TIPS administration, rats administered MWCNT-7 had high levels of macrophage infiltration into the lung with dense alveolar wall fibrous thickening throughout the lung; significant elevation of lactate dehydrogenase activity, alkaline phosphatase activity, and total protein concentration in the bronchioalveolar lavage fluid; an increase in the pulmonary cell PCNA index; slightly elevated levels of 8-OHdG DNA adducts in lung tissue DNA; a small but significant increase in protein concentration in the pleural cavity lavage fluid and an increase in the visceral mesothelial cell PCNA index. None of these parameters was increased in rats administered DWCNT. The primary lesion in rats administered DWCNT was scattered formation of granulation tissue containing internalized DWCNT fibers. Our data indicate that DWCNT has lower pulmonary and pleural toxicity than MWCNT-7.
Collapse
Affiliation(s)
- Ahmed M El-Gazzar
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdelgied
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni Suef University, Beni Suef, Egypt
| | | | | | - Takamasa Numano
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| | - Masaaki Iigo
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| | - Aya Naiki
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Akihiko Hirose
- Division of Risk Assessment, National Institute of Hygienic Sciences, Kawasaki, Japan
| | - Jun Kannno
- Bioassay Research Center, Japan Industrial Safety and Health Association, Kanagawa, Japan
| | - Osama Saeid Elokle
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ashraf Mohamed Nazem
- Department of Food Hygiene, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
11
|
Esaka Y, Hisato K, Yamamoto T, Murakami H, Uno B. Evaluation of Type-A Endonucleases for the Quantitative Analysis of DNA Damage due to Exposure to Acetaldehyde Using Capillary Electrophoresis. ANAL SCI 2018; 34:901-906. [PMID: 30101884 DOI: 10.2116/analsci.18p087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The substrate selectivities of three endonucleases were studied quantitatively using capillary zone electrophoresis to find one giving N2-ethyl(Et)-2'-deoxyguanosine-5'-monophosphate (5'-dGMP) and cyclic 1,N2-propano(CPr)-5'-dGMP from DNAs damaged by acetaldehyde (AA). Six 2'-deoxyribonucleoside-5'-monophosphates to be quantified in the hydrolysis solutions of DNAs, namely, Et-5'-dGMP, CPr-5'-dGMP, and four authentic ones, were completely separated using a 100 mM borate running buffer solution having an optimized pH of 9.67. Using the present method, nuclease reactions of nuclease S1 (NS1), nuclease P1 (NP1), and nuclease Bal 31 to 2'-deoxyribonucleoside-5'-monophosphates from damaged Calf thymus (CT-) DNAs were monitored. The CT-DNAs were prepared by treatment with AA to generate Et-guanine or CPr-guanine internally. Bal 31 hydrolyzed the damaged CT-DNAs to yield Et-5'-dGMP and CPr-5'-dGMP quantitatively. The two 5'-dGMP adducts were not detected in the hydrolysis solutions using NS1 or NP1. Bal 31 can be a suitable nuclease for analyzing DNA damages caused by AA.
Collapse
Affiliation(s)
- Yukihiro Esaka
- Gifu Pharmaceutical University.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University
| | | | | | - Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology
| | - Bunji Uno
- Gifu Pharmaceutical University.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University
| |
Collapse
|
12
|
Yin J, Chen S, Zhang N, Wang H. Multienzyme Cascade Bioreactor for a 10 min Digestion of Genomic DNA into Single Nucleosides and Quantitative Detection of Structural DNA Modifications in Cellular Genomic DNA. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21883-21890. [PMID: 29882639 DOI: 10.1021/acsami.8b05399] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Identification and quantification of chemical DNA modifications provide essential information on genomic DNA changes, for example, epigenetic modifications and abnormal DNA lesions. In this vein, it requires to digest genomic DNA strands into single nucleosides, facilitating the mass spectrometry analysis. However, rapid digestion of such supramacromolecule DNA of several millions Daltons (molecular weight) into single nucleosides remains very challenging. Here, we constructed an immobilized benzonase capillary bioreactor and further tandemly coupled with immobilized snake venom phosphodiesterase and alkaline phosphatase capillary bioreactor to form a novel three-enzyme cascade bioreactor (BenzoSAC bioreactor). In these constructions, the chosen enzymes were immobilized onto synthetic porous capillary silica monoliths. With the tailor-made porous structure and high immobilized capacity and high digestion rate of benzonase, genomic DNA of >99.5% can be digested into single nucleosides within only 10 min when passing through the BenzoSAC bioreactor by microinjection pump. In contrast, traditional digestion requires 8-24 h. By offline coupling this benzoSAC bioreactor with liquid chromatography-tandem mass spectrometry, we detected 5-hydroxymethylcytosine, a major oxidation product of the epigenetically crucial 5-methylcytosine, in genomic DNA isolated from ladder cancer (T24) cells. The newly synthesized BenzoSAC bioreactor and the proposed mass spectrometry detection are promising for fast identification and analysis of structural modifications in DNA.
Collapse
Affiliation(s)
- Junfa Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Shaokun Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ning Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
13
|
Khan S, Zafar A, Naseem I. Copper-redox cycling by coumarin-di(2-picolyl)amine hybrid molecule leads to ROS-mediated DNA damage and apoptosis: A mechanism for cancer chemoprevention. Chem Biol Interact 2018; 290:64-76. [PMID: 29803612 DOI: 10.1016/j.cbi.2018.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/15/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
Coumarin is an important bioactive pharmacophore. It is found in plants as a secondary metabolite and exhibits diverse pharmacological properties including anticancer effects against different malignancies. Therapeutic efficacy of coumarin derivatives depends on the pattern of substitution and conjugation with different moieties. Cancer cells contain elevated copper as compared to normal cells that plays a role in angiogenesis. Thus, targeting copper in malignant cells via copper chelators can serve as an attractive targeted anticancer strategy. Our previous efforts led to the synthesis of di(2-picolyl)amine-3(bromoacetyl)coumarin hybrid molecule (ligand-L) endowed with DNA/Cu(II) binding properties, and ROS generation ability in the presence of copper ions. In the present study, we aimed to validate copper-dependent cytotoxic action of ligand-L against malignant cells. For this, we used a cellular model system of copper (Cu) overloaded lymphocytes (CuOLs) to simulate malignancy-like condition. In CuOLs, lipid peroxidation/protein carbonylation, ROS generation, DNA fragmentation and apoptosis were investigated in the presence of ligand-L. Results showed that ligand-L-Cu(II) interaction leads to ROS generation, lipid peroxidation/protein carbonylation (oxidative stress parameters), DNA damage, up-regulation of p53 and mitochondrial-mediated apoptosis in treated lymphocytes. Further, pre-incubation with neocuproine (membrane permeable copper chelator) and ROS scavengers attenuated the DNA damage and apoptosis. These results suggest that cellular copper acts as molecular target for ligand-L to propagate redox cycling and generation of ROS via Fenton-like reaction leading to DNA damage and apoptosis. Further, we showed that ligand-L targets elevated copper in breast cancer MCF-7 and colon cancer HCT116 cells leading to a pro-oxidant inhibition of proliferation of cancer cells. In conclusion, we propose copper-dependent ROS-mediated mechanism for the cytotoxic action of ligand-L in malignant cells. Thus, targeting elevated copper represents an effective therapeutic strategy for selective cytotoxicity against malignant cells.
Collapse
Affiliation(s)
- Saman Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
14
|
Zafar A, Singh S, Naseem I. Cytotoxic activity of soy phytoestrogen coumestrol against human breast cancer MCF-7 cells: Insights into the molecular mechanism. Food Chem Toxicol 2017; 99:149-161. [PMID: 27913286 DOI: 10.1016/j.fct.2016.11.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/13/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
Abstract
Coumestrol is a phytoestrogen present in soybean products and recognized as potential cancer therapeutic agent against breast cancer. However, the clear molecular mechanism of anticancer-activity of coumestrol in breast carcinoma has not been reported. It is well established that copper levels are elevated in different malignancies. Therefore, the objective of this study was to investigate the copper-dependent cytotoxic action of coumestrol in human breast cancer MCF-7 cells. Results showed that coumestrol inhibited proliferation and induced apoptosis in MCF-7 cells, which was prevented by copper chelator neocuproine and ROS scavengers. Coumestrol treatment induced ROS generation coupled to DNA fragmentation, up-regulation of p53/p21, cell cycle arrest at G1/S phase, mitochondrial membrane depolarization and caspases 9/3 activation. All these effects were suppressed by ROS scavengers and neocuproine. These results suggest that coumestrol targets elevated copper for redox cycling to generate ROS leading to DNA fragmentation. DNA damage leads to p53 up-regulation which directs the cell cycle arrest at G1/S phase and promotes caspase-dependent apoptosis of MCF-7 cells. In conclusion, copper targeted ROS-mediated p53-dependent mechanism better explains the cytotoxic action of coumestrol in MCF-7 cells. Thus, targeting elevated copper levels might be a potential therapeutic strategy for selective cytotoxic action against malignant cells.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Swarnendra Singh
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
15
|
Jothery AHA, Vaanholt LM, Mody N, Arnous A, Lykkesfeldt J, Bünger L, Hill WG, Mitchell SE, Allison DB, Speakman JR. Oxidative costs of reproduction in mouse strains selected for different levels of food intake and which differ in reproductive performance. Sci Rep 2016; 6:36353. [PMID: 27841266 PMCID: PMC5107891 DOI: 10.1038/srep36353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
Oxidative damage caused by reactive oxygen species has been hypothesised to underpin the trade-off between reproduction and somatic maintenance, i.e., the life-history-oxidative stress theory. Previous tests of this hypothesis have proved equivocal, and it has been suggested that the variation in responses may be related to the tissues measured. Here, we measured oxidative damage (protein carbonyls, 8-OHdG) and antioxidant protection (enzymatic antioxidant activity and serum antioxidant capacity) in multiple tissues of reproductive (R) and non-reproductive (N) mice from two mouse strains selectively bred for high (H) or low (L) food intake, which differ in their reproductive performance, i.e., H mice have increased milk energy output (MEO) and wean larger pups. Levels of oxidative damage were unchanged (liver) or reduced (brain and serum) in R versus N mice, and no differences in multiple measures of oxidative protection were found between H and L mice in liver (except for Glutathione Peroxidase), brain or mammary glands. Also, there were no associations between an individual’s energetic investment (e.g., MEO) and most of the oxidative stress measures detected in various tissues. These data are inconsistent with the oxidative stress theory, but were more supportive of, but not completely consistent, with the ‘oxidative shielding’ hypothesis.
Collapse
Affiliation(s)
- Aqeel H Al Jothery
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.,Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Karbala, Karbala, Iraq
| | - Lobke M Vaanholt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Nimesh Mody
- Institute of Medical Sciences, University of Aberdeen, College of Life Sciences and Medicine, Foresterhill Health Campus, Aberdeen, United Kingdom
| | - Anis Arnous
- Section of Experimental Animal Models, Faculty of Health &Medical Sciences,University of Copenhagen, Denmark
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Faculty of Health &Medical Sciences,University of Copenhagen, Denmark
| | - Lutz Bünger
- Animal and Veterinary Science Group, Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK
| | - William G Hill
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - David B Allison
- School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.,Institute of Genetics and Developmental Biology, State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
16
|
Mitchell SE, Delville C, Konstantopedos P, Hurst J, Derous D, Green C, Chen L, Han JJD, Wang Y, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The effects of graded levels of calorie restriction: II. Impact of short term calorie and protein restriction on circulating hormone levels, glucose homeostasis and oxidative stress in male C57BL/6 mice. Oncotarget 2016; 6:23213-37. [PMID: 26061745 PMCID: PMC4695113 DOI: 10.18632/oncotarget.4003] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/20/2015] [Indexed: 12/15/2022] Open
Abstract
Limiting food intake attenuates many of the deleterious effects of aging, impacting upon healthspan and leading to an increased lifespan. Whether it is the overall restriction of calories (calorie restriction: CR) or the incidental reduction in macronutrients such as protein (protein restriction: PR) that mediate these effects is unclear. The impact of 3 month CR or PR, (10 to 40%), on C57BL/6 mice was compared to controls fed ad libitum. Reductions in circulating leptin, tumor necrosis factor-α and insulin-like growth factor-1 (IGF-1) were relative to the level of CR and individually associated with morphological changes but remained unchanged following PR. Glucose tolerance and insulin sensitivity were improved following CR but not affected by PR. There was no indication that CR had an effect on oxidative damage, however CR lowered antioxidant activity. No biomarkers of oxidative stress were altered by PR. CR significantly reduced levels of major urinary proteins suggesting lowered investment in reproduction. Results here support the idea that reduced adipokine levels, improved insulin/IGF-1 signaling and reduced reproductive investment play important roles in the beneficial effects of CR while, in the short-term, attenuation of oxidative damage is not applicable. None of the positive effects were replicated with PR.
Collapse
Affiliation(s)
- Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Camille Delville
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Jane Hurst
- Mammalian Behaviour & Evolution Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Cara Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jackie J D Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Daniel E L Promislow
- Department of Pathology and Department of Biology, University of Washington, Seattle, USA
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| |
Collapse
|
17
|
Li P, Ramm GA, Macdonald GA. Value of the 8-oxodG/dG ratio in chronic liver inflammation of patients with hepatocellular carcinoma. Redox Biol 2016; 8:259-70. [PMID: 26890046 PMCID: PMC4761657 DOI: 10.1016/j.redox.2016.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to examine the role of oxidative DNA damage in chronic liver inflammation in the evolution of hepatocellular carcinoma. The accumulated data demonstrated that oxidative DNA damage and chronic liver inflammation are involved in the transformation of normal hepatocytes and their evolution towards hepatocellular carcinoma. However, the levels of 8-oxy-2'-deoxy-guanosine (8-oxodG), a biomarker of oxidative DNA damage, were overestimated and underestimated in previous reports due to various technical limitations. The current techniques are not suitable to analyze the 8-oxodG levels in the non-malignant liver tissues and tumors of hepatocellular carcinoma patients unless they are modified. Therefore, in this study, the protocols for extraction and hydrolysis of DNA were optimized using 54 samples from hepatocellular carcinoma patients with various risk factors, and the 8-oxodG and 2'-deoxyguanosine (dG) levels were measured. The patients enrolled in the study include 23 from The Princess Alexandra Hospital and The Royal Brisbane and Women's Hospitals, Brisbane, Australia, and 31 from South Africa. This study revealed that the 8-oxodG/dG ratios tended to be higher in most non-malignant liver tissues compared to hepatocellular carcinoma tissue (p=0.2887). It also appeared that the ratio was higher in non-malignant liver tissue from Southern African patients (p=0.0479), but there was no difference in the 8-oxodG/dG ratios between non-malignant liver tissues and tumors of Australian hepatocellular carcinoma patients (p=0.7722). Additionally, this study also revealed a trend for a higher 8-oxodG/dG ratio in non-malignant liver tissues compared to tumoural tissues of patients with HBV. Significant differences were not observed in the 8-oxodG/dG ratios between non-cirrhotic and cirrhotic non-malignant liver tissues.
Collapse
Affiliation(s)
- Pengcheng Li
- The Medical School, The University of Queensland, QLD 4006, Australia.
| | - Grant A Ramm
- The Medical School, The University of Queensland, QLD 4006, Australia; Hepatic Fibrosis, QIMR Berghofer Medical Research Institute, QLD 4029, Australia
| | - Graeme A Macdonald
- The Medical School, The University of Queensland, QLD 4006, Australia; Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, QLD 4102, Australia
| |
Collapse
|
18
|
Yin J, Xu T, Zhang N, Wang H. Three-Enzyme Cascade Bioreactor for Rapid Digestion of Genomic DNA into Single Nucleosides. Anal Chem 2016; 88:7730-7. [DOI: 10.1021/acs.analchem.6b01682] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Junfa Yin
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tian Xu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Zhang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hailin Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Sliwinska A, Kwiatkowski D, Czarny P, Toma M, Wigner P, Drzewoski J, Fabianowska-Majewska K, Szemraj J, Maes M, Galecki P, Sliwinski T. The levels of 7,8-dihydrodeoxyguanosine (8-oxoG) and 8-oxoguanine DNA glycosylase 1 (OGG1) - A potential diagnostic biomarkers of Alzheimer's disease. J Neurol Sci 2016; 368:155-9. [PMID: 27538622 DOI: 10.1016/j.jns.2016.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022]
Abstract
Evidence indicates that oxidative stress contributes to neuronal cell death in Alzheimer's disease (AD). Increased oxidative DNA damage l, as measured with 8-oxoguanine (8-oxoG), and reduced capacity of proteins responsible for removing of DNA damage, including 8-oxoguanine DNA glycosylase 1 (OGG1), were detected in brains of AD patients. In the present study we assessed peripheral blood biomarkers of oxidative DNA damage, i.e. 8- oxoG and OGG1, in AD diagnosis, by comparing their levels between the patients and the controls. Our study was performed on DNA and serum isolated from peripheral blood taken from 100 AD patients and 110 controls. For 8-oxoG ELISA was employed. The OGG1 level was determined using ELISA and Western blot technique. Levels of 8-oxoG were significantly higher in DNA of AD patients. Both ELISA and Western blot showed decreased levels of OGG1 in serum of AD patients. Our results show that oxidative DNA damage biomarkers detected in peripheral tissue could reflect the changes occurring in the brain of patients with AD. These results also suggest that peripheral blood samples may be useful to measure oxidative stress biomarkers in AD.
Collapse
Affiliation(s)
- Agnieszka Sliwinska
- Department of Internal Disease, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | | | - Piotr Czarny
- University of Lodz, Department of Molecular Genetics, Lodz, Poland; Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Monika Toma
- University of Lodz, Department of Molecular Genetics, Lodz, Poland
| | - Paulina Wigner
- University of Lodz, Department of Molecular Genetics, Lodz, Poland
| | - Jozef Drzewoski
- Department of Internal Disease, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | | | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Michael Maes
- Deakin University IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand; Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Brazil
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- University of Lodz, Department of Molecular Genetics, Lodz, Poland.
| |
Collapse
|
20
|
Li XL, Yuan J, Dong YS, Fu CH, Li MT, Yu LJ. Optimization of an HPLC Method for Determining the Genomic Methylation Levels of Taxus Cells. J Chromatogr Sci 2015; 54:200-5. [PMID: 26341490 DOI: 10.1093/chromsci/bmv129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 11/14/2022]
Abstract
An HPLC method for quantifying total DNA methylation in Taxus chinensis cells is described. Optimal conditions for the method were established as follows: DNA was hydrolyzed with DNA degradase at 37°C for 3 h. The mobile phase was a mixture of Solvent A [50 mM potassium dihydrogen phosphate/triethylamine (100:0.2, v/v)] and Solvent B (methanol); the gradient was 10% (v/v) solvent B. The calibration curves for deoxycytidine monophosphate (dCMP) and methylated dCMP were linear within 1.0-160.0 µg mL(-1), with correlation coefficients of 0.9996 and 0.9998. The limits of detection for dCMP and 5-mdCMP were 0.482 and 0.301 ng mL(-1), respectively, and the limits of quantification were 1.6 and 1.0 ng mL(-1), respectively. The method has been validated according to the current International Conference Harmonization guidelines. The method was able to quantify the content of dCMP and methylated dCMP specifically, accurately and precisely. The global DNA methylation level in different Taxus cells was measured using as little as 3 µg of DNA according to the optimized procedure. In addition, degradation of 5-methylcytosine was prevented.
Collapse
Affiliation(s)
- Xiao-li Li
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jie Yuan
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan-shan Dong
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chun-hua Fu
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan 430074, China Key Laboratory of Molecular Biophysics of Ministry of Education, Wuhan 430074, China
| | - Mao-Teng Li
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan 430074, China Key Laboratory of Molecular Biophysics of Ministry of Education, Wuhan 430074, China Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang, China
| | - Long-jiang Yu
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan 430074, China Key Laboratory of Molecular Biophysics of Ministry of Education, Wuhan 430074, China
| |
Collapse
|
21
|
Zhang F, Bartels MJ, LeBaron MJ, Schisler MR, Jeong YC, Gollapudi BB, Moore NP. LC–MS/MS simultaneous quantitation of 2-hydroxyethylated, oxidative, and unmodified DNA nucleosides in DNA isolated from tissues of mice after exposure to ethylene oxide. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 976-977:33-48. [DOI: 10.1016/j.jchromb.2014.10.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/21/2014] [Accepted: 10/29/2014] [Indexed: 11/28/2022]
|
22
|
Ahmed MAE. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway. Toxicol Appl Pharmacol 2014; 282:285-96. [PMID: 25542992 DOI: 10.1016/j.taap.2014.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/15/2022]
Abstract
The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoate (10mg/kg/week, I.M.), taurine (100mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats.
Collapse
Affiliation(s)
- Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt.
| |
Collapse
|
23
|
Ramdzan ZM, Vadnais C, Pal R, Vandal G, Cadieux C, Leduy L, Davoudi S, Hulea L, Yao L, Karnezis AN, Paquet M, Dankort D, Nepveu A. RAS transformation requires CUX1-dependent repair of oxidative DNA damage. PLoS Biol 2014; 12:e1001807. [PMID: 24618719 PMCID: PMC3949673 DOI: 10.1371/journal.pbio.1001807] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/29/2014] [Indexed: 01/19/2023] Open
Abstract
The base excision repair (BER) that repairs oxidative damage is upregulated as an adaptive response in maintaining tumorigenesis of RAS-transformed cancer cells. The Cut homeobox 1 (CUX1) gene is a target of loss-of-heterozygosity in many cancers, yet elevated CUX1 expression is frequently observed and is associated with shorter disease-free survival. The dual role of CUX1 in cancer is illustrated by the fact that most cell lines with CUX1 LOH display amplification of the remaining allele, suggesting that decreased CUX1 expression facilitates tumor development while increased CUX1 expression is needed in tumorigenic cells. Indeed, CUX1 was found in a genome-wide RNAi screen to identify synthetic lethal interactions with oncogenic RAS. Here we show that CUX1 functions in base excision repair as an ancillary factor for the 8-oxoG-DNA glycosylase, OGG1. Single cell gel electrophoresis (comet assay) reveals that Cux1+/− MEFs are haploinsufficient for the repair of oxidative DNA damage, whereas elevated CUX1 levels accelerate DNA repair. In vitro base excision repair assays with purified components demonstrate that CUX1 directly stimulates OGG1's enzymatic activity. Elevated reactive oxygen species (ROS) levels in cells with sustained RAS pathway activation can cause cellular senescence. We show that elevated expression of either CUX1 or OGG1 prevents RAS-induced senescence in primary cells, and that CUX1 knockdown is synthetic lethal with oncogenic RAS in human cancer cells. Elevated CUX1 expression in a transgenic mouse model enables the emergence of mammary tumors with spontaneous activating Kras mutations. We confirmed cooperation between KrasG12V and CUX1 in a lung tumor model. Cancer cells can overcome the antiproliferative effects of excessive DNA damage by inactivating a DNA damage response pathway such as ATM or p53 signaling. Our findings reveal an alternate mechanism to allow sustained proliferation in RAS-transformed cells through increased DNA base excision repair capability. The heightened dependency of RAS-transformed cells on base excision repair may provide a therapeutic window that could be exploited with drugs that specifically target this pathway. In the context of tumor development and progression, mutations are believed to accumulate owing to compromised DNA repair. Such mutations promote oncogenic growth. Yet cancer cells also need to sustain a certain level of DNA repair in order to replicate their DNA and successfully proliferate. Here we show that cancer cells that harbor an activated RAS oncogene exhibit heightened DNA repair capability, specifically in the base excision repair (BER) pathway that repairs oxidative DNA damage. RAS oncogenes alone do not transform primary cells but rather cause their senescence—that is, they stop dividing. As such, cellular senescence in this context is proposed to function as a tumor-suppressive mechanism. We show that CUX1, a protein that accelerates oxidative DNA damage repair, prevents cells from senescing and enables proliferation in the presence of a RAS oncogene. Consistent with this, RAS-induced senescence is also prevented by ectopic expression of OGG1, the DNA glycosylase that removes 8-oxoguanine, the most abundant oxidized base. Strikingly, CUX1 expression in transgenic mice enables the emergence of tumors with spontaneous activating Kras mutations. Conversely, knockdown of CUX1 is synthetic lethal for RAS-transformed cells, thereby revealing a potential Achilles' heel of these cancer cells. Overall, the work provides insight into understanding the role of DNA repair in cancer progression, showing that while DNA damage-induced mutations promote tumorigenesis, sustained RAS-dependent tumorigenesis requires suppression of DNA damage. The heightened dependency of RAS-transformed cells on base excision repair may provide a therapeutic window that could be exploited with drugs that specifically target this pathway.
Collapse
Affiliation(s)
| | - Charles Vadnais
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Ranjana Pal
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Guillaume Vandal
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Chantal Cadieux
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Lam Leduy
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Sayeh Davoudi
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Laura Hulea
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Lu Yao
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Anthony N. Karnezis
- BC Cancer Agency, Centre for Translational and Applied Genomics, Vancouver, British Columbia, Canada
| | - Marilène Paquet
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - David Dankort
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biology, McGill University, Montreal, Quebec, Canada
- * E-mail: (D.D.); (A.N.)
| | - Alain Nepveu
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Oncology McGill University, Montreal, Quebec, Canada
- * E-mail: (D.D.); (A.N.)
| |
Collapse
|
24
|
Gupta N, Curtis RM, Mulder JE, Massey TE. Acute in vivo treatment with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone does not alter base excision repair activities in murine lung and liver. DNA Repair (Amst) 2013; 12:1031-6. [DOI: 10.1016/j.dnarep.2013.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/07/2013] [Accepted: 09/30/2013] [Indexed: 11/17/2022]
|
25
|
Hu CW, Lee H, Chen JL, Li YJ, Chao MR. Optimization of global DNA methylation measurement by LC-MS/MS and its application in lung cancer patients. Anal Bioanal Chem 2013; 405:8859-69. [PMID: 23978937 DOI: 10.1007/s00216-013-7305-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 01/03/2023]
Abstract
Global analyses of DNA methylation contribute important insights into biology and the wide-ranging role of DNA methylation. We describe the use of online solid-phase extraction and isotope-dilution liquid chromatography/tandem mass spectrometry (LC-MS/MS) for the simultaneous measurement of 5-methyl-2'-deoxycytidine (5-medC) and 2'-deoxycytidine (dC) in DNA. With the incorporation of isotope internal standards and online enrichment techniques, the detection limit of this method was estimated to be as low as 0.065 pg which enables human global DNA methylation detection using only picogram amounts of DNA. This method was applied to assess the optimal amounts of enzymes required for DNA digestion regarding an accurate global DNA methylation determination and completeness of digestion and to determine global methylation in human tumor adjacent lung tissue of 79 lung cancer patients. We further determined methylated (N7-methylguanine (N7-meG), O (6)-methylguanine (O (6)-meG), and N3-methyladenine (N3-meA)) and oxidized DNA lesions (8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG)) in lung cancer patients by LC-MS/MS. Optimization experiments revealed that dC was liberated from DNA much more readily than 5-medC by nuclease P1 and alkaline phosphatase (AP) in DNA, which could lead to an error in the global DNA methylation measurement following digestion with insufficient enzymes. Nuclease P1 showed more differential activity for 5-medC and dC than AP. Global DNA methylation levels in adenocarcinoma and squamous cell carcinoma patients were similar in the range of 3.16-4.01 %. Global DNA methylation levels were not affected by smoking and gender and were not correlated with N7-meG or 8-oxodG in lung cancer patients. Levels of O (6)-meG and N3-meA were however found to be undetectable in all lung tissue samples.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | | | | | | | | |
Collapse
|
26
|
Grygoryev D, Moskalenko O, Hinton TG, Zimbrick JD. DNA damage caused by chronic transgenerational exposure to low dose gamma radiation in Medaka fish ( Oryzias latipes ). Radiat Res 2013; 180:235-46. [PMID: 23919310 DOI: 10.1667/rr3190.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The effect of transgenerational exposure to low dose rate (2.4 and 21 mGy/day) gamma irradiation on the yield of DNA double-strand breaks and oxidized guanine (8-hydroxyguanine) has been studied in the muscle and liver tissue of a model organism, the Japanese medaka fish. We found the level of unrepaired 8-hydroxyguanine in muscle tissue increased nonlinearly over four generations and the pattern of this change depended on the radiation dose rate, suggesting that our treatment protocols initiated genomic instability and an adaptive response as the generations progressed. The yield of unrepaired double-strand breaks did not vary significantly among successive generations in muscle tissue in contrast to liver tissue in which it varied in a nonlinear manner. The 8-hydroxyguanine and DSB radiation yields were significantly higher at 2.4 mGy/day than at 21 mGy/day in both muscle and liver tissue in all generations. These data are consistent with the hypothesis of a threshold for radiation-induced activation of DNA repair systems below which tissue levels of DNA repair enzymes remain unchanged, leading to the accumulation of unrepaired damage at very low doses and dose rates.
Collapse
Affiliation(s)
- D Grygoryev
- a Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239
| | | | | | | |
Collapse
|
27
|
Henning SM, Wang P, Said J, Magyar C, Castor B, Doan N, Tosity C, Moro A, Gao K, Li L, Heber D. Polyphenols in brewed green tea inhibit prostate tumor xenograft growth by localizing to the tumor and decreasing oxidative stress and angiogenesis. J Nutr Biochem 2012; 23:1537-42. [PMID: 22405694 DOI: 10.1016/j.jnutbio.2011.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/13/2011] [Accepted: 10/12/2011] [Indexed: 12/19/2022]
Abstract
It has been demonstrated in various animal models that the oral administration of green tea (GT) extracts in drinking water can inhibit tumor growth, but the effects of brewed GT on factors promoting tumor growth, including oxidant damage of DNA and protein, angiogenesis and DNA methylation, have not been tested in an animal model. To explore these potential mechanisms, brewed GT was administered instead of drinking water to male severe combined immunodeficiency (SCID) mice with androgen-dependent human LAPC4 prostate cancer cell subcutaneous xenografts. Tumor volume was decreased significantly in mice consuming GT, and tumor size was significantly correlated with GT polyphenol (GTP) content in tumor tissue. There was a significant reduction in hypoxia-inducible factor 1-alpha and vascular endothelial growth factor protein expression. GT consumption significantly reduced oxidative DNA and protein damage in tumor tissue as determined by 8-hydroxydeoxyguanosine/deoxyguanosine ratio and protein carbonyl assay, respectively. Methylation is known to inhibit antioxidative enzymes such as glutathione S-transferase pi to permit reactive oxygen species promotion of tumor growth. GT inhibited tumor 5-cytosine DNA methyltransferase 1 mRNA and protein expression significantly, which may contribute to the inhibition of tumor growth by reactivation of antioxidative enzymes. This study advances our understanding of tumor growth inhibition by brewed GT in an animal model by demonstrating tissue localization of GTPs in correlation with inhibition of tumor growth. Our results suggest that the inhibition of tumor growth is due to GTP-mediated inhibition of oxidative stress and angiogenesis in the LAPC4 xenograft prostate tumor in SCID mice.
Collapse
Affiliation(s)
- Susanne M Henning
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nguyen MM, Ahmann FR, Nagle RB, Hsu CH, Tangrea JA, Parnes HL, Sokoloff MH, Gretzer MB, Chow HHS. Randomized, double-blind, placebo-controlled trial of polyphenon E in prostate cancer patients before prostatectomy: evaluation of potential chemopreventive activities. Cancer Prev Res (Phila) 2012; 5:290-8. [PMID: 22044694 PMCID: PMC3273617 DOI: 10.1158/1940-6207.capr-11-0306] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Compelling preclinical and pilot clinical data support the role of green tea polyphenols in prostate cancer prevention. We conducted a randomized, double-blind, placebo-controlled trial of polyphenon E (enriched green tea polyphenol extract) in men with prostate cancer scheduled to undergo radical prostatectomy. The study aimed to determine the bioavailability of green tea polyphenols in prostate tissue and to measure its effects on systemic and tissue biomarkers of prostate cancer carcinogenesis. Participants received either polyphenon E (containing 800 mg epigallocatechin gallate) or placebo daily for 3 to 6 weeks before surgery. Following the intervention, green tea polyphenol levels in the prostatectomy tissue were low to undetectable. Polyphenon E intervention resulted in favorable but not statistically significant changes in serum prostate-specific antigen, serum insulin-like growth factor axis, and oxidative DNA damage in blood leukocytes. Tissue biomarkers of cell proliferation, apoptosis, and angiogenesis in the prostatectomy tissue did not differ between the treatment arms. The proportion of subjects who had a decrease in Gleason score between biopsy and surgical specimens was greater in those on polyphenon E but was not statistically significant. The study's findings of low bioavailability and/or bioaccumulation of green tea polyphenols in prostate tissue and statistically insignificant changes in systemic and tissue biomarkers from 3 to 6 weeks of administration suggests that prostate cancer preventive activity of green tea polyphenols, if occurring, may be through indirect means and/or that the activity may need to be evaluated with longer intervention durations, repeated dosing, or in patients at earlier stages of the disease.
Collapse
Affiliation(s)
- Mike M Nguyen
- Division of Urology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tung EWY, Philbrook NA, Macdonald KDD, Winn LM. DNA double-strand breaks and DNA recombination in benzene metabolite-induced genotoxicity. Toxicol Sci 2012; 126:569-77. [PMID: 22247006 DOI: 10.1093/toxsci/kfs001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In utero exposure to environmental carcinogens, including the ubiquitous pollutant benzene, may cause DNA damage in the fetus, leading to an increased risk for the development of childhood cancer. Benzene metabolite-induced DNA double-strand breaks (DSBs) may undergo erroneous repair, leading to chromosomal aberrations including chromosomal inversions and translocations. In this study, fetal murine hematopoietic cells from pZK1 transgenic mice were exposed to p-benzoquinone (BQ), a toxic metabolite of benzene, and assessed for DNA recombination, DNA damage including DNA DSBs as measured by γ-H2A.X foci and oxidative DNA damage, and reactive oxygen species (ROS) production. The pZK1 transgenic mouse model contains a DNA construct allowing for the detection of intrachromosomal recombination events. Using this model, a significant increase in recombination was observed following exposure to BQ (25 and 50μM) at various time points. Additionally, increased γ-H2A.X foci were observed following exposure to 25μM BQ for 30 min, 45 min, and 1 h, whereas this exposure did not significantly increase oxidative DNA damage. Pretreatment with 400 U/ml polyethylene glycol-conjugated-catalase attenuated increases in DNA recombination as compared with treatment with BQ alone. An increase in ROS production (30 min and 1 h), as measured by dichlorodihydrofluorescein diacetate fluorescence, was also observed following exposure to 25μM BQ. These studies indicate that BQ is able to induce DNA damage and recombination in fetal liver cells and that ROS may be important in the mechanism of toxicity.
Collapse
Affiliation(s)
- Emily W Y Tung
- Department of Biomedical and Molecular Sciences, Queen's University, Room 557, Botterell Hall, Kingston, Ontario K7L 3N6, Canada
| | | | | | | |
Collapse
|
30
|
Singh B, Bhat NK, Bhat HK. Induction of NAD(P)H-quinone oxidoreductase 1 by antioxidants in female ACI rats is associated with decrease in oxidative DNA damage and inhibition of estrogen-induced breast cancer. Carcinogenesis 2011; 33:156-63. [PMID: 22072621 DOI: 10.1093/carcin/bgr237] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exact mechanisms underlying the initiation and progression of estrogen-related cancers are not clear. Literature, evidence and our studies strongly support the role of estrogen metabolism-mediated oxidative stress in estrogen-induced breast carcinogenesis. We have recently demonstrated that antioxidants vitamin C and butylated hydroxyanisole (BHA) or estrogen metabolism inhibitor α-naphthoflavone (ANF) inhibit 17β-estradiol (E2)-induced mammary tumorigenesis in female ACI rats. The objective of the current study was to identify the mechanism of antioxidant-mediated protection against E2-induced DNA damage and mammary tumorigenesis. Female ACI rats were treated with E2 in the presence or absence of vitamin C or BHA or ANF for up to 240 days. Nuclear factor erythroid 2-related factor 2 (NRF2) and NAD(P)H-quinone oxidoreductase 1 (NQO1) were suppressed in E2-exposed mammary tissue and in mammary tumors after treatment of rats with E2 for 240 days. This suppression was overcome by co-treatment of rats with E2 and vitamin C or BHA. Time course studies indicate that NQO1 levels tend to increase after 4 months of E2 treatment but decrease on chronic exposure to E2 for 8 months. Vitamin C and BHA significantly increased NQO1 levels after 120 days. 8-Hydroxydeoxyguanosine (8-OHdG) levels were higher in E2-exposed mammary tissue and in mammary tumors compared with age-matched controls. Vitamin C or BHA treatment significantly decreased E2-mediated increase in 8-OHdG levels in the mammary tissue. In vitro studies using silencer RNA confirmed the role of NQO1 in prevention of oxidative DNA damage. Our studies further demonstrate that NQO1 upregulation by antioxidants is mediated through NRF2.
Collapse
Affiliation(s)
- Bhupendra Singh
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
31
|
Partial inhibition of estrogen-induced mammary carcinogenesis in rats by tamoxifen: balance between oxidant stress and estrogen responsiveness. PLoS One 2011; 6:e25125. [PMID: 21966433 PMCID: PMC3180376 DOI: 10.1371/journal.pone.0025125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022] Open
Abstract
Epidemiological and experimental evidences strongly support the role of estrogens in breast tumor development. Both estrogen receptor (ER)-dependent and ER-independent mechanisms are implicated in estrogen-induced breast carcinogenesis. Tamoxifen, a selective estrogen receptor modulator is widely used as chemoprotectant in human breast cancer. It binds to ERs and interferes with normal binding of estrogen to ERs. In the present study, we examined the effect of long-term tamoxifen treatment in the prevention of estrogen-induced breast cancer. Female ACI rats were treated with 17β-estradiol (E2), tamoxifen or with a combination of E2 and tamoxifen for eight months. Tissue levels of oxidative stress markers 8-iso-Prostane F2α (8-isoPGF2α), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG) were quantified in the mammary tissues of all the treatment groups and compared with age-matched controls. Levels of tamoxifen metabolizing enzymes cytochrome P450s as well as estrogen responsive genes were also quantified. At necropsy, breast tumors were detected in 44% of rats co-treated with tamoxifen+E2. No tumors were detected in the sham or tamoxifen only treatment groups whereas in the E2 only treatment group, the tumor incidence was 82%. Co-treatment with tamoxifen decreased GPx and catalase levels; did not completely inhibit E2-mediated oxidative DNA damage and estrogen-responsive genes monoamine oxygenase B1 (MaoB1) and cell death inducing DFF45 like effector C (Cidec) but differentially affected the levels of tamoxifen metabolizing enzymes. In summary, our studies suggest that although tamoxifen treatment inhibits estrogen-induced breast tumor development and increases the latency of tumor development, it does not completely abrogate breast tumor development in a rat model of estrogen-induced breast cancer. The inability of tamoxifen to completely inhibit E2-induced breast carcinogenesis may be because of increased estrogen-mediated oxidant burden.
Collapse
|
32
|
Grygoryev D, Moskalenko O, Zimbrick JD. Effect of sodium and acetate ions on 8-hydroxyguanine formation in irradiated aqueous solutions of DNA and 2'-deoxyguanosine 5'-monophosphate. Int J Radiat Biol 2011; 87:974-83. [PMID: 21749183 DOI: 10.3109/09553002.2011.584940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE The aim of this work was to study the combined effect of sodium and acetate ions on the radiation yield of 8-hydroxyguanine (8-OHG), one of the major DNA base lesions induced by free radicals. MATERIALS AND METHODS Aqueous solutions of DNA and 2'-deoxyguanosine 5'-monophosphate (dGMP) with various concentrations of sodium acetate and sodium perchlorate were γ-irradiated, enzymatically digested and analyzed by high-performance liquid chromatography (HPLC) methods. RESULTS It was found that both salts decrease the 8-OHG radiation yield in the concentration range studied for both DNA and dGMP, except in the case of dGMP wherein an increase in yield occurs in the concentration range from 0.1-1 mM. The dependence of the 8-hydroxy-2'-deoxyguanosine radiation yield on the concentration of both sodium acetate and sodium perchlorate have different shapes and have steeper slopes for the DNA compared with the dGMP solutions. CONCLUSIONS The observed decrease in the radiation yield of 8-OHG with increasing concentrations of sodium acetate is consistent with the hypothesis that sodium acetate produces two concentration-dependent effects in the DNA solutions: (1) A conformational change in the DNA caused by Na(+) counterions; and (2) free radical reactions related to the radiolysis of acetate ion.
Collapse
Affiliation(s)
- Dmytro Grygoryev
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR, USA
| | | | | |
Collapse
|
33
|
Konijeti R, Henning S, Moro A, Sheikh A, Elashoff D, Shapiro A, Said JW, Heber D, Cohen P, Aronson WJ. Chemoprevention of prostate cancer with lycopene in the TRAMP model. Prostate 2010; 70:1547-54. [PMID: 20687227 PMCID: PMC2930120 DOI: 10.1002/pros.21190] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Dietary lycopene combined with other constituents from whole tomatoes was previously found to have greater chemopreventive effects against prostate cancer as compared to pure lycopene provided in a beadlet formulation. We hypothesized that tomato paste would have greater chemopreventive effects in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice relative to equivalent lycopene doses provided from lycopene beadlets. METHODS Fifty-nine TRAMP mice were randomized to a control diet or to diets providing 28 mg lycopene per kg diet from tomato paste (TP) or from lycopene beadlet (LB), and sacrificed at 20 weeks. Prostate histopathology, prostate weight and serum levels of IGF-I and IGF binding protein-3 were evaluated. RESULTS The incidence of prostate cancer was significantly decreased in the LB group relative to the control group (60% vs. 95%, respectively, P = 0.0197) whereas the difference between the TP and control groups was not statistically significant (80% vs. 95%, P = 0.34). There was no difference in prostate weights between the groups. Total lycopene levels in the serum and prostate tissue were similarly elevated in the LB and TP groups relative to the control group. The ratio of 5-cis-lycopene to trans-lycopene in the serum was significantly greater in the LB group relative to the TP group (P = 0.0001). Oxidative DNA damage was significantly reduced in the livers of mice fed LB and TP diets relative to the control group. CONCLUSIONS This preclinical trial suggests significant chemopreventive activity with a lycopene beadlet-enriched diet. The chemopreventive effects of lycopene from beadlets versus whole tomato products requires further testing in preclinical and clinical models of prostate cancer.
Collapse
Affiliation(s)
- Ramdev Konijeti
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Susanne Henning
- Division of Clinical Nutrition, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Aune Moro
- Division of Clinical Nutrition, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ahmed Sheikh
- Division of Clinical Nutrition, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - David Elashoff
- Department of Biostatistics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ari Shapiro
- Division of Clinical Nutrition, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jonathan W. Said
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - David Heber
- Division of Clinical Nutrition, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Pinchas Cohen
- Division of Pediatric Endocrinology, Department of Pediatrics, David Geffen School of Medicine at UCLA
| | - William J. Aronson
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
34
|
Henning SM, Seeram NP, Zhang Y, Li L, Gao K, Lee RP, Wang DC, Zerlin A, Karp H, Thames G, Kotlerman J, Li Z, Heber D. Strawberry consumption is associated with increased antioxidant capacity in serum. J Med Food 2010; 13:116-22. [PMID: 20136444 DOI: 10.1089/jmf.2009.0048] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Strawberries are known to contain antioxidants, but the significance of ingesting antioxidant-rich fruits remains to be established. In order to determine whether the consumption of strawberries impacted measures of in vivo antioxidant capacity, frozen strawberries (250 g) were administered daily for 3 weeks to 21 healthy female volunteers. Compliance was confirmed by quantitating pelargonidin-glucuronide, urolithin A-glucuronide, and 2,5-dimethyl-4-hydroxy-3-[(2)H]furanone-glucuronide in plasma and urine by liquid chromatography-mass spectrometry and antioxidant capacity in serum measured by the increase in lag phase of low-density lipoprotein after copper sulfate exposure, DNA strand breaks in lymphocytes, and activity of phase II enzymes. Among these measures lipid peroxidation lag time increased by 20% (P < .01), whereas other measures did not change significantly. The potent antioxidant defenses in humans make determination of changes due to dietary ingestion in healthy individuals difficult. In summary, daily consumption of strawberries resulted in a modest but significant increase in antioxidant capacity in a healthy population.
Collapse
Affiliation(s)
- Susanne M Henning
- Center for Human Nutrition, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sha K, Winn LM. Characterization of valproic acid-initiated homologous recombination. ACTA ACUST UNITED AC 2010; 89:124-32. [PMID: 20437471 DOI: 10.1002/bdrb.20236] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Valproic acid (VPA) is a frequently used antiepileptic agent and known teratogen. Previous research suggests that inhibition of histone deacetylases (HDACs) may play a role in VPA-induced teratogenicity. We have also shown that VPA exposure leads to both an increase in reactive oxygen species (ROS) production and increased frequency of homologous recombination (HR). METHODS In the present study, we evaluated the role of HDAC inhibition in VPA-initiated HR to determine if HDAC inhibition could alter repair activity and/or cause DNA double-strand breaks (DSBs), which would then initiate repair. Histone acetylation status was assessed to determine if VPA exposure led to HDAC inhibition in CHO 33 cells. RESULTS Our results demonstrate that VPA (5 mM) exposure leads to increased acetylated histone H3 and H4 protein levels after 10 to 24 hr. Secondly, in our recombination assay where an artificial DNA DSB was induced in CHO 33 cells to assess repair activity, VPA exposure did not affect the repair activity of VPA-initiated HR. Subsequently, to determine if VPA could increase susceptibility to DNA DSBs, the number of gamma-H2AX foci was assessed using immunocytochemistry and results revealed an increase in gamma-H2AX foci after 10- to 24-hr exposure to VPA. CONCLUSIONS Although we demonstrated the protective effect of polyethylene glycol-catalase against VPA-induced HR and the generation of intracellular ROS within 24 hr, we did not observed an increase in DNA oxidation. These studies suggest that HDAC inhibition and ROS signaling may play roles in DNA maintenance and cell-cycle arrest in initiating DNA damage and repair.
Collapse
Affiliation(s)
- Kevin Sha
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
36
|
Protective effects of pre-germinated brown rice diet on low levels of Pb-induced learning and memory deficits in developing rat. Chem Biol Interact 2010; 184:484-91. [PMID: 20138853 DOI: 10.1016/j.cbi.2010.01.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/28/2010] [Accepted: 01/28/2010] [Indexed: 11/23/2022]
Abstract
Lead (Pb) is a known neurotoxicant in humans and experimental animals. Numerous studies have provided evidence that humans, especially young children, and animals chronically intoxicated with low levels of Pb show learning and memory impairments. Unfortunately, Pb-poisoning cases continue to occur in many countries. Because the current treatment options are very limited, there is a need for alternative methods to attenuate Pb toxicity. In this study, the weaning (postnatal day 21, PND21) rats were randomly divided into five groups: the control group (AIN-93G diet, de-ionized water), the lead acetate (PbAC) group (AIN-93G diet, 2g/L PbAC in de-ionized water), the lead acetate+WR group (white rice diet, 2g/L PbAC in de-ionized water; PbAC+WR), the lead acetate+BR group (brown rice diet, 2g/L PbAC in de-ionized water; PbAC+BR) and the lead acetate+PR group (pre-germinated brown rice diet, 2g/L PbAC in de-ionized water; PbAC+PR). The animals received the different diets until PND60, and then the experiments were terminated. The protective effects of pre-germinated brown rice (PR) on Pb-induced learning and memory impairment in weaning rats were assessed by the Morris water maze and one-trial-learning passive avoidance test. The anti-oxidative effects of feeding a PR diet to Pb-exposed rats were evaluated. The levels of reactive oxygen species (ROS) were determined by flow cytometry. The levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), gamma-aminobutyric acid (GABA) and glutamate were determined by HPLC. Our data showed that feeding a PR diet decreased the accumulation of lead and decreased Pb-induced learning and memory deficits in developing rats. The mechanisms might be related to the anti-oxidative effects and large amount of GABA in PR. Our study provides a regimen to reduce Pb-induced toxicity, especially future learning and memory deficits in the developing brain.
Collapse
|
37
|
Asahi T, Kondo H, Masuda M, Nishino H, Aratani Y, Naito Y, Yoshikawa T, Hisaka S, Kato Y, Osawa T. Chemical and immunochemical detection of 8-halogenated deoxyguanosines at early stage inflammation. J Biol Chem 2010; 285:9282-91. [PMID: 20081197 DOI: 10.1074/jbc.m109.054213] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Myeloperoxidase (MPO) generates reactive halogenating species that can modify DNA. The aim of this study was to investigate the formation of 8-halogenated 2'-deoxyguanosines (8- halo-dGs) during inflammatory events. 8-Bromo-2'-dG (8-BrdG) and 8-chloro-2'-dG (8-CldG) were generated by treatment of MPO with hydrogen peroxide at physiological concentrations of Cl(-) and Br(-). The formation of 8-halo-dGs with other oxidative stress biomarkers in lipopolysaccharide-treated rats was assessed by liquid chromatography tandem mass spectrometry and immunohistochemistry using a novel monoclonal antibody (mAb8B3) to 8-BrdG-conjugated keyhole limpet hemocyanin. The antibody recognized both 8-BrdG and 8-CldG. In the liver of lipopolysaccharide-treated rats, immunostaining for 8-halo-dGs, halogenated tyrosines, and MPO were increased at 8 h, whereas those of 8-oxo-2'-dG (8-OxodG) and 3-nitrotyrosine were increased at 24 h. Urinary excretion of both 8-CldG and 8-BrdG was also observed earlier than those of 8-OxodG and modified tyrosines (3-nitrotyrosine, 3-chlorotyrosine, and 3- bromotyrosine). Moreover, the levels of the 8-halo-dGs in urine from human diabetic patients were 8-fold higher than in healthy subjects (n = 10, healthy and diabetic, p < 0.0001), whereas there was a moderate difference in 8-OxodG between the two groups (p < 0.001). Interestingly, positive mAb8B3 antibody staining was observed in liver tissue from hepatocellular carcinoma patients but not in liver tissue from human cirrhosis patients. These data suggest that 8-halo-dGs may be potential biomarkers of early inflammation.
Collapse
Affiliation(s)
- Takashi Asahi
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wong YT, Ruan R, Tay FEH. Relationship between levels of oxidative DNA damage, lipid peroxidation and mitochondrial membrane potential in young and old F344 rats. Free Radic Res 2009; 40:393-402. [PMID: 16517504 DOI: 10.1080/10715760600556074] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The extent of in vivo oxidative damage has been known to be cumulative over the period of the life of mammals. Our hypothesis is that there should be a positive correlation between the levels of 8-hydroxy-2'-deoxyguanosine (8OHdG) and 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)) in major rat tissues. We also investigated whether increased level of oxidative stress causes a decrease in the mitochondrial membrane potential of peripheral lymphocytes of old rats using the MitoTracker Red fluorochrome. Our results show positive correlations between 8OHdG and 8-iso-PGF(2alpha) for liver, brain and kidney measured by HPLC-UV-ECD (electrochemical detector) and EIA methods, respectively. However, heart tissues show a negative correlation. The mitochondrial membrane potential of old rat lymphocytes records significant decrease compared with the young lymphocytes. Based on our results, we conclude that in ageing studies, specific tissues need to be examined in order to measure the localised DNA damage and lipid peroxidation as different tissues display different extent of oxidative damage. We believe this approach of using combined markers is useful to verify the true efficacy of health intervention studies in animals and humans. In addition, the isoprostane assay can be further developed looking at lipid peroxidation as a potential marker in ageing studies.
Collapse
Affiliation(s)
- Yee Ting Wong
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | | | | |
Collapse
|
39
|
Liang L, Dou P, Dong M, Ke X, Bian N, Liu Z. Study on a hidden protein-DNA binding in salmon sperm DNA sample by dynamic kinetic capillary isoelectric focusing. Anal Chim Acta 2009; 650:106-10. [PMID: 19720180 DOI: 10.1016/j.aca.2009.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/16/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
Nuclease P1 is an important enzyme that hydrolyzes RNA or single-stranded DNA into nucleotides, and complete digestion is an essential basis for assays based on this enzyme. To digest a doubled-stranded DNA, the enzyme is usually combined with heat denaturing, which breaks doubled-stranded DNA into single strands. This paper presents an un-expected phenomenon that nuclease P1, in combination with heat denaturing, fails to completely digest a DNA sample extracted from salmon sperm. Under the experimental conditions used, at which nuclease P1 can completely digest calf thymus DNA, the digestion yield of salmon sperm DNA was only 89.5%. Spectrometric measurement indicated that a total protein of 4.7% is present in the DNA sample. To explain the reason for this phenomenon, the dynamic kinetic capillary isoelectric focusing (DK-CIEF) approach proposed previously, which allows for the discrimination of different types of protein-DNA interactions and the measurement of the individual dissociation rate constants, was modified and applied to examine possible protein-DNA interactions involved. It was found that a non-specific DNA-protein binding occurs in the sample, the dissociation rate constant for which was measured to be 7.05+/-0.83x10(-3) s(-1). The formation of DNA-protein complex was suggested to be the main reason for the incomplete digestion of the DNA sample. The modified DK-CIEF approach can be applied as general DNA samples, with the advantages of fast speed and low sample consumption.
Collapse
Affiliation(s)
- Liang Liang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
DNA base compositional analysis is something which is rarely undertaken today, but it is still a useful criterion for phage taxonomy. A variety of techniques are described including hydrolysis of the DNA to the level of bases or nucleosides and separation by paper chromatography or HPLC. Spectroscopic and spectrofluorometric procedures are also outlined.
Collapse
|
41
|
Kato I, Ren J, Heilbrun LK, Djuric Z. Intra- and inter-individual variability in measurements of biomarkers for oxidative damagein vivo: Nutrition and Breast Health Study. Biomarkers 2008; 11:143-52. [PMID: 16766390 DOI: 10.1080/13547500600565693] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Oxidative stress has been implicated in the pathogenesis of various chronic diseases, such as cancer, cardiovascular disease and inflammatory conditions, as well as in ageing. Although a number of markers are now available, little is known about the reliability of single measurements of such markers in healthy individuals. The study examined the distribution of variance for three oxidative stress markers, 8-oxo-2'-deoxyguanosine (8-oxodG), 5-hydroxymethyl-2'-deoxyuridine (5-OHmdU) and total 8-isoprostane-F2alpha, which were measured every 3-6 months over 1 year in blood and breast nipple aspirate fluid (NAF) for 103 premenopausal women. For both plasma and NAF, the between-subject variances of 8-isoprostane-F2alpha were consistently greater than the within-subject variances. Consequently, their reliability coefficients were close to the level of those for cholesterol. On the other hand, the within-subject variances were much greater than the between-subjects variances for blood 5-OHmdU, resulting in low reliability coefficients, i.e. <0.3. Overall, the reliability coefficients for blood 8-oxodG were between those of 8-isoprostane-F2alpha and 5-OHmdU, but closer to those of 8-isoprostane-F2alpha. The results suggest that the reliability of oxidative stress markers may vary considerably depending on the type of marker. Caution should be exercised in selecting markers as well as in determining the number of study subjects or the number of samples per subject in a study. There also may be ample room to optimize laboratory techniques to quantify markers of oxidative DNA damage.
Collapse
Affiliation(s)
- I Kato
- Barbara Ann Karmanos Cancer Institute and Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
42
|
Kawai Y, Matsui Y, Kondo H, Morinaga H, Uchida K, Miyoshi N, Nakamura Y, Osawa T. Galloylated Catechins as Potent Inhibitors of Hypochlorous Acid-induced DNA Damage. Chem Res Toxicol 2008; 21:1407-14. [DOI: 10.1021/tx800069e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yoshichika Kawai
- Laboratory of Food Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food Science, Graduate School of Nutrition and Biosciences, The University of Tokushima, Tokushima 770-8503, Japan, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan, and Department of Biofunctional Chemistry, Division of Bioscience, Graduate School of Natural Science and
| | - Yuri Matsui
- Laboratory of Food Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food Science, Graduate School of Nutrition and Biosciences, The University of Tokushima, Tokushima 770-8503, Japan, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan, and Department of Biofunctional Chemistry, Division of Bioscience, Graduate School of Natural Science and
| | - Hajime Kondo
- Laboratory of Food Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food Science, Graduate School of Nutrition and Biosciences, The University of Tokushima, Tokushima 770-8503, Japan, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan, and Department of Biofunctional Chemistry, Division of Bioscience, Graduate School of Natural Science and
| | - Hiroshi Morinaga
- Laboratory of Food Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food Science, Graduate School of Nutrition and Biosciences, The University of Tokushima, Tokushima 770-8503, Japan, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan, and Department of Biofunctional Chemistry, Division of Bioscience, Graduate School of Natural Science and
| | - Koji Uchida
- Laboratory of Food Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food Science, Graduate School of Nutrition and Biosciences, The University of Tokushima, Tokushima 770-8503, Japan, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan, and Department of Biofunctional Chemistry, Division of Bioscience, Graduate School of Natural Science and
| | - Noriyuki Miyoshi
- Laboratory of Food Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food Science, Graduate School of Nutrition and Biosciences, The University of Tokushima, Tokushima 770-8503, Japan, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan, and Department of Biofunctional Chemistry, Division of Bioscience, Graduate School of Natural Science and
| | - Yoshimasa Nakamura
- Laboratory of Food Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food Science, Graduate School of Nutrition and Biosciences, The University of Tokushima, Tokushima 770-8503, Japan, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan, and Department of Biofunctional Chemistry, Division of Bioscience, Graduate School of Natural Science and
| | - Toshihiko Osawa
- Laboratory of Food Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Department of Food Science, Graduate School of Nutrition and Biosciences, The University of Tokushima, Tokushima 770-8503, Japan, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan, and Department of Biofunctional Chemistry, Division of Bioscience, Graduate School of Natural Science and
| |
Collapse
|
43
|
Chao MR, Yen CC, Hu CW. Prevention of artifactual oxidation in determination of cellular 8-oxo-7,8-dihydro-2'-deoxyguanosine by isotope-dilution LC-MS/MS with automated solid-phase extraction. Free Radic Biol Med 2008; 44:464-73. [PMID: 17983606 DOI: 10.1016/j.freeradbiomed.2007.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/04/2007] [Accepted: 10/08/2007] [Indexed: 11/16/2022]
Abstract
A highly sensitive quantitative method based on LC-MS/MS was developed to directly measure 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 2'-deoxyguanosine (dG) in crude DNA hydrolysates. With the use of isotopic internal standards and online solid-phase extraction (SPE), this method has overcome the artifactual response often observed during electrospray ionization by optimizing the washing conditions of online SPE to remove excess dG and allows 8-oxodG and dG to be accurately and simultaneously monitored by mass spectrometry. The detection limit of this method was estimated as 1.8 fmol for 8-oxodG. With this method, we further investigated the artifactual oxidation that occurred during concentration and purification of the DNA hydrolysates, commonly used before sample analysis. Our results demonstrated that drying under vacuum or purification with C18 cartridges led to a significant increase in the measured 8-oxodG by 6.8-30 8-oxodG/10(6) dG. The artifactual formation of 8-oxodG can be reduced only by adding desferrioxamine (DFO) and not 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). However, DFO still failed to offer complete protection against oxidation during DNA hydrolysate concentration and purification. Therefore, to effectively prevent the artifacts formed during workup, the simplest approach is to use a direct measurement method involving an online enrichment/purification technique as proposed in this study.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | |
Collapse
|
44
|
Borthakur G, Butryee C, Stacewicz-Sapuntzakis M, Bowen PE. Exfoliated Buccal Mucosa Cells as a Source of DNA to Study Oxidative Stress. Cancer Epidemiol Biomarkers Prev 2008; 17:212-9. [DOI: 10.1158/1055-9965.epi-07-0706] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Zhang F, Stott WT, Clark AJ, Schisler MR, Grundy JJ, Gollapudi BB, Bartels MJ. Quantitation of 8-hydroxydeoxyguanosine in DNA by liquid chromatography/positive atmospheric pressure photoionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:3949-3955. [PMID: 17990277 DOI: 10.1002/rcm.3299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A methodology has been developed and validated for quantifying 8-hydroxydeoxyguanosine (8-OHdG) in both commercial DNA and DNA isolated from livers of male Sprague-Dawley rats by liquid chromatography/positive atmospheric pressure photoionization tandem mass spectrometry. The analytical method conditions, including conditions for stabilizing 8-OHdG during complex nuclease P1 enzymatic digestion, were also evaluated. The limit of detection for 8-OHdG was 1.0 ng/mL (17.6 fmol on-column), and the linearity of the calibration curve was greater than 0.998 from 1.0 to 500 ng/mL. The intraday assay precision relative standard deviation (RSD) value for quality control (QC) samples was < or =5.59% with accuracies ranging from 91.84 to 117.61%. The interday assay precision (RSD) value was < or =1.76% with accuracies ranging from 91.84 to 116.67%. This method, combined with the LC/UV analysis of deoxyguanosine (dG), was used for determination of the levels of 8-OHdG/10(6) dG in DNA nuclease P1 enzymatic hydrolysates from both commercial DNA and rat liver DNA.
Collapse
Affiliation(s)
- Fagen Zhang
- Toxicology and Environmental Research & Consulting, The Dow Chemical Company, 1803 Building, Midland, MI 48674, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Kowluru RA, Kowluru V, Xiong Y, Ho YS. Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Radic Biol Med 2006; 41:1191-6. [PMID: 17015165 DOI: 10.1016/j.freeradbiomed.2006.01.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 01/04/2006] [Accepted: 01/10/2006] [Indexed: 11/20/2022]
Abstract
The retina experiences mitochondrial dysfunction in diabetes, superoxide levels are elevated, and mitochondrial superoxide dismutase (MnSOD) activity is decreased. Inhibition of superoxide accumulation in diabetes prevents mitochondrial dysfunction, apoptosis of retinal capillary cells, and the development of retinal histopathology. The purpose of this study is to examine the effect of overexpression of MnSOD on oxidative stress, DNA damage, and nitrative stress in the retina of diabetic mice. After 7 weeks of diabetes in MnSOD overexpressing (hemizygous) mice (MnSOD-Tg) and in their age-matched nontransgenic mice, parameters of oxidative stress and nitrative stress were measured in the retina. Overexpression of MnSOD prevented diabetes-induced decreases in retinal GSH levels and the total antioxidant capacity. In the same retina, MnSOD overexpression also inhibited diabetes-induced increases in the levels of 8-OHdG and nitrotyrosine. This suggests that MnSOD could be implicated in the pathogenesis of retinopathy by protecting the retina from increased oxidative damage experienced in diabetic conditions. Thus, understanding how changes in mitochondrial function result in the development of diabetic retinopathy could help identify SOD mimics to inhibit its development.
Collapse
Affiliation(s)
- Renu A Kowluru
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
47
|
DeFedericis HC, Patrzyc HB, Rajecki MJ, Budzinski EE, Iijima H, Dawidzik JB, Evans MS, Greene KF, Box HC. Singlet oxygen-induced DNA damage. Radiat Res 2006; 165:445-51. [PMID: 16579657 DOI: 10.1667/rr3533.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Singlet oxygen, hydrogen peroxide, hydroxyl radical and hydrogen peroxide are the reactive oxygen species (ROS) considered most responsible for producing oxidative stress in cells and organisms. Singlet oxygen interacts preferentially with guanine to produce 8-oxo-7,8-dihydroguanine and spiroiminodihydantoin. DNA damage due to the latter lesion has not been detected directly in the DNA of cells exposed to singlet oxygen. In this study, the singlet oxygen-induced lesion was isolated from a short synthetic oligomer after exposure to UVA radiation in the presence of methylene blue. The lesion could be enzymatically excised from the oligomer in the form of a modified dinucleoside monophosphate. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), the singlet oxygen lesion was detected in the form of modified dinucleoside monophosphates in double-stranded DNA and in the DNA of HeLa cells exposed to singlet oxygen. Pentamer containing the singlet oxygen-induced lesion and an isotopic label was synthesized as an internal standard for quantifying the lesion and served as well as for correcting for losses of product during sample preparation.
Collapse
Affiliation(s)
- Han-Chun DeFedericis
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shimelis O, Giese RW. Nuclease P1 digestion/high-performance liquid chromatography, a practical method for DNA quantitation. J Chromatogr A 2006; 1117:132-6. [PMID: 16620851 DOI: 10.1016/j.chroma.2006.03.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 03/14/2006] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
We have developed a practical method for quantifying DNA. The method is practical in two ways. First, a single enzyme is used to digest the DNA to nucleotides that are then quantified by HPLC under ordinary conditions. Second, the method quantifies DNA even when it is impure. In our method, "nuclease P1/HPLC," the DNA is hydrolyzed by nuclease P1 and the resulting 2'-deoxynucleoside 5'-monophosphates are quantified by HPLC with UV detection. This method was applied to several kinds of genomic DNA in terms of origin and method by which it had been purified. Calf thymus DNA (purified by salt precipitation by the supplier), pig liver DNA (purified by phenolic extraction or by anion-exchange chromatography using a Genomic Tip from Qiagen) and mouse skin DNA (similarly purified) were tested. In some cases a given sample was purified by two of these methods. The values for the amount of DNA by our method were compared with those by three other methods: acid hydrolysis/HPLC (selected as a reference procedure), UV absorbance, and dye binding. Agreement for all DNA samples between the values by our method versus those provided by acid hydrolysis/HPLC was within 10% for amounts of DNA in the 19-54 microg range. In contrast, UV absorbance and the dye-binding assay gave differences up to 30-40% relative to the consistent values furnished by acid hydrolysis and our method. Overall, normalizing the concentrations of the DNA (thymus, liver, skin) by acid hydrolysis/HPLC in 10 samples to values of 1.0 gave the following, relative values and standard deviations: 1.01+/-.07 (nuclease P1/HPLC), 0.8+/-0.17 (dye binding), and 1.1+/-0.1 (UV). Since one cannot assume that any sample of DNA is pure, and determining purity of DNA is difficult, then nuclease P1/HPLC or acid hydrolysis/HPLC is recommended rather than the UV absorbance or dye binding for quantifying DNA whenever an accurate value is important.
Collapse
Affiliation(s)
- Olga Shimelis
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Barnett Institute, Northeastern University, Boston, MA 02115, USA
| | | |
Collapse
|
49
|
Piazuelo E, Cebrián C, Escartín A, Jiménez P, Soteras F, Ortego J, Lanas A. Superoxide dismutase prevents development of adenocarcinoma in a rat model of Barrett's esophagus. World J Gastroenterol 2006; 11:7436-43. [PMID: 16437713 PMCID: PMC4725177 DOI: 10.3748/wjg.v11.i47.7436] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To test whether antioxidant treatment could prevent the progression of Barrett's esophagus to adenocarcinoma. METHODS In a rat model of gastroduodenoesophageal reflux by esophagojejunal anastomosis with gastric preservation, groups of 6-10 rats were randomized to receive treatment with superoxide dismutase (SOD) or vehicle and followed up for 4 mo. Rat's esophagus was assessed by histological analysis, superoxide anion and peroxinitrite generation, SOD levels and DNA oxidative damage. RESULTS All rats undergoing esophagojejunostomy developed extensive esophageal mucosal ulceration and inflammation by mo 4. The process was associated with a progressive presence of intestinal metaplasia beyond the anastomotic area (9% 1st mo and 50% 4th mo) (94% at the anastomotic level) and adenocarcinoma (11% 1st mo and 60% 4th mo). These changes were associated with superoxide anion and peroxinitrite mucosal generation, an early and significant increase of DNA oxidative damage and a significant decrease in SOD levels (P<0.05). Exogenous administration of SOD decreased mucosal superoxide levels, increased mucosal SOD levels and reduced the risk of developing intestinal metaplasia beyond the anastomotic area (odds ratio = 0.326; 95%CI: 0.108-0.981; P = 0.046), and esophageal adenocarcinoma (odds ratio = 0.243; 95%CI: 0.073-0.804; P = 0.021). CONCLUSION Superoxide dismutase prevents the progression of esophagitis to Barrett's esophagus and adenocarcinoma in this rat model of gastrointestinal reflux, supporting a role of antioxidants in the chemoprevention of esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Elena Piazuelo
- Instituto Aragonés de Ciencias de la Salud, Unidad Mixta de Investigación, Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|
50
|
Defoort EN, Kim PM, Winn LM. Valproic Acid Increases Conservative Homologous Recombination Frequency and Reactive Oxygen Species Formation: A Potential Mechanism for Valproic Acid-Induced Neural Tube Defects. Mol Pharmacol 2005; 69:1304-10. [PMID: 16377765 DOI: 10.1124/mol.105.017855] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Valproic acid, a commonly used antiepileptic agent, is associated with a 1 to 2% incidence of neural tube defects when taken during pregnancy; however, the molecular mechanism by which this occurs has not been elucidated. Previous research suggests that valproic acid exposure leads to an increase in reactive oxygen species (ROS). DNA damage due to ROS can result in DNA double-strand breaks, which can be repaired through homologous recombination (HR), a process that is not error-free and can result in detrimental genetic changes. Because the developing embryo requires tight regulation of gene expression to develop properly, we propose that the loss or dysfunction of genes involved in embryonic development through aberrant HR may ultimately cause neural tube defects. To determine whether valproic acid induces HR, Chinese hamster ovary 3-6 cells, containing a neomycin direct repeat recombination substrate, were exposed to valproic acid for 4 or 24 h. A significant increase in HR after exposure to valproic acid (5 and 10 mM) for 24 h was observed, which seems to occur through a conservative HR mechanism. We also demonstrated that exposure to valproic acid (5 and 10 mM) significantly increased intracellular ROS levels, which were attenuated by preincubation with polyethylene glycol-conjugated (PEG)-catalase. A significant change in the ratio of 8-hydroxy-2'-deoxyguanosine/2'-de-oxyguanosine, a measure of DNA oxidation, was not observed after valproic acid exposure; however, preincubation with PEG-catalase significantly blocked the increase in HR. These data demonstrate that valproic acid increases HR frequency and provides a possible mechanism for valproic acid-induced neural tube defects.
Collapse
Affiliation(s)
- Ericka N Defoort
- Department of Pharmacology and Toxicology and School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|