1
|
Proskurnin MA, Proskurnina EV, Galimova VR, Alekseev AV, Mikheev IV, Vladimirov YA. Composition of the Cytochrome c Complex with Cardiolipin by Thermal Lens Spectrometry. Molecules 2023; 28:molecules28062692. [PMID: 36985664 PMCID: PMC10057424 DOI: 10.3390/molecules28062692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Thermal lens spectrometry along with spectrophotometric titration were used to assess the composition of the complex of oxidized cytochrome c (ferricytochrome c) with 1,1′,2,2′-tetraoleyl cardiolipin, which plays a key role in the initiation of apoptosis. Spectrophotometric titration was carried out for micromolar concentrations at which the complex is mainly insoluble, to assess the residual concentration in the solution and to estimate the solubility of the complex. Thermal lens spectrometry was used as a method of molecular absorption spectroscopy, which has two advantages over conventional optical transmission spectroscopy: the higher sensitivity of absorbance measurements and the possibility of studying the light absorption by chromophores and heat transfer in complex systems, such as living cells or tissues. Thermal lens measurements were carried out at nanomolar concentrations, where the complex is mainly in solution, i.e., under the conditions of its direct measurements. From the thermal lens measurements, the ratios of cytochrome c and cardiolipin in the complex were 50 at pH 7.4; 30 at pH 6.8; and 10 at pH 5.5, which fit well to the spectrophotometric data. The molecular solubility of the complex at pH 6.8–7.4 was estimated as 30 µmol/L.
Collapse
Affiliation(s)
- Mikhail A. Proskurnin
- Analytical Chemistry Division, Chemistry Department, M.V. Lomonosov Moscow State University, d. 1, Str. 3, Lenin Hills, GSP-1 V-234, 119991 Moscow, Russia;
- Correspondence: (M.A.P.); (I.V.M.); Tel.: +7-495-939-15-68 (I.V.M.)
| | - Elena V. Proskurnina
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St, 115522 Moscow, Russia;
| | - Viktoriya R. Galimova
- Analytical Chemistry Division, Chemistry Department, M.V. Lomonosov Moscow State University, d. 1, Str. 3, Lenin Hills, GSP-1 V-234, 119991 Moscow, Russia;
| | - Andrei V. Alekseev
- Russian Research Institute of Aviation Materials, ul. Radio 17, 105005 Moscow, Russia;
| | - Ivan V. Mikheev
- Analytical Chemistry Division, Chemistry Department, M.V. Lomonosov Moscow State University, d. 1, Str. 3, Lenin Hills, GSP-1 V-234, 119991 Moscow, Russia;
- Correspondence: (M.A.P.); (I.V.M.); Tel.: +7-495-939-15-68 (I.V.M.)
| | - Yuri A. Vladimirov
- Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Leninskie Gory, A, 119991 Moscow, Russia;
| |
Collapse
|
2
|
Wong HY, Langlotz M, Gan-Schreier H, Xu W, Staffer S, Tuma-Kellner S, Liebisch G, Merle U, Chamulitrat W. Constitutive oxidants from hepatocytes of male iPLA2β-null mice increases the externalization of phosphatidylethanolamine on plasma membrane. Free Radic Res 2021; 55:625-633. [PMID: 34696671 DOI: 10.1080/10715762.2021.1987426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We have found that group VIA calcium-independent phospholipase A2 (iPLA2β) has specificity for hydrolysis of phosphatidylethanolamine (PE) in mouse livers. Phospholipids (PLs) are transported to plasma membrane and some PLs including PE are externalized to maintain membrane PL asymmetry. Here we demonstrated that hepatocytes of iPLA2β-null (KO) mice showed an increase in PE containing palmitate and oleate. We aimed to examine whether externalization of PE on the outer leaflets could be affected by iPLA2β deficiency and its modulation by reactive oxygen species (ROS) or apoptosis. As duramycin has high affinity to PE, we used duramycin conjugated with biotin (DLB) and streptavidin 488 as a probe for detection of externalized PE. Compared to WT, naïve KO hepatocytes showed an increase in both PE externalization and ROS generation. These events were observed in male but not in female KO mice. Hydrogen peroxide or menadione treatment enhanced PE externalization to the same extent for both male/female WT and KO hepatocytes. By indirect immunofluorescence, DLB-streptavidin staining was observed as small punctuated spots on the cell surface of menadione-treated KO hepatocytes. Unlike the reported PS externalization, CD95/FasL treatment did not lead to any increase in PE externalization, and iPLA2β deficiency-dependent PE externalization was also not correlated with apoptosis. Thus, constitutive (but not induced) ROS generation in iPLA2β-deficient hepatocytes leads to PE externalization observed only in male mice. Such PE externalization may imply detrimental effects regarding further oxidation of PE fatty acids and the binding with pathogens on the outer leaflets of hepatocyte plasma membrane.
Collapse
Affiliation(s)
| | - Monika Langlotz
- Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
| | | | - Weihong Xu
- Heidelberg University Hospital, Heidelberg, Germany
| | | | | | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Regensburg, Germany
| | - Uta Merle
- Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
3
|
Abstract
Production of reactive oxygen species (ROS) in the mitochondria plays multiple roles in physiology, and excessive production of ROS leads to the development of various pathologies. ROS in the mitochondria are generated by various enzymes, mainly in the electron transporvt chain, and it is important to identify not only the trigger but also the source of free radical production. It is important to measure mitochondrial ROS in live, intact cells, because activation of ROS production could be initiated by changes in extramitochondrial processes which could be overseen when using isolated mitochondria. Here we describe the approaches, which allow to measure production of ROS in the matrix of mitochondria in live cells. We also demonstrate how to measure kinetic changes in lipid peroxidation in mitochondria of live cells. These methods could be used for understanding the mechanisms of pathology in a variety of disease models and also for testing neuro- or cardioprotective chemicals.
Collapse
|
4
|
Nie J, Yang J, Wei Y, Wei X. The role of oxidized phospholipids in the development of disease. Mol Aspects Med 2020; 76:100909. [PMID: 33023753 DOI: 10.1016/j.mam.2020.100909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/29/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Oxidized phospholipids (OxPLs), complex mixtures of phospholipid oxidation products generated during normal or pathological processes, are increasingly recognized to show bioactive effects on many cellular signalling pathways. There is a growing body of evidence showing that OxPLs play an important role in many diseases, so it is essential to define the specific role of OxPLs in different diseases for the design of disease therapies. In vastly diverse pathological processes, OxPLs act as pro-inflammatory agents and contribute to the progression of many diseases; in addition, they play a role in anti-inflammatory processes, promoting the dissipation of inflammation and inhibiting the progression of some diseases. In addition to participating in the regulation of inflammatory responses, OxPLs affect the occurrence and development of diseases through other pathways, such as apoptosis promotion. In this review, the different and even opposite effects of different OxPL molecular species are discussed. Furthermore, the specific effects of OxPLs in various diseases, as well as the receptor and cellular mechanisms involved, are summarized.
Collapse
Affiliation(s)
- Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiration, First People's Hospital of Yunnan Province, Yunnan, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Tyurina YY, St Croix CM, Watkins SC, Watson AM, Epperly MW, Anthonymuthu TS, Kisin ER, Vlasova II, Krysko O, Krysko DV, Kapralov AA, Dar HH, Tyurin VA, Amoscato AA, Popova EN, Bolevich SB, Timashev PS, Kellum JA, Wenzel SE, Mallampalli RK, Greenberger JS, Bayir H, Shvedova AA, Kagan VE. Redox (phospho)lipidomics of signaling in inflammation and programmed cell death. J Leukoc Biol 2019; 106:57-81. [PMID: 31071242 PMCID: PMC6626990 DOI: 10.1002/jlb.3mir0119-004rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
In addition to the known prominent role of polyunsaturated (phospho)lipids as structural blocks of biomembranes, there is an emerging understanding of another important function of these molecules as a highly diversified signaling language utilized for intra- and extracellular communications. Technological developments in high-resolution mass spectrometry facilitated the development of a new branch of metabolomics, redox lipidomics. Analysis of lipid peroxidation reactions has already identified specific enzymatic mechanisms responsible for the biosynthesis of several unique signals in response to inflammation and regulated cell death programs. Obtaining comprehensive information about millions of signals encoded by oxidized phospholipids, represented by thousands of interactive reactions and pleiotropic (patho)physiological effects, is a daunting task. However, there is still reasonable hope that significant discoveries, of at least some of the important contributors to the overall overwhelmingly complex network of interactions triggered by inflammation, will lead to the discovery of new small molecule regulators and therapeutic modalities. For example, suppression of the production of AA-derived pro-inflammatory mediators, HXA3 and LTB4, by an iPLA2 γ inhibitor, R-BEL, mitigated injury associated with the activation of pro-inflammatory processes in animals exposed to whole-body irradiation. Further, technological developments promise to make redox lipidomics a powerful approach in the arsenal of diagnostic and therapeutic instruments for personalized medicine of inflammatory diseases and conditions.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claudette M St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan M Watson
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tamil S Anthonymuthu
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena R Kisin
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, West Virginia, USA
| | - Irina I Vlasova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haider H Dar
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena N Popova
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Sergey B Bolevich
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Peter S Timashev
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hulya Bayir
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna A Shvedova
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, West Virginia, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| |
Collapse
|
6
|
Anthonymuthu TS, Kenny EM, Lamade AM, Kagan VE, Bayır H. Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 2018; 124:493-503. [PMID: 29964171 PMCID: PMC6098726 DOI: 10.1016/j.freeradbiomed.2018.06.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
Oxidative stress is a major contributor to secondary injury signaling cascades following traumatic brain injury (TBI). The role of lipid peroxidation in the pathophysiology of a traumatic insult to neural tissue is increasingly recognized. As the methods to quantify lipid peroxidation have gradually improved, so has the understanding of mechanistic details of lipid peroxidation and related signaling events in the injury pathogenesis. While free-radical mediated, non-enzymatic lipid peroxidation has long been studied, recent advances in redox lipidomics have demonstrated the significant contribution of enzymatic lipid peroxidation to TBI pathogenesis. Complex interactions between inflammation, phospholipid peroxidation, and hydrolysis define the engagement of different cell death programs and the severity of injury and outcome. This review focuses on enzymatic phospholipid peroxidation after TBI, including the mechanism of production, signaling roles in secondary injury pathology, and temporal course of production with respect to inflammatory response. In light of the newly identified phospholipid oxidation mechanisms, we also discuss possible therapeutic targets to improve neurocognitive outcome after TBI. Finally, we discuss current limitations in identifying oxidized phospholipids and possible methodologic improvements that can offer a deeper insight into the region-specific distribution and subcellular localization of phospholipid oxidation after TBI.
Collapse
Affiliation(s)
- Tamil S Anthonymuthu
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Elizabeth M Kenny
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Andrew M Lamade
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States; Laboratory of Navigational Redox Lipidomics in Biomedicine, Department of Human Pathology, IM Sechenov First Moscow State Medical University, Russian Federation
| | - Hülya Bayır
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, United States.
| |
Collapse
|
7
|
Bouchet S, Tang R, Fava F, Legrand O, Bauvois B. The CNGRC-GG-D(KLAKLAK)2 peptide induces a caspase-independent, Ca2+-dependent death in human leukemic myeloid cells by targeting surface aminopeptidase N/CD13. Oncotarget 2017; 7:19445-67. [PMID: 26655501 PMCID: PMC4991394 DOI: 10.18632/oncotarget.6523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023] Open
Abstract
The CD13 antigen's binding site for the Asn-Gly-Arg (NGR) motif enables NGR-containing chemotherapeutic drugs to be delivered to CD13-positive tumours. Human CD13-positive acute myeloid leukemia (AML) cells proliferate abnormally and escape death. Here, we show that the CNGRC-GG-D(KLAKLAK)2 peptide induces death in AML cell lines (U937, THP-1, NB4, HL-60) and primary blood cells from AML patients. Cell death was characterized as a caspase-independent mechanism, without DNA fragmentation, but phosphatidylserine externalization and membrane disruption. Our results demonstrate in U937 cells that (i) the NGR-peptide triggers the loss of mitochondrial potential(ΔΨm) and generates superoxide anion (O2-), (ii) N-acetyl-L-cysteine (NAC) and extra/intracellular Ca2+ chelators (BAPTA) prevent both O2- production and cell death, (iii) the Ca2+-channel blocker nifedipine prevents cell death (indicating that Ca2+ influx is the initial death trigger), and (iv) BAPTA, but not NAC, prevents ΔΨm loss (suggesting O2- is a mitochondrial downstream effector). AML cell lines and primary blasts responding to the lethal action of NGR-peptide express promatrix metalloproteinase-12 (proMMP-12) and its substrate progranulin (an 88 kDa cell survival factor). A cell-free assay highlighted proMMP-12 activation by O2-. Accordingly, NGR-peptide's downregulation of 88 kDa progranulin protein was prevented by BAPTA and NAC. Conversely, AML blast resistance to NGR-peptide is associated with the expression of a distinct, 105 kDa progranulin isoform. These results indicate that CNGRC-GG-D(KLAKLAK)2 induces death in AML cells through the Ca2+-mitochondria-O2.-pathway, and support the link between proMMP-12 activation and progranulin cleavage during cell death. Our findings may have implications for the understanding of tumour biology and treatment.
Collapse
Affiliation(s)
- Sandrine Bouchet
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France.,Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Ruoping Tang
- Centre de Recherche de Saint-Antoine, INSERM UMRS 938, Service d'Hématologie, Hôpital St Antoine, Paris, France.,Sorbonne Universités UPMC Paris 06, Paris, France
| | - Fanny Fava
- Centre de Recherche de Saint-Antoine, INSERM UMRS 938, Service d'Hématologie, Hôpital St Antoine, Paris, France.,Sorbonne Universités UPMC Paris 06, Paris, France
| | - Ollivier Legrand
- Centre de Recherche de Saint-Antoine, INSERM UMRS 938, Service d'Hématologie, Hôpital St Antoine, Paris, France.,Sorbonne Universités UPMC Paris 06, Paris, France
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
8
|
Vladimirov YA, Sarisozen C, Vladimirov GK, Filipczak N, Polimova AM, Torchilin VP. The Cytotoxic Action of Cytochrome C/Cardiolipin Nanocomplex (Cyt-CL) on Cancer Cells in Culture. Pharm Res 2017; 34:1264-1275. [PMID: 28321609 DOI: 10.1007/s11095-017-2143-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/09/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE The effect of existing anti-cancer therapies is based mainly on the stimulation of apoptosis in cancer cells. Here, we have demonstrated the ability of a catalytically-reactive nanoparticle-based complex of cytochrome c with cardiolipin (Cyt-CL) to induce the apoptosis and killing of cancer cells in a monolayer cell culture. METHODS Cyt-CL nanoparticles were prepared by complexing CytC with different molar excesses of CL. Following characterization, cytotoxicity and apoptosis inducing effects of nanoparticles were investigated. In an attempt to identify the anticancer activity mechanism of Cyt-CL, pseudo-lipoxygenase and lipoperoxidase reaction kinetics were measured by chemiluminescence. RESULTS Using chemiluminescence, we have demonstrated that the Cyt-CL complex produces lipoperoxide radicals in two reactions: by decomposition of lipid hydroperoxides, and by lipid peroxidation under the action of H2O2. Antioxidants inhibited the formation of lipid radicals. Cyt-CL nanoparticles, but not the CytC alone, dramatically enhanced the level of apoptosis and cell death in two cell lines: drug-sensitive (A2780) and doxorubicin-resistant (A2780-Adr). The proposed mechanism of the cytotoxic action of Cyt-CL involves either penetration through the cytoplasm and outer mitochondrial membrane and catalysis of lipid peroxidation reactions at the inner mitochondrial membrane, or/and activation of lipid peroxidation within the cytoplasmic membrane. CONCLUSIONS Here we propose a new type of anticancer nano-formulation, with an action based on the catalytic action of Cyt-CL nanoparticles on the cell membrane and and/or mitochondrial membranes that results in lipid peroxidation reactions, which give rise to activation of apoptosis in cancer cells, including multidrug resistant cells.
Collapse
Affiliation(s)
- Yury A Vladimirov
- Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, 27/1 Lomonosovsky Prospekt, Moscow, 119192, Russian Federation. .,Federal Research Center: Crystallography and Photonics, Russian Academy of Sciences, Leninsky Prospekt 59, Moscow, 119333, Russian Federation.
| | - Can Sarisozen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Georgy K Vladimirov
- Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, 27/1 Lomonosovsky Prospekt, Moscow, 119192, Russian Federation.,Federal Research Center: Crystallography and Photonics, Russian Academy of Sciences, Leninsky Prospekt 59, Moscow, 119333, Russian Federation
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Anastasia M Polimova
- Federal Research Center: Crystallography and Photonics, Russian Academy of Sciences, Leninsky Prospekt 59, Moscow, 119333, Russian Federation
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| |
Collapse
|
9
|
Azagury A, Amar-Lewis E, Yudilevitch Y, Isaacson C, Laster B, Kost J. Ultrasound Effect on Cancerous versus Non-Cancerous Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1560-1567. [PMID: 27067417 DOI: 10.1016/j.ultrasmedbio.2016.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
Previous studies have found that cancer cells whose metastatic potential is low are more vulnerable to mechanical stress-induced trauma to their cytoskeleton compared with benign cells. Because ultrasound induces mechanical stresses on cells and tissues, it is postulated that there may be a way to apply ultrasound to tumors to reduce their ability to metastasize. The difference between low-malignant-potential cancer cells and benign cells could be a result of their different responses to the mechanical stress insonation induced. This hypothesis was tested in vitro and in vivo. Low-malignant-potential cells were found to be more sensitive to insonation, resulting in a significantly higher mortality rate compared with that of benign cells, 89% versus 21%, respectively. This effect can be controlled by varying ultrasound parameters: intensity, duration, and duty cycle. Thus, the results presented in this study suggest the application of ultrasound to discriminate between benign and malignant cells.
Collapse
Affiliation(s)
- Aharon Azagury
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliz Amar-Lewis
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yana Yudilevitch
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel
| | - Carol Isaacson
- Department of Nuclear Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Brenda Laster
- Department of Nuclear Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Kost
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
10
|
Lu C, Zhou F, Wu S, Liu L, Xing D. Phototherapy-Induced Antitumor Immunity: Long-Term Tumor Suppression Effects via Photoinactivation of Respiratory Chain Oxidase-Triggered Superoxide Anion Burst. Antioxid Redox Signal 2016; 24:249-62. [PMID: 26413929 DOI: 10.1089/ars.2015.6334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high-fluence, low-power laser irradiation (HF-LPLI) results in oxidative damage that induces tumor cell apoptosis. In this study, we focused on the immunological effects of HF-LPLI phototherapy and explored its antitumor immune regulatory mechanism. RESULTS We found not only that HF-LPLI treatment induced tumor cell apoptosis but also that HF-LPLI-treated apoptotic tumor cells activated macrophages. Due to mitochondrial superoxide anion burst after HF-LPLI treatment, tumor cells displayed a high level of phosphatidylserine oxidation, which mediated the recognition and uptake by macrophages with the subsequent secretion of cytokines and generation of cytotoxic T lymphocytes. In addition, in vivo results showed that HF-LPLI treatment caused leukocyte infiltration into the tumor and efficaciously inhibited tumor growth in an EMT6 tumor model. These phenomena were absent in the respiration-deficient EMT6 tumor model, implying that the HF-LPLI-elicited immunological effects were dependent on the mitochondrial superoxide anion burst. INNOVATION In this study, for the first time, we show that HF-LPLI mediates tumor-killing effects via targeting photoinactivation of respiratory chain oxidase to trigger a superoxide anion burst, leading to a high level of oxidatively modified moieties, which contributes to the phenotypic changes in macrophages and mediates the antitumor immune response. CONCLUSION Our results suggest that HF-LPLI may be an effective cancer treatment modality that both eradicates the treated primary tumors and induces an antitumor immune response via photoinactivation of respiratory chain oxidase to trigger superoxide anion burst.
Collapse
Affiliation(s)
- Cuixia Lu
- 1 MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou, China
| | - Feifan Zhou
- 1 MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou, China .,2 Joint Laboratory of Laser Oncology with Cancer Center of Sun Yat-sen University, South China Normal University , Guangzhou, China
| | - Shengnan Wu
- 1 MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou, China .,2 Joint Laboratory of Laser Oncology with Cancer Center of Sun Yat-sen University, South China Normal University , Guangzhou, China
| | - Lei Liu
- 1 MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou, China
| | - Da Xing
- 1 MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou, China .,2 Joint Laboratory of Laser Oncology with Cancer Center of Sun Yat-sen University, South China Normal University , Guangzhou, China
| |
Collapse
|
11
|
Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 2012; 261:121-33. [PMID: 22513272 DOI: 10.1016/j.taap.2012.03.023] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 12/23/2022]
Abstract
Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures.
Collapse
Affiliation(s)
- Anna A Shvedova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | |
Collapse
|
12
|
Elkon KB, Silverman GJ. Naturally occurring autoantibodies to apoptotic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:14-26. [PMID: 22903663 DOI: 10.1007/978-1-4614-3461-0_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Subsets of IgM naturally occurring autoantibodies (NAbs) bind to the cell surface membranes of dying cells. The antibodies predominantly have specificities against lipid antigens or oxidized lipids. Chief among these lipid antigens are phosphorylcholine (PC) and malondialdehyde (MDA). Antibodies to negatively charged phospholipids such as phosphatidylserine (PS) have been described and there is controversy as to whether these antibodies are related to anticardiolipin antibodies observed in disease states. IgM NAbs that bind to apoptotic cells recruit classical complement pathway components and facilitate phagocytosis by both macrophages and dendritic cells, and may block inflammatory pathways. Under these circumstances, pathologic immune responses to self (autoimmunity) are avoided, whereas mice lacking serum IgM develop a lupus-like disease with associated IgG autoantibody responses. Based on these observations, IgM anti-PC NAbs were found to attenuate inflammation in mouse models of arthritis. IgMNAbs antibodies therefore appear to play pivotal roles in the dampening inflammation and maintenance of tolerance.
Collapse
Affiliation(s)
- Keith B Elkon
- Department of Medicine and Immunology, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
13
|
Lidocaine depolarizes the mitochondrial membrane potential by intracellular alkalization in rat dorsal root ganglion neurons. J Anesth 2011; 25:229-39. [PMID: 21212988 DOI: 10.1007/s00540-010-1079-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE The mitochondrial membrane potential (ΔΨm) is an important factor for apoptosis, and it is produced by the proton electrochemical gradient (ΔµH(+)). Therefore, the intracellular proton concentration (pH(in)) is an important factor for modifying the ΔΨm. However, the effects of lidocaine on pH(in) are unclear. To investigate mitochondrial responses to lidocaine, therefore, we simultaneously measured pH(in) with ΔΨm, flavin adenine dinucleotide (FAD), and reduced form of nicotinamide adenine dinucleotide (NADH) fluorescence, and calculated the FAD/NADH ratio (redox ratio), the superoxide production in mitochondria. METHODS Morphological change and early apoptosis were observed by annexin-V FITC staining under fluorescent microscope. The ratiometric fluorescent probe JC-1 and HPTS were used for the simultaneous measurements of ΔΨm with pH(in) in rat dorsal root ganglion (DRG) neurons. FAD and NADH autofluorescence were simultaneously measured, and the FAD/NADH fluorescence ratio (redox ratio) was calculated. The superoxide was measured by mitosox-red fluorescent probe for mitochondrial superoxide. Lidocaine was evaluated at 1, 5, and 10 mM. RESULTS Morphological change and early apoptosis were observed after 10 mM lidocaine administration. Lidocaine depolarized ΔΨm with increased pH(in) in a dose-dependent manner. In low-pH saline (pH 6), in the presence of both the weak acids (acetate and propionate), lidocaine failed to depolarize ΔΨm and increase pH(in). On the other hand, lidocaine decreased the redox ratio in the cell and increased the levels of superoxide in a dose-dependent manner. CONCLUSION These results demonstrated that lidocaine depolarizes ΔΨm by intracellular alkalization. These results may indicate one of the mechanisms responsible for lidocaine-induced neurotoxicity.
Collapse
|
14
|
Lutsenko GV. Flow-cytometry assay for apoptosis using fluorophor 10-N-nonyl acridine orange. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2010. [DOI: 10.1134/s1990747810040045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
|
16
|
Mano CM, Barros MP, Faria PA, Prieto T, Dyszy FH, Nascimento OR, Nantes IL, Bechara EJH. Superoxide radical protects liposome-contained cytochrome c against oxidative damage promoted by peroxynitrite and free radicals. Free Radic Biol Med 2009; 47:841-9. [PMID: 19559788 DOI: 10.1016/j.freeradbiomed.2009.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/13/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
The effects of nitrosative species on cyt c structure and peroxidase activity were investigated here in the presence of O(2)(*-) and anionic and zwitterionic vesicles. Nitrosative species were generated by 3-morpholinesydnonymine (SIN1) decomposition, using cyt c heme iron and/or molecular oxygen as electron acceptor. Far- and near-UV CD spectra of SIN1-treated cyt c revealed respectively a slight decrease of alpha-helix content (from 39 to 34%) and changes in the tryptophan structure accompanied by increased fluorescence. The Soret CD spectra displayed a significant decrease of the positive signal at 403 nm. EPR spectra revealed the presence of a low-spin cyt c form (S=1/2) with g(1)=2.736, g(2)=2.465, and g(3)=2.058 after incubation with SIN1. These data suggest that the concomitant presence of NO(*) and O(2)(*-) generated from dissolved oxygen, in a system containing cyt c and liposomes, promotes chemical and conformational modifications in cyt c, resulting in a hypothetical bis-histidine hexacoordinated heme iron. We also show that, paradoxically, O(2)(*-) prevents not only membrane lipoperoxidation by peroxide-derived radicals but also oxidation of cyt c itself due to the ability of O(2)(*-) to reduce heme iron. Finally, lipoperoxidation measurements showed that, although it is a more efficient peroxidase, SIN1-treated cyt c is not more effective than native cyt c in promoting damage to anionic liposomes in the presence of tert-ButylOOH, probably due to loss of affinity with negatively charged lipids.
Collapse
Affiliation(s)
- Camila M Mano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Konduru NV, Tyurina YY, Feng W, Basova LV, Belikova NA, Bayir H, Clark K, Rubin M, Stolz D, Vallhov H, Scheynius A, Witasp E, Fadeel B, Kichambare PD, Star A, Kisin ER, Murray AR, Shvedova AA, Kagan VE. Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo. PLoS One 2009; 4:e4398. [PMID: 19198650 PMCID: PMC2634966 DOI: 10.1371/journal.pone.0004398] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 12/16/2008] [Indexed: 12/19/2022] Open
Abstract
Broad applications of single-walled carbon nanotubes (SWCNT) dictate the necessity to better understand their health effects. Poor recognition of non-functionalized SWCNT by phagocytes is prohibitive towards controlling their biological action. We report that SWCNT coating with a phospholipid "eat-me" signal, phosphatidylserine (PS), makes them recognizable in vitro by different phagocytic cells - murine RAW264.7 macrophages, primary monocyte-derived human macrophages, dendritic cells, and rat brain microglia. Macrophage uptake of PS-coated nanotubes was suppressed by the PS-binding protein, Annexin V, and endocytosis inhibitors, and changed the pattern of pro- and anti-inflammatory cytokine secretion. Loading of PS-coated SWCNT with pro-apoptotic cargo (cytochrome c) allowed for the targeted killing of RAW264.7 macrophages. In vivo aspiration of PS-coated SWCNT stimulated their uptake by lung alveolar macrophages in mice. Thus, PS-coating can be utilized for targeted delivery of SWCNT with specified cargoes into professional phagocytes, hence for therapeutic regulation of specific populations of immune-competent cells.
Collapse
Affiliation(s)
- Nagarjun V. Konduru
- Center for Free Radical and Antioxidant Health, Graduate School of Public Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, Graduate School of Public Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Weihong Feng
- Center for Free Radical and Antioxidant Health, Graduate School of Public Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Liana V. Basova
- Center for Free Radical and Antioxidant Health, Graduate School of Public Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Natalia A. Belikova
- Center for Free Radical and Antioxidant Health, Graduate School of Public Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, Graduate School of Public Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Katherine Clark
- Department of Cell Biology & Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marc Rubin
- Department of Cell Biology & Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Donna Stolz
- Department of Cell Biology & Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Helen Vallhov
- Clinical Allergy Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Annika Scheynius
- Clinical Allergy Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Erika Witasp
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Padmakar D. Kichambare
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Elena R. Kisin
- Pathology/Physiology Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia, United States of America
| | - Ashley R. Murray
- Pathology/Physiology Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia, United States of America
| | - Anna A. Shvedova
- Pathology/Physiology Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia, United States of America
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, Graduate School of Public Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
18
|
Tyurin VA, Tyurina YY, Feng W, Mnuskin A, Jiang J, Tang M, Zhang X, Zhao Q, Kochanek PM, Clark RSB, Bayir H, Kagan VE. Mass-spectrometric characterization of phospholipids and their primary peroxidation products in rat cortical neurons during staurosporine-induced apoptosis. J Neurochem 2008; 107:1614-33. [PMID: 19014376 DOI: 10.1111/j.1471-4159.2008.05728.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The molecular diversity of phospholipids is essential for their structural and signaling functions in cell membranes. In the current work, we present, the results of mass spectrometric characterization of individual molecular species in major classes of phospholipids -- phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), phosphatidylserine (PtdSer), phosphatidylinositol (PtdIns), sphingomyelin (CerPCho), and cardiolipin (Ptd(2)Gro) -- and their oxidation products during apoptosis induced in neurons by staurosporine (STS). The diversity of molecular species of phospholipids in rat cortical neurons followed the order Ptd(2)Gro > PtdEtn >> PtdCho >> PtdSer > PtdIns > CerPCho. The number of polyunsaturated oxidizable species decreased in the order Ptd(2)Gro >> PtdEtn > PtdCho > PtdSer > PtdIns > CerPCho. Thus a relatively minor class of phospholipids, Ptd(2)Gro, was represented in cortical neurons by the greatest variety of both total and peroxidizable molecular species. Quantitative fluorescence HPLC analysis employed to assess the oxidation of different classes of phospholipids in neuronal cells during intrinsic apoptosis induced by STS revealed that three anionic phospholipids -- Ptd(2)Gro >> PtdSer > PtdIns -- underwent robust oxidation. No significant oxidation in the most dominant phospholipid classes -- PtdCho and PtdEtn -- was detected. MS-studies revealed the presence of hydroxy-, hydroperoxy- as well as hydroxy-/hydroperoxy-species of Ptd(2)Gro, PtdSer, and PtdIns. Experiments in model systems where total cortex Ptd(2)Gro and PtdSer fractions were incubated in the presence of cytochrome c (cyt c) and H(2)O(2), confirmed that molecular identities of the products formed were similar to the ones generated during STS-induced neuronal apoptosis. The temporal sequence of biomarkers of STS-induced apoptosis and phospholipid peroxidation combined with recently demonstrated redox catalytic properties of cyt c realized through its interactions with Ptd(2)Gro and PtdSer suggest that cyt c acts as a catalyst of selective peroxidation of anionic phospholipids yielding Ptd(2)Gro and PtdSer peroxidation products. These oxidation products participate in mitochondrial membrane permeability transition and in PtdSer externalization leading to recognition and uptake of apoptotic cells by professional phagocytes.
Collapse
Affiliation(s)
- Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Brown GC, Borutaite V. Regulation of apoptosis by the redox state of cytochrome c. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:877-81. [DOI: 10.1016/j.bbabio.2008.03.024] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/03/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
|
20
|
Everse J, Coates PW. Neurodegeneration and peroxidases. Neurobiol Aging 2007; 30:1011-25. [PMID: 18053617 DOI: 10.1016/j.neurobiolaging.2007.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/21/2007] [Accepted: 10/13/2007] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases that affect different parts of the central nervous system. However, a review of the literature indicates that certain biochemical reactions involved in neurodegeneration in these three diseases are quite similar and could be partly identical. This article critically examines the similarities and, based on data from our own and other laboratories, proposes a novel explanation for neurodegeneration in these three diseases. We identified about 20 commonalities that exist in the neurodegenerative process of each disease. We hypothesize that there are two enzyme-catalyzed pathways that operate in affected neurons: an oxidative pathway leading to destruction of various neuronal proteins and lipids, and an apoptotic pathway which the body normally uses to remove unwanted and dysfunctional cells. Data from many laboratories indicate that oxidative reactions are primarily responsible for neurodegeneration, whereas apoptosis may well be a secondary response to the presence of neurons that have already been severely damaged by oxidative reactions. Attempts to inhibit apoptosis for the purpose of attenuating progression of these diseases may therefore be only of marginal benefit. Specific oxidative reactions within affected neurons led us to propose that one or more heme peroxidases may be the catalyst(s) involved in oxidation of proteins and lipids. Support for this proposal is provided by the recent finding that amyloi-beta peptide may act as a peroxidase in AD. Possible participation of the peroxidase activity of cytochrome c, herein designated as cytochrome c(px) to distinguish it from yeast cytochrome c peroxidase, is discussed. Of special interest is our recent finding that many compounds that cause attenuation of neurodegeneration are inhibitors of the peroxidase activity of cytochrome c. Several inhibitors were subsequently identified as suicide substrates. Such inhibitors could be ideally suited for targeted clinical approaches aimed at arresting progression of neurodegeneration. Finally, it is possible that immobilized yet still active peroxidase(s) may be present in protein aggregates in AD, PD, and ALS. This activity could be the catalyst for the slow, self-perpetuating and irreversible degeneration of affected neurons that occurs over long periods of time in these neurodegenerative diseases.
Collapse
Affiliation(s)
- Johannes Everse
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | |
Collapse
|
21
|
Belikova NA, Jiang J, Tyurina YY, Zhao Q, Epperly MW, Greenberger J, Kagan VE. Cardiolipin-Specific Peroxidase Reactions of Cytochrome c in Mitochondria During Irradiation-Induced Apoptosis. Int J Radiat Oncol Biol Phys 2007; 69:176-86. [PMID: 17707271 DOI: 10.1016/j.ijrobp.2007.03.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 03/20/2007] [Accepted: 03/21/2007] [Indexed: 01/11/2023]
Abstract
PURPOSE To determine whether cytochrome c (cyt c) content and associated cardiolipin oxidation can be determinants of cell sensitivity to irradiation-induced apoptosis. METHODS AND MATERIALS The small interfering RNA (siRNA) approach was used to engineer HeLa cells with lowered contents of cyt c (14%, HeLa 1.2 cells). Cells were treated by gamma-irradiation (in doses of 5-40 Gy). Lipid oxidation was characterized by electrospray ionization mass spectrometry analysis and fluorescence high-performance liquid chromatography-based Amplex Red assay. Release of a proapoptotic factor (cyt c, Smac/DIABLO) was detected by Western blotting. Apoptosis was revealed by caspase-3/7 activation and phosphatidylserine externalization. RESULTS Irradiation caused selective accumulation of hydroperoxides in cardiolipin (CL) but not in other phospholipids. HeLa 1.2 cells responded by a lower irradiation-induced accumulation of CL oxidation products than parental HeLa cells. Proportionally decreased release of a proapoptotic factor, Smac/DIABLO, was detected in cyt c-deficient cells after irradiation. Caspase-3/7 activation and phosphatidylserine externalization were proportional to the cyt c content in cells. CONCLUSIONS Cytochrome c is an important catalyst of CL peroxidation, critical to the execution of the apoptotic program. This new role of cyt c in irradiation-induced apoptosis is essential for the development of new radioprotectors and radiosensitizers.
Collapse
Affiliation(s)
- Natalia A Belikova
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Bayir H, Tyurin VA, Tyurina YY, Viner R, Ritov V, Amoscato AA, Zhao Q, Zhang XJ, Janesko-Feldman KL, Alexander H, Basova LV, Clark RSB, Kochanek PM, Kagan VE. Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis. Ann Neurol 2007; 62:154-69. [PMID: 17685468 DOI: 10.1002/ana.21168] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Enhanced lipid peroxidation is well established in traumatic brain injury. However, its molecular targets, identity of peroxidized phospholipid species, and their signaling role have not been deciphered. METHODS Using controlled cortical impact as a model of traumatic brain injury, we employed a newly developed oxidative lipidomics approach to qualitatively and quantitatively characterize the lipid peroxidation response. RESULTS Electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry analysis of rat cortical mitochondrial/synaptosomal fractions demonstrated the presence of highly oxidizable molecular species containing C(22:6) fatty acid residues in all major classes of phospholipids. However, the pattern of phospholipid oxidation at 3 hours after injury displayed a nonrandom character independent of abundance of oxidizable species and included only one mitochondria-specific phospholipid, cardiolipin (CL). This selective CL peroxidation was followed at 24 hours by peroxidation of other phospholipids, most prominently phosphatidylserine, but also phosphatidylcholine and phosphatidylethanolamine. CL oxidation preceded appearance of biomarkers of apoptosis (caspase-3 activation, terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling-positivity) and oxidative stress (loss of glutathione and ascorbate). INTERPRETATION The temporal sequence combined with the recently demonstrated role of CL hydroperoxides (CL-OOH) in in vitro models of apoptosis suggest that CL-OOH may be both a key in vivo trigger of apoptotic cell death and a therapeutic target in experimental traumatic brain injury.
Collapse
Affiliation(s)
- Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hu Q, Joshi RP, Schoenbach KH. Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:031902. [PMID: 16241477 DOI: 10.1103/physreve.72.031902] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Indexed: 05/05/2023]
Abstract
A combined MD simulator and time dependent Laplace solver are used to analyze the electrically driven phosphatidylserine externalization process in cells. Time dependent details of nanopore formation at cell membranes in response to a high-intensity (100 kV/cm), ultrashort (10 ns) electric pulse are also probed. Our results show that nanosized pores could typically be formed within about 5 ns. These predictions are in very good agreement with recent experimental data. It is also demonstrated that defect formation and PS externalization in membranes should begin on the anode side. Finally, the simulations confirm that PS externalization is a nanopore facilitated event, rather than the result of molecular translocation across the trans-membrane energy barrier.
Collapse
Affiliation(s)
- Q Hu
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529-0246, USA
| | | | | |
Collapse
|
24
|
Růzicka M, Skobisová E, Dlasková A, Santorová J, Smolková K, Spacek T, Zácková M, Modrianský M, Jezek P. Recruitment of mitochondrial uncoupling protein UCP2 after lipopolysaccharide induction. Int J Biochem Cell Biol 2005; 37:809-21. [PMID: 15694840 DOI: 10.1016/j.biocel.2004.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 10/18/2004] [Accepted: 10/27/2004] [Indexed: 11/17/2022]
Abstract
Rat liver mitochondria contain a negligible amount of mitochondrial uncoupling protein UCP2 as indicated by 3H-GTP binding. UCP2 recruitment in hepatocytes during infection may serve to decrease mitochondrial production of reactive oxygen species (ROS), and this, in turn, would counterbalance the increased oxidative stress. To characterize in detail UCP2 recruitment in hepatocytes, we studied rats pretreated with lipopolysaccharide (LPS) or hepatocytes isolated from them, as an in vitro model for the systemic response to bacterial infection. LPS injection resulted in 3.3- or 3-fold increase of UCP2 mRNA in rat liver and hepatocytes, respectively, as detected by real-time RT-PCR on a LightCycler. A concomitant increase in UCP2 protein content was indicated either by Western blots or was quantified by up to three-fold increase in the number of 3H-GTP binding sites in mitochondria of LPS-stimulated rats. Moreover, H2O2 production was increased by GDP only in mitochondria of LPS-stimulated rats with or without fatty acids and carboxyatractyloside. When monitored by JC1 fluorescent probe in situ mitochondria of hepatocytes from LPS-stimulated rats exhibited lower membrane potential than mitochondria of unstimulated rats. We have demonstrated that the lower membrane potential does not result from apoptosis initiation. However, due to a small extent of potential decrease upon UCP2 recruitment, justified also by theoretical calculations, we conclude that the recruited UCP2 causes only a weak uncoupling which is able to decrease mitochondrial ROS production but not produce enough heat for thermogenesis participating in a febrile response.
Collapse
Affiliation(s)
- Michal Růzicka
- Department of Membrane Transport Biophysics, No. 75 Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Jiang J, Kini V, Belikova N, Serinkan BF, Borisenko GG, Tyurina YY, Tyurin VA, Kagan VE. Cytochrome c release is required for phosphatidylserine peroxidation during Fas-triggered apoptosis in lung epithelial A549 cells. Lipids 2005; 39:1133-42. [PMID: 15726829 DOI: 10.1007/s11745-004-1340-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Oxidation of phosphatidylserine (PtdSer) has been shown to play a pivotal role in signaling during cell apoptosis and subsequent recognition of apoptotic cells by phagocytes. However, the redox catalytic mechanisms involved in selective PtdSer oxidation during apoptosis remain poorly understood. Here we employed anti-Fas antibody CH-11-treated A549 cells as a physiologically relevant model to investigate the involvement of PtdSer oxidation and its potential mechanism during apoptosis. We demonstrated that ligation of CH-11 with its cognate receptor initiated execution of apoptotic program in interferon gamma-pretreated A549 cells as evidenced by activation of caspase and DNA fragmentation. A significant increase of cytochrome c (cyt c) content in the cytosol as early as 2 h after CH-11 exposure was detected indicating that Fas-induced apoptosis in A549 cells proceeds via extrinsic type II pathway and includes mitochondrial signaling. PtdSer was selectively oxidized 3 h after anti-Fas triggering while two more abundant phospholipids--phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn)--and the major intracellular antioxidant, glutathione, remained nonoxidized. A pan-caspase inhibitor, z-VAD, fully blocked cyt c release and oxidation of PtdSer in Fas-treated A549 cells. On the other hand, z-DQMD, a caspase-3 inhibitor, completely inhibited caspase-3 activity but did not fully block caspase-8 activation and release of cyt c. Importantly, z-DQMD failed to protect PtdSer from oxidation. In addition, in a model system, we demonstrated that peroxidase activity of cyt c was greatly enhanced in the presence of dioleoylphosphatidylserine containing liposomes by monitoring oxidation of 2',7'-dichlorodihydrofluorescein to 2',7'-dichlorofluorescein. We further showed that peroxidase activity of cyt c catalyzed oxidation of 1-palmitoyl-2-arachidonoyl-3-glycero-phosphoserine using a newly developed HPLC assay. MS analysis of 1-palmitoyl-2-arachidonoyl-3-glycero-phosphoserine revealed that in addition to its mono- and dihydroperoxides, several different PtdSer oxidation products can be formed. Overall, we concluded that cyt c acts as a catalyst of PtdSer oxidation during Fas-triggered A549 cell apoptosis.
Collapse
Affiliation(s)
- Jianfei Jiang
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nohl H, Gille L, Staniek K. Intracellular generation of reactive oxygen species by mitochondria. Biochem Pharmacol 2005; 69:719-23. [PMID: 15710349 DOI: 10.1016/j.bcp.2004.12.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mitochondria have bioenergetic properties that strongly suggest their involvement in the cellular formation of reactive oxygen species (ROS). Apparent confirmation of this process has come from work with isolated mitochondria, which have been shown to produce H(2)O(2) from dismutating superoxide radicals. Two different sites were reported to shuttle single electrons to oxygen out of the normal respiratory sequence. However, the mechanisms for ROS formation at these two sites are controversial. Arguments against mitochondrial ROS formation in the living cell are based on the fact that bioenergetic alterations may result from the mechanical removal of mitochondria from their natural environment. Furthermore, the invasive detection methods that are generally used may be inappropriate because of the possible interaction of the detection system with mitochondrial constituents. The use of non-invasive detection methods has proved that ROS formation does not occur unless changes in the physical state of the membrane are established. The aim of this commentary is to discuss critically the arguments in favor of mitochondria as the main intracellular source of ROS. The pros and cons of working with isolated mitochondria, as well as the detection methodology are carefully analyzed to judge whether or not the above assumption is correct. The conclusion that mitochondria are the main ROS generators in the cell contradicts the fact that ROS release was not observed. However, if electron flow from ubiquinol to the bc(1) complex is hindered due to changes in lipid fluidity, single electrons may transfer to dioxygen and produce H(2)O(2) via superoxide radicals.
Collapse
Affiliation(s)
- Hans Nohl
- Research Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | | | | |
Collapse
|
28
|
Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang J, Potapovich AI, Kini V, Amoscato AA, Fujii Y. Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med 2004; 37:1963-85. [PMID: 15544916 DOI: 10.1016/j.freeradbiomed.2004.08.016] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 08/24/2004] [Accepted: 08/26/2004] [Indexed: 12/16/2022]
Abstract
The primary life-supporting function of cytochrome c (cyt c) is control of cellular energetic metabolism as a mobile shuttle in the electron transport chain of mitochondria. Recently, cyt c's equally important life-terminating function as a trigger and regulator of apoptosis was identified. This dreadful role is realized through the relocalization of mitochondrial cyt c to the cytoplasm where it interacts with Apaf-1 in forming apoptosomes and mediating caspase-9 activation. Although the presence of heme moiety of cyt c is essential for the latter function, cyt c's redox catalytic features are not required. Lately, two other essential functions of cyt c in apoptosis, that may rely heavily on its redox activity have been suggested. Both functions are directed toward oxidation of two negatively charged phospholipids, cardiolipin (CL) in the mitochondria and phosphatidylserine (PS) in the plasma membrane. In both cases, oxidized phospholipids seem to be essential for the transduction of two distinctive apoptotic signals: one is participation of oxidized CL in the formation of the mitochondrial permeability transition pore that facilitates release of cyt c into the cytosol and the other is the contribution of oxidized PS to the externalization and recognition of PS (and possibly oxidized PS) on the cell surface by specialized receptors of phagocytes. In this review, we present a new concept that cyt c actuates both of these oxidative roles through a uniform mechanism: its specific interactions with each of these phospholipids result in the conversion and activation of cyt c, transforming it from an innocuous electron transporter into a calamitous peroxidase capable of oxidizing the activating phospholipids. We also show that this new concept is compatible with a leading role for reactive oxygen species in the execution of the apoptotic program, with cyt c as the main executioner.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tyurina YY, Tyurin VA, Zhao Q, Djukic M, Quinn PJ, Pitt BR, Kagan VE. Oxidation of phosphatidylserine: a mechanism for plasma membrane phospholipid scrambling during apoptosis? Biochem Biophys Res Commun 2004; 324:1059-64. [PMID: 15485662 DOI: 10.1016/j.bbrc.2004.09.102] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Indexed: 11/22/2022]
Abstract
Selective oxidation of phosphatidylserine (PS) during apoptosis precedes its externalization in plasma membrane and is essential for the engulfment of apoptotic cells. To experimentally test whether PS oxidation stimulates its externalization via its effects on aminophospholipid translocase (APT) or by enhanced PS scrambling, action of oxidized PS (PSox) was studied using leukemia HL-60 cells and lymphoma Raji cells. Both PS and PSox were equally well recognized by APT. PSox did not inhibit APT. Rate of transmembrane PS diffusion was fourfold higher in cells with integrated PSox than with PS. Thus, PSox acts as a "non-enzymatic scramblase" likely contributing to PS externalization.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Fadeel B, Karpova MB, Enoksson M, Orrenius S. Phosphatidylserine externalization in cardiolipin-deficient cells. Blood 2004; 104:1582-3; author reply 1583-4. [PMID: 15317733 DOI: 10.1182/blood-2004-03-0840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Borisenko GG, Martin I, Zhao Q, Amoscato AA, Kagan VE. Nitroxides Scavenge Myeloperoxidase-Catalyzed Thiyl Radicals in Model Systems and in Cells. J Am Chem Soc 2004; 126:9221-32. [PMID: 15281811 DOI: 10.1021/ja0495157] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitroxide radicals possess important antioxidant activity in live tissues because of their ability to scavenge reactive radicals. Despite the fact that, in cells, damaging free radicals are primarily quenched by glutathione (GSH) with subsequent formation of harmful glutathionyl radical (GS(*)), interactions of nitroxide radicals with GS(*) and thiols have not been studied in detail. In addition, intracellular metabolic pathways leading to the formation of secondary amines from nitroxides are unknown. Here we report that GS(*) radicals react efficiently and irreversibly with nitroxides to produce secondary amines. We developed a sensitive method for the detection of GS(*) based on their specific interaction with Ac-Tempo, a nonfluorescent conjugate of fluorogenic acridine with paramagnetic nitroxide Tempo, and used it to characterize interactions between nitroxide and thiyl radicals generated through phenoxyl radical recycling by peroxidase. During reaction of Ac-Tempo with GS(*), Tempo EPR signals decayed and acridine fluorescence concurrently increased. DMPO and PBN, spin traps for GS(*), inhibited this interaction. Using combined HPLC and mass spectrometry, we determined that 90% of the Ac-Tempo was converted into fluorescent acridine (Ac)-piperidine; GSH was primarily oxidized into sulfonic acid. In myeloperoxidase-rich HL-60 cells, Ac-piperidine fluorescence was observed upon stimulation of GS(*) generation by H(2)O(2) and phenol. Development of fluorescence was prevented by preincubation of cells with the thiol-blocking reagent N-ethylmaleimide as well as with peroxidase inhibitiors. Furthermore, Ac-Tempo preserved intracellular GSH and protected cells from phenol/GS(*) toxicity, suggesting a new mechanism for the free-radical scavenging activity of nitroxides in live cells.
Collapse
Affiliation(s)
- Grigory G Borisenko
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | |
Collapse
|
32
|
Matsura T, Kai M, Jiang J, Babu H, Kini V, Kusumoto C, Yamada K, Kagan VE. Endogenously generated hydrogen peroxide is required for execution of melphalan-induced apoptosis as well as oxidation and externalization of phosphatidylserine. Chem Res Toxicol 2004; 17:685-96. [PMID: 15144226 DOI: 10.1021/tx030050s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) is generated endogenously during execution of both intrinsic as well as extrinsic apoptotic programs suggesting that it may function as a secondary messenger in apoptotic pathways. In the present study, we investigated the role of endogenously generated H(2)O(2) by using two cell lines-HL-60 cells and its subclone, H(2)O(2) resistant HP100 cells overexpressing catalase (CAT). With the exception of CAT, we found no differences in the expression of other primary antioxidant enzymes (Cu/Zn-superoxide dismutase, Mn-superoxide dismutase, and glutathione peroxidase) or apoptosis-related proteins (Bcl-2 and Bax) in HP100 cells as compared with the parental HL-60 cells. Production of H(2)O(2) was readily detectable as early as 1 h after melphalan (Mel) exposure of HL-60 cells but not HP-100 cells. Biomarkers of apoptosis, such as release of cytochrome c, disruption of mitochondrial transmembrane potential, caspase-3 activation, and chromatin condensation, became apparent much later, 3 h and onward after Mel treatment of HL-60 cells. The emergence of essentially all biomarkers of apoptosis was dramatically delayed in HP100 cells as compared with HL-60 cells. A relatively minor phospholipid species, phosphatidylserine (PS), was markedly oxidized 3 h after Mel treatment in HL-60 cells (but not in HP100 cells) where it was significantly inhibited by exogenously added CAT. The two most abundant classes of membrane phospholipids, phosphatidylcholine and phosphatidyletanolamine, did not undergo any significant oxidation. PS oxidation took place 3 h after exposure of HL-60 cells to Mel and paralleled the appearance of cytochrome c in the cytosol. Neither cytochrome c release nor PS oxidation occurred in Mel-treated HP100 cells, indicating that both endogenous H(2)O(2) and cytochrome c were essential for selective PS oxidation detected in HL-60 cells. Mel-induced PS oxidation was also associated with externalization of PS on the surface of HL-60 cells. Given that 3-amino-1,2,4-triazole, a CAT inhibitor, suppressed the resistance of HP100 cells to apoptosis, production of reactive oxygen species, PS oxidation, and PS externalization induced by Mel, the results from the present study suggest that H(2)O(2) is critical for triggering the Mel-induced apoptotic program as well as PS oxidation and externalization.
Collapse
Affiliation(s)
- Tatsuya Matsura
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|