1
|
da Cruz Nizer WS, Allison KN, Adams ME, Vargas MA, Ahmed D, Beaulieu C, Raju D, Cassol E, Howell PL, Overhage J. The role of exopolysaccharides Psl and Pel in resistance of Pseudomonas aeruginosa to the oxidative stressors sodium hypochlorite and hydrogen peroxide. Microbiol Spectr 2024; 12:e0092224. [PMID: 39194290 PMCID: PMC11448232 DOI: 10.1128/spectrum.00922-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/01/2024] [Indexed: 08/29/2024] Open
Abstract
Pseudomonas aeruginosa is well-known for its antimicrobial resistance and the ability to survive in harsh environmental conditions due to an abundance of resistance mechanisms, including the formation of biofilms and the production of exopolysaccharides. Exopolysaccharides are among the major components of the extracellular matrix in biofilms and aggregates of P. aeruginosa. Although their contribution to antibiotic resistance has been previously shown, their roles in resistance to oxidative stressors remain largely elusive. Here, we studied the function of the exopolysaccharides Psl and Pel in the resistance of P. aeruginosa to the commonly used disinfectants and strong oxidizing agents NaOCl and H2O2. We observed that the simultaneous inactivation of Psl and Pel in P. aeruginosa PAO1 mutant strain ∆pslA pelF resulted in a significant increase in susceptibility to both NaOCl and H2O2. Further analyses revealed that Pel is more important for oxidative stress resistance in P. aeruginosa and that the form of Pel (i.e., cell-associated or cell-free) did not affect NaOCl susceptibility. Additionally, we show that Psl/Pel-negative strains are protected against oxidative stress in co-culture biofilms with P. aeruginosa PAO1 WT. Taken together, our results demonstrate that the EPS matrix and, more specifically, Pel exhibit protective functions against oxidative stressors such as NaOCl and H2O2 in P. aeruginosa. IMPORTANCE Biofilms are microbial communities of cells embedded in a self-produced polymeric matrix composed of polysaccharides, proteins, lipids, and extracellular DNA. Biofilm bacteria have been shown to possess unique characteristics, including increased stress resistance and higher antimicrobial tolerance, leading to failures in bacterial eradication during chronic infections or in technical settings, including drinking and wastewater industries. Previous studies have shown that in addition to conferring structure and stability to biofilms, the polysaccharides Psl and Pel are also involved in antibiotic resistance. This work provides evidence that these biofilm matrix components also contribute to the resistance of Pseudomonas aeruginosa to oxidative stressors including the widely used disinfectant NaOCl. Understanding the mechanisms by which bacteria escape antimicrobial agents, including strong oxidants, is urgently needed in the fight against antimicrobial resistance and will help in developing new strategies to eliminate resistant strains in any environmental, industrial, and clinical setting.
Collapse
Affiliation(s)
| | - Kira N. Allison
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Madison E. Adams
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Mario A. Vargas
- Program in Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Carole Beaulieu
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Deepa Raju
- Program in Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - P. Lynne Howell
- Program in Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Leopold J, Schiller J. (Chemical) Roles of HOCl in Rheumatic Diseases. Antioxidants (Basel) 2024; 13:921. [PMID: 39199167 PMCID: PMC11351306 DOI: 10.3390/antiox13080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Chronic rheumatic diseases such as rheumatoid arthritis (RA) are characterized by a dysregulated immune response and persistent inflammation. The large number of neutrophilic granulocytes in the synovial fluid (SF) from RA patients leads to elevated enzyme activities, for example, from myeloperoxidase (MPO) and elastase. Hypochlorous acid (HOCl), as the most important MPO-derived product, is a strong reactive oxygen species (ROS) and known to be involved in the processes of cartilage destruction (particularly regarding the glycosaminoglycans). This review will discuss open questions about the contribution of HOCl in RA in order to improve the understanding of oxidative tissue damaging. First, the (chemical) composition of articular cartilage and SF and the mechanisms of cartilage degradation will be discussed. Afterwards, the products released by neutrophils during inflammation will be summarized and their effects towards the individual, most abundant cartilage compounds (collagen, proteoglycans) and selected cellular components (lipids, DNA) discussed. New developments about neutrophil extracellular traps (NETs) and the use of antioxidants as drugs will be outlined, too. Finally, we will try to estimate the effects induced by these different agents and their contributions in RA.
Collapse
Affiliation(s)
- Jenny Leopold
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04103 Leipzig, Germany;
| | | |
Collapse
|
3
|
Lin X, Moreno IY, Nguyen L, Gesteira TF, Coulson-Thomas VJ. ROS-Mediated Fragmentation Alters the Effects of Hyaluronan on Corneal Epithelial Wound Healing. Biomolecules 2023; 13:1385. [PMID: 37759785 PMCID: PMC10526416 DOI: 10.3390/biom13091385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
A buildup of reactive oxygen species (ROS) occurs in virtually all pathological conditions. Hyaluronan (HA) is a major extracellular matrix component and is susceptible to oxidation by reactive oxygen species (ROS), yet the precise chemical structures of oxidized HA products (oxHA) and their physiological properties remain largely unknown. This study characterized the molecular weight (MW), structures, and physiological properties of oxHA. For this, high-molecular-weight HA (HMWHA) was oxidized using increasing molar ratios of hydrogen peroxide (H2O2) or hypochlorous acid (HOCl). ROS lead to the fragmentation of HA, with the oxHA products produced by HOCl exhibiting an altered chemical structure while those produced by H2O2 do not. HMWHA promotes the viability of human corneal epithelial cells (hTCEpi), while low MWHA (LMWHA), ultra-LMWHA (ULMWHA), and most forms of oxHA do not. HMWHA and LMWHA promote hTCEpi proliferation, while ULMWHA and all forms of oxHA do not. LMWHA and some forms of oxHA promote hTCEpi migration, while HMWHA does not. Finally, all native forms of HA and oxHA produced by HOCl promote in vivo corneal wound healing, while oxHA produced by H2O2 does not. Taken together, our results show that HA fragmentation by ROS can alter the physiological activity of HA by altering its MW and structure.
Collapse
Affiliation(s)
| | | | | | | | - Vivien J. Coulson-Thomas
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA; (X.L.); (I.Y.M.); (L.N.); (T.F.G.)
| |
Collapse
|
4
|
Zheng S, An S, Luo Y, Vithran DTA, Yang S, Lu B, Deng Z, Li Y. HYBID in osteoarthritis: Potential target for disease progression. Biomed Pharmacother 2023; 165:115043. [PMID: 37364478 DOI: 10.1016/j.biopha.2023.115043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
HYBID is a new hyaluronan-degrading enzyme and exists in various cells of the human body. Recently, HYBID was found to over-express in the osteoarthritic chondrocytes and fibroblast-like synoviocytes. According to these researches, high level of HYBID is significantly correlated with cartilage degeneration in joints and hyaluronic acid degradation in synovial fluid. In addition, HYBID can affect inflammatory cytokine secretion, cartilage and synovium fibrosis, synovial hyperplasia via multiple signaling pathways, thereby exacerbating osteoarthritis. Based on the existing research of HYBID in osteoarthritis, HYBID can break the metabolic balance of HA in joints through the degradation ability independent of HYALs/CD44 system and furthermore affect cartilage structure and mechanotransduction of chondrocytes. In particular, in addition to HYBID itself being able to trigger some signaling pathways, we believe that low-molecular-weight hyaluronan produced by excess degradation can also stimulate some disease-promoting signaling pathways by replacing high-molecular-weight hyaluronan in joints. The specific role of HYBID in osteoarthritis is gradually revealed, and the discovery of HYBID raises the new way to treat osteoarthritis. In this review, the expression and basic functions of HYBID in joints were summarized, and reveal potential role of HYBID as a key target in treatment for osteoarthritis.
Collapse
Affiliation(s)
- Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Luo
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Djandan Tadum Arthur Vithran
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaoqu Yang
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Leopold J, Prabutzki P, Nimptsch A, Schiller J. Mass spectrometric investigations of the action of hypochlorous acid on monomeric and oligomeric components of glycosaminoglycans. Biochem Biophys Rep 2023; 34:101448. [PMID: 36915825 PMCID: PMC10006533 DOI: 10.1016/j.bbrep.2023.101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Hypochlorous acid (HOCl) is a strong non-radical oxidant, which is generated during inflammatory processes under the catalysis of the enzyme myeloperoxidase (MPO). HOCl reacts particularly with sulfhydryl and amino acid residues but affects also many other biomolecules. For instance, the glycosaminoglycans of articular cartilage and synovial fluids (such as hyaluronan) undergo degradation in the presence of HOCl at which the native polysaccharide is fragmented into oligosaccharides in a complex reaction. This is an initial mass spectrometry (MS)-based investigation dealing with the HOCl-induced degradation of glycosaminoglycans and the conversion of the related monosaccharides into chlorinated products. In particular, it will be shown that the reaction between HOCl and hyaluronan is slower than originally assumed and results in the generation of different products (particularly the hyaluronan monosaccharides) by the cleavage of the β-1,3/1,4-glycosidic linkages. The MS detection of chlorinated products is, however, only possible in the case of the monosaccharides. Potential reasons will be discussed.
Collapse
Affiliation(s)
- Jenny Leopold
- Institute for Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany
| | - Patricia Prabutzki
- Institute for Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany
| | - Ariane Nimptsch
- Institute for Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany
| |
Collapse
|
6
|
Hypochlorous Acid Chemistry in Mammalian Cells—Influence on Infection and Role in Various Pathologies. Int J Mol Sci 2022; 23:ijms231810735. [PMID: 36142645 PMCID: PMC9504810 DOI: 10.3390/ijms231810735] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022] Open
Abstract
This review discusses the formation of hypochlorous acid HOCl and the role of reactive chlorinated species (RCS), which are catalysed by the enzyme myeloperoxidase MPO, mainly located in leukocytes and which in turn contribute to cellular oxidative stress. The reactions of RCS with various organic molecules such as amines, amino acids, proteins, lipids, carbohydrates, nucleic acids, and DNA are described, and an attempt is made to explain the chemical mechanisms of the formation of the various chlorinated derivatives and the data available so far on the effects of MPO, RCS and halogenative stress. Their presence in numerous pathologies such as atherosclerosis, arthritis, neurological and renal diseases, diabetes, and obesity is reviewed and were found to be a feature of debilitating diseases.
Collapse
|
7
|
Zhang YS, Gong JS, Yao ZY, Jiang JY, Su C, Li H, Kang CL, Liu L, Xu ZH, Shi JS. Insights into the source, mechanism and biotechnological applications of hyaluronidases. Biotechnol Adv 2022; 60:108018. [PMID: 35853550 DOI: 10.1016/j.biotechadv.2022.108018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/10/2023]
Abstract
It has long been found that hyaluronidases exist in a variety of organisms, playing their roles in various biological processes including infection, envenomation and metabolic regulation through degrading hyaluronan. However, exploiting them as a bioresource for specific applications had not been extensively studied until the latest decades. In recent years, new application scenarios have been developed, which extended the field of application, and emphasized the research value of hyaluronidase. This critical review comprehensively summarizes existing studies on hyaluronidase from different source, particularly in their structures, action patterns, and biological functions in human and mammals. Furthermore, we give in-depth insight into the resource mining and protein engineering process of hyaluronidase, as well as strategies for their high-level production, indicating that mixed strategies should be adopted to obtain well-performing hyaluronidase with efficiency. In addition, advances in application of hyaluronidase were summarized and discussed. Finally, prospects for future researches are proposed, highlighting the importance of further investigation into the characteristics of hyaluronidases, and the necessity of investigating their products for the development of their application value.
Collapse
Affiliation(s)
- Yue-Sheng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Zhi-Yuan Yao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chuan-Li Kang
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Lei Liu
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
8
|
Multiple rapid-responsive probes towards hypochlorite detection based on dioxetane luminophore derivatives. J Pharm Anal 2021; 12:446-452. [PMID: 35811615 PMCID: PMC9257444 DOI: 10.1016/j.jpha.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
In recent years, various methods for detecting exogenous and endogenous hypochlorite have been studied, considering its essential role as a biomolecule. However, the existing technologies still pose obstacles such as their invasiveness, high costs, and complicated operation. In the current study, we developed a glow-type chemiluminescent probe, hypochlorite chemiluminescence probe (HCCL)-1, based on the scaffold of Schaap's 1,2-dioxetane luminophores. To better explore the physiological and pathological functions of hypochlorite, we modified the luminophore scaffold of HCCL-1 to develop several probes, including HCCL-2, HCCL-3, and HCCL-4, which amplify the response signal of hypochlorite. By comparing the luminescent intensities of the four probes using the IVIS® system, we determined that HCCL-2 with a limit of detection of 0.166 μM has enhanced sensitivity and selectivity for tracking hypochlorite both in vitro and in vivo. Strategies for the design towards glow-type hypochlorite chemiluminescent probes. Methods to modify the hypochlorite luminophore scaffold. Applications of probes for the detection and imaging of hypochlorite in vitro and in vivo.
Collapse
|
9
|
Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med 2021; 172:633-651. [PMID: 34246778 DOI: 10.1016/j.freeradbiomed.2021.07.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
The heme peroxidase family generates a battery of oxidants both for synthetic purposes, and in the innate immune defence against pathogens. Myeloperoxidase (MPO) is the most promiscuous family member, generating powerful oxidizing species including hypochlorous acid (HOCl). Whilst HOCl formation is important in pathogen removal, this species is also implicated in host tissue damage and multiple inflammatory diseases. Significant oxidant formation and damage occurs extracellularly as a result of MPO release via phagolysosomal leakage, cell lysis, extracellular trap formation, and inappropriate trafficking. MPO binds strongly to extracellular biomolecules including polyanionic glycosaminoglycans, proteoglycans, proteins, and DNA. This localizes MPO and subsequent damage, at least partly, to specific sites and species, including extracellular matrix (ECM) components and plasma proteins/lipoproteins. Biopolymer-bound MPO retains, or has enhanced, catalytic activity, though evidence is also available for non-catalytic effects. These interactions, particularly at cell surfaces and with the ECM/glycocalyx induce cellular dysfunction and altered gene expression. MPO binds with higher affinity to some damaged ECM components, rationalizing its accumulation at sites of inflammation. MPO-damaged biomolecules and fragments act as chemo-attractants and cell activators, and can modulate gene and protein expression in naïve cells, consistent with an increasing cycle of MPO adhesion, activity, damage, and altered cell function at sites of leukocyte infiltration and activation, with subsequent tissue damage and dysfunction. MPO levels are used clinically both diagnostically and prognostically, and there is increasing interest in strategies to prevent MPO-mediated damage; therapeutic aspects are not discussed as these have been reviewed elsewhere.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
10
|
Wang S, Yang S, Quispe E, Yang H, Sanfiorenzo C, Rogers SW, Wang K, Yang Y, Hoffmann MR. Removal of Antibiotic Resistant Bacteria and Genes by UV-Assisted Electrochemical Oxidation on Degenerative TiO 2 Nanotube Arrays. ACS ES&T ENGINEERING 2021; 1:612-622. [PMID: 39605952 PMCID: PMC11601983 DOI: 10.1021/acsestengg.1c00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Antibiotic resistance has become a global crisis in recent years, while wastewater treatment plants (WWTPs) have been identified as a significant source of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, commonly used disinfectants have been shown to be ineffective for the elimination of ARGs. With the goal of upgrading the conventional UV disinfection unit with stronger capability to combat ARB and ARGs, we developed a UV-assisted electrochemical oxidation (UV-EO) process that employs blue TiO2 nanotube arrays (BNTAs) as photoanodes. Inactivation of tetracycline- and sulfamethoxazole-resistant E. coli along with degradation of the corresponding plasmid coded genes (tetA and sul1) is measured by plate counting on selective agar and qPCR, respectively. In comparison with UV254 irradiation alone, enhanced ARB inactivation and ARG degradation is achieved by UV-EO. Chloride significantly promotes the inactivation efficiency due to the electrochemical production of free chlorine and the subsequent UV/chlorine photoreactions. The fluence-based first-order kinetic rate coefficients of UV-EO in Cl- are larger than those of UV254 irradiation alone by a factor of 2.1-2.3 and 1.3-1.8 for the long and short target genes, respectively. The mechanism of plasmid DNA damage by different radical species is further explored using gel electrophoresis and computational kinetic modeling. The process can effectively eliminate ARB and ARGs in latrine wastewater, though the kinetics were retarded.
Collapse
Affiliation(s)
- Siwen Wang
- Linde+Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Shasha Yang
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Estefanny Quispe
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Hannah Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Charles Sanfiorenzo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Shane W Rogers
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Kaihang Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yang Yang
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Michael R Hoffmann
- Linde+Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Hiebert P. The Nrf2 transcription factor: A multifaceted regulator of the extracellular matrix. Matrix Biol Plus 2021; 10:100057. [PMID: 34195594 PMCID: PMC8233472 DOI: 10.1016/j.mbplus.2021.100057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
The transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) is widely recognized as a master regulator of the cellular stress response by facilitating the transcription of cytoprotective genes. As such, the Nrf2 pathway is critical in guarding the cell from the harmful effects of excessive reactive oxygen species/reactive nitrogen species (ROS/RNS) and in maintaining cellular redox balance. While excessive ROS/RNS are harmful to the cell, physiological levels of ROS/RNS play important roles in regulating numerous signaling pathways important for normal cellular function, including the synthesis of extracellular matrix (ECM). Recent advances have underscored the importance of ROS/RNS, and by extension, factors that influence redox-balance such as Nrf2, in regulating ECM production and deposition. In addition to reducing the oxidative burden in the cell, the discovery that Nrf2 can also directly target genes that regulate and form the ECM has cemented it as a multifaceted player in the regulation of ECM proteins, and provides new insight into its potential usefulness as a target for treating ECM-related pathologies. Reactive oxygen/nitrogen species regulate extracellular matrix. Nrf2 can directly target extracellular matrix gene transcription. Regulation of extracellular matrix by Nrf2 potentially impacts tissue repair/cancer.
Collapse
Affiliation(s)
- Paul Hiebert
- Institute for Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
12
|
Buffa R, Hermannová M, Sojka M, Svozil V, Šulc P, Halamková P, Pospíšilová M, Krejčí H, Velebný V. Hyaluronic acid chloramide-Synthesis, chemical structure, stability and analysis of antimicrobials. Carbohydr Polym 2020; 250:116928. [PMID: 33049842 DOI: 10.1016/j.carbpol.2020.116928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
Electron-deficient chlorine covalently immobilised on an amido group of hyaluronic acid (HA) can be potentially exceptional for applications requiring biodegradable and biocompatible polymers with enhanced antibacterial or antiviral activity. This expectation is supported by the assumption that a small amount of HA chloramide (HACl) is formed in the extracellular matrix under inflammatory conditions by a reaction of endogenous HA with hypochlorous acid (HClO) generated by a myeloperoxidase/H2O2/Cl- system. HACl synthesis optimisation showed significant limitations of HClO as an oxidative agent where only lower degrees of substitution (DS) was achieved. Commercially available oxidative agents based on chlorinated isocyanuric acid were successfully tested, producing the HA chain with almost entirely chlorinated amidic groups. The structure of the final HACl was thoroughly studied using advanced 2-dimensional NMR methodologies and LC/MS. Stability of HACl at different temperatures was monitored over 12 months. Preliminary antimicrobial and antiviral tests demonstrated the potential of HACl for applications in biomedicine.
Collapse
Affiliation(s)
- Radovan Buffa
- Contipro Ltd., Dolní Dobrouč 401, 56102, Czech Republic.
| | | | - Martin Sojka
- Regional Public Health Authority, Komárno, Slovakia
| | - Vít Svozil
- Contipro Ltd., Dolní Dobrouč 401, 56102, Czech Republic
| | - Petr Šulc
- Contipro Ltd., Dolní Dobrouč 401, 56102, Czech Republic
| | | | | | - Helena Krejčí
- Contipro Ltd., Dolní Dobrouč 401, 56102, Czech Republic
| | | |
Collapse
|
13
|
Identification of Pre-Diagnostic Metabolic Patterns for Glioma Using Subset Analysis of Matched Repeated Time Points. Cancers (Basel) 2020; 12:cancers12113349. [PMID: 33198241 PMCID: PMC7696703 DOI: 10.3390/cancers12113349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Reprogramming of cellular metabolism is a major hallmark of cancer cells, and play an important role in tumor initiation and progression. The aim of our study is to discover circulating early metabolic markers of brain tumors, as discovery and development of reliable predictive molecular markers are needed for precision oncology applications. We use a study design tailored to minimize confounding factors and a novel machine learning and visualization approach (SMART) to identify a panel of 15 interlinked metabolites related to glioma development. The presented SMART strategy facilitates early molecular marker discovery and can be used for many types of molecular data. Abstract Here, we present a strategy for early molecular marker pattern detection—Subset analysis of Matched Repeated Time points (SMART)—used in a mass-spectrometry-based metabolomics study of repeated blood samples from future glioma patients and their matched controls. The outcome from SMART is a predictive time span when disease-related changes are detectable, defined by time to diagnosis and time between longitudinal sampling, and visualization of molecular marker patterns related to future disease. For glioma, we detect significant changes in metabolite levels as early as eight years before diagnosis, with longitudinal follow up within seven years. Elevated blood plasma levels of myo-inositol, cysteine, N-acetylglucosamine, creatinine, glycine, proline, erythronic-, 4-hydroxyphenylacetic-, uric-, and aceturic acid were particularly evident in glioma cases. We use data simulation to ensure non-random events and a separate data set for biomarker validation. The latent biomarker, consisting of 15 interlinked and significantly altered metabolites, shows a strong correlation to oxidative metabolism, glutathione biosynthesis and monosaccharide metabolism, linked to known early events in tumor development. This study highlights the benefits of progression pattern analysis and provide a tool for the discovery of early markers of disease.
Collapse
|
14
|
Snetkov P, Zakharova K, Morozkina S, Olekhnovich R, Uspenskaya M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Polymers (Basel) 2020; 12:E1800. [PMID: 32796708 PMCID: PMC7464276 DOI: 10.3390/polym12081800] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/25/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid, as a natural linear polysaccharide, has attracted researchers' attention from its initial detection and isolation from tissues in 1934 until the present day. Due to biocompatibility and a high biodegradation of hyaluronic acid, it finds wide application in bioengineering and biomedicine: from biorevitalizing skin cosmetics and endoprostheses of joint fluid to polymeric scaffolds and wound dressings. However, the main properties of aqueous polysaccharide solutions with different molecular weights are different. Moreover, the therapeutic effect of hyaluronic acid-based preparations directly depends on the molecular weight of the biopolymer. The present review collects the information about relations between the molecular weight of hyaluronic acid and its original properties. Particular emphasis is placed on the structural, physical and physico-chemical properties of hyaluronic acid in water solutions, as well as their degradability.
Collapse
Affiliation(s)
- Petr Snetkov
- Institute BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 St. Petersburg, Russia; (K.Z.); (S.M.); (R.O.); (M.U.)
| | | | | | | | | |
Collapse
|
15
|
Panasenko OM, Torkhovskaya TI, Gorudko IV, Sokolov AV. The Role of Halogenative Stress in Atherogenic Modification of Low-Density Lipoproteins. BIOCHEMISTRY (MOSCOW) 2020; 85:S34-S55. [PMID: 32087053 DOI: 10.1134/s0006297920140035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review discusses formation of reactive halogen species (RHS) catalyzed by myeloperoxidase (MPO), an enzyme mostly present in leukocytes. An imbalance between the RHS production and body's ability to remove or neutralize them leads to the development of halogenative stress. RHS reactions with proteins, lipids, carbohydrates, and antioxidants in the content of low-density lipoproteins (LDLs) of the human blood are described. MPO binds site-specifically to the LDL surface and modifies LDL properties and structural organization, which leads to the LDL conversion into proatherogenic forms captured by monocytes/macrophages, which causes accumulation of cholesterol and its esters in these cells and their transformation into foam cells, the basis of atherosclerotic plaques. The review describes the biomarkers of MPO enzymatic activity and halogenative stress, as well as the involvement of the latter in the development of atherosclerosis.
Collapse
Affiliation(s)
- O M Panasenko
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
| | - T I Torkhovskaya
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.,Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - I V Gorudko
- Belarusian State University, Minsk, 220030, Belarus
| | - A V Sokolov
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia. .,Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| |
Collapse
|
16
|
Antibacterial Study of Gellan Gum (GG) Film Incorporated Norfloxacin. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Strzepa A, Pritchard KA, Dittel BN. Myeloperoxidase: A new player in autoimmunity. Cell Immunol 2017; 317:1-8. [PMID: 28511921 PMCID: PMC5665680 DOI: 10.1016/j.cellimm.2017.05.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
Myeloperoxidase (MPO) is the most toxic enzyme found in the azurophilic granules of neutrophils. MPO utilizes H2O2 to generate hypochlorous acid (HClO) and other reactive moieties, which kill pathogens during infections. In contrast, in the setting of sterile inflammation, MPO and MPO-derived oxidants are thought to be pathogenic, promoting inflammation and causing tissue damage. In contrast, evidence also exists that MPO can limit the extent of immune responses. Elevated MPO levels and activity are observed in a number of autoimmune diseases including in the central nervous system (CNS) of multiple sclerosis (MS) and the joints of rheumatoid arthritis (RA) patients. A pathogenic role for MPO in driving autoimmune inflammation was demonstrated using mouse models. Mechanisms whereby MPO is thought to contribute to disease pathogenesis include tuning of adaptive immune responses and/or the induction of vascular permeability.
Collapse
Affiliation(s)
- Anna Strzepa
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States; Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7, 31-034 Krakow, Poland
| | - Kirkwood A Pritchard
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bonnie N Dittel
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States; Department of Microbiology and Immunology, School of Pharmacy, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
18
|
Tandarić T, Vrček V, Šakić D. A quantum chemical study of HOCl-induced transformations of carbamazepine. Org Biomol Chem 2016; 14:10866-10874. [DOI: 10.1039/c6ob02166b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The computational chemistry approach in predicting products and recalcitrans in hypochlorous acid promoted carbamazepine degradation in the environment.
Collapse
Affiliation(s)
- Tana Tandarić
- Ruđer Bošković Institute
- Bijenička cesta 54
- 10000 Zagreb
- Croatia
| | - Valerije Vrček
- Faculty of Pharmacy and Biochemistry
- University of Zagreb
- 10000 Zagreb
- Croatia
| | - Davor Šakić
- Faculty of Pharmacy and Biochemistry
- University of Zagreb
- 10000 Zagreb
- Croatia
| |
Collapse
|
19
|
Schmaus A, Bauer J, Sleeman JP. Sugars in the microenvironment: the sticky problem of HA turnover in tumors. Cancer Metastasis Rev 2015; 33:1059-79. [PMID: 25324146 DOI: 10.1007/s10555-014-9532-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The properties and behavior of tumor cells are closely regulated by their microenvironment. Accordingly, stromal cells and extracellular matrix components can have a pronounced effect on cancer initiation, growth, and progression. The linear glycosaminoglycan hyaluronan (HA) is a major component of the extracellular matrix. Altered synthesis and degradation of HA in the tumor context has been implicated in many aspects of tumor biology. In particular, the accumulation of small HA oligosaccharides (sHA) in the tumor interstitial space may play a decisive role, due to the ability of sHA to activate a number of biological processes that are not modulated by high molecular weight (HMW)-HA. In this article, we review the normal physiological role and metabolism of HA and then survey the evidence implicating HA in tumor growth and progression, focusing in particular on the potential contribution of sHA to these processes.
Collapse
Affiliation(s)
- Anja Schmaus
- Institut für Toxikologie und Genetik, Karlsruhe Institute for Technology (KIT), Campus Nord, Postfach 3640, 76021, Karlsruhe, Germany
| | | | | |
Collapse
|
20
|
Monslow J, Govindaraju P, Puré E. Hyaluronan - a functional and structural sweet spot in the tissue microenvironment. Front Immunol 2015; 6:231. [PMID: 26029216 PMCID: PMC4432798 DOI: 10.3389/fimmu.2015.00231] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022] Open
Abstract
Transition from homeostatic to reactive matrix remodeling is a fundamental adaptive tissue response to injury, inflammatory disease, fibrosis, and cancer. Alterations in architecture, physical properties, and matrix composition result in changes in biomechanical and biochemical cellular signaling. The dynamics of pericellular and extracellular matrices, including matrix protein, proteoglycan, and glycosaminoglycan modification are continually emerging as essential regulatory mechanisms underlying cellular and tissue function. Nevertheless, the impact of matrix organization on inflammation and immunity in particular and the consequent effects on tissue healing and disease outcome are arguably under-studied aspects of adaptive stress responses. Herein, we review how the predominant glycosaminoglycan hyaluronan (HA) contributes to the structure and function of the tissue microenvironment. Specifically, we examine the evidence of HA degradation and the generation of biologically active smaller HA fragments in pathological settings in vivo. We discuss how HA fragments versus nascent HA via alternate receptor-mediated signaling influence inflammatory cell recruitment and differentiation, resident cell activation, as well as tumor growth, survival, and metastasis. Finally, we discuss how HA fragmentation impacts restoration of normal tissue function and pathological outcomes in disease.
Collapse
Affiliation(s)
- James Monslow
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Priya Govindaraju
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Li G, Li L, Xue C, Middleton D, Linhardt RJ, Avci FY. Profiling pneumococcal type 3-derived oligosaccharides by high resolution liquid chromatography-tandem mass spectrometry. J Chromatogr A 2015; 1397:43-51. [PMID: 25913329 DOI: 10.1016/j.chroma.2015.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 02/02/2023]
Abstract
Pneumococcal type-3 polysaccharide (Pn3P) is considered a major target for the development of a human vaccine to protect against Streptococcus pneumoniae infection. Thus, it is critical to develop methods for the preparation and analysis of Pn3P-derived oligosaccharides to better understand its immunological properties. In this paper, we profile oligosaccharides, generated by the free radical depolymerization of Pn3P, using liquid chromatography (LC)-tandem mass spectrometry (MS/MS). Hydrophilic liquid interaction chromatography (HILIC)-mass spectrometry (MS) revealed a series of oligosaccharides with an even- and odd-number of saccharide residues, ranging from monosaccharide, degree of polymerization (dp1) to large oligosaccharides up to dp 20, generated by free radical depolymerization. Isomers of oligosaccharides with an even number of sugar residues were easily separated on a HILIC column, and their sequences could be distinguished by comparing MS/MS of these oligosaccharides and their reduced alditols. Fluorescent labeling with 2-aminoacridone (AMAC) followed by reversed phase (RP)-LC-MS/MS was applied to analyze and sequence poorly separated product mixtures, as RP-LC affords higher resolution of AMAC-labeled oligosaccharides than does HILIC-based separation. The present methodology can be potentially applied to profiling other capsular polysaccharides.
Collapse
Affiliation(s)
- Guoyun Li
- College of Food Science and Technology, Ocean University of China, Qingdao, Shandong 266003, China; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lingyun Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Changhu Xue
- College of Food Science and Technology, Ocean University of China, Qingdao, Shandong 266003, China
| | - Dustin Middleton
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Fikri Y Avci
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
22
|
Lazrak A, Creighton J, Yu Z, Komarova S, Doran SF, Aggarwal S, Emala CW, Stober VP, Trempus CS, Garantziotis S, Matalon S. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury. Am J Physiol Lung Cell Mol Physiol 2015; 308:L891-903. [PMID: 25747964 DOI: 10.1152/ajplung.00377.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/03/2015] [Indexed: 02/07/2023] Open
Abstract
Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca(2+), and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca(2+), blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca(2+) channels of airway smooth muscle cells, increasing their contractility and thus causing AHR.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Judy Creighton
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhihong Yu
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Svetlana Komarova
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen F Doran
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Charles W Emala
- Department of Anesthesiology, Columbia University, New York, New York; and
| | - Vandy P Stober
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Carol S Trempus
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Stavros Garantziotis
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Sadis Matalon
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
23
|
Parsons BJ. Oxidation of glycosaminoglycans by free radicals and reactive oxidative species: A review of investigative methods. Free Radic Res 2015; 49:618-32. [PMID: 25410647 DOI: 10.3109/10715762.2014.985220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycosaminoglycans, in particular hyaluronan (HA), and proteoglycans are components of the extracellular matrix (ECM). The ECM plays a key role in the regulation of cellular behaviour and alterations to it can modulate both the development of human diseases as well as controlling normal biochemical processes such as cell signalling and pro-inflammatory responses. For these reasons, in vitro fragmentation studies of glycosaminoglycans by free radicals and oxidative species are seen to be relevant to the understanding of in vivo studies of damage to the ECM. A wide range of investigative techniques have therefore been applied to gain insights into the relative fragmentation effects of several reactive oxidative species with the ultimate goal of determining mechanisms of fragmentation at the molecular level. These methods are reviewed here.
Collapse
Affiliation(s)
- B J Parsons
- Health and Social Sciences, Leeds Beckett University , Leeds , UK
| |
Collapse
|
24
|
Evaluation of Gellan Gum Film Containing Virgin Coconut Oil for Transparent Dressing Materials. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/351248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examined the potential of virgin coconut oil (VCO) incorporated in gellan gum (GG) films as a dressing material. Pure GG film is extremely brittle and inclusion of 0.3% (w/w) VCO in the GG film (GG-VCO3) improved the toughness (T≈0.67±0.33 J g−1) of the composite films. Swelling properties and water vapor transmission rates of GG-VCO composite films decreased, whereas thermal behavior values increased upon the addition of higher concentrations of VCO. Cell studies exhibit that the VCO is noncytotoxic to human skin fibroblast cells (CRL2522) with limited cell growth observed on GG-VCO3 films at 1,650 cells/well after incubation for 72 h which could be due to hydrophobic influence of the material surface. The qualitative and in vitro quantitative antibacterial results revealed that VCO does not possess strong bacterial resistance against all four tested bacteria, that is, two Gram-positive (Staphylococcus aureus and Staphylococcus epidermidis) and two Gram-negative bacteria (Pseudomonas aeruginosa and Proteus mirabilis).
Collapse
|
25
|
Bekdeşer B, Durusoy N, Özyürek M, Güçlü K, Apak R. Optimization of microwave-assisted extraction of polyphenols from herbal teas and evaluation of their in vitro hypochlorous acid scavenging activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11109-11115. [PMID: 25365495 DOI: 10.1021/jf503065h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hypochlorous acid (HOCl) is an important reactive oxygen species (ROS) and non-radical and is taking part in physiological processes concerned with the defense of the organism, but there has been limited information regarding its scavenging by polyphenols. This study was designed to examine the HOCl scavenging activity of several polyphenols and microwave-assisted extracts of herbal teas. HOCl scavenging activity has usually been determined spectrophotometrically by a KI/taurine assay at 350 nm. Because some polyphenols (i.e., apigenin and chrysin) have a strong ultraviolet (UV) absorption in this range, their HOCl scavenging activity was alternatively determined without interference using resorcinol (1,3-dihydroxybenzene) as a fluorogenic probe. In the present assay, HOCl induces the chlorination of resorcinol into its non-fluorescent products. Polyphenols as HOCl scavengers inhibit the chlorination of the probe by this species. Thus, the 25% inhibitive concentration (IC25) value of polyphenols was determined using the relative increase in fluorescence intensity of the resorcinol probe. The HOCl scavenging activities of the test compounds decreased in the order: epigallocatechin gallate > quercetin > gallic acid > rutin > catechin > kaempferol. The present study revealed that epigallocatechin gallate (IC25 = 0.1 μM) was the most effective scavenging agent. In addition to polyphenols, four herbal teas were evaluated for their HOCl activity using the resorcinol method. The proposed spectrofluorometric method was practical, rapid, and less open to interferences by absorbing substances in the range of 200-420 nm. The results hint to the possibility of polyphenols having beneficial effects in diseases, such as atherosclerosis, in which HOCl plays a pathogenic role.
Collapse
Affiliation(s)
- Burcu Bekdeşer
- Department of Chemistry, Faculty of Engineering, Istanbul University , Avcilar, 34320 Istanbul, Turkey
| | | | | | | | | |
Collapse
|
26
|
Panasenko OM, Gorudko IV, Sokolov AV. Hypochlorous acid as a precursor of free radicals in living systems. BIOCHEMISTRY (MOSCOW) 2014; 78:1466-89. [PMID: 24490735 DOI: 10.1134/s0006297913130075] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypochlorous acid (HOCl) is produced in the human body by the family of mammalian heme peroxidases, mainly by myeloperoxidase, which is secreted by neutrophils and monocytes at sites of inflammation. This review discusses the reactions that occur between HOCl and the major classes of biologically important molecules (amino acids, proteins, nucleotides, nucleic acids, carbohydrates, lipids, and inorganic substances) to form free radicals. The generation of such free radical intermediates by HOCl and other reactive halogen species is accompanied by the development of halogenative stress, which causes a number of socially important diseases, such as cardiovascular, neurodegenerative, infectious, and other diseases usually associated with inflammatory response and characterized by the appearance of biomarkers of myeloperoxidase and halogenative stress. Investigations aimed at elucidating the mechanisms regulating the activity of enzyme systems that are responsible for the production of reactive halogen species are a crucial step in opening possibilities for control of the development of the body's inflammatory response.
Collapse
Affiliation(s)
- O M Panasenko
- Research Institute of Physico-Chemical Medicine, Moscow, 119435, Russia.
| | | | | |
Collapse
|
27
|
Abstract
SIGNIFICANCE Inflammatory diseases (such as arthritis) of the extracellular matrix (ECM) are of considerable socioeconomic significance. There is clear evidence that reactive oxygen species (ROS) and nitrogen species released by, for instance, neutrophils contribute to the degradation of the ECM. Here we will focus on the ROS-induced degradation of the glycosaminoglycans, one important component of the ECM. RECENT ADVANCES The recently developed "anti-TNF-α" therapy is primarily directed against neutrophilic granulocytes that are powerful sources of ROS. Therefore, a more detailed look into the mechanisms of the reactions of these ROS is reasonable. CRITICAL ISSUES Since both enzymes and ROS contribute to the pathogenesis of inflammatory diseases, it is very difficult to estimate the contributions of the individual species in a complex biological environment. This particularly applies as many products are not stable but only transient products that decompose in a time-dependent manner. Thus, the development of suitable analytical methods as well as the establishment of useful biomarkers is a challenging aspect. FUTURE DIRECTIONS If the mechanisms of ECM destruction are understood in more detail, then the development of suitable drugs to treat inflammatory diseases will be hopefully much more successful.
Collapse
Affiliation(s)
- Beate Fuchs
- Medical Department, Institute of Medical Physics and Biophysics, University of Leipzig , Leipzig, Germany
| | | |
Collapse
|
28
|
Holubova L, Korecka L, Podzimek S, Moravcova V, Rotkova J, Ehlova T, Velebny V, Bilkova Z. Enhanced multiparametric hyaluronan degradation for production of molar-mass-defined fragments. Carbohydr Polym 2014; 112:271-6. [PMID: 25129744 DOI: 10.1016/j.carbpol.2014.05.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/07/2014] [Accepted: 05/19/2014] [Indexed: 11/25/2022]
Abstract
Hyaluronic acid (HA) is known to serve as a dynamic mediator intervening in many physiological functions. Its specific effect has been repeatedly confirmed to be strongly influenced by the molecular size of hyaluronan fragments. However common technological approaches of HA fragments production have their limitations. In many cases, the final products do not meet the strict pharmaceutical requirements, specifically due to size polydispersity and reaction contaminants. We present novel methodology based on combination of unique incidental ability of the plant-derived protease papain to split the glycosidic bonds and an indispensable advantages of biocompatible macroporous material with incorporated ferrous ions serving as carrier for covalent papain fixation. This atypical and yet unpublished highly efficient multiparametric approach allows enhanced HA fragmentation for easily and safely producing molar-mass-defined HA fragments with narrow size distribution. Native polyacrylamide gel electrophoresis (PAGE) and size exclusion chromatography/multi-angle light scattering (SEC-MALS) confirmed the effectiveness of our multiparametric approach.
Collapse
Affiliation(s)
- Lucie Holubova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 3210 Pardubice, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 3210 Pardubice, Czech Republic
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 3210 Pardubice, Czech Republic.
| | - Stepan Podzimek
- Synthetic Polymers, Fibres and Textiles Chemistry Unit, Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 3210 Pardubice, Czech Republic
| | - Veronika Moravcova
- Contipro Pharma a.s., Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic
| | - Jana Rotkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 3210 Pardubice, Czech Republic
| | - Tereza Ehlova
- Contipro Pharma a.s., Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic
| | - Vladimir Velebny
- Contipro Pharma a.s., Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 3210 Pardubice, Czech Republic
| |
Collapse
|
29
|
Guo X, Shi Y, Sheng J, Wang F. A novel hyaluronidase produced by Bacillus sp. A50. PLoS One 2014; 9:e94156. [PMID: 24736576 PMCID: PMC3988017 DOI: 10.1371/journal.pone.0094156] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/11/2014] [Indexed: 11/26/2022] Open
Abstract
Hyaluronidases are a family of enzymes that degrade hyaluronic acid (hyaluronan, HA) and widely used in many fields. A hyaluronidase producing bacteria strain was screened from the air. 16S ribosomal DNA (16S rDNA) analysis indicated that the strain belonged to the genus Bacillus, and the strain was named as Bacillus sp. A50. This is the first report of a hyaluronidase from Bacillus, which yields unsaturated oligosaccharides as product like other microbial hyaluronate lyases. Under optimized conditions, the yield of hyaluronidase from Bacillus sp. A50 could reach up to 1.5×104 U/mL, suggesting that strain A50 is a good producer of hyaluronidase. The hyaluronidase (HAase-B) was isolated and purified from the bacterial culture, with a specific activity of 1.02×106 U/mg protein and a yield of 25.38%. The optimal temperature and pH of HAase-B were 44°C and pH 6.5, respectively. It was stable at pH 5–6 and at a temperature lower than 45°C. The enzymatic activity could be enhanced by Ca2+, Mg2+, or Ni2+, and inhibited by Zn2+, Cu2+, EDTA, ethylene glycol tetraacetic acid (EGTA), deferoxamine mesylate salt (DFO), triton X-100, Tween 80, or SDS at different levels. Kinetic measurements of HAase-B towards HA gave a Michaelis constant (Km) of 0.02 mg/mL, and a maximum velocity (Vmax) of 0.27 A232/min. HAase-B also showed activity towards chondroitin sulfate A (CSA) with the kinetic parameters, Km and Vmax, 12.30 mg/mL and 0.20 A232/min respectively. Meanwhile, according to the sequences of genomic DNA and HAase-B’s part peptides, a 3,324-bp gene encoding HAase-B was obtained.
Collapse
Affiliation(s)
- Xueping Guo
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan, China
- Bloomage Freda Biopharm Co., Ltd., Jinan, China
| | - Yanli Shi
- Bloomage Freda Biopharm Co., Ltd., Jinan, China
| | - Juzheng Sheng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan, China
- National Glycoengineering Research Center, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
30
|
Petrey AC, de la Motte CA. Hyaluronan, a crucial regulator of inflammation. Front Immunol 2014; 5:101. [PMID: 24653726 PMCID: PMC3949149 DOI: 10.3389/fimmu.2014.00101] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/25/2014] [Indexed: 12/30/2022] Open
Abstract
Hyaluronan (HA), a major component of the extracellular matrix (ECM), plays a key role in regulating inflammation. Inflammation is associated with accumulation and turnover of HA polymers by multiple cell types. Increasingly through the years, HA has become recognized as an active participant in inflammatory, angiogenic, fibrotic, and cancer promoting processes. HA and its binding proteins regulate the expression of inflammatory genes, the recruitment of inflammatory cells, the release of inflammatory cytokines, and can attenuate the course of inflammation, providing protection against tissue damage. A growing body of evidence suggests the cell responses are HA molecular weight dependent. HA fragments generated by multiple mechanisms throughout the course of inflammatory pathologies, elicit cellular responses distinct from intact HA. This review focuses on the role of HA in the promotion and resolution of inflammation.
Collapse
Affiliation(s)
- Aaron C Petrey
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, OH , USA
| | - Carol A de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, OH , USA
| |
Collapse
|
31
|
Destruction of amino alcohols and their derivatives on radiolysis and photolysis in aqueous solutions. Radiat Phys Chem Oxf Engl 1993 2014. [DOI: 10.1016/j.radphyschem.2013.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Saha P, Chowdhury AR, Dutta S, Chatterjee S, Ghosh I, Datta K. Autophagic vacuolation induced by excess ROS generation in HABP1/p32/gC1qR overexpressing fibroblasts and its reversal by polymeric hyaluronan. PLoS One 2013; 8:e78131. [PMID: 24205125 PMCID: PMC3799741 DOI: 10.1371/journal.pone.0078131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/17/2013] [Indexed: 01/24/2023] Open
Abstract
The ubiquitous hyaladherin, hyaluronan-binding protein 1 (HABP1/p32/gC1qR) upon stable overexpression in normal fibroblasts (F-HABP07) has been reported to induce mitochondrial dysfunction, growth retardation and apoptosis after 72 h of growth. HABP1 has been observed to accumulate in the mitochondria resulting in generation of excess Reactive Oxygen Species (ROS), mitochondrial Ca++ efflux and drop in mitochondrial membrane potential. In the present study, autophagic vacuolation was detected with monodansylcadaverin (MDC) staining from 36 h to 60 h of culture period along with elevated level of ROS in F-HABP07 cells. Increased expression of autophagic markers like MAP-LC3-II, Beclin 1 and autophagic modulator, DRAM confirmed the occurrence of the phenomenon. Reduced vacuole formation was observed upon treatment with 3-MA, a known PI3 kinase inhibitor, only at 32 h and was ineffective if treated later, as high ROS level was already attained. Treatment of F111 and F-HABP07 cells with bafilomycin A1 further indicated an increase in autophagosome formation along with autophagic degradation in HABP1 overexpressed fibroblasts. Comparison between normal fibroblast (F111) and F-HABP07 cells indicate reduced level of polymeric HA, its depolymerization and perturbed HA-HABP1 interaction in F-HABP07. Interestingly, supplementation of polymeric HA, an endogenous ROS scavenger, in the culture medium prompted reduction in number of vacuoles in F-HABP07 along with drop in ROS level, implying that excess ROS generation triggers initiation of autophagic vacuole formation prior to apoptosis due to overexpression of HABP1. Thus, the phenomenon of autophagy takes place prior to apoptosis induction in the HABP1 overexpressing cell line, F-HABP07.
Collapse
Affiliation(s)
- Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Anindya Roy Chowdhury
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shubhra Dutta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Chatterjee
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ilora Ghosh
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (KD); (IG)
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (KD); (IG)
| |
Collapse
|
33
|
Sgariglia MA, Soberón JR, Cabanes AP, Sampietro DA, Vattuone MA. Anti-inflammatory properties of phenolic lactones isolated from Caesalpinia paraguariensis stem bark. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:63-73. [PMID: 23415707 DOI: 10.1016/j.jep.2012.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caesalpinia paraguariensis (D. Parodi) Burkart stem bark infusion (CPBI) is traditionally used in Argentina because their "vulnerary" properties. AIM OF THE STUDY CPBI was studied throughout bio-guided purification procedures conducted by in vitro biological assays in order to isolate the main bioactive compounds. MATERIAL AND METHODS Anti-inflammatory activity was assessed by enzyme inhibition assays of Hyaluronidase (Hyal) and inducible Nitric Oxide Synthase (iNOS). The antioxidant properties were evaluated by DPPH free radical scavenging assay, lipid peroxidation inhibition assay on erythrocyte membranes, and a cell-based assay that included the fluorescent probe (DCFH-DA) for indicating reactive oxygen species (ROS) generation. Bioactive compounds were purified by chromatographic methods and their structures elucidated using spectroscopic methods (ESI-MS and 1D/2D-(1)H/(13)C-NMR). RESULTS Four main bioactive compounds were isolated from CPBI: ellagic acid (1), 3-O-methylellagic acid (2), 3,3'-di-O-methylellagic acid (3) and 3,3'-di-O-methylellagic-4-β-D-xylopyranoside (4). These were bioactive at concentrations in which are present in CPBI, being compounds 2 and 3 the best enzyme inhibitors of Hyal and iNOS, reaching the 90% inhibitory concentration (IC90) values ranging from 2.8 to 16.4 μM, that are better than that of the positive controls, aspirin (IC90: no reached) and aminoguanidine (IC90: 20.2 μM) respectively. Compounds 2 and 3 were also better scavengers for lipoperoxides than butylated hydroxytoluene (BHT), reaching the 90% effective concentration (EC90) at 1.2-4.5 μg/ml, and for DPPH radical (2.5-7.3 μg/ml); moreover compounds were able to exert its scavenging action on intracellular ROS. Structural features relevant to the biological activities are discussed. CONCLUSIONS This work provides scientific validity to the popular usage of CPBI.
Collapse
Affiliation(s)
- Melina A Sgariglia
- Cátedra de Fitoquímica, Instituto de Estudios Vegetales Dr AR Sampietro, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | | | | | | | | |
Collapse
|
34
|
Samovich S, Brinkevich S, Shadyro O. Interaction of aromatic alcohols, aldehydes and acids with α-hydroxyl-containing carbon-centered radicals: A steady state radiolysis study. Radiat Phys Chem Oxf Engl 1993 2013. [DOI: 10.1016/j.radphyschem.2012.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
van Golen RF, van Gulik TM, Heger M. Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic Biol Med 2012; 52:1382-402. [PMID: 22326617 DOI: 10.1016/j.freeradbiomed.2012.01.013] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 02/06/2023]
Abstract
Endothelial cells are covered by a delicate meshwork of glycoproteins known as the glycocalyx. Under normophysiological conditions the glycocalyx plays an active role in maintaining vascular homeostasis by deterring primary and secondary hemostasis and leukocyte adhesion and by regulating vascular permeability and tone. During (micro)vascular oxidative and nitrosative stress, which prevails in numerous metabolic (diabetes), vascular (atherosclerosis, hypertension), and surgical (ischemia/reperfusion injury, trauma) disease states, the glycocalyx is oxidatively and nitrosatively modified and degraded, which culminates in an exacerbation of the underlying pathology. Consequently, glycocalyx degradation due to oxidative/nitrosative stress has far-reaching clinical implications. In this review the molecular mechanisms of reactive oxygen and nitrogen species-induced destruction of the endothelial glycocalyx are addressed in the context of hepatic ischemia/reperfusion injury as a model disease state. Specifically, the review focuses on (i) the mechanisms of glycocalyx degradation during hepatic ischemia/reperfusion, (ii) the molecular and cellular players involved in the degradation process, and (iii) its implications for hepatic pathophysiology. These topics are projected against a background of liver anatomy, glycocalyx function and structure, and the biology/biochemistry and the sources/targets of reactive oxygen and nitrogen species. The majority of the glycocalyx-related mechanisms elucidated for hepatic ischemia/reperfusion are extrapolatable to the other aforementioned disease states.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
36
|
The Role of Hyaluronic Acid in Atherosclerosis and Intimal Hyperplasia. J Surg Res 2012; 173:e63-72. [DOI: 10.1016/j.jss.2011.09.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/19/2011] [Accepted: 09/14/2011] [Indexed: 01/27/2023]
|
37
|
Svensson Holm ACB, Bengtsson T, Grenegård M, Lindström EG. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation. Exp Cell Res 2012; 318:632-40. [DOI: 10.1016/j.yexcr.2011.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/17/2011] [Accepted: 12/09/2011] [Indexed: 12/20/2022]
|
38
|
|
39
|
Bull RJ, Reckhow DA, Li X, Humpage AR, Joll C, Hrudey SE. Potential carcinogenic hazards of non-regulated disinfection by-products: haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines. Toxicology 2011; 286:1-19. [PMID: 21605618 DOI: 10.1016/j.tox.2011.05.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 11/25/2022]
Abstract
Drinking water disinfectants react with natural organic material (NOM) present in source waters used for drinking water to produce a wide variety of by-products. Several hundred disinfections by-products (DBPs) have been identified, but none have been identified with sufficient carcinogenic potency to account for the cancer risks projected from epidemiological studies. In a search for DBPs that might fill this risk gap, the present study projected reactions of chlorine and chloramine that could occur with substructures present in NOM to produce novel by-products. A review of toxicological data on related compounds, supplemented by use of a quantitative structure toxicity relationship (QSTR) program TOPKAT®) identified chemicals with a high probability of being chronically toxic and/or carcinogenic among 489 established and novel DBPs. Classes of DBPs that were specifically examined were haloquinones (HQs), related halo-cyclopentene and cyclohexene (HCP&H) derivatives, halonitriles (HNs), organic N-chloramines (NCls), haloacetamides (HAMs), and nitrosamines (NAs). A review of toxicological data available for quinones suggested that HQs and HCP&H derivatives appeared likely to be of health concern and were predicted to have chronic lowest observed adverse effect levels (LOAELs) in the low μg/kg day range. Several HQs were predicted to be carcinogenic. Some have now been identified in drinking water. The broader class of HNs was explored by considering current toxicological data on haloacetonitriles and extending this to halopropionitriles. 2,2-dichloropropionitrile has been identified in drinking water at low concentrations, as well as the more widely recognized haloacetonitriles. The occurrence of HAMs has been previously documented. The very limited toxicological data on HAMs suggests that this class would have toxicological potencies similar to the dihaloacetic acids. Organic N-halamines are also known to be produced in drinking water treatment and have biological properties of concern, but no member has ever been characterized toxicologically beyond bacterial or in vitro studies of genotoxicity. The documented formation of several nitrosamines from secondary amines from both natural and industrial sources prompted exploration of the formation of additional nitrosamines. N-diphenylnitrosamine was identified in drinking waters. Of more interest, however, was the formation of phenazine (and subsequently N-chorophenazine) in a competing reaction. These are the first heterocyclic amines that have been identified as chlorination by-products. Consideration of the amounts detected of members of these by-product classes and their probable toxicological potency suggest a prioritization for obtaining more detailed toxicological data of HQs>HCP&H derivatives>NCls>HNs. Based upon a ubiquitous occurrence and virtual lack of in vivo toxicological data, NCls are the most difficult group to assign a priority as potential carcinogenic risks. This analysis indicates that research on the general problem of DBPs requires a more systematic approach than has been pursued in the past. Utilization of predictive chemical tools to guide further research can help bring resolution to the DBP issue by identifying likely DBPs with high toxicological potency.
Collapse
Affiliation(s)
- Richard J Bull
- MoBull Consulting, 1928 Meadows Drive North, Richland, WA 99352, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Martano G, Vogl C, Bojaxhi E, Bresgen N, Eckl P, Stutz H. Solid-phase extraction and GC-MS analysis of potentially genotoxic cleavage products of β-carotene in primary cell cultures. Anal Bioanal Chem 2011; 400:2415-26. [PMID: 21400075 PMCID: PMC3100505 DOI: 10.1007/s00216-011-4836-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/09/2011] [Accepted: 02/22/2011] [Indexed: 11/16/2022]
Abstract
A validated method for the simultaneous determination of prominent volatile cleavage products (CPs) of β-carotene in cell culture media has been developed. Target CPs comprised β-ionone (β-IO), cyclocitral (CC), dihydroactinidiolide (DHA), and 1,1,6-trimethyltetraline (TMT). CPs were extracted by solid-phase extraction applying a phenyl adsorbent, eluted with 10% (v/v) tetrahydrofuran in n-hexane, and identified and quantified by gas chromatography-mass spectrometry with electron impact ionization. Method validation addressed linearity confirmation over two application ranges and homoscedasticity testing. Recoveries from culture media were between 71.7% and 95.7% at 1.0 μg/ml. Precision of recoveries determined in intra-day (N = 5) and inter-day (N = 15) assays were <2.0% and <4.8%, respectively. Limit of detection and limit of quantification of the analysis method were <18.0 and <53.0 ng/ml for β-IO, CC, and TMT, whereas 156 and 474 ng/ml were determined for DHA, respectively. Although extractions of blank matrix proved the absence of interfering peaks, statistical comparison between slopes determined for instrumental and total method linearity revealed significant differences. The method was successfully applied in selecting an appropriate solvent for the fortification of culture media with volatile CPs, including the determination of their availability over the incubation period. For the first time, quantification of volatile CPs in treatment solutions and culture media for primary cells becomes accessible by this validated method. Cultured primary rat hepatocytes in phase contrast after nuclea staining with DAPI including a chromatogram (GC-MS) of volatile cleavage products of b-carotene, which are presumed to exert genotoxic effects on hepatocytes and pneumocytes ![]()
Collapse
Affiliation(s)
- G Martano
- Department of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Suquet C, Warren JJ, Seth N, Hurst JK. Comparative study of HOCl-inflicted damage to bacterial DNA ex vivo and within cells. Arch Biochem Biophys 2009; 493:135-42. [PMID: 19850004 DOI: 10.1016/j.abb.2009.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 12/13/2022]
Abstract
The prospects for using bacterial DNA as an intrinsic probe for HOCl and secondary oxidants/chlorinating agents associated with it has been evaluated using both in vitro and in vivo studies. Single-strand and double-strand breaks occurred in bare plasmid DNA that had been exposed to high levels of HOCl, although these reactions were very inefficient compared to polynucleotide chain cleavage caused by the OH.-generating reagent, peroxynitrite. Plasmid nicking was not increased when intact Escherichia coli were exposed to HOCl; rather, the amount of recoverable plasmid diminished in a dose-dependent manner. At concentration levels of HOCl exceeding lethal doses, genomic bacterial DNA underwent extensive fragmentation and the amount of precipitable DNA-protein complexes increased several-fold. The 5-chlorocytosine content of plasmid and genomic DNA isolated from HOCl-exposed E. coli was also slightly elevated above controls, as measured by mass spectrometry of the deaminated product, 5-chlorouracil. However, the yields were not dose-dependent over the bactericidal concentration range. Genomic DNA recovered from E. coli that had been subjected to phagocytosis by human neutrophils occasionally showed small increases in 5-chlorocytosine content when compared to analogous cellular reactions where myeloperoxidase activity was inhibited by azide ion. Overall, the amount of isolable 5-chlorouracil from the HOCl-exposed bacterial cells was far less than the damage manifested in polynucleotide bond cleavage and cross-linking.
Collapse
Affiliation(s)
- Christine Suquet
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| | | | | | | |
Collapse
|
43
|
Corsaro MM, Pietraforte D, Di Lorenzo AS, Minetti M, Marino G. Reaction of Peroxynitrite with Hyaluronan and Related Saccharides. Free Radic Res 2009; 38:343-53. [PMID: 15190931 DOI: 10.1080/10715760310001653833] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effects of peroxynitrite on hyaluronan has been studied by using an integrated spectroscopical approach, namely electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and mass spectrometry (MS). The reaction has been performed with the polymer, the tetrasaccharide oligomer as well as with the monosaccharides N-acetylglucosamine and glucuronic acid. The outcome of the presence of molecular oxygen and carbon dioxide has been also evaluated. Although 1H-NMR and ESI-MS experiments did not revealed peroxynitrite-mediated modification of hyaluronan as well as of related saccharides, from spin-trapping EPR experiments it was concluded that peroxynitrite induce the formation of C-centered carbon radicals, most probably by the way of its hydroxyl radical-like reactivity. These EPR data support the oxidative pathway involved in the degradation of hyaluronan, a probable event in the development and progression of rheumatoid arthritis.
Collapse
Affiliation(s)
- Maria Michela Corsaro
- Dipartimento di Chimica Organica e Biochimica, Università Federico II di Napoli, Complesso Universitario Monte S. Angelo Via Cynthia 4 80126, Napoli, Italy.
| | | | | | | | | |
Collapse
|
44
|
Kruk I, Bozdağ-Dündar O, Ceylan-Ünlüsoy M, Ertan R, Aboul-Enein HY, Michalska T. Scavenging capacities of some thiazolyl thiazolidine-2,4-dione compounds on superoxide radical, hydroxyl radical, and DPPH radical. LUMINESCENCE 2009; 24:230-5. [DOI: 10.1002/bio.1105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Puré E, Assoian RK. Rheostatic signaling by CD44 and hyaluronan. Cell Signal 2009; 21:651-5. [PMID: 19174187 DOI: 10.1016/j.cellsig.2009.01.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 01/02/2009] [Indexed: 01/07/2023]
Abstract
Cellular function and adaptive behavior is often driven by signals generated in response to the local tissue microenvironment. Cell surface receptors that detect changes in extracellular matrix composition and modifications to extracellular matrix components, are ideally positioned to provide highly responsive sensors of changes in the microenvironment and mediate changes in cellular function required to maintain tissue integrity. Receptors can act as "on/off" switches, but ligand/receptor complexes that provide "rheostatic" control may be more sensitive, provide a more rapid mechanism of control and allow for fine-tuning of cellular responses to the microenvironment. Herein, we review evidence that transitions in the physiochemical properties of the extracellular glycosaminoglycan hyaluronan and in the function of its major receptor, CD44, differentially regulate ERK and Rac signal transduction pathways to provide critical rheostatic control of mesenchymal cell proliferation.
Collapse
Affiliation(s)
- Ellen Puré
- Wistar Institute and Department of Pharmacology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
46
|
Kothapalli D, Flowers J, Xu T, Puré E, Assoian RK. Differential activation of ERK and Rac mediates the proliferative and anti-proliferative effects of hyaluronan and CD44. J Biol Chem 2008; 283:31823-9. [PMID: 18806267 DOI: 10.1074/jbc.m802934200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan, a widely distributed component of the extracellular matrix, exists in a high molecular weight (native) form and lower molecular weight form (HMW- and LMW-HA, respectively). These different forms of hyaluronan bind to CD44 but elicit distinct effects on cellular function. A striking example is the opposing effects of HMW- and LMW-HA on the proliferation of vascular smooth muscle cells; the binding of HMW-HA to CD44 inhibits cell cycle progression, whereas the binding of LMW-HA to CD44 stimulates cell cycle progression. We now report that cyclin D1 is the primary target of LMW-HA in human vascular smooth muscle cells, as it is for HMW-HA, and that the opposing cell cycle effects of these CD44 ligands result from differential regulation of signaling pathways to cyclin D1. HMW-HA binding to CD44 selectively inhibits the GTP loading of Rac and Rac-dependent signaling to the cyclin D1 gene, whereas LMW-HA binding to CD44 selectively stimulates ERK activation and ERK-dependent cyclin D1 gene expression. These data describe a novel mechanism of growth control in which a ligand-receptor system generates opposing effects on mitogenesis by differentially regulating signaling pathways to a common cell cycle target. They also emphasize how a seemingly subtle change in matrix composition can have a profound effect on cell proliferation.
Collapse
Affiliation(s)
- Devashish Kothapalli
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | | | | | |
Collapse
|
47
|
Rees MD, Kennett EC, Whitelock JM, Davies MJ. Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med 2008; 44:1973-2001. [PMID: 18423414 DOI: 10.1016/j.freeradbiomed.2008.03.016] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/16/2008] [Accepted: 03/20/2008] [Indexed: 02/08/2023]
Abstract
The extracellular compartments of most biological tissues are significantly less well protected against oxidative damage than intracellular sites and there is considerable evidence for such compartments being subject to a greater oxidative stress and an altered redox balance. However, with some notable exceptions (e.g., plasma and lung lining fluid) oxidative damage within these compartments has been relatively neglected and is poorly understood. In particular information on the nature and consequences of damage to extracellular matrix is lacking despite the growing realization that changes in matrix structure can play a key role in the regulation of cellular adhesion, proliferation, migration, and cell signaling. Furthermore, the extracellular matrix is widely recognized as being a key site of cytokine and growth factor binding, and modification of matrix structure might be expected to alter such behavior. In this paper we review the potential sources of oxidative matrix damage, the changes that occur in matrix structure, and how this may affect cellular behavior. The role of such damage in the development and progression of inflammatory diseases is discussed.
Collapse
Affiliation(s)
- Martin D Rees
- The Heart Research Institute, 114 Pyrmont Bridge Rd, Camperdown, NSW 2050, Australia
| | | | | | | |
Collapse
|
48
|
David-Raoudi M, Tranchepain F, Deschrevel B, Vincent JC, Bogdanowicz P, Boumediene K, Pujol JP. Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair Regen 2008; 16:274-87. [PMID: 18282267 DOI: 10.1111/j.1524-475x.2007.00342.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hyaluronan (HA) is involved in wound healing and its biological properties depend on its molecular size. The effects of native HA and HA-12 and HA-880 saccharide fragments on human fibroblast proliferation and expression of matrix-related genes were studied. The three HA forms promoted cell adhesion and proliferation. Matrix metalloproteinase-1 and -3 mRNA were increased by all HA forms, whereas only HA-12 stimulated the expression of the tissue inhibitor of metalloproteinase 1. HA-12 enhanced type I collagen and transforming growth factor-beta (TGF-beta) 1 expression. Interestingly, HA-12 and native HA stimulated type III collagen and TGF-beta3. HA and its fragments activated Akt and extracellular-regulated kinases 1/2 and p38. Inhibition of these signaling pathways suggested their implication in most of the effects. Only native HA activated nuclear factor-kappaB and activating protein 1. Use of CD44 siRNA suggests that this HA receptor is partly implicated in the effects, although it does not rule out the involvement of other receptors. Depending on its size, HA may exert differential regulation on the wound-healing process. Furthermore, the HA up-regulation of type III collagen and TGF-beta3 expression suggests that it may promote a fetal-like cell environment that favors scarless healing.
Collapse
Affiliation(s)
- Maha David-Raoudi
- Laboratory of Connective Tissue Biochemistry, Faculty of medicine, Caen, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Hyaluronic Acid: Its Function and Degradation in in vivo Systems. BIOACTIVE NATURAL PRODUCTS (PART N) 2008. [DOI: 10.1016/s1572-5995(08)80035-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Skaff O, Pattison DI, Davies MJ. Kinetics of hypobromous acid-mediated oxidation of lipid components and antioxidants. Chem Res Toxicol 2007; 20:1980-8. [PMID: 18047295 DOI: 10.1021/tx7003097] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypohalous acids are generated from the oxidation of halide ions by myeloperoxidase and eosinophil peroxidase in the presence of H2O2. These oxidants are potent antibacterial agents, but excessive production can result in host tissue damage, with this implicated in a number of human pathologies. Rate constants for HOCl with lipid components and antioxidants have been established. Here, the corresponding reactions of HOBr have been examined to determine whether this species shows similar reactivity. The second-order rate constants for the reaction of HOBr with 3-pentenoic acid and sorbate, models of unsaturated lipids, are 1.1x10(4) and 1.3x10(3) M(-1) s(-1), respectively, while those for reaction of HOBr with phosphoryl-serine and phosphoryl-ethanolamine are ca. 10(6) M(-1) s(-1). The second-order rate constants (M(-1) s(-1)) for reactions of HOBr with Trolox (6.4x10(4)), hydroquinone (2.4x10(5)), and ubiquinol-0 (2.5x10(6)) were determined, as models of the lipid-soluble antioxidants, alpha-tocopherol, and ubiquinol-10; all of these rate constants are ca. 50-2000-fold greater than for HOCl. In contrast, the second-order rate constants for the reaction of HOBr with the water-soluble antioxidants, ascorbate and urate, are ca. 10(6) M(-1) s(-1) and closer in magnitude to those for HOCl. Kinetic models have been developed to predict the sites of HOBr attack on low-density lipoproteins. The data obtained indicate that HOBr reacts to a much greater extent with fatty acid side chains and lipid-soluble antioxidants than HOCl; this has important implications for HOBr-mediated damage to cells and lipoproteins.
Collapse
Affiliation(s)
- Ojia Skaff
- The Heart Research Institute, Sydney, Australia
| | | | | |
Collapse
|