1
|
Tan J, Li F, Zhang X, Zhu H, Liu J, Wu T, Zhang Y, Zhang D, Geng Y, Shen Y. Extracts from petal of the Crocus sativus (saffron) possesses detoxification effects on acetaminophen induced liver injury by inhibiting hepatocyte apoptosis via regulating Nrf2/HO-1 signaling. Fitoterapia 2025; 182:106452. [PMID: 39993543 DOI: 10.1016/j.fitote.2025.106452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The purpose of this study was to investigate the detoxification effect of extracts from the petal of Crocus sativus L. (PCSE) on acetaminophen (APAP) induced liver injury in mice and its related mechanisms. LC-MS/MS analysis was used to identify the main components in PCSE, and an APAP-induced acute liver injury model in mice was constructed to evaluate the detoxification effect of PCSE. Liver tissue H&E staining, liver function indexes including ALT and AST, pro-inflammatory cytokine including TNF-α and IL-6, as well as hepatic tissue oxidative stress levels were examined. In addition, in vitro APAP induced cell was also prepared, apoptosis levels were detected by AO/EB staining, ROS fluorescence intensity was analyzed as well as the expression levels of apoptosis-related proteins and Nrf2/HO-1 pathway-related proteins were detected by western blot, to investigate the mechanism of PCSE's action in ameliorating liver injury. The results showed that PCSE can improve the survival rate of APAP induced mice, decrease ALT, AST, TNF-α and IL-6 levels, and ameliorate the liver injury induced by APAP. Furthermore, the mechanism research suggested PCSE attenuated oxidative stress and apoptosis in APAP-induced liver cells, as well as activated the Nrf2/HO-1 signaling. In summary, PCSE possesses potential detoxification effects on APAP induced liver injury by inhibiting hepatocyte apoptosis via regulating Nrf2/HO-1 signaling, which provides more possibilities for the drug selection for the treatment of liver injury in clinical practice.
Collapse
Affiliation(s)
- Jin Tan
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fangqiong Li
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Xin Zhang
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Hongrui Zhu
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Jin Liu
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Taoqing Wu
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Yang Zhang
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuefei Geng
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yongmei Shen
- Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610073, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Luan J, Wen L, Bao Y, Bai H, Zhao C, Zhang S, Man X, Yin T, Feng X. Systemic toxicity of biodegradable polyglycolic acid microplastics on the gut-liver-brain axis in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176898. [PMID: 39401589 DOI: 10.1016/j.scitotenv.2024.176898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 10/17/2024]
Abstract
Polyglycolic acid (PGA), a novel type of hazardous biodegradable plastic, is gradually being widely used in the biomedical and food packaging industries. However, the long-term ecological effects of PGA degradation to microplastics (MPs) in aquatic organisms remain unknown. The gut-liver-brain axis regulates the exchange of information between the gut, liver, and brain, and is a key target for tissue damage caused by pollutants. Adult zebrafish were exposed to 1 or 100 mg/L PGA MP suspension for 28 d. PGA affects the intestinal vascular barrier through gene expression downstream of the Wnt/β-catenin pathway, increasing intestinal permeability and disrupting the environment of intestinal microbial diversity. This, in turn, promoted the accumulation of lipopolysaccharide (LPS). Disturbance of the intestinal microbiota balance and its metabolites are transferred to the liver and brain through the gut-liver-brain axis, causing disorders in hepatic lipid metabolism and synthesis. Behavioural experiments showed that long-term exposure to PGA MP caused anxiety-like behaviour and cognitive impairment, which may be related to the disruption of the gut-liver-brain axis, thus inducing inflammation and disrupting the normal functioning of the body. In summary, this study evaluated the safety of the new degradable plastic, PGA, but its ecological risks still require attention.
Collapse
Affiliation(s)
- Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Liang Wen
- China Energy Yulin Chemical Co., LTD, 710061,China.
| | - Yehua Bao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chengtian Zhao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China; School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xiaoting Man
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Tian Yin
- China Shenhua Coal To Liquid and Chemical CO., LTD, 100011, China
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Liang WZ, Chia YY, Sun HJ, Sun GC. Exploration of beauvericin's toxic effects and mechanisms in human astrocytes and N-acetylcysteine's protective role. Toxicon 2024; 243:107734. [PMID: 38670497 DOI: 10.1016/j.toxicon.2024.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Beauvericin (BEA) is a newly identified mycotoxin produced by various Fusarium species, and its contamination in food and animal feed is widespread globally. This mycotoxin demonstrates cytotoxic effects by inducing oxidative stress in multiple models. Furthermore, evidence indicates that BEA possesses diverse toxic activities, making it a promising candidate for toxicological research. Recent studies have highlighted the ability of BEA to traverse the blood-brain barrier, suggesting its potential neurotoxicity. However, limited information is available regarding the neurotoxic effects of BEA on human astrocytes. Therefore, this study aimed to assess the neurotoxic effects of BEA on the Gibco® Human Astrocyte (GHA) cell line and elucidate the underlying mechanisms. Additionally, the study aimed to investigate the protective effects of the antioxidant N-acetylcysteine (NAC) against BEA-induced toxicity. The data show that exposure to BEA within the 2.5-15 μM concentration range resulted in concentration-dependent cytotoxicity. BEA-treated cells exhibited significantly increased levels of reactive oxygen species (ROS), while intracellular glutathione (GSH) content was significantly reduced. Western blot analysis of cells treated with BEA revealed altered protein levels of Bax, cleaved caspase-9, and caspase-3, along with an increased Bax/Bcl-2 ratio, indicating the induction of apoptosis. Additionally, BEA exposure triggered antioxidant responses, as evidenced by increased protein expression of Nrf2, HO-1, and NQO1. Significantly, pretreatment with NAC partially attenuated the significant toxic effects of BEA. In conclusion, our findings suggest that BEA-induced cytotoxicity in GHA cells involves oxidative stress-associated apoptosis. Furthermore, NAC demonstrates potential as a protective agent against BEA-induced oxidative damage.
Collapse
Affiliation(s)
- Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan
| | - Yuan-Yi Chia
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Huai-Jhih Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114202, Taiwan.
| |
Collapse
|
4
|
Sheng S, Han N, Wei Y, Wang J, Han W, Xing B, Xing M, Zhang W. Liver Injury Induced by Exposure to Polystyrene Microplastics Alone or in Combination with Cadmium in Mice Is Mediated by Oxidative Stress and Apoptosis. Biol Trace Elem Res 2024; 202:2170-2183. [PMID: 37736782 DOI: 10.1007/s12011-023-03835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Microplastics (MPs) have been considered an emerging environmental pollutant which, when combined with toxic metals, enter the circulatory system of mammals and eventually cause damage. Therefore, it is important to study the toxicity of the mixture of MPs and heavy metals for evaluating risk assessment of mammals. In the present study, the toxicological effects of different concentrations of polystyrene (PS)-MPs alone or in combination with cadmium chloride (CdCl2) during chronic exposure (8 weeks) were evaluated using intragastric administration in mice. Using comparative analysis, it was revealed that PS-MPs alone or in combination with Cd could destroy the normal structural morphology of liver tissue and increase the levels of two biochemical indicators of liver damage, thereby inducing changes in antioxidant and hyperoxide capacities. In addition, PS-MPs and/or Cd activated the antioxidant signaling pathway Nrf2-Keap1 and affected the endogenous apoptosis signaling pathway p53-Bcl-2/Bax, thus promoting apoptosis. These findings suggested that exposure to MPs alone or in combination with Cd led to adverse effects on the liver. Furthermore, it was revealed that co-exposure to MPs and Cd reduced Cd toxicity, thereby highlighting the possibility MPs may act as carriers of other toxic substances and coordinate with them. Therefore, evaluating the synergistic or anti-agonistic effects of MPs on the toxicity and bioavailability of xenobiotics is in the future critical in environmental toxicological studies.
Collapse
Affiliation(s)
- Shuai Sheng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Ningxin Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yufeng Wei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Jinghan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Wei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Boyu Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| | - Wen Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
- Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
5
|
Tossounian MA, Zhao Y, Yu BYK, Markey SA, Malanchuk O, Zhu Y, Cain A, Gout I. Low-molecular-weight thiol transferases in redox regulation and antioxidant defence. Redox Biol 2024; 71:103094. [PMID: 38479221 PMCID: PMC10950700 DOI: 10.1016/j.redox.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/24/2024] Open
Abstract
Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Yuhan Zhao
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Samuel A Markey
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Oksana Malanchuk
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine
| | - Yuejia Zhu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Amanda Cain
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine.
| |
Collapse
|
6
|
Wang X, Yuan L, Lu B, Lin D, Xu X. Glutathione promotes the synergistic effects of venetoclax and azacytidine against myelodysplastic syndrome‑refractory anemia by regulating the cell cycle. Exp Ther Med 2023; 26:574. [PMID: 38023359 PMCID: PMC10652243 DOI: 10.3892/etm.2023.12274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Azacitidine is a DNA methyltransferase inhibitor that has been used as a singular agent for the treatment of myelodysplastic syndrome-refractory anemia with excess blast-1 and -2 (MDS-RAEB I/II). However, recurrence and overall response rates following this treatment remain unsatisfactory. The combination of azacitidine and venetoclax has been used for the clinical treatment of a variety of hematological diseases due to the synergistic killing effect of the two drugs. Venetoclax is a BCL-2 inhibitor that can inhibit mitochondrial metabolism. In addition, azacitidine has been shown to reduce the levels of myeloid cell leukemia 1 (MCL-1) in acute myeloid leukemia cells. MCL-1 is an anti-apoptotic protein and a potential source of resistance to venetoclax. However, the mechanism underlying the effects of combined venetoclax and azacitidine treatment remains to be fully elucidated. In the present study, the molecular mechanism underlying the impact of venetoclax on the efficacy of azacitidine was investigated by examining its effects on cell cycle progression. SKM-1 cell lines were treated in vitro with 0-2 µM venetoclax and 0-4 µM azacytidine. After 24, 48 and 72 h of treatment, the impact of the drugs on the cell cycle was assessed by flow cytometry. Following drug treatment, changes in cellular glutamine metabolism pathways was analyzed using western blotting (ATF4, CHOP, ASCT2, IDH2 and RB), quantitative PCR (ASCT2 and IDH2), liquid chromatography-mass spectrometry (α-KG, succinate and glutathione) and ELISA (glutamine and glutaminase). Venetoclax was found to inhibit mitochondrial activity though the alanine-serine-cysteine transporter 2 (ASCT2) pathway, which decreased glutamine uptake. Furthermore, venetoclax partially antagonized the action of azacitidine through this ASCT2 pathway, which was reversed by glutathione (GSH) treatment. These results suggest that GSH treatment can potentiate the synergistic therapeutic effects of venetoclax and azacitidine combined treatment on a myelodysplastic syndrome-refractory anemia cell line at lower concentrations.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Lihua Yuan
- Department of Pediatric Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Bo Lu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R. China
| |
Collapse
|
7
|
Shete N, Calabrese J, Tonetti DA. Revisiting Estrogen for the Treatment of Endocrine-Resistant Breast Cancer: Novel Therapeutic Approaches. Cancers (Basel) 2023; 15:3647. [PMID: 37509308 PMCID: PMC10377916 DOI: 10.3390/cancers15143647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Estrogen receptor (ER)-positive breast cancer is the most common subtype, representing 70-75% of all breast cancers. Several ER-targeted drugs commonly used include the selective estrogen receptor modulator (SERM), tamoxifen (TAM), aromatase inhibitors (AIs) and selective estrogen receptor degraders (SERDs). Through different mechanisms of action, all three drug classes reduce estrogen receptor signaling. Inevitably, resistance occurs, resulting in disease progression. The counterintuitive action of estrogen to inhibit ER-positive breast cancer was first observed over 80 years ago. High-dose estrogen and diethylstilbestrol (DES) were used to treat metastatic breast cancer accompanied by harsh side effects until the approval of TAM in the 1970s. After the development of TAM, randomized trials comparing TAM to estrogen found similar or slightly inferior efficacy but much better tolerability. After decades of research, it was learned that estrogen induces tumor regression only after a period of long-term estrogen deprivation, and the mechanisms of tumor regression were described. Despite the long history of breast cancer treatment with estrogen, this therapeutic modality is now revitalized due to the development of novel estrogenic compounds with improved side effect profiles, newly discovered predictive biomarkers, the development of non-estrogen small molecules and new combination therapeutic approaches.
Collapse
Affiliation(s)
- Nivida Shete
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jordan Calabrese
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Debra A Tonetti
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Kharwar S, Mishra AK. Nitrogen and Redox Metabolism in Cyanobacterium Anabaena sp. PCC 7120 Exposed to Different Sulfate Regimes. Curr Microbiol 2023; 80:265. [PMID: 37393301 DOI: 10.1007/s00284-023-03374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Sulfur is an important key nutrient required for the growth and development of cyanobacteria. Several reports showed the effect of sulfate limitation in unicellular and filamentous cyanobacteria, but such studies have not yet been reported in heterocytous cyanobacteria to ascribe the mechanisms of nitrogen and thiol metabolisms. Thus, the present work was carried out to appraise the impacts of sulfate limitation on nitrogen and thiol metabolisms in Anabaena sp. PCC 7120 by analyzing the contents as well as enzymes of nitrogen and thiol metabolisms. Cells of Anabaena sp. PCC 7120 were exposed to different regimes of sulfate, i.e., 300, 30, 3, and 0 µM. Application of reduced concentration of sulfate showed negative impact on the cyanobacterium. Sulfate-limiting conditions reduces nitrogen-containing compounds in the cells of Anabaena. Additionally, reduced activities of nitrogen metabolic enzymes represented the role of sulfate in nitrogen metabolism. However, decreased activities of thiol metabolic enzymes indicated that sulfate-limited cyanobacterial cells have lower amount of glutathione and total thiol contents. Reduced accumulation of thiol components in the stressed cells indicated that sulfate-limited cells have lower ability to withstand stressful condition. Hence, Anabaena displays differential response to different concentrations of sulfate, and thus, stipulated that sulfur plays an important role in nitrogen and thiol metabolisms. To the best of our knowledge, this is the first report demonstrating the impact of sulfate stress on nitrogen and redox metabolisms in heterocytous cyanobacteria. This preliminary study provides a baseline idea that may help improve the production of paddy.
Collapse
Affiliation(s)
- Surbhi Kharwar
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
9
|
Liu J, Kong D, Ai D, Xu A, Yu W, Peng Z, Peng J, Wang Z, Wang Z, Liu R, Li W, Hai C, Zhang X, Wang X. Insulin resistance enhances binge ethanol-induced liver injury through promoting oxidative stress and up-regulation CYP2E1. Life Sci 2022; 303:120681. [PMID: 35662646 DOI: 10.1016/j.lfs.2022.120681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
Abstract
Alcoholic liver disease (ALD) has caused a serious burden on public and personal health in crowd with ethanol abuse. The effects of insulin resistance (IR) on ALD and the mechanisms underlying these responses are still not well understood. In this study, we investigated the changes of liver injury, inflammation, apoptosis, mitochondrial dysfunction and CYP2E1 changes in liver of mice exposed to ethanol with IR or not. We found IR increased the sensitivity of liver injury in mice exposed to ethanol, manifested as the increase serum activities of AST and ALT, the accumulation of triglycerides, the deterioration of liver pathology and increase of inflammatory factors. IR also exacerbated apoptosis and mitochondrial dysfunction in liver of mice exposed to ethanol. The increase of oxidative stress and the decrease of antioxidant defense ability might be responsible for the sensitizing effects of IR on ethanol-induced liver injury, supported by the increase of MDA levels and the decline of GSH/GSSG, the inactivation of antioxidant enzymes SOD, GR through the inhibition of Nrf-2 pathway. The activation of CYP2E1 might be also involved in the sensitizing effects of IR on ethanol induced liver injury in mice. These results demonstrated that IR exhibited a significant pro-oxidative and pro-apoptosis effects to aggravate alcoholic liver injury. Our study helped us to better understand the sensitive role of IR on ALD and suggested that alcohol intake may be more harmful for people with IR.
Collapse
Affiliation(s)
- Jiangzheng Liu
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Deqin Kong
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Duo Ai
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China; Second Brigade of Basic Medical College Students, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Anqi Xu
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China; Second Brigade of Basic Medical College Students, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Weihua Yu
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Zhengwu Peng
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China; Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Jie Peng
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Zhao Wang
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Zhao Wang
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Rui Liu
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Wenli Li
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Chunxu Hai
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xiaodi Zhang
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Xin Wang
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, 710032, PR China.
| |
Collapse
|
10
|
Yılmaz C, Othman Pirdawid A, Fidan Babat C, Konuş M, Çetin D, Kıvrak A, Algso MAS, Arslan Ş, Mutlu D, Otur Ç, Kurt Kızıldoğan A. A Thiophene Derivative, 2‐Bromo‐5‐(2‐(methylthio)phenyl)thiophene, Has Effective Anticancer Potential with Other Biological Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202200784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Can Yılmaz
- Department of Molecular Biology and Genetics Faculty of Science Van Yuzuncu Yil University 65080 Van Turkey
| | - Ahmed Othman Pirdawid
- Department of Molecular Biology and Genetics Faculty of Science Van Yuzuncu Yil University 65080 Van Turkey
| | - Ceylan Fidan Babat
- Department of Molecular Biology and Genetics Faculty of Science Van Yuzuncu Yil University 65080 Van Turkey
| | - Metin Konuş
- Department of Molecular Biology and Genetics Facuty of Arts and Science Hitit University 19030 Çorum Turkey
| | - Doğan Çetin
- Department of Molecular Biology and Genetics Faculty of Science Van Yuzuncu Yil University 65080 Van Turkey
| | - Arif Kıvrak
- Department of Chemistry Facuty of Arts and Sciences Osmangazi University 26040 Eskişehir Turkey
| | - Muheb A. S. Algso
- Department of Chemistry Faculty of Science Van Yuzuncu Yil University 65080 Van Turkey
| | - Şevki Arslan
- Department of Biology Faculty of Arts and Science Pamukkale University 20160 Denizli Turkey
| | - Doğukan Mutlu
- Department of Biology Faculty of Arts and Science Pamukkale University 20160 Denizli Turkey
| | - Çiğdem Otur
- Department of Agricultural Biotechnology Faculty of Agriculture Ondokuz Mayıs University 55270 Samsun Turkey
| | - Aslıhan Kurt Kızıldoğan
- Department of Agricultural Biotechnology Faculty of Agriculture Ondokuz Mayıs University 55270 Samsun Turkey
| |
Collapse
|
11
|
Genome-wide screening in the haploid system reveals Slc25a43 as a target gene of oxidative toxicity. Cell Death Dis 2022; 13:284. [PMID: 35354792 PMCID: PMC8967898 DOI: 10.1038/s41419-022-04738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
Abstract
Reactive oxygen species (ROS) are extensively assessed in physiological and pathological studies; however, the genes and mechanisms involved in antioxidant reactions are elusive. To address this knowledge gap, we used a forward genetic approach with mouse haploid embryonic stem cells (haESCs) to generate high-throughput mutant libraries, from which numerous oxidative stress-targeting genes were screened out. We performed proof-of-concept experiments to validate the potential inserted genes. Slc25a43 (one of the candidates) knockout (KO) ESCs presented reduced damage caused by ROS and higher cell viability when exposed to H2O2. Subsequently, ROS production and mitochondrial function analysis also confirmed that Slc25a43 was a main target gene of oxidative toxicity. In addition, we identified that KO of Slc25a43 activated mitochondria-related genes including Nlrx1 to protect ESCs from oxidative damage. Overall, our findings facilitated revealing target genes of oxidative stress and shed lights on the mechanism underlying oxidative death.
Collapse
|
12
|
Haddad M, Hervé V, Ben Khedher MR, Rabanel JM, Ramassamy C. Glutathione: An Old and Small Molecule with Great Functions and New Applications in the Brain and in Alzheimer's Disease. Antioxid Redox Signal 2021; 35:270-292. [PMID: 33637005 DOI: 10.1089/ars.2020.8129] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Glutathione (GSH) represents the most abundant and the main antioxidant in the body with important functions in the brain related to Alzheimer's disease (AD). Recent Advances: Oxidative stress is one of the central mechanisms in AD. We and others have demonstrated the alteration of GSH levels in the AD brain, its important role in the detoxification of advanced glycation end-products and of acrolein, a by-product of lipid peroxidation. Recent in vivo studies found a decrease of GSH in several areas of the brain from control, mild cognitive impairment, and AD subjects, which are correlated with cognitive decline. Critical Issues: Several strategies were developed to restore its intracellular level with the l-cysteine prodrugs or the oral administration of γ-glutamylcysteine to prevent alterations observed in AD. To date, no benefit on GSH level or on oxidative biomarkers has been reported in clinical trials. Thus, it remains uncertain if GSH could be considered a potential preventive or therapeutic approach or a biomarker for AD. Future Directions: We address how GSH-coupled nanocarriers represent a promising approach for the functionalization of nanocarriers to overcome the blood/brain barrier (BBB) for the brain delivery of GSH while avoiding cellular toxicity. It is also important to address the presence of GSH in exosomes for its potential intercellular transfer or its shuttle across the BBB under certain conditions. Antioxid. Redox Signal. 35, 270-292.
Collapse
Affiliation(s)
- Mohamed Haddad
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Vincent Hervé
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Mohamed Raâfet Ben Khedher
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | | | - Charles Ramassamy
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| |
Collapse
|
13
|
Gonchar OO, Maznychenko AV, Klyuchko OM, Mankovska IM, Butowska K, Borowik A, Piosik J, Sokolowska I. C 60 Fullerene Reduces 3-Nitropropionic Acid-Induced Oxidative Stress Disorders and Mitochondrial Dysfunction in Rats by Modulation of p53, Bcl-2 and Nrf2 Targeted Proteins. Int J Mol Sci 2021; 22:ijms22115444. [PMID: 34064070 PMCID: PMC8196695 DOI: 10.3390/ijms22115444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023] Open
Abstract
C60 fullerene as a potent free radical scavenger and antioxidant could be a beneficial means for neurodegenerative disease prevention or cure. The aim of the study was to define the effects of C60 administration on mitochondrial dysfunction and oxidative stress disorders in a 3-nitropropionic acid (3-NPA)-induced rat model of Huntington’s disease. Animals received 3-NPA (30 mg/kg i.p.) once a day for 3 consecutive days. C60 was applied at a dose of 0.5 mg/kg of body weight, i.p. daily over 5 days before (C60 pre-treatment) and after 3-NPA exposure (C60 post-treatment). Oxidative stress biomarkers, the activity of respiratory chain enzymes, the level of antioxidant defense, and pro- and antiapoptotic markers were analyzed in the brain and skeletal muscle mitochondria. The nuclear and cytosol Nrf2 protein expression, protein level of MnSOD, γ-glutamate-cysteine ligase (γ-GCLC), and glutathione-S-transferase (GSTP) as Nrf2 targets were evaluated. Our results indicated that C60 can prevent 3-NPA-induced mitochondrial dysfunction through the restoring of mitochondrial complexes’ enzyme activity, ROS scavenging, modulating of pro/antioxidant balance and GSH/GSSG ratio, as well as inhibition of mitochondria-dependent apoptosis through the limitation of p53 mitochondrial translocation and increase in Bcl-2 protein expression. C60 improved mitochondrial protection by strengthening the endogenous glutathione system via glutathione biosynthesis by up-regulating Nrf2 nuclear accumulation as well as GCLC and GSTP protein level.
Collapse
Affiliation(s)
- Olga O. Gonchar
- Department of Hypoxic States and Department of Movements Physiology, Bogomoletz Institute of Physiology, Bogomoletz Str. 4, 01024 Kyiv, Ukraine; (O.O.G.); (I.M.M.)
| | - Andriy V. Maznychenko
- Department of Hypoxic States and Department of Movements Physiology, Bogomoletz Institute of Physiology, Bogomoletz Str. 4, 01024 Kyiv, Ukraine; (O.O.G.); (I.M.M.)
- Department of Physical Education, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego Str. 1, 80-336 Gdansk, Poland;
- Correspondence:
| | - Olena M. Klyuchko
- Department of Electronics, National Aviation University, L. Huzar Ave. 1, 03058 Kyiv, Ukraine;
| | - Iryna M. Mankovska
- Department of Hypoxic States and Department of Movements Physiology, Bogomoletz Institute of Physiology, Bogomoletz Str. 4, 01024 Kyiv, Ukraine; (O.O.G.); (I.M.M.)
| | - Kamila Butowska
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdansk, Poland; (K.B.); (A.B.); (J.P.)
| | - Agnieszka Borowik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdansk, Poland; (K.B.); (A.B.); (J.P.)
| | - Jacek Piosik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdansk, Poland; (K.B.); (A.B.); (J.P.)
| | - Inna Sokolowska
- Department of Physical Education, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego Str. 1, 80-336 Gdansk, Poland;
| |
Collapse
|
14
|
Gan WJ, Gao CL, Zhang WQ, Gu JL, Zhao TT, Guo HL, Zhou H, Xu Y, Yu LL, Li LF, Gui DK, Xu YH. Kuwanon G protects HT22 cells from advanced glycation end product-induced damage. Exp Ther Med 2021; 21:425. [PMID: 33747164 PMCID: PMC7967837 DOI: 10.3892/etm.2021.9869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/11/2020] [Indexed: 12/25/2022] Open
Abstract
The incidence of diabetic encephalopathy is increasing as the population ages. Evidence suggests that formation and accumulation of advanced glycation end products (AGEs) plays a pivotal role in disease progression, but limited research has been carried out in this area. A previous study demonstrated that Kuwanon G (KWG) had significant anti-oxidative stress and anti-inflammatory properties. As AGEs are oxidative products and inflammation is involved in their generation it is hypothesized that KWG may have effects against AGE-induced neuronal damage. In the present study, mouse hippocampal neuronal cell line HT22 was used. KWG was shown to significantly inhibit AGE-induced cell apoptosis in comparison with a control treatment, as determined by both MTT and flow cytometry. Compared with the AGEs group, expression of pro-apoptotic protein Bax was reduced and expression of anti-apoptotic protein Bcl-2 was increased in the AGEs + KWG group. Both intracellular and extracellular levels of acetylcholine and choline acetyltransferase were significantly elevated after KWG administration in comparison with controls whilethe level of acetylcholinesterase decreased. These changes in protein expression were accompanied by increased levels of superoxide dismutase and glutathione peroxidase synthesis and reduced production of malondialdehyde and reactive oxygen species. Intracellular signaling pathway protein levels were determined by western blot and immunocytochemistry. KWG administration was found to prevent AGE-induced changes to the phosphorylation levels of Akt, IκB-α, glycogen synthase kinase 3 (GSK3)-α and β, p38 MAPK and NF-κB p65 suggesting a potential neuroprotective effect of KWG against AGE-induced damage was via the PI3K/Akt/GSK3αβ signaling pathway. The findings of the present study suggest that KWG may be a potential treatment for diabetic encephalopathy.
Collapse
Affiliation(s)
- Wen-Jun Gan
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Chen-Lin Gao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China.,Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 510500, P.R. China
| | - Wen-Qian Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Jun-Ling Gu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Ting-Ting Zhao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Heng-Li Guo
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Hua Zhou
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Yong Xu
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 510500, P.R. China
| | - Li-Li Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Li-Fang Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| | - Ding-Kun Gui
- Department of Nephrology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - You-Hua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, P.R. China
| |
Collapse
|
15
|
Borghei YS, Hosseinkhani S. Colorimetric assay of apoptosis through in-situ biosynthesized gold nanoparticles inside living breast cancer cells. Talanta 2020; 208:120463. [DOI: 10.1016/j.talanta.2019.120463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
|
16
|
Guo M, Wang Y, Zhao H, Mu M, Yang X, Fei D, Liu Y, Zong H, Xing M. Oxidative damage under As 3+ and/or Cu 2+ stress leads to apoptosis and autophagy and may be cross-talking with mitochondrial disorders in bursa of Fabricius. J Inorg Biochem 2020; 205:110989. [PMID: 31945648 DOI: 10.1016/j.jinorgbio.2019.110989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022]
Abstract
Arsenic (As) exists in many forms in the whole natural environment, with As3+ the highest toxicity. Herein our study demonstrated that arsenic trioxide (As2O3) at a dose of 30 mg/kg caused serious oxidative damage to chickens' bursa of Fabricius (BF) in a time-dependent manner. Copper (Cu) is a necessary micronutrient and a key catalytic cofactor of many enzymes. We found excessive Cu (in the form of 300 mg/kg copper sulfate (CuSO4)) also induced severe oxidative stress (OxS), and its co-exposure with As3+ had a greater destructive power against oxidative system. Under electron microscope, swollen mitochondria, disappeared cristae and agglutinated chromatin were observed, accompanied by myeloid structure and autophagosome. The results showed apoptosis and autophagy occurred under the action of As3+ and Cu2+, and the situation was more serious in combined exposure group, which was further explained by terminal deoxynucleotidyl transferase (TdT)-mediated 2'-Deoxyuridine 5'-Triphosphate (dUTP) Nick-End Labeling (TUNEL). By quantitative real time polymerase chain reaction (RT-qPCR) and western blot, we found that mitochondrial dynamics were disordered under OxS, and the abnormal changes of B-cell lymphoma (Bcl)-2, p53, Bcl-2-interacting protein (Beclin)-1 and autophagy-related gene (ATG) 4B indicated the crosstalk between apoptosis and autophagy. In conclusion, apoptosis and autophagy of BF induced by As3+ and Cu2+ and mitochondrial disorder are closely related to the collapse of antioxidant system, and their connections are inseparable. Our results provide a reference for environmental risk prevention and selection of poultry feed additives and pesticides to avoid the health risks caused by As3+ and Cu2+ exposure.
Collapse
Affiliation(s)
- Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xin Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxue Fei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hui Zong
- Guangdong Polytechnic of Science and Trade, Guangzhou 510000, Guangdong, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
17
|
Dong Y, Sameni S, Digman MA, Brewer GJ. Reversibility of Age-related Oxidized Free NADH Redox States in Alzheimer's Disease Neurons by Imposed External Cys/CySS Redox Shifts. Sci Rep 2019; 9:11274. [PMID: 31375701 PMCID: PMC6677822 DOI: 10.1038/s41598-019-47582-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
Redox systems including extracellular cysteine/cystine (Cys/CySS), intracellular glutathione/oxidized glutathione (GSH/GSSG) and nicotinamide adenine dinucleotide reduced/oxidized forms (NADH/NAD+) are critical for maintaining redox homeostasis. Aging as a major risk factor for Alzheimer’s disease (AD) is associated with oxidative shifts, decreases in anti-oxidant protection and dysfunction of mitochondria. Here, we examined the flexibility of mitochondrial-specific free NADH in live neurons from non-transgenic (NTg) or triple transgenic AD-like mice (3xTg-AD) of different ages under an imposed extracellular Cys/CySS oxidative or reductive condition. We used phasor fluorescence lifetime imaging microscopy (FLIM) to distinguish free and bound NADH in mitochondria, nuclei and cytoplasm. Under an external oxidative stress, a lower capacity for maintaining mitochondrial free NADH levels was found in old compared to young neurons and a further decline with genetic load. Remarkably, an imposed Cys/CySS reductive state rejuvenated the mitochondrial free NADH levels of old NTg neurons by 71% and old 3xTg-AD neurons by 89% to levels corresponding to the young neurons. Using FLIM as a non-invasive approach, we were able to measure the reversibility of aging subcellular free NADH levels in live neurons. Our results suggest a potential reductive treatment to reverse the loss of free NADH in old and Alzheimer’s neurons.
Collapse
Affiliation(s)
- Yue Dong
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| | - Sara Sameni
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America.,Laboratory of Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America.,Laboratory of Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| | - Gregory J Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America. .,MIND Institute, Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, United States of America.
| |
Collapse
|
18
|
Melatonin Improves Parthenogenetic Development of Vitrified⁻Warmed Mouse Oocytes Potentially by Promoting G1/S Cell Cycle Progression. Int J Mol Sci 2018; 19:ijms19124029. [PMID: 30551578 PMCID: PMC6321189 DOI: 10.3390/ijms19124029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the effect of melatonin on the cell cycle of parthenogenetic embryos derived from vitrified mouse metaphase II (MII) oocytes. Fresh oocytes were randomly allocated into three groups: untreated (control), or vitrified by the open-pulled straw method without (Vitrification group) or with melatonin (MT) supplementation (Vitrification + MT group). After warming, oocytes were parthenogenetically activated and cultured in vitro, then the percentage of embryos in the G1/S phase, the levels of reactive oxygen species (ROS) and glutathione (GSH), and the mRNA expression of cell cycle-related genes (P53, P21 and E2F1) in zygotes and their subsequent developmental potential in vitro were evaluated. The results showed that the vitrification/warming procedures significantly decreased the frequency of the S phase, markedly increased ROS and GSH levels and the expression of P53 and P21 genes, and decreased E2F1 expression in zygotes at the G1 stage and their subsequent development into 2-cell and blastocyst stage embryos. However, when 10−9 mol/L MT was administered for the whole duration of the experiment, the frequency of the S phase in zygotes was significantly increased, while the other indicators were also significantly improved and almost recovered to the normal levels shown in the control. Thus, MT might promote G1-to-S progression via regulation of ROS, GSH and cell cycle-related genes, potentially increasing the parthenogenetic development ability of vitrified–warmed mouse oocytes.
Collapse
|
19
|
Effects of cigarette smoke extracts on apoptosis and oxidative stress in two models of ovarian cancer in vitro. Toxicol In Vitro 2018; 52:161-169. [DOI: 10.1016/j.tiv.2018.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/08/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
|
20
|
Lavoie JC, Mohamed I, Nuyt AM, Elremaly W, Rouleau T. Impact of SMOFLipid on Pulmonary Alveolar Development in Newborn Guinea Pigs. JPEN J Parenter Enteral Nutr 2018. [DOI: 10.1002/jpen.1153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jean-Claude Lavoie
- Department of Nutrition; University of Montréal; Montréal Canada
- Department of Pediatrics-Neonatology; Hospital Sainte-Justine; University of Montréal; Montréal Canada
| | - Ibrahim Mohamed
- Department of Pediatrics-Neonatology; Hospital Sainte-Justine; University of Montréal; Montréal Canada
| | - Anne-Monique Nuyt
- Department of Pediatrics-Neonatology; Hospital Sainte-Justine; University of Montréal; Montréal Canada
| | - Wesam Elremaly
- Department of Nutrition; University of Montréal; Montréal Canada
| | - Thérèse Rouleau
- Department of Nutrition; University of Montréal; Montréal Canada
- Department of Pediatrics-Neonatology; Hospital Sainte-Justine; University of Montréal; Montréal Canada
| |
Collapse
|
21
|
Synthesis and Application of Aurophilic Poly(Cysteine) and Poly(Cysteine)-Containing Copolymers. Polymers (Basel) 2017; 9:polym9100500. [PMID: 30965803 PMCID: PMC6418574 DOI: 10.3390/polym9100500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 12/29/2022] Open
Abstract
The redox capacity, as well as the aurophilicity of the terminal thiol side groups, in poly(Cysteine) lend a unique characteristic to this poly(amino acid) or polypeptide. There are two major application fields for this polymer: (i) biomedical applications in drug delivery and surface modification of biomedical devices and (ii) as coating for electrodes to enhance their electrochemical sensitivity. The intended application determines the synthetic route for p(Cysteine). Polymers to be used in biomedical applications are typically polymerized from the cysteine N-carboxyanhydride by a ring-opening polymerization, where the thiol group needs to be protected during the polymerization. Advances in this methodology have led to conditions under which the polymerization progresses as living polymerization, which allows for a strict control of the molecular architecture, molecular weight and polydispersity and the formation of block copolymers, which eventually could display polyphilic properties. Poly(Cysteine) used as electrode coating is typically polymerized onto the electrode by cyclic voltammetry, which actually produces a continuous, pinhole-free film on the electrode via the formation of covalent bonds between the amino group of Cysteine and the carbon of the electrode. This resulting coating is chemically very different from the well-defined poly(Cysteine) obtained by ring-opening polymerizations. Based on the structure of cysteine a significant degree of cross-linking within the coating deposited by cyclic voltammetry can be assumed. This manuscript provides a detailed discussion of the ring-opening polymerization of cysteine, a brief consideration of the role of glutathione, a key cysteine-containing tripeptide, and examples for the utilization of poly(Cysteine) and poly(Cysteine)-containing copolymers, in both, the biomedical as well as electrochemical realm.
Collapse
|
22
|
Lai KG, Chen CF, Ho CT, Liu JJ, Liu TZ, Chern CL. Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma. Tumour Biol 2017; 39:1010428317702649. [PMID: 28639913 DOI: 10.1177/1010428317702649] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
We provide herein several lines of evidence to substantiate that folic acid (or folate) is a micronutrient capable of functioning as a novel redox regulator on hepatocellular carcinoma. First, we uncovered that folate deficiency could profoundly downregulate two prominent anti-apoptotic effectors including survivin and glucose-regulated protein-78. Silencing of either survivin or glucose-regulated protein-78 via small interfering RNA interfering technique established that both effectors could serve as reactive oxygen species sinker proteins. Second, folate deficiency-triggered oxidative-nitrosative stress could strongly induce endoplasmic reticulum stress that in turn could provoke cellular glutathione depletion through the modulation of the following two crucial events: (1) folate deficiency could strongly inhibit Bcl-2 expression leading to severe suppression of the mitochondrial glutathione pool and (2) folate deficiency could also profoundly inhibit two key enzymes that governing cellular glutathione redox regulation including γ-glutamylcysteinyl synthetase heavy chain, a catalytic enzyme for glutathione biosynthesis, and mitochondrial isocitrate dehydrogenase 2, an enzyme responsible for providing nicotinamide adenine dinucleotide phosphate necessary for regenerating oxidized glutathione disulfide back to glutathione via mitochondrial glutathione reductase. Collectively, we add to the literature new data to strengthen the notion that folate is an essential micronutrient that confers a novel role to combat reactive oxygen species insults and thus serves as a redox regulator via upregulating reactive oxygen species sinker proteins and averting mitochondrial glutathione depletion through proper maintenance of redox homeostasis via positively regulating glutathione biosynthesis, glutathione transporting system, and mitochondrial glutathione recycling process.
Collapse
Affiliation(s)
- Kun-Goung Lai
- 1 Department of Radiation Oncology, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
| | - Chi-Fen Chen
- 2 Clinical Laboratories, Yuan's General Hospital, Kaohsiung, Taiwan
- 3 Department of Medical Laboratory and Biotechnology Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- 4 Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chun-Te Ho
- 5 Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jun-Jen Liu
- 6 School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Tsan-Zon Liu
- 7 Translational Research Laboratory, Cancer Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chi-Liang Chern
- 8 Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Cort A, Ozben T, Saso L, De Luca C, Korkina L. Redox Control of Multidrug Resistance and Its Possible Modulation by Antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4251912. [PMID: 26881027 PMCID: PMC4736404 DOI: 10.1155/2016/4251912] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/14/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022]
Abstract
Clinical efficacy of anticancer chemotherapies is dramatically hampered by multidrug resistance (MDR) dependent on inherited traits, acquired defence against toxins, and adaptive mechanisms mounting in tumours. There is overwhelming evidence that molecular events leading to MDR are regulated by redox mechanisms. For example, chemotherapeutics which overrun the first obstacle of redox-regulated cellular uptake channels (MDR1, MDR2, and MDR3) induce a concerted action of phase I/II metabolic enzymes with a temporal redox-regulated axis. This results in rapid metabolic transformation and elimination of a toxin. This metabolic axis is tightly interconnected with the inducible Nrf2-linked pathway, a key switch-on mechanism for upregulation of endogenous antioxidant enzymes and detoxifying systems. As a result, chemotherapeutics and cytotoxic by-products of their metabolism (ROS, hydroperoxides, and aldehydes) are inactivated and MDR occurs. On the other hand, tumour cells are capable of mounting an adaptive antioxidant response against ROS produced by chemotherapeutics and host immune cells. The multiple redox-dependent mechanisms involved in MDR prompted suggesting redox-active drugs (antioxidants and prooxidants) or inhibitors of inducible antioxidant defence as a novel approach to diminish MDR. Pitfalls and progress in this direction are discussed.
Collapse
Affiliation(s)
- Aysegul Cort
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sanko University, İncili Pınar, Gazi Muhtar Paşa Bulvarı, Sehitkamil, 27090 Gaziantep, Turkey
| | - Tomris Ozben
- Department of Biochemistry, Akdeniz University Medical Faculty, Campus, Dumlupınar Street, 07070 Antalya, Turkey
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara De Luca
- Evidence-Based Well-Being (EB-WB) Ltd., 31 Alt-Stralau, 10245 Berlin, Germany
| | - Liudmila Korkina
- Centre of Innovative Biotechnological Investigations Nanolab, 197 Vernadskogo Prospekt, Moscow 119571, Russia
| |
Collapse
|
24
|
Issam N, Abdelkrim T, Ibtissem C, Narjess K. Laboratory environment and bio-medical experience: the impact of administration technique on the quality of immune-behavior data results in stress experience. ACTA ACUST UNITED AC 2015; 5:169-76. [PMID: 26929920 PMCID: PMC4769786 DOI: 10.15171/bi.2015.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/12/2015] [Accepted: 09/22/2015] [Indexed: 11/09/2022]
Abstract
![]()
Introduction: Often in an experiment, the control group and the intact group are not identified because most scientists neglect the fact that the sets of manipulation as technical administrations may be considered as an undesirable stress on the clarity of the data obtained from a scientific research specifically if it focuses on studying the effects of stress.
Methods: This study was conducted in two parts using 40 male Wistar rats. The first part aimed to treat a group of rats by repeated injections i.p route (1 mL/kg) of placebo or NaCl (0.9%) and the other by direct oral administration of NaCl (0.9%). Both groups spent 1 h of jet air stress with stressed group. Our objective was to consider the effects that these manipulations would have on the validity of behavioral results (the elevated plus maze test, the open field, the light/dark box test) and immune data (immune cell count) during this stress experience. The second part was devoted to the measurement of ACTH, IL6, and CRP in these experimental groups.
Results: Unlike oral administration, repeated intra-peritoneal injections cause a significant increase of plasma obtained levels of the adrenocorticotropin hormone (ACTH), interleukin-6 (IL-6) and the C-reactive protein (CRP) using injections of placebo: NaCl 0.9% (1 mL/kg) and it may have side effect on significant immune and behavioral alterations data quality induced by 1 h of air jet in the animal’s cage identified by the leukocyte formula and behavioral tests.
Conclusion: In an experimental protocol conducted on animal models, it is essential to opt for painless techniques such as oral administration instead of painful injections to avoid confusion at the behavioral and immunological results from biomedical experiments specifically one that focuses on the stress study.
Collapse
Affiliation(s)
- Nessaibia Issam
- Laboratoire de Neuro-endocrinologie Appliquée, Département de Biologie, Université Badji Mokhtar, Annaba, Algeria
| | - Tahraoui Abdelkrim
- Laboratoire de Neuro-endocrinologie Appliquée, Département de Biologie, Université Badji Mokhtar, Annaba, Algeria
| | - Chouba Ibtissem
- Laboratoire de Neuro-endocrinologie Appliquée, Département de Biologie, Université Badji Mokhtar, Annaba, Algeria
| | - Kaarar Narjess
- Laboratoire de Neuro-endocrinologie Appliquée, Département de Biologie, Université Badji Mokhtar, Annaba, Algeria
| |
Collapse
|
25
|
Joniova J, Misuth M, Sureau F, Miskovsky P, Nadova Z. Effect of PKCα expression on Bcl-2 phosphorylation and cell death by hypericin. Apoptosis 2015; 19:1779-92. [PMID: 25300800 DOI: 10.1007/s10495-014-1043-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to explain the contribution of the protein kinase Cα (PKCα) in apoptosis induced by photo-activation of hypericin (Hyp), a small interfering RNA was used for post-transcriptional silencing of pkcα gene expression. We have evaluated the influence of Hyp photo-activation on cell death in non-transfected and transfected (PKCα(-)) human glioma cells (U-87 MG). No significant differences were detected in cell survival between non-transfected and transfected PKCα(-) cells. However, the type of cell death was notably affected by silencing the pkcα gene. Photo-activation of Hyp strongly induced apoptosis in non-transfected cells, but the level of necrotic cells in transfected PKCα(-) cells increased significantly. The differences in cell death after Hyp photo-activation are demonstrated by changes in: (i) reactive oxygen species production, (ii) Bcl-2 phosphorylation on Ser70 (pBcl-2(Ser70)), (iii) cellular distributions of pBcl-2(Ser70) and (iv) cellular distribution of endogenous anti-oxidant glutathione and its co-localization with mitochondria. In summary, we suggest that post-transcriptional silencing of the pkcα gene and the related decrease of PKCα level considerably affects the anti-apoptotic function and the anti-oxidant function of Bcl-2. This implies that PKCα, as Bcl-2 kinase, indirectly protects U-87 MG cells against oxidative stress and subsequent cell death.
Collapse
Affiliation(s)
- Jaroslava Joniova
- Department of Biophysics, Faculty of Science, University of Pavol Jozef Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic
| | | | | | | | | |
Collapse
|
26
|
Saini P, Mukherjee N, Mukherjee S, Roy P, Gayen P, Kumar D, Pal BC, Babu SPS. Diospyros perigrena bark extract induced apoptosis in filarial parasite Setaria cervi through generation of reactive oxygen species. PHARMACEUTICAL BIOLOGY 2015; 53:813-823. [PMID: 25720973 DOI: 10.3109/13880209.2014.943244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Lymphatic filariasis is a major neglected tropical disease. Diospyros perigrena Gurke (Ebenaceae) was selected for antifilarial chemotherapy because of unavailability of proper medicine. In India, different parts of this plant were used for the treatment of diabetes, diarrhea, dysentery, cholera, mouth ulcers, and wounds. OBJECTIVE The present study was undertaken to access antifilarial potential and mechanism of action of n-butanol extract (NBE) of D. perigrena stem bark on Setaria cervi Rudolphi (Onchocercidae). MATERIALS AND METHODS In vitro efficacy and apoptotic mechanism were evaluated by Hoechst, TUNEL, DNA fragmentation assay, pro- and anti-apoptotic gene expression in NBE (250, 125, 62.5, 31.25, and 15.6 µg/ml)-treated S. cervi after 24 h of incubation. Reactive oxygen species (ROS) up-regulation was also determined by GSH, GST, SOD assays, and super oxide anion level. RESULTS Significant in vitro antifilarial activity of NBE was found 50% inhibitory concentration (IC50): adult = 57.6 μg/ml, microfilariae (mf) = 56.1 μg/ml, and lethal dose (LD100) in mf is 187.17 μg/ml) after 24 h of treatment. NBF-induced apoptosis was proved by Hoechst, TUNEL, RT-PCR, and Western blot method. NBF (250 µg/ml) decreased the level of GSH (17.8%) and GST (65.4%), increased SOD activity (1.42-fold) and super oxide anion production (1.32-fold) in the treated parasite which culminated into ROS up-regulation. DISCUSSION AND CONCLUSION NBE induced apoptosis in different life cycle stages of S. cervi. In future, a detailed study of NBF will give us a novel antifilarial compound which will be used for antifilarial chemotherapy.
Collapse
Affiliation(s)
- Prasanta Saini
- Parasitology Laboratory, Department of Zoology, Center for Advanced Studies, Visva-Bharati University , Santiniketan, West Bengal , India and
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Aoyama K, Nakaki T. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1). Molecules 2015; 20:8742-58. [PMID: 26007177 PMCID: PMC6272787 DOI: 10.3390/molecules20058742] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/11/2015] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) are by-products of the cellular metabolism of oxygen consumption, produced mainly in the mitochondria. ROS are known to be highly reactive ions or free radicals containing oxygen that impair redox homeostasis and cellular functions, leading to cell death. Under physiological conditions, a variety of antioxidant systems scavenge ROS to maintain the intracellular redox homeostasis and normal cellular functions. This review focuses on the antioxidant system’s roles in maintaining redox homeostasis. Especially, glutathione (GSH) is the most important thiol-containing molecule, as it functions as a redox buffer, antioxidant, and enzyme cofactor against oxidative stress. In the brain, dysfunction of GSH synthesis leading to GSH depletion exacerbates oxidative stress, which is linked to a pathogenesis of aging-related neurodegenerative diseases. Excitatory amino acid carrier 1 (EAAC1) plays a pivotal role in neuronal GSH synthesis. The regulatory mechanism of EAAC1 is also discussed.
Collapse
Affiliation(s)
| | - Toshio Nakaki
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-3-3964-3793; Fax: +81-3-3964-0602
| |
Collapse
|
28
|
Fiser B, Jójárt B, Szőri M, Lendvay G, Csizmadia IG, Viskolcz B. Glutathione as a Prebiotic Answer to α-Peptide Based Life. J Phys Chem B 2015; 119:3940-7. [DOI: 10.1021/jp511582m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Béla Fiser
- Department
of Chemical Informatics, Faculty of Education, University of Szeged, Boldogasszony sgt. 6, Szeged, Hungary-6725
- Department
of Organic Chemistry I, University of the Basque Country/UPV-EHU, Manuel de Lardizabal 3, Donostia-San Sebastián, Spain-20018
| | - Balázs Jójárt
- Department
of Chemical Informatics, Faculty of Education, University of Szeged, Boldogasszony sgt. 6, Szeged, Hungary-6725
| | - Milán Szőri
- Department
of Chemical Informatics, Faculty of Education, University of Szeged, Boldogasszony sgt. 6, Szeged, Hungary-6725
| | - György Lendvay
- Institute
for Materials and Environmental Chemistry, Research Center for Natural
Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, Hungary-1117
| | - Imre G. Csizmadia
- Department
of Chemical Informatics, Faculty of Education, University of Szeged, Boldogasszony sgt. 6, Szeged, Hungary-6725
- Department
of Chemistry, University of Toronto, 80 St. George Str, Toronto, Ontario, Canada, M5S 3H6
| | - Béla Viskolcz
- Department
of Chemical Informatics, Faculty of Education, University of Szeged, Boldogasszony sgt. 6, Szeged, Hungary-6725
| |
Collapse
|
29
|
Activation of p53 mediated glycolytic inhibition-oxidative stress-apoptosis pathway in Dalton's lymphoma by a ruthenium (II)-complex containing 4-carboxy N-ethylbenzamide. Biochimie 2015; 110:52-61. [DOI: 10.1016/j.biochi.2014.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/30/2014] [Indexed: 01/27/2023]
|
30
|
Ni Z, Wang B, Dai X, Ding W, Yang T, Li X, Lewin S, Xu L, Lian J, He F. HCC cells with high levels of Bcl-2 are resistant to ABT-737 via activation of the ROS-JNK-autophagy pathway. Free Radic Biol Med 2014; 70:194-203. [PMID: 24576507 DOI: 10.1016/j.freeradbiomed.2014.02.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 02/09/2014] [Accepted: 02/13/2014] [Indexed: 12/19/2022]
Abstract
The Bcl-2 inhibitor ABT-737 has shown promising antitumor efficacy in vivo and in vitro. However, some reports have demonstrated that HCC cells are resistant to ABT-737, and the corresponding molecular mechanisms of this resistance are not well known. In this study, we found that HCC cells with high levels of Bcl-2 were markedly resistant to ABT-737 compared to HCC cells with low levels of Bcl-2. In HCC cells with high levels of Bcl-2 (such as HepG2 cells), ABT-737 induced protective autophagy via the sequential triggering of reactive oxygen species (ROS) accumulation, short-term activation of JNK, enhanced phosphorylation of Bcl-2, and dissociation of Beclin 1 from the Bcl-2/Beclin 1 complex. Moreover, autophagy suppressed the overactivation of the ROS-JNK pathway and protected against apoptosis. In HCC cells with low levels of Bcl-2 (i.e., Huh7 cells), ABT-737 induced apoptosis via the sequential stimulation of ROS, sustained activation of JNK, enhanced translocation of Bax from the cytosol to the mitochondria, and release of cytochrome c. In sum, this study indicated that the activation of the ROS-JNK-autophagy pathway may be an important mechanism by which HCC cells with high levels of Bcl-2 are resistant to ABT-737.
Collapse
Affiliation(s)
- Zhenhong Ni
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Bin Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xufang Dai
- Department of Educational Science College, Chongqing Normal University, Chongqing 400038, China
| | - Wen Ding
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Ting Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xinzhe Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Seth Lewin
- Department of Molecular Biosciences and Department of Radiation Oncology, University of Kansas Cancer Center, University of Kansas, Lawrence, KS 66045-7534, USA
| | - Liang Xu
- Department of Molecular Biosciences and Department of Radiation Oncology, University of Kansas Cancer Center, University of Kansas, Lawrence, KS 66045-7534, USA
| | - Jiqin Lian
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
31
|
Mezera V, Kucera O, Moravcova A, Peterova E, Cervinkova Z. The effect of epigallocatechin gallate on hepatocytes isolated from normal and partially hepatectomized rats. Can J Physiol Pharmacol 2014; 92:512-7. [PMID: 24853265 DOI: 10.1139/cjpp-2014-0069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epigallocatechin gallate (EGCG) is an antioxidant found in green tea. In this study, male Wistar rats were subjected either to partial hepatectomy (PHx), or a sham operation (LAP). Twenty-four hours after surgery, hepatocytes were isolated and treated with various concentrations of EGCG for up to 72 h. We then measured markers of cell viability, oxidative stress, DNA synthesis, and caspase activity. Morphological criteria, cell viability tests, and albumin synthesis revealed toxicity starting at 10 μmol/L. DNA synthesis was higher in hepatocytes isolated from rats after PHx and inhibited by EGCG. Furthermore, EGCG increased the activity of caspases 3 and 7, seen more in hepatocytes from PHx rats. In conclusion, EGCG at a concentration of 10 μmol/L was toxic for hepatocytes isolated from both PHx and LAP rats.
Collapse
Affiliation(s)
- Vojtech Mezera
- a Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Simkova 870, 500 38 Hradec Králové 1, Czech Republic
| | | | | | | | | |
Collapse
|
32
|
Scientific rationale for postmenopause delay in the use of conjugated equine estrogens among postmenopausal women that causes reduction in breast cancer incidence and mortality. Menopause 2014; 20:372-82. [PMID: 23921472 DOI: 10.1097/gme.0b013e31828865a5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-dose synthetic estrogens were the first successful chemical therapy used in the treatment of metastatic breast cancer in postmenopausal women, and this approach became the standard of care in postmenopausal women with metastatic breast cancer between the 1950s and the end of the 1970s. The most recent analysis of the Women's Health Initiative estrogen-alone trial in hysterectomized women revealed a persistently significant decrease in the incidence of breast cancer and breast cancer mortality. Although estrogens are known to induce the proliferation of breast cancer cells, we have shown that physiologic concentrations induce apoptosis in breast cancer cells with long-term estrogen deprivation. We have developed laboratory models that illustrate the new biology of estrogen-induced apoptosis or growth to explain the effects of estrogen therapy. The key to the success of estrogen therapy lies in a sufficient period of withdrawal of physiologic estrogens (5-10 y) and the subsequent regrowth of nascent breast tumor cells that survive under estrogen-deprived conditions. These nascent tumors are now vulnerable to estrogen-induced apoptosis.
Collapse
|
33
|
Pittman SK, Gracias NG, Vasko MR, Fehrenbacher JC. Paclitaxel alters the evoked release of calcitonin gene-related peptide from rat sensory neurons in culture. Exp Neurol 2014; 253:146-53. [PMID: 24374060 PMCID: PMC5954981 DOI: 10.1016/j.expneurol.2013.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 01/03/2023]
Abstract
Peripheral neuropathy (PN) is a debilitating and dose-limiting side effect of treatment with the chemotherapeutic agent, paclitaxel. Understanding the effects of paclitaxel on sensory neuronal function and the signaling pathways which mediate these paclitaxel-induced changes in function are critical for the development of therapies to prevent or alleviate the PN. The effects of long-term administration of paclitaxel on the function of sensory neurons grown in culture, using the release of the neuropeptide calcitonin gene-related peptide (CGRP) as an endpoint of sensory neuronal function, were examined. Dorsal root ganglion cultures were treated with low (10 nM) and high (300 nM) concentrations of paclitaxel for 1, 3, or 5 days. Following paclitaxel treatment, the release of CGRP was determined using capsaicin, a TRPV1 agonist; allyl isothiocyanate (AITC), a TRPA1 agonist; or high extracellular potassium. The effects of paclitaxel on the release of CGRP were stimulant-, concentration-, and time-dependent. When neurons were stimulated with capsaicin or AITC, a low concentration of paclitaxel (10nM) augmented transmitter release, whereas a high concentration (300 nM) reduced transmitter release in a time-dependent manner; however, when high extracellular potassium was used as the evoking stimulus, all concentrations of paclitaxel augmented CGRP release from sensory neurons. These results suggest that paclitaxel alters the function of sensory neurons in vitro, and suggest that the mechanisms by which paclitaxel alters neuronal function may include functional changes in TRP channel activity. The described in vitro model will facilitate future studies to identify the signaling pathways by which paclitaxel alters neuronal sensitivity.
Collapse
Affiliation(s)
- Sherry K Pittman
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA.
| | - Neilia G Gracias
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA; Indiana University School of Medicine, Stark Neuroscience Research Institute, USA; Columbia University, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, USA.
| | - Michael R Vasko
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA; Indiana University School of Medicine, Stark Neuroscience Research Institute, USA; Indiana University School of Medicine, Department of Anesthesiology, USA.
| | - Jill C Fehrenbacher
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA; Indiana University School of Medicine, Stark Neuroscience Research Institute, USA; Indiana University School of Medicine, Department of Anesthesiology, USA.
| |
Collapse
|
34
|
Sarkar D, Shetty K. Metabolic Stimulation of Plant Phenolics for Food Preservation and Health. Annu Rev Food Sci Technol 2014; 5:395-413. [DOI: 10.1146/annurev-food-030713-092418] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant phenolics as secondary metabolites are key to a plant's defense response against biotic and abiotic stresses. These phytochemicals are also increasingly relevant to food preservation and human health in terms of chronic disease management. Phenolic compounds from different food crops with different chemical structures and biological functions have the potential to act as natural antioxidants. Plant-based human foods are rich with these phenolic phytochemicals and can be used effectively for food preservation and bioactive enrichments through metabolic stimulation of key pathways. Phenolic metabolites protect against microbial degradation of plant-based foods during postharvest storage. Phenolics not only provide biotic protection but also help to counter biochemical and physical food deteriorations and to enhance shelf life and nutritional quality. This review summarizes the role of metabolically stimulated plant phenolics in food preservation and their impact on the prevention of oxidative stress–induced human diseases.
Collapse
Affiliation(s)
- Dipayan Sarkar
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108-6050;,
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108-6050;,
| |
Collapse
|
35
|
Kapoor R, Singh S, Tripathi M, Bhatnagar P, Kakkar P, Gupta KC. O-hexadecyl-dextran entrapped berberine nanoparticles abrogate high glucose stress induced apoptosis in primary rat hepatocytes. PLoS One 2014; 9:e89124. [PMID: 24586539 PMCID: PMC3930636 DOI: 10.1371/journal.pone.0089124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
Nanotized phytochemicals are being explored by researchers for promoting their uptake and effectiveness at lower concentrations. In this study, O-hexadecyl-dextran entrapped berberine chloride nanoparticles (BC-HDD NPs) were prepared, and evaluated for their cytoprotective efficacy in high glucose stressed primary hepatocytes and the results obtained compared with bulk berberine chloride (BBR) treatment. The nanotized formulation treated primary hepatocytes that were exposed to high glucose (40 mM), showed increased viability compared to the bulk BBR treated cells. BC-HDD NPs reduced the ROS generation by ∼ 3.5 fold during co-treatment, prevented GSH depletion by ∼ 1.6 fold, reduced NO formation by ∼ 5 fold and significantly prevented decline in SOD activity in stressed cells. Lipid peroxidation was also prevented by ∼ 1.9 fold in the presence of these NPs confirming the antioxidant capacity of the formulation. High glucose stress increased Bax/Bcl2 ratio followed by mitochondrial depolarization and activation of caspase-9/-3 confirming involvement of mitochondrial pathway of apoptosis in the exposed cells. Co- and post-treatment of BC-HDD NPs prevented depolarization of mitochondrial membrane, reduced Bax/Bcl2 ratio and prevented externalization of phosphatidyl-serine confirming their anti-apoptotic capacity in those cells. Sub-G1 phase apparent in high glucose stressed cells was not seen in BC-HDD NPs treated cells. The present study reveals that BC-HDD NPs at ∼ 20 fold lower concentration are as effective as BBR in preventing high glucose induced oxidative stress, mitochondrial depolarization and downstream events of apoptotic cell death.
Collapse
Affiliation(s)
- Radhika Kapoor
- Food, Drug and Chemical Toxicology Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Shruti Singh
- Food, Drug and Chemical Toxicology Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Madhulika Tripathi
- Food, Drug and Chemical Toxicology Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Priyanka Bhatnagar
- CSIR- Institute of Genomics and Integrative Biology, Delhi University Campus, Delhi, India
| | - Poonam Kakkar
- Food, Drug and Chemical Toxicology Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Kailash Chand Gupta
- Food, Drug and Chemical Toxicology Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- CSIR- Institute of Genomics and Integrative Biology, Delhi University Campus, Delhi, India
| |
Collapse
|
36
|
B → A Conformational Transition of DNA under the Influence of a Copper Thiolate, the Copper-cysteine: Biophysical, Spectroscopic and Gel Electrophoresis Studies. TRANSIT METAL CHEM 2014. [DOI: 10.1007/s11243-005-6242-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Ismail AM, In LL, Tasyriq M, Syamsir DR, Awang K, Omer Mustafa AH, Idris OF, Fadl-Elmula I, Hasima N. Extra virgin olive oil potentiates the effects of aromatase inhibitors via glutathione depletion in estrogen receptor-positive human breast cancer (MCF-7) cells. Food Chem Toxicol 2013; 62:817-24. [DOI: 10.1016/j.fct.2013.10.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
|
38
|
Aoyama K, Nakaki T. Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci 2013; 14:21021-44. [PMID: 24145751 PMCID: PMC3821656 DOI: 10.3390/ijms141021021] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022] Open
Abstract
Glutathione (GSH) was discovered in yeast cells in 1888. Studies of GSH in mammalian cells before the 1980s focused exclusively on its function for the detoxication of xenobiotics or for drug metabolism in the liver, in which GSH is present at its highest concentration in the body. Increasing evidence has demonstrated other important roles of GSH in the brain, not only for the detoxication of xenobiotics but also for antioxidant defense and the regulation of intracellular redox homeostasis. GSH also regulates cell signaling, protein function, gene expression, and cell differentiation/proliferation in the brain. Clinically, inborn errors in GSH-related enzymes are very rare, but disorders of GSH metabolism are common in major neurodegenerative diseases showing GSH depletion and increased levels of oxidative stress in the brain. GSH depletion would precipitate oxidative damage in the brain, leading to neurodegenerative diseases. This review focuses on the significance of GSH function, the synthesis of GSH and its metabolism, and clinical disorders of GSH metabolism. A potential approach to increase brain GSH levels against neurodegeneration is also discussed.
Collapse
Affiliation(s)
- Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan.
| | | |
Collapse
|
39
|
Fiser B, Jójárt B, Csizmadia IG, Viskolcz B. Glutathione--hydroxyl radical interaction: a theoretical study on radical recognition process. PLoS One 2013; 8:e73652. [PMID: 24040010 PMCID: PMC3767814 DOI: 10.1371/journal.pone.0073652] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/30/2013] [Indexed: 12/01/2022] Open
Abstract
Non-reactive, comparative (2 × 1.2 μs) molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule) and hydroxyl radical (OH(•), guest molecule). From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons) with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH(•) complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from -42.4 to -27.8 kJ/mol and from -21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels.
Collapse
Affiliation(s)
- Béla Fiser
- Department of Chemical Informatics, Faculty of Education, University of Szeged, Szeged, Hungary
| | - Balázs Jójárt
- Department of Chemical Informatics, Faculty of Education, University of Szeged, Szeged, Hungary
| | - Imre G. Csizmadia
- Department of Chemical Informatics, Faculty of Education, University of Szeged, Szeged, Hungary
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Béla Viskolcz
- Department of Chemical Informatics, Faculty of Education, University of Szeged, Szeged, Hungary
| |
Collapse
|
40
|
Park MH, Kim SY, Moon C, Bae YC, Moon JI, Moon C. Differential cell death and Bcl-2 expression in the mouse retina after glutathione decrease by systemic D,L-buthionine sulphoximine administration. Mol Cells 2013; 35:235-42. [PMID: 23430084 PMCID: PMC3887915 DOI: 10.1007/s10059-013-2276-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/17/2012] [Accepted: 12/26/2012] [Indexed: 01/11/2023] Open
Abstract
Glutathione (GSH) plays a critical role in cellular defense against unregulated oxidative stress in mammalian cells including neurons. We previously demonstrated that GSH decrease using [D, L]-buthionine sulphoximine (BSO) induces retinal cell death, but the underlying mechanisms of this are still unclear. Here, we demonstrated that retinal GSH level is closely related to retinal cell death as well as expression of an anti-apoptotic molecule, Bcl-2, in the retina. We induced differential expression of retinal GSH by single and multiple administrations of BSO, and examined retinal GSH levels and retinal cell death in vivo. Single BSO administration showed a transient decrease in the retinal GSH level, whereas multiple BSO administration showed a persistent decrease in the retinal GSH level. Retinal cell death also showed similar patterns: transient increases of retinal cell death were observed after single BSO administration, whereas persistent increases of retinal cell death were observed after multiple BSO administration. Changes in the retinal GSH level affected Bcl-2 expression in the retina. Immunoblot and immunohistochemical analyses showed that single and multiple administration of BSO induced differential expressions of Bcl-2 in the retina. Taken together, the results of our study suggest that the retinal GSH is important for the survival of retinal cells, and retinal GSH appears to be deeply related to Bcl-2 expression in the retina. Thus, alteration of Bcl-2 expression may provide a therapeutic tool for retinal degenerative diseases caused by retinal oxidative stress such as glaucoma or retinopathy.
Collapse
Affiliation(s)
- Myoung Hee Park
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul 137–701,
Korea
| | - So Yeun Kim
- Department of Brain Science, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711–873,
Korea
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412,
Korea
| | - Chanil Moon
- Department of Cardiology, School of Medicine, Hanyang University, Seoul 133–791,
Korea
| | - Young Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412,
Korea
| | - Jung-Il Moon
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul 137–701,
Korea
| | - Cheil Moon
- Department of Brain Science, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711–873,
Korea
| |
Collapse
|
41
|
Nagano M, Hatakeyama K, Kai M, Nakamura H, Yodoi J, Asada Y, Chijiiwa K. Nuclear expression of thioredoxin-1 in the invasion front is associated with outcome in patients with gallbladder carcinoma. HPB (Oxford) 2012; 14:573-82. [PMID: 22882193 PMCID: PMC3461382 DOI: 10.1111/j.1477-2574.2012.00482.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Multifunctional redox protein human thioredoxin (TRX-1) is reduced by thioredoxin reductase (TRX-R). The aim of the present study was to examine the distribution of TRX-1 and TRX-R expressions in gallbladder carcinoma (GBC) to clarify their usefulness as prognostic factors after surgical resection. METHODS Immunohistochemical staining for TRX-1 and TRX-R was performed in GBC tissue from 38 patients who underwent surgical resection, and TRX-1/TRX-R localization in relation to outcome was examined. RESULTS TRX-1 protein levels were significantly higher in GBC samples than in cholecystolithiasis samples (P = 0.0174). TRX-1 expression was observed in 100% (38/38) of tumour samples and in the nucleus in 76% (29/38), with nuclear expression in the invasion front observed in 45% (13/29). TRX-R expression was only detected in the cytoplasm of cancer cells and in the invasion front in 28 samples. In all of the samples, the depth of tumour invasion, lymph node metastasis, surgical margin, curability and nuclear expression of TRX-1 in the invasion front were significant prognostic factors by univariate analysis. In 27 selected patients who underwent curative resection, both TRX-1 nuclear expression and TRX-R cytoplasmic expression in the invasion front was a significantly prognostic factor. CONCLUSION TRX-1 nuclear expression in the GBC invasion front is a significant prognostic marker. Patients with both TRX-1 nuclear expression and TRX-R cytoplasmic expression in the tumour invasion front should be observed carefully even if after curative resection.
Collapse
Affiliation(s)
- Motoaki Nagano
- Department of Surgical Oncology and Regulation of Organ FunctionMiyazaki
| | - Kinta Hatakeyama
- Department of First Pathology, Miyazaki University School of MedicineMiyazaki
| | - Masahiro Kai
- Department of Surgical Oncology and Regulation of Organ FunctionMiyazaki
| | - Hajime Nakamura
- Department of Biological Responses, Institute for Virus Research, Kyoto UniversityKyoto, Japan
| | - Junji Yodoi
- Department of Biological Responses, Institute for Virus Research, Kyoto UniversityKyoto, Japan
| | - Yujiro Asada
- Department of First Pathology, Miyazaki University School of MedicineMiyazaki
| | - Kazuo Chijiiwa
- Department of Surgical Oncology and Regulation of Organ FunctionMiyazaki
| |
Collapse
|
42
|
Nayak A, Gayen P, Saini P, Mukherjee N, Sinha Babu SP. Molecular evidence of curcumin-induced apoptosis in the filarial worm Setaria cervi. Parasitol Res 2012; 111:1173-86. [DOI: 10.1007/s00436-012-2948-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 04/23/2012] [Indexed: 12/25/2022]
|
43
|
Gorudko IV, Shamova EV, Shishlo LM, Mukhortova AV, Prokhorova VI, Panasenko OM, Gusev SA, Cherenkevich SN. Glutathione-dependent regulation of platelet aggregation with neutrophils and tumor cells. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
44
|
Furfaro AL, Macay JRZ, Marengo B, Nitti M, Parodi A, Fenoglio D, Marinari UM, Pronzato MA, Domenicotti C, Traverso N. Resistance of neuroblastoma GI-ME-N cell line to glutathione depletion involves Nrf2 and heme oxygenase-1. Free Radic Biol Med 2012; 52:488-96. [PMID: 22142473 DOI: 10.1016/j.freeradbiomed.2011.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
Abstract
Cancer cell survival is known to be related to the ability to counteract oxidative stress, and glutathione (GSH) depletion has been proposed as a mechanism to sensitize cells to anticancer therapy. However, we observed that GI-ME-N cells, a neuroblastoma cell line without MYCN amplification, are able to survive even if GSH-depleted by l-buthionine-(S,R)-sulfoximine (BSO). Here, we show that in GI-ME-N cells, BSO activates Nrf2 and up-regulates heme oxygenase-1 (HO-1). Silencing of Nrf2 restrained HO-1 induction by BSO. Inhibition of HO-1 and silencing of Nrf2 or HO-1 sensitized GI-ME-N cells to BSO, leading to reactive oxygen/nitrogen species overproduction and decreasing viability. Moreover, targeting the Nrf2/HO-1 axis sensitized GI-ME-N cells to etoposide more than GSH depletion. Therefore, we have provided evidence that in GI-ME-N cells, the Nrf2/HO-1 axis plays a crucial role as a protective factor against cellular stress, and we suggest that the inhibition of Nfr2/HO-1 signaling should be considered as a central target in the clinical battle against neuroblastoma.
Collapse
Affiliation(s)
- Anna Lisa Furfaro
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wilkins HM, Marquardt K, Lash LH, Linseman DA. Bcl-2 is a novel interacting partner for the 2-oxoglutarate carrier and a key regulator of mitochondrial glutathione. Free Radic Biol Med 2012; 52:410-9. [PMID: 22115789 PMCID: PMC3253244 DOI: 10.1016/j.freeradbiomed.2011.10.495] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 01/06/2023]
Abstract
Despite making up only a minor fraction of the total cellular glutathione, recent studies indicate that the mitochondrial glutathione pool is essential for cell survival. Selective depletion of mitochondrial glutathione is sufficient to sensitize cells to mitochondrial oxidative stress (MOS) and intrinsic apoptosis. Glutathione is synthesized exclusively in the cytoplasm and must be actively transported into mitochondria. Therefore, regulation of mitochondrial glutathione transport is a key factor in maintaining the antioxidant status of mitochondria. Bcl-2 resides in the outer mitochondrial membrane where it acts as a central regulator of the intrinsic apoptotic cascade. In addition, Bcl-2 displays an antioxidant-like function that has been linked experimentally to the regulation of cellular glutathione content. We have previously demonstrated a novel interaction between recombinant Bcl-2 and reduced glutathione (GSH), which was antagonized by either Bcl-2 homology-3 domain (BH3) mimetics or a BH3-only protein, recombinant Bim. These previous findings prompted us to investigate if this novel Bcl-2/GSH interaction might play a role in regulating mitochondrial glutathione transport. Incubation of primary cultures of cerebellar granule neurons (CGNs) with the BH3 mimetic HA14-1 induced MOS and caused specific depletion of the mitochondrial glutathione pool. Bcl-2 was coimmunoprecipitated with GSH after chemical cross-linking in CGNs and this Bcl-2/GSH interaction was antagonized by preincubation with HA14-1. Moreover, both HA14-1 and recombinant Bim inhibited GSH transport into isolated rat brain mitochondria. To further investigate a possible link between Bcl-2 function and mitochondrial glutathione transport, we next examined if Bcl-2 associated with the 2-oxoglutarate carrier (OGC), an inner mitochondrial membrane protein known to transport glutathione in liver and kidney. After cotransfection of CHO cells, Bcl-2 was coimmunoprecipitated with OGC and this novel interaction was significantly enhanced by glutathione monoethyl ester. Similarly, recombinant Bcl-2 interacted with recombinant OGC in the presence of GSH. Bcl-2 and OGC cotransfection in CHO cells significantly increased the mitochondrial glutathione pool. Finally, the ability of Bcl-2 to protect CHO cells from apoptosis induced by hydrogen peroxide was significantly attenuated by the OGC inhibitor phenylsuccinate. These data suggest that GSH binding by Bcl-2 enhances its affinity for the OGC. Bcl-2 and OGC appear to act in a coordinated manner to increase the mitochondrial glutathione pool and enhance resistance of cells to oxidative stress. We conclude that regulation of mitochondrial glutathione transport is a principal mechanism by which Bcl-2 suppresses MOS.
Collapse
Affiliation(s)
- Heather M. Wilkins
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, CO, USA
| | - Kristin Marquardt
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, CO, USA
| | - Lawrence H. Lash
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Daniel A. Linseman
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, CO, USA
- Research Service, Veterans Affairs Medical Center, Denver, CO, USA
- Division of Clinical Pharmacology and Toxicology, Department of Medicine and Neuroscience Program, University of Colorado Denver, Aurora, CO, USA
- Address correspondence to: Daniel Linseman, PhD, Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208; Tel.: (303) 871-5654; Fax: (303) 871-3471;
| |
Collapse
|
46
|
Chen G, Chen Z, Hu Y, Huang P. Inhibition of mitochondrial respiration and rapid depletion of mitochondrial glutathione by β-phenethyl isothiocyanate: mechanisms for anti-leukemia activity. Antioxid Redox Signal 2011; 15:2911-21. [PMID: 21827296 PMCID: PMC3201634 DOI: 10.1089/ars.2011.4170] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS β-Phenethyl isothiocyanate (PEITC) is a natural product with potent anticancer activity against human leukemia cells including drug-resistant primary leukemia cells from patients. This study aimed at investigating the key mechanisms that contribute to the potent anti-leukemia activity of PEITC and at evaluating its therapeutic potential. RESULTS Our study showed that PEITC caused a rapid depletion of mitochondrial glutathione (GSH) and a significant elevation of reactive oxygen species (ROS) and nitric oxide, and induced a disruption of the mitochondrial electron transport complex I manifested by an early degradation of NADH dehydrogenase Fe-S protein-3 and a significant suppression of mitochondrial respiration. Using biochemical and pharmacological approaches, we further showed that inhibition of mitochondrial respiration alone by rotenone caused only a moderate cytotoxicity in leukemia cells, whereas a combination of respiratory inhibition and an ROS-generating agent exhibited a synergistic effect against leukemia and lymphoma cells. INNOVATION AND CONCLUSION Although PEITC is a reactive compound and might have multiple mechanisms of action, we showed that a rapid depletion of GSH and inhibition of mitochondrial respiration are two important early events that induced synergistic cytotoxicity in leukemia cells. These findings not only suggest that PEITC is a promising compound for potential use in leukemia treatment, but also provide a basis for developing new therapeutic strategies to effectively kill leukemia cells by using a novel combination to modulate ROS and inhibit mitochondrial respiration.
Collapse
Affiliation(s)
- Gang Chen
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
47
|
Fiser B, Szori M, Jójárt B, Izsák R, Csizmadia IG, Viskolcz B. Antioxidant potential of glutathione: a theoretical study. J Phys Chem B 2011; 115:11269-77. [PMID: 21853966 DOI: 10.1021/jp2049525] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
All possible X-H (where X can be C, N, O or S) bond dissociation energies (BDEs) of glutathione (γ-L-glutamyl-L-cysteinyl-glycine, GSH) and its fragments have been calculated by first principle methods, and the antioxidant potential of GSH was revealed to be higher than expected in earlier studies. Electron delocalization was found to have an important influence on the antioxidant potential. All structures were optimized and their harmonic vibrational frequencies were calculated in the gas phase at the B3LYP/6-31G(d) level of theory. Solvent effects were taken into account for optimizations at the same level of theory by applying the conductor-like polarizable continuum model (CPCM). Hydrogen cleavage from glutathione proved that the G3MP2B3 composite method provides results consistent with the experimental values for bond dissociation enthalpies (DH(298)) of S-H, O-H, C-H, and N-H bonds. In order to replace the G3MP2B3 energies with accurate single point calculations, six density functionals, namely, MPWKCIS, MPWKCIS1K, M06, TPSS1KCIS, TPSSh, and B3LYP, were tested against G3MP2B3 for obtaining accurate bond dissociation energies. The MPWKCIS1K/6-311++G(3df,2p)//B3LYP/6-31G(d) level of theory provides the best correlation with the G3MP2B3 method for BDEs in both phases, and therefore, it is recommended for similar calculations. Gas phase results showed that the O-H bond was the weakest, while in aqueous phase the N-H bond in the ammonium group proved to have the smallest BDE value in the studied system. In both cases, the cleavage of the X-H bond was followed by decarboxylation which was responsible for the energetic preference of these processes over the S-H dissociation, which was regarded as the most favorable one until now. The calculated BDE values showed that in aqueous phase the most preferred H-abstraction site is at the weakest N-H bond (BDE(aq) = 349.3 kJ mol(-1)) in the glutamine fragment near the α-carbon. In water, the formation of N-centered radicals compared to S-centered ones (BDE(aq) = 351.7 kJ mol(-1)) is more endothermic by 2.54 kJ mol(-1), due to decarboxylation. Hydrogen dissociation energies from the α-carbons are also comparable in energy with those of the thiol hydrogen, within computational error. The higher stability of the radicals--except the S-centered ones--is due to various degrees of electron delocalization. In aqueous phase, four quasi-equivalent stable radical centers (the α-carbons, the N-centered radical of the NH(2) group, and the S-centered radical) were found which provide the antioxidant behavior of glutathione.
Collapse
Affiliation(s)
- Béla Fiser
- Department of Chemical Informatics, Faculty of Education, University of Szeged, Boldogasszony sgt. 6. 6725, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
48
|
Dinu D, Bodea GO, Ceapa CD, Munteanu MC, Roming FI, Serban AI, Hermenean A, Costache M, Zarnescu O, Dinischiotu A. Adapted response of the antioxidant defense system to oxidative stress induced by deoxynivalenol in Hek-293 cells. Toxicon 2011; 57:1023-32. [DOI: 10.1016/j.toxicon.2011.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/27/2011] [Accepted: 04/07/2011] [Indexed: 11/25/2022]
|
49
|
Kaur N, Naga OS, Norell H, Al-Khami AA, Scheffel MJ, Chakraborty NG, Voelkel-Johnson C, Mukherji B, Mehrotra S. T cells expanded in presence of IL-15 exhibit increased antioxidant capacity and innate effector molecules. Cytokine 2011; 55:307-17. [PMID: 21602054 DOI: 10.1016/j.cyto.2011.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/15/2011] [Accepted: 04/19/2011] [Indexed: 01/07/2023]
Abstract
Persistence of effector cytotoxic T lymphocytes (CTLs) during an immunological response is critical for successfully controlling a viral infection or tumor growth. Various cytokines are known to play an important part in regulating the immune response. The IL-2 family of cytokines that includes IL-2 and IL-15 are known to function as growth and survival factors for antigen-experienced T cells. IL-2 and IL-15 possess similar properties, including the ability to induce T cell proliferation. Whereas long-term IL-2 exposure has been shown to promote apoptosis and limit CD8(+) memory T cell survival and proliferation, it is widely believed that IL-15 can inhibit apoptosis and helps maintain a memory CD8(+) T-cell population. However, mechanisms for superior outcomes for IL-15 as compared to IL-2 are still under investigation. Our data shows that human T cells cultured in the presence of IL-15 exhibit increased expression of anti-oxidant molecules glutathione reductase (GSR), thioredoxin reductase 1 (TXNDR1), peroxiredoxin (PRDX) and superoxide dismutase (SOD). An increased expression of cell-surface thiols, intracellular glutathione, and thioredoxins was also noted in IL-15 cultured T cells. Additionally, IL-15 cultured T cells showed an increase in cytolytic effector molecules. Apart from increased level of Granzyme A and Granzyme B, IL-15 cultured T cells exhibited increased accumulation of reactive oxygen (ROS) and reactive nitrogen species (RNS) as compared to IL-2 cultured T cells. Overall, this study suggests that T cells cultured in IL-15 show increased persistence not only due to levels of anti-apoptotic proteins, but also due to increased anti-oxidant levels, which is complimented by increased cytolytic effector functions.
Collapse
Affiliation(s)
- Navtej Kaur
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Aoyama K, Watabe M, Nakaki T. Modulation of neuronal glutathione synthesis by EAAC1 and its interacting protein GTRAP3-18. Amino Acids 2011; 42:163-9. [PMID: 21373771 DOI: 10.1007/s00726-011-0861-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/17/2011] [Indexed: 01/17/2023]
Abstract
Glutathione (GSH) plays essential roles in different processes such as antioxidant defenses, cell signaling, cell proliferation, and apoptosis in the central nervous system. GSH is a tripeptide composed of glutamate, cysteine, and glycine. The concentration of cysteine in neurons is much lower than that of glutamate or glycine, so that cysteine is the rate-limiting substrate for neuronal GSH synthesis. Most neuronal cysteine uptake is mediated through the neuronal sodium-dependent glutamate transporter, known as excitatory amino acid carrier 1 (EAAC1). Glutamate transporters are vulnerable to oxidative stress and EAAC1 dysfunction impairs neuronal GSH synthesis by reducing cysteine uptake. This may start a vicious circle leading to neurodegeneration. Intracellular signaling molecules functionally regulate EAAC1. Glutamate transporter-associated protein 3-18 (GTRAP3-18) activation down-regulates EAAC1 function. Here, we focused on the interaction between EAAC1 and GTRAP3-18 at the plasma membrane to investigate their effects on neuronal GSH synthesis. Increased level of GTRAP3-18 protein induced a decrease in GSH level and, thereby, increased the vulnerability to oxidative stress, while decreased level of GTRAP3-18 protein induced an increase in GSH level in vitro. We also confirmed these results in vivo. Our studies demonstrate that GTRAP3-18 regulates neuronal GSH level by controlling the EAAC1-mediated uptake of cysteine.
Collapse
Affiliation(s)
- Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8605, Japan
| | | | | |
Collapse
|