1
|
Abouee-Mehrizi A, Rasoulzadeh Y, Kazemi T, Mesgari-Abbasi M. Inflammatory and immunological changes caused by noise exposure: A systematic review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:61-90. [PMID: 32397946 DOI: 10.1080/26896583.2020.1715713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Today, due to the growth of industries and spread of the use of various instruments and devices that produce high noise levels, it is necessary to pay more attention to the effects of exposure to noise on organs and tissues in the body. The importance of the immune system in fighting external and pathogenic factors has raised the need to consider external factors (such as harmful physical factors) and make efforts to avoid producing them. In this systematic review, 811 potentially relevant studies were found in Google Scholar, PubMed, and Web of Science databases, of which 32 different English-written articles were included in the study. The method of searching and systematically reviewing articles was based on the assessment tool of the multiple systematic reviews (AMSTAR) method. The results of this study suggested that noise could affect the function of the immune system and its components by affecting other systems and organs of the body, including the central nervous system, auditory system, circulatory system, and endocrine gland. Moreover, it can be hypothesized that noise affects immune system by producing the NADPH oxidase (Nox) and reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Amirreza Abouee-Mehrizi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yahya Rasoulzadeh
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Mesgari-Abbasi
- Drug Applied Research Center (DARC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Gargouri B, Bhatia HS, Bouchard M, Fiebich BL, Fetoui H. Inflammatory and oxidative mechanisms potentiate bifenthrin-induced neurological alterations and anxiety-like behavior in adult rats. Toxicol Lett 2018; 294:73-86. [PMID: 29775722 DOI: 10.1016/j.toxlet.2018.05.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 02/05/2023]
Abstract
Bifenthrin (BF) is a synthetic pyrethroid pesticide widely used in several countries to manage insect pests on diverse agricultural crops. Growing evidence indicates that BF exposure is associated with an increased risk of developing neurodegenerative disorders. However, the mechanisms by which BF induces neurological and anxiety alterations in the frontal cortex and striatum are not well known. The present in vivo study was carried out to determine whether reactive oxygen species (ROS)-mediated oxidative stress (OS) and neuroinflammation are involved in such alterations. Thirty-six Wistar rats were thus randomly divided into three groups and were orally administered with BF (0.6 and 2.1 mg/kg body weight, respectively) or the vehicle (corn oil), on a daily basis for 60 days. Results revealed that BF exposure in rats enhanced anxiety-like behavior after 60 days of treatment, as assessed with the elevated plus-maze test by decreases in the percentage of time spent in open arms and frequency of entries into these arms. BF-treated rats also exhibited increased oxidation of lipids and carbonylated proteins in the frontal cortex and striatum, and decreased glutathione levels and antioxidant enzyme activities including superoxide dismutase, catalase and glutathione peroxidase. Treatment with BF also increased protein synthesis and mRNA expression of the inflammatory mediators cyclooxygenase-2 (COX-2), microsomal prostaglandin synthase-1 (mPGES-1) and nuclear factor-kappaBp65 (NF-kBp65), as well as the production of tumor necrosis factor-α (TNF-α) and ROS. Moreover, BF exposure significantly decreased protein synthesis and mRNA expression of nuclear factor erythroid-2 (Nrf2) and acetylcholinesterase (AChE), as well as gene expression of muscarinic-cholinergic receptors (mAchR) and choline acetyltransferase (ChAT) in the frontal cortex and striatum. These data suggest that BF induced neurological alterations in the frontal cortex and striatum of rats, and that this may be associated with neuroinflammation and oxidative stress via the activation of Nrf2/NF-kBp65 pathways, which might promote anxiety-like behavior.
Collapse
Affiliation(s)
- Brahim Gargouri
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Laboratory of Toxicology-Microbiology and Environmental Health, UR11ES70, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Harsharan S Bhatia
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich (LMU), Munich, Germany.
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, University of Montreal, Roger-Gaudry Building, U424, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada.
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health, UR11ES70, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| |
Collapse
|
3
|
Chen T, Liu HX, Yan HY, Wu DM, Ping J. Developmental origins of inflammatory and immune diseases. Mol Hum Reprod 2016; 22:858-65. [PMID: 27226490 DOI: 10.1093/molehr/gaw036] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/18/2016] [Indexed: 12/23/2022] Open
Abstract
Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the 'developmental programming' and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic-pituitary-adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention.
Collapse
Affiliation(s)
- Ting Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dong-Mei Wu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| |
Collapse
|
4
|
Calefi AS, Honda BTB, Costola-de-Souza C, de Siqueira A, Namazu LB, Quinteiro-Filho WM, da Silva Fonseca JG, Aloia TPA, Piantino-Ferreira AJ, Palermo-Neto J. Effects of long-term heat stress in an experimental model of avian necrotic enteritis. Poult Sci 2014; 93:1344-53. [DOI: 10.3382/ps.2013-03829] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Abstract
The intra-uterine environment provides the first regulatory connection for the developing fetus and shapes its physiological responses in preparation for postnatal life. Psychological stress acts as a programming determinant by setting functional parameters to abnormal levels, thus inducing postnatal maladaptation. The effects of prenatal maternal stress (PNMS) on the developing immune system have been documented mostly through animal studies, but inconsistent results and methodological differences have hampered the complete understanding of these findings. As the immune system follows a similar ontogenic pattern in all mammals, a translational framework based on the developmental windows of vulnerability proposed by immunotoxicology studies was created to integrate these findings. The objective of this review is to examine the available literature on PNMS and immune function in the offspring through the above framework and gain a better understanding of these results by elucidating the moderating influence of the stressor type, timing and duration, and the offspring species, sex and age at assessment. The evaluation of the literature through this framework showed that the effects of PNMS are parameter specific: the moderating effects of timing in gestation were relevant for lymphocyte population numbers, Natural Killer cell function and mitogen-induced proliferation. The presence of an important and directional sexual dimorphism was evident and the influence of the type or duration of PNMS paralleled that of stress in non-pregnant animals. In conclusion, PNMS is a relevant factor in the programming of immune function. Its consequences may be related to disorders with an important immune component such as allergies.
Collapse
Affiliation(s)
- Franz Veru
- Department of Psychiatry, McGill University , Montreal, QC , Canada and
| | | | | | | |
Collapse
|
6
|
Pascuan CG, Rubinstein MR, Palumbo ML, Genaro AM. Prenatal stress induces up-regulation of glucocorticoid receptors on lymphoid cells modifying the T-cell response after acute stress exposure in the adult life. Physiol Behav 2014; 128:141-7. [PMID: 24518864 DOI: 10.1016/j.physbeh.2014.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/07/2014] [Accepted: 01/23/2014] [Indexed: 12/19/2022]
Abstract
It has been demonstrated that a short-duration stress (acute stress) may result in immunopreparatory or immunoenhancing physiological conditions. The aim of the present study was to investigate whether exposure to prenatal restraint stress (PRS) influences the impact of acute stress on the T-cell response in the adult life. We found that female mice exposed to PRS (PS mice) did not exhibit changes in the T-cell-dependent IgG antibody production with respect to prenatally non-stressed mice (no-PS mice). However, no-PS mice exposed to acute stress showed an increase of antibody production after antigen stimulation. In contrast, PS mice exhibited a decreased response after an acute situation. Spleen catecholamines and plasma corticosterone levels were increased in acute stress in both PS and no-PS mice. Nevertheless, lymphocyte response to hormones was altered in PS mice. Particularly, inhibitory effect of corticosterone was higher on lymphocytes from PS mice. In addition, an increase in protein levels and mRNA expression of glucocorticoid receptor was found in lymphoid cells from PS mice. These results show that prenatal stress alters the immune intrinsic regulatory mechanism that in turn induces an increased vulnerability to any stressful situation able to modify immune homeostasis.
Collapse
Affiliation(s)
| | - Mara Roxana Rubinstein
- CEFYBO-CONICET, 1ª. Cátedra de Farmacología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - María Laura Palumbo
- CEFYBO-CONICET, 1ª. Cátedra de Farmacología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Ana María Genaro
- CEFYBO-CONICET, 1ª. Cátedra de Farmacología, Facultad de Medicina, UBA, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Missima F, Sforcin JM. Green brazilian propolis action on macrophages and lymphoid organs of chronically stressed mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 5:71-5. [PMID: 18317551 PMCID: PMC2249736 DOI: 10.1093/ecam/nel112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 12/04/2006] [Indexed: 01/10/2023]
Abstract
Stress is a generic term that summarizes how psychosocial and environmental factors influence physical and mental well-being. The interaction between stress and immunity has been widely investigated, involving the neuroendocrine system and several organs. Assays using natural products in stress models deserve further investigation. Propolis immunomodulatory action has been mentioned and it has been the subject of scientific investigation in our laboratory. The aim of this study was to evaluate if and how propolis activated macrophages in BALB/c mice submitted to immobilization stress, as well as the histopathological analysis of the thymus, bone marrow, spleen and adrenal glands. Stressed mice showed a higher hydrogen peroxide (H(2)O(2)) generation by peritoneal macrophages, and propolis treatment potentiated H(2)O(2) generation and inhibited nitric oxide (NO) production by these cells. Histopathological analysis showed no alterations in the thymus, bone marrow and adrenal glands, but increased germinal centers in the spleen. Propolis treatment counteracted the alterations found in the spleen of stressed mice. New research is being carried out in order to elucidate propolis immunomodulatory action during stress.
Collapse
Affiliation(s)
- Fabiane Missima
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, 18618-000 Botucatu, S.P., Brazil
| | | |
Collapse
|
8
|
Abstract
Adverse environments during the fetal and neonatal development period may permanently program physiology and metabolism, and lead to increased risk of diseases in later life. Programming of the hypothalamic-pituitary-adrenal (HPA) axis is one of the key mechanisms that contribute to altered metabolism and response to stress. Programming of the HPA axis often involves epigenetic modification of the glucocorticoid receptor (GR) gene promoter, which influences tissue-specific GR expression patterns and response to stimuli. This review summarizes the current state of research on the HPA axis and programming of health and disease in the adult, focusing on the epigenetic regulation of GR gene expression patterns in response to fetal and neonatal stress. Aberrant GR gene expression patterns in the developing brain may have a significant negative impact on protection of the immature brain against hypoxic-ischemic encephalopathy in the critical period of development during and immediately after birth.
Collapse
|
9
|
The neuroimmune changes induced by cohabitation with an Ehrlich tumor-bearing cage mate rely on olfactory information. Brain Behav Immun 2012; 26:32-9. [PMID: 21787859 DOI: 10.1016/j.bbi.2011.07.228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/08/2011] [Accepted: 07/10/2011] [Indexed: 12/19/2022] Open
Abstract
Cohabitation for 14 days with Ehrlich tumor-bearing mice was shown to increase locomotor activity, to decrease hypothalamic noradrenaline (NA) levels, to increase NA turnover and to decrease innate immune responses and decrease the animals' resistance to tumor growth. Cage mates of a B16F10 melanoma-bearer mice were also reported to show neuroimmune changes. Chemosignals released by Ehrlich tumor-bearing mice have been reported to be relevant for the neutrophil activity changes induced by cohabitation. The present experiment was designed to further analyze the effects of odor cues on neuroimmune changes induced by cohabitation with a sick cage mate. Specifically, the relevance of chemosignals released by an Ehrlich tumor-bearing mouse was assessed on the following: behavior (open-field and plus maze); hypothalamic NA levels and turnover; adrenaline (A) and NA plasmatic levels; and host resistance induced by tumor growth. To comply with such objectives, devices specifically constructed to analyze the influence of chemosignals released from tumor-bearing mice were employed. The results show that deprivation of odor cues released by Ehrlich tumor-bearing mice reversed the behavioral, neurochemical and immune changes induced by cohabitation. Mice use scents for intraspecies communication in many social contexts. Tumors produce volatile organic compounds released into the atmosphere through breath, sweat, and urine. Our results strongly suggest that volatile compounds released by Ehrlich tumor-injected mice are perceived by their conspecifics, inducing the neuroimmune changes reported for cohabitation with a sick companion.
Collapse
|
10
|
Fernandes PD, Gomes NDM, Sirois P. The bradykinin B1 receptor antagonist R-954 inhibits Ehrlich tumor growth in rodents. Peptides 2011; 32:1849-54. [PMID: 21835216 DOI: 10.1016/j.peptides.2011.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 07/24/2011] [Accepted: 07/25/2011] [Indexed: 11/19/2022]
Abstract
The present study investigated the effects of a new bradykinin B(1) receptor antagonist, R-954, on the development of Ehrlich ascitic tumor (EAT) induced by the intraperitoneal inoculation of EAT cells in mice and the formation of a solid tumor by the subcutaneous injection of the cells in rat paw. The development of the tumor was associated with an increase in mouse total cell counts in bone marrow (10.8-fold), ascitic fluid (14.6-fold), and blood (12.6-fold). R-954 (2mg/kg, s.c.) significantly reduced the ascitic fluid volume (63.7%) and the mouse weight gain (30.5%) after 10 consecutive days of treatment. The B(1) antagonist as well as the anti-neoplasic drug vincristine also significantly inhibited the increase in total cell count in bone marrow, ascitic fluid, and blood. R-954 reduced significantly the total protein extravasation (57.3%), the production of nitric oxide (56%), PGE(2) production (82%), and TNFα release (85.7%) in mice peritoneal cavity whereas vincristine reduced the release of these inflammatory mediators by 84-94%. The increase in paw edema after intraplantar injection of EAT cells was reduced by approximately 52% by either R-954 or vincristine treatment. In conclusion, this study presents for the first time the antitumoral activity of a new bradykinin B(1) receptor antagonist on ascitic and solid tumors induced by Ehrlich cell inoculation in mice and rats.
Collapse
Affiliation(s)
- Patricia Dias Fernandes
- Laboratório de Farmacologia da Inflamação e do Óxido Nítrico, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373. Prédio do CCS, bloco J, sala 10, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
11
|
Pinheiro ML, Ferraz-de-Paula V, Ribeiro A, Sakai M, Bernardi MM, Palermo-Neto J. Long-term maternal separation differentially alters serum corticosterone levels and blood neutrophil activity in A/J and C57BL/6 mouse offspring. Neuroimmunomodulation 2011; 18:184-90. [PMID: 21311204 DOI: 10.1159/000323516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/02/2010] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES In this work, we searched for maternal separation effects on serum corticosterone levels and blood neutrophil activity in adult male A/J and C57BL/6 mouse offspring. METHODS 40 male A/J mice and 40 male C57BL/6 mice were divided within each strain into two groups. Mice in the maternal separation group were separated from their mothers (1 h/day) on postnatal days 0-13. Mice in the control group were left undisturbed. On postnatal day 45, blood was drawn from all mice and used to assess neutrophil activity by flow cytometry and serum corticosterone levels by radioimmunoassay. RESULTS The results showed that each mouse strain responded differently to maternal separation, but in both cases, serum corticosterone levels were affected. In both strains, adult mice that experienced maternal separation showed lower serum corticosterone levels than control mice. In relation to control mice kept together with their mothers, the levels of serum corticosterone were 72.7 and 36.36% lower in A/J and C57BL/6 mice submitted to maternal separation, respectively. The current findings showed that maternal separation increased neutrophil activity in mice after reaching adulthood. The observed effects, although in the same direction, differed between A/J and C57BL/6 mice. Maternal separation increased both the percentage and intensity of phagocytosis in C57BL/6 mice, but had no effects on A/J mice. Furthermore, maternal separation increased basal and propidium iodide-labeled Staphylococcus aureus-induced oxidative burst in A/J mice but did not affect oxidative burst in C57BL/6 mice. Finally, phorbol myristate acetate-induced oxidative burst increased in both strains. CONCLUSION These results indicate that early maternal separation increases innate immunity, most likely by modifying hypothalamus-pituitary-adrenal axis activity. This suggests that maternal separation is a good model for stress which produces long-term neuroimmune changes whatever the animal species and strain used.
Collapse
Affiliation(s)
- Milena Lobão Pinheiro
- Laboratory of Neuroimmunomodulation, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Bian JH, Wu Y, Getz LL, Cao YF, Chen F, Yang L. Does maternal stress influence winter survival of offspring in root voles Microtus oeconomus? A field experiment. OIKOS 2010. [DOI: 10.1111/j.1600-0706.2010.18165.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Quinteiro-Filho W, Ribeiro A, Ferraz-de-Paula V, Pinheiro M, Sakai M, Sá L, Ferreira A, Palermo-Neto J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult Sci 2010; 89:1905-14. [DOI: 10.3382/ps.2010-00812] [Citation(s) in RCA: 401] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Guo G, Jia KR, Shi Y, Liu XF, Liu KY, Qi W, Guo Y, Zhang WJ, Wang T, Xiao B, Zou QM. Psychological stress enhances the colonization of the stomach by Helicobacter pylori in the BALB/c mouse. Stress 2009; 12:478-85. [PMID: 20102319 DOI: 10.3109/10253890802642188] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Helicobacter pylori infection is a risk factor for development of peptic ulcers, and psychological stress (PS) may have a role in the pathogenesis of this condition. However, no interaction between PS and H. pylori infection (HI) has been established in the development of peptic ulcer, because colonization by H. pylori is the first step in the infection of the gastric mucosa, we examined H. pylori colonization of the stomach in BALB/c mice after PS. The mice were subjected to PS in a communication box test, in which they observed other mice experiencing a physical stressor (electrical) before they were inoculated with H. pylori. We found that the H. pylori colonization in the stomach of psychologically stressed mice was significantly greater than in the control mice (P < 0.05), and histological examination showed that the gastric mucosal injury in the stressed mice was more extensive than in the control mice (P < 0.05). To explore the underlying mechanisms, we administered RU486 (a type II glucocorticoid (GC) receptor antagonist) to antagonize the effect of endogenous corticosterone: this treatment decreased colonization by H. pylori in the psychologically stressed mice. We conclude that HI of the stomach of BALB/c mice is enhanced by PS, and the effect may be mediated by GCs.
Collapse
Affiliation(s)
- Gang Guo
- Department of Clinical Microbiology and Clinical Immunology, Third Military Medical University, ChongQing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bellinger DL, Lubahn C, Lorton D. Maternal and early life stress effects on immune function: relevance to immunotoxicology. J Immunotoxicol 2009; 5:419-44. [PMID: 19404876 DOI: 10.1080/15476910802483415] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stress is triggered by a variety of unexpected environmental stimuli, such as aggressive behavior, fear, forced physical activity, sudden environmental changes, social isolation or pathological conditions. Stressful experiences during very early life (particularly, maternal stress during fetal ontogeny) can permanently alter the responsiveness of the nervous system, an effect called programming or imprinting. Programming affects the hypothalamic-pituitary-adrenocortical (HPA) axis, brain neurotransmitter systems, sympathetic nervous system (SNS), and the cognitive abilities of the offspring, which can alter neural regulation of immune function. Prenatal or early life stress may contribute to the maladaptive immune responses to stress that occur later in life. This review focuses on the effect of maternal and early life stress on immune function in the offspring across life span. It highlights potential mechanisms by which prenatal stress impacts immune functions over life span. The literature discussed in this review suggests that psychosocial stress during pre- and early postnatal life may increase the vulnerability of infants to the effects of immunotoxicants or immune-mediated diseases, with long-term consequences. Neural-immune interactions may provide an indirect route through which immunotoxicants affect the developing immune system. A developmental approach to understanding how immunotoxicants interact with maternal and early life stress-induced changes in immunity is needed, because as the body changes physiologically across life span so do the effects of stress and immunotoxicants. In early and late life, the immune system is more vulnerable to the effects of stress. Stress can mimic the effects of aging and exacerbate age-related changes in immune function. This is important because immune dysregulation in the elderly is more frequently and seriously associated with clinical impairment and death. Aging, exposure to teratogens, and psychological stress interact to increase vulnerability and put the elderly at the greatest risk for disease.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Human Anatomy and Pathology, Loma Linda University School of Medicine, Loma Linda, CA 92352, USA.
| | | | | |
Collapse
|
16
|
Merlot E, Couret D, Otten W. Prenatal stress, fetal imprinting and immunity. Brain Behav Immun 2008; 22:42-51. [PMID: 17716859 DOI: 10.1016/j.bbi.2007.05.007] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/17/2007] [Accepted: 05/27/2007] [Indexed: 11/23/2022] Open
Abstract
A comprehensive number of epidemiological and animal studies suggests that prenatal and early life events are important determinants for disorders later in life. Among them, prenatal stress (i.e. stress experienced by the pregnant mother with impact on the fetal ontogeny) has programming effects on the hypothalamic-pituitary-adrenocortical axis, brain neurotransmitter systems and cognitive abilities of the offspring. This review focuses on the impact of maternal stress during gestation on the immune function in the offspring. It compares results from different animal species and highlights potential mechanisms for the immune effects of prenatal stress, including maternal glucocorticoids and placental functions. The existence of possible windows of increased vulnerability of the immune system to prenatal stress during gestation is discussed. Several gaps in the present knowledge are pointed out, especially concerning the time when prenatal stress effects are expressed during postnatal life, why this expression is delayed after birth and whether prenatal stress predisposes to immune-related pathologies later in life.
Collapse
Affiliation(s)
- E Merlot
- INRA, UMR1079, Systèmes d'Elevage, Nutrition Animale et Humaine, F-35590 Saint Gilles, France.
| | | | | |
Collapse
|
17
|
Alves GJ, Palermo-Neto J. Neuroimunomodulação: sobre o diálogo entre os sistemas nervoso e imune. REVISTA BRASILEIRA DE PSIQUIATRIA 2007; 29:363-9. [PMID: 17713698 DOI: 10.1590/s1516-44462006005000052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 03/27/2007] [Indexed: 11/22/2022]
Abstract
OBJETIVO: Trabalhos de pesquisa provenientes do campo da neuroimunomodulação vêm tornando explícitas as intrincadas relações existentes entre o sistema nervoso central e o sistema imune. Uma revisão bibliográfica foi realizada com o objetivo de descrever as bases de estudo da neuroimunomodulação. MODELOS EXPERIMENTAIS: Sabe-se, hoje, que estados emocionais como ansiedade e depressão são capazes de modificar a atividade do sistema imune como também o fazem o estresse e fármacos com ação no sistema nervoso central. COMPORTAMENTO DOENTIO: Os comportamentos apresentados por um organismo doente devem ser encarados como decorrência de estratégias homeostáticas de cada indivíduo. POSSÍVEIS MECANISMOS DE SINALIZAÇÃO DO SISTEMA IMUNE PARA O SISTEMA NERVOSO CENTRAL: Grande destaque tem sido atribuído para a participação do eixo hipotálamo-pituitária-adrenal, do sistema nervoso autônomo simpático e das citocinas nas sinalizações entre o sistema nervoso central e o sistema imune. CONCLUSÃO: O presente artigo pretende mostrar a relevância dos fenômenos de neuroimunomodulação; ele faz uma análise crítica das influências do sistema nervoso central sobre o sistema imune e vice-versa.
Collapse
|
18
|
Otten W, Kanitz E, Tuchscherer M, Puppe B, Nürnberg G. Repeated administrations of adrenocorticotropic hormone during gestation in gilts: Effects on growth, behaviour and immune responses of their piglets. Livest Sci 2007. [DOI: 10.1016/j.livsci.2006.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Alves GJ, Vismari L, Palermo-Neto J. Cohabitation with a sick cage mate: effects on ascitic form of Ehrlich tumor growth and macrophage activity. Neuroimmunomodulation 2007; 14:297-303. [PMID: 18349552 DOI: 10.1159/000121284] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 12/28/2007] [Indexed: 11/19/2022] Open
Abstract
The present study was designed to evaluate the effects of mice cohabitation with a sick conspecific cage mate on peritoneal macrophage activity and on resistance to Ehrlich tumor growth. Female mice housed in pairs were divided into control and experimental groups. One mouse of each control pair was inoculated with NaCl (0.1 ml/10 g) intraperitoneally and the other, called 'companion of healthy partner' (CHP), was kept undisturbed. One animal of each experimental pair of mice was inoculated with 5.0 x 10(6) Ehrlich tumor cells intraperitoneally and the other, the subject of this study, was called 'companion of sick partner' (CSP). Peritoneal macrophages were removed from CSP and CHP mice to analyze resident macrophage activity (experiment 1), macrophage activity after Mycobacterium bovis (experiment 2) or Ehrlich tumor cells (experiment 3) in vivo inoculations. The resistance of CSP and CHP mice to Ehrlich tumor growth was also analyzed (experiment 4). Differences between groups were not found on resident macrophage activity. However, Onco-BCG- and Ehrlich tumor-activated macrophages from CSP mice presented a decreased intensity and percentage of phagocytosis and an increased respiratory burst in the presence of Staphylococcus aureus stimulation in vitro. CSP animals at the same time displayed a decreased resistance to Ehrlich tumor growth. These data were discussed in light of a possible psychological stress effect imposed by the housing condition on mice's peritoneal macrophage activity and, as a consequence, on their resistance to Ehrlich tumor growth.
Collapse
Affiliation(s)
- Glaucie Jussilane Alves
- Laboratory of Applied Pharmacology and Toxicology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
20
|
Sakai M, Fonseca ESM, Dagli MLZ, Palermo-Neto J. Diazepam effects on Ehrlich tumor growth and macrophage activity in mice. Life Sci 2006; 78:1777-83. [PMID: 16257421 DOI: 10.1016/j.lfs.2005.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 08/11/2005] [Indexed: 11/23/2022]
Abstract
Besides the central gabaergic receptors described for benzodiazepines, peripheral type binding sites (PBR) were also identified for these molecules in endocrine steroidogenic tissues, immune organs and cells, such as macrophages and lymphocytes. PBR activation was reported to decrease innate immunity and host defense. The present experiment was designed to analyze the effects of diazepam on Ehrlich tumor growth, and on macrophage activity of Ehrlich tumor bearing mice. Results showed that diazepam (3.0 mg/kg/day, for 7 days) increased the number of Ehrlich tumor cells and the volume of tumor-induced ascitic fluid. These effects were not observed after smaller doses of diazepam, suggesting a dose-dependant effect. Furthermore, our results show that 3.0 mg/kg of diazepam, administered daily, for 2 days, decreased (1) the number of peritoneal leukocytes retrieved after injection of the Ehrlich tumor, (2) the percents of macrophage spreading, and (3) the levels of macrophage NO production. Diazepam (3.0 mg/kg/day for 2 days) had no effect on macrophage phagocytosis or on H2O2 production. The present data is discussed based on a direct and/or indirect action of diazepam. Particularly, our findings might be due to a direct effect of diazepam on PBRs present on macrophages and tumor cells, or could still be mediated by PBR stimulation within the hypothalamus-pituitary-adrenal (HPA) axis.
Collapse
Affiliation(s)
- M Sakai
- Applied Pharmacology and Toxicology Laboratory, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
21
|
Reiche EMV, Morimoto HK, Nunes SMV. Stress and depression-induced immune dysfunction: implications for the development and progression of cancer. Int Rev Psychiatry 2005; 17:515-27. [PMID: 16401550 DOI: 10.1080/02646830500382102] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The persistent activation of the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal-medullary axes in chronic stress response and in depression impairs the immune response and contributes to the development and progression of some types of cancer. This overview presents results from experimental animal models, human studies, and clinical evidence that various cellular and molecular immunological parameters are compromised in chronic stress and depression. At the cellular level, stressed and depressed patients had overall leukocytosis, high concentrations of circulating neutrophils, reduced mitogen-stimulated lymphocyte proliferation and neutrophil phagocytosis. At the molecular level, high levels of serum basal cortisol, acute phase proteins, specific antibodies against herpes simplex virus type 1 and Epstein Barr virus, plasma concentration of interleukins IL-1, IL-6, and TNF-alpha, and a shift in the balance of Th1 and Th2 immune response were observed. Both stress and depression were associated with the decreased cytotoxic T-cell and natural killer cell activities affecting the processes of the immune surveillance of tumours, and the events that modulate the development and the accumulation of somatic mutations and genomic instability. DNA damage, growth and angiogenic factors, proteases, matrix metalloproteinases, and reactive oxygen species were also related to the chronic stress response and depression. Behavioural strategies, psychological, and psychopharmacotherapeutic interventions that enhance effective coping and reduce affective distress showed beneficial effects in cancer patients. A better understanding of the bidirectional communication between the neuroendocrine and immune systems could contribute to novel clinical and treatment strategies in oncology.
Collapse
Affiliation(s)
- Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Londrina, Paraná, Brazil.
| | | | | |
Collapse
|
22
|
Fonseca ESM, Sakai M, Carvalho-Freitas MIR, Palermo Neto J. Naloxone treatment prevents prenatal stress effects on peritoneal macrophage activity in mice offspring. Neuroendocrinology 2005; 81:322-8. [PMID: 16210866 DOI: 10.1159/000088759] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 08/04/2005] [Indexed: 11/19/2022]
Abstract
The present study analyzed the effects of maternal stress (PS) and/or naloxone treatment on the activity of peritoneal macrophage in male and female Swiss mice offspring. Pregnant female rats received a daily footshock (0.2 mA) and/or a naloxone injection from gestational day 15 to 19. Experiments were performed on postnatal day 30 on male and female pups. The following results were obtained in male offspring: (1) PS decreased both the index and the percentage of phagocytosis, this decrement being reversed by naloxone treatment, and (2) naloxone alone decreased the percentage of phagocytosis. The following results were obtained in female offspring: (1) PS decreased spontaneous and phorbol myristate acetate-induced macrophage oxidative burst, this decrement being reversed by naloxone pretreatment, and (2) PS decreased both the index and percentage of the phagocytosis, this effect was prevented by naloxone treatment. These data are discussed focussing on a putative neuroimmune interaction involving opioidergic systems during the ontogeny of the central nervous and immune systems.
Collapse
Affiliation(s)
- Evelise S M Fonseca
- Pharmacology and Toxicology Laboratory, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
23
|
Abstract
The links between the psychological and physiological features of cancer risk and progression have been studied through psychoneuroimmunology. The persistent activation of the hypothalamic-pituitary-adrenal (HPA) axis in the chronic stress response and in depression probably impairs the immune response and contributes to the development and progression of some types of cancer. Here, we overview the evidence that various cellular and molecular immunological factors are compromised in chronic stress and depression and discuss the clinical implications of these factors in the initiation and progression of cancer. The consecutive stages of the multistep immune reactions are either inhibited or enhanced as a result of previous or parallel stress experiences, depending on the type and intensity of the stressor and on the animal species, strain, sex, or age. In general, both stressors and depression are associated with the decreased cytotoxic T-cell and natural-killer-cell activities that affect processes such as immune surveillance of tumours, and with the events that modulate development and accumulation of somatic mutations and genomic instability. A better understanding of the bidirectional communication between the neuroendocrine and immune systems could contribute to new clinical and treatment strategies.
Collapse
|
24
|
Okva K, Lang A, Pokk P, Väli M, Nevalainen T. Litter has an effect on the behavioural changes caused by the administration of the nitric oxide synthase inhibitor NG-nitro-L-arginine and ethanol in mice. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:1171-9. [PMID: 15610930 DOI: 10.1016/j.pnpbp.2004.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2004] [Indexed: 11/29/2022]
Abstract
The aim of the work was to study the effects of litter and the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine (L-NOARG) on the behaviour of mice after acute and chronic ethanol administration and withdrawal. Male outbred NIH/S mice, from 21 litters, were distributed among experimental groups and subjected to acute and chronic ethanol administration. After acute or chronic ethanol administration, the effects of L-NOARG on the behaviour of mice in the plus-maze test were studied. Acute ethanol (1 g/kg, i.p.), L-NOARG (20 and 40 mg/kg, i.p.) and their combination induced an anxiolytic effect. Furthermore, the values for the representatives of different litters tended to be either above or below the group mean, irrespective of the drug treatment. Chronic ethanol administration (23 days by inhalation) induced an anxiolytic effect and ethanol withdrawal induced an anxiogenic effect in the plus-maze. The administration of L-NOARG (20 mg/kg, i.p.) induced an anxiolytic effect in control mice and had no effect on ethanol-intoxicated mice, but attenuated the anxiogenic effect of ethanol withdrawal in the plus-maze. However, after chronic ethanol administration and withdrawal, litter had no effect on the behaviour of mice. If the litter is a significant determinant in the behaviour of outbred mice, then the use of information about the litter origin of animals could serve for the purposes of reduction. But only if this information is available from breeders.
Collapse
Affiliation(s)
- Kai Okva
- Vivarium, University of Tartu, Tartu, Estonia
| | | | | | | | | |
Collapse
|
25
|
Abstract
Synthetic pyrethroids such as cyhalothrin are extensively used in agriculture for the control of a broad range of ectoparasites in farm animals. It has been suggested that type II pyrethroids might induce anxiogenic-like effects in laboratory animals. The present study was undertaken to investigate a possible anxiogenic-like outcome of cyhalothrin in rats. Adult male rats were orally dosed for 7 days with 1.0, 3.0, or 7.0 mg/kg/day of cyhalothrin, present in a commercial formulation (Grenade Coopers do Brazil S.A.). The neurobehavioral changes induced by cyhalothrin as well as those produced on corticosterone serum levels were measured 24 h after the last treatment. Picrotoxin (1.0 mg/kg) was also acutely used as a positive control for anxiety. Results showed that cyhalothrin: (1) induced some signs and symptoms of intoxication that included salivation, tremors, and liquid feces; (2) reduced total locomotor activity in the open-field; (3) reduced the percentage of time spent in open-field central zones; (4) increased immobility time in the open-field; (5) reduced the percentage of time spent in plus-maze open arms exploration; (6) reduced the time spent in social interactions, and (7) increased the levels of serum corticosterone. The behavioral changes reported for cyhalothrin (3.0 mg/kg/day) were similar of those induced by picrotoxin. The no effect level dose obtained for cyhalothrin in this study was 1.0 mg/kg/day. These results provide experimental evidence that cyhalothrin induces anxiety-like symptoms, with this effect being dose-related. Thus, anxiety must be included among the several signs and symptoms of pesticide intoxication.
Collapse
Affiliation(s)
- D Abbud Righi
- Applied Pharmacology and Toxicology Laboratory, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil, 05508-900
| | | |
Collapse
|
26
|
Basso AS, Pinto FAC, Russo M, Britto LRG, de Sá-Rocha LC, Palermo Neto J. Neural correlates of IgE-mediated food allergy. J Neuroimmunol 2003; 140:69-77. [PMID: 12864973 DOI: 10.1016/s0165-5728(03)00166-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although many authors have considered the possibility of a direct interaction between food allergy and behavioral changes, the evidence supporting this hypothesis is elusive. Here, we show that after oral ovalbumin (OVA) challenge, allergic mice present higher levels of anxiety, increased Fos expression in emotionality-related brain areas, and aversion to OVA-containing solution. Moreover, treatment with anti-IgE antibody or induction of oral tolerance abrogate both food aversion and the expression of c-fos in the central nervous system (CNS). Our findings establish a direct relationship between brain function and food allergy, thus creating a solid ground for understanding the etiology of psychological disorders in allergic patients.
Collapse
Affiliation(s)
- Alexandre Salgado Basso
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-900, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
27
|
Palermo-Neto J, de Oliveira Massoco C, Robespierre de Souza W. Effects of physical and psychological stressors on behavior, macrophage activity, and Ehrlich tumor growth. Brain Behav Immun 2003; 17:43-54. [PMID: 12615049 DOI: 10.1016/s0889-1591(02)00057-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The present study analyzed the effects of physical and psychological stressors on behavior, immune function, and serum corticosterone in mice. Adult mice were submitted once daily, for 6 days to one of the following conditions: escapable (ES) or inescapable (IS) footshocks (0.2 mA) signaled by a tone cue or to a psychological stressor (PS) generated through the use of a communication box; in this box, mice received no footshock but were exposed to responses delivered by IS mice. Results showed that IS and PS: (1). decreased locomotor activity observed in an open-field; (2). decreased number of entries into the open arms and decreased time spent in the exploration of the open arms of the plus-maze; (3). decreased macrophage spreading and phagocytosis; (4). increased macrophage H(2)O(2) release; and (5). increased growth of the ascitic form of Ehrlich tumor. Behavioral and/or immunological changes were not observed after ES; this absence of effects, however, might not be attributed solely to footshock controllability since mice of groups ES and IS differed with respect to the psychological setting used and the amount of shock they received. An increase of serum corticosterone concentrations was also observed in the stressed mice of all groups; this increment was higher in animals of group IS. These data provide evidence that inescapable footshock and psychological stressors alter, at the same time and in mice, stress levels, macrophage activity, and Ehrlich tumor growth. They also show that ES and PS induced similarly elevated serum corticosterone concentrations, but significantly differ in the immunological and behavioral outcomes they produced in mice. These findings suggest that another factor besides HPA axis activation might be responsible for behavioral and immunological consequences of IS and PS in mice. It is proposed that the final neural link between behavioral and immunological changes observed after physical and psychological stressors might involve catecholaminergic systems within the central nervous system and/or sympathetic autonomic nerve fibers and also opioid peptides.
Collapse
Affiliation(s)
- João Palermo-Neto
- Applied Pharmacology and Toxicology Laboratory, School of Veterinary Medicine, University of São Paulo, São Paulo SP, Brazil.
| | | | | |
Collapse
|
28
|
Fonseca ESM, Massoco CO, Palermo-Neto J. Effects of prenatal stress on stress-induced changes in behavior and macrophage activity of mice. Physiol Behav 2002; 77:205-15. [PMID: 12419396 DOI: 10.1016/s0031-9384(02)00812-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study analyzed the effects of maternal stress on behavior and macrophage activity of mice. Pregnant mice received a daily footshock (0.2 mA) from gestational days 15 (GD15) to 19. Experiments were performed on male offspring, challenged or not with another footshock (0.2 mA) on postnatal day 30 (PND30) or 60. The following results were obtained for maternal stress: (1) increment in locomotor activity of juvenile but not of adult mice observed in both open-field and plus-maze; (2) increment in rearing frequency of juvenile but not of adult mice observed in the open-field; (3) decrement in macrophage spreading of adult but not of juvenile mice; (4) abolishment of postnatal footshock effects in both macrophage spreading on PND30 and macrophage nitric oxide (NO) production on PND60; (5) reversion of postnatal footshock effects on H(2)O(2) spontaneous and PMA-induced release by macrophage on PND30; (6) modification of postnatal stress effects on macrophage phagocytosis on PND60. These changes were unrelated to differences in gestational parameters and did not reflect altered maternal-pup interactions or nutritional factors. The observed data provide experimental evidence that maternal stress alters behavior, and macrophage activity at the same time and in the same litter. These data were discussed in the light of possible neuroimmune interactions that involve catecholaminergic pathways.
Collapse
Affiliation(s)
- E S M Fonseca
- Applied Pharmacology and Toxicology Laboratory, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | | | | |
Collapse
|