1
|
Okada T, Shioda K, Makiguchi A, Suda S. Risperidone and 5-HT2A Receptor Antagonists Attenuate and Reverse Cocaine-Induced Hyperthermia in Rats. Int J Neuropsychopharmacol 2020; 23:811-820. [PMID: 32821948 PMCID: PMC7770520 DOI: 10.1093/ijnp/pyaa065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/13/2020] [Accepted: 08/15/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cocaine (benzoylmethylecgonine) is one of the most widely used illegal psychostimulant drugs worldwide, and mortality from acute intoxication is increasing. Suppressing hyperthermia is effective in reducing cocaine-related mortality, but a definitive therapy has not yet been found. In this study, we assessed the ability of risperidone to attenuate acute cocaine-induced hyperthermia and delineated the mechanism of its action. METHODS Rats were injected i.p. with saline, risperidone, ketanserin, ritanserin, haloperidol, or SCH 23 390 before and after injection of cocaine (30 mg/kg) or with WAY-00 635, SB 206 553, or sulpiride before cocaine injection; thereafter, the rectal temperature was measured every 30 minutes for up to 4 hours. In vivo microdialysis was used to reveal the effect of risperidone on cocaine-induced elevation of dopamine (DA), serotonin (5-HT), and noradrenaline concentrations in the anterior hypothalamus. For post-administration experiments, saline or risperidone (0.5 mg/kg) were injected into rats, and cocaine (30 mg/kg) was injected 15 minutes later. For every 30 minutes thereafter, DA, 5-HT, and noradrenaline levels were measured for up to 240 minutes after cocaine administration. RESULTS Risperidone, 5-HT2A receptor antagonists, and D1 receptor antagonistic drugs prevented and reversed cocaine-induced hyperthermia. In contrast, receptor antagonists for 5-HT1A, 5-HT2B/2C, and D2 did not alter cocaine-induced hyperthermia. Risperidone treatment further attenuated cocaine-induced elevation of DA. CONCLUSIONS Our results indicate that risperidone attenuates cocaine-induced hyperthermia primarily by blocking the activities of the 5-HT2A and D1 receptors and may be potentially useful for treating cocaine-induced acute hyperthermia in humans.
Collapse
Affiliation(s)
- Tsuyoshi Okada
- Department of Psychiatry, Jichi Medical University, Tochigi, Japan
| | | | - Akiko Makiguchi
- Department of Psychiatry, Jichi Medical University, Tochigi, Japan.,Department of Psychiatry, Sano Kosei General Hospital, Tochigi, Japan
| | - Shiro Suda
- Department of Psychiatry, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
2
|
Riley AL, Nelson KH, To P, López-Arnau R, Xu P, Wang D, Wang Y, Shen HW, Kuhn DM, Angoa-Perez M, Anneken JH, Muskiewicz D, Hall FS. Abuse potential and toxicity of the synthetic cathinones (i.e., “Bath salts”). Neurosci Biobehav Rev 2020; 110:150-173. [DOI: 10.1016/j.neubiorev.2018.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/14/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023]
|
3
|
Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:126-146. [PMID: 28989099 PMCID: PMC5889368 DOI: 10.1016/j.pnpbp.2017.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Abstract
Complex roles for astrocytes in health and disease continue to emerge, highlighting this class of cells as integral to function and dysfunction of the nervous system. In particular, escalating evidence strongly implicates a range of changes in astrocyte structure and function associated with neuropsychiatric diseases including major depressive disorder, schizophrenia, and addiction. These changes can range from astrocytopathy, degeneration, and loss of function, to astrogliosis and hypertrophy, and can be either adaptive or maladaptive. Evidence from the literature indicates a myriad of changes observed in astrocytes from both human postmortem studies as well as preclinical animal models, including changes in expression of glial fibrillary protein, as well as changes in astrocyte morphology and astrocyte-mediated regulation of synaptic function. In this review, we seek to provide a comprehensive assessment of these findings and consequently evidence for common themes regarding adaptations in astrocytes associated with neuropsychiatric disease. While results are mixed across conditions and models, general findings indicate decreased astrocyte cellular features and gene expression in depression, chronic stress and anxiety, but increased inflammation in schizophrenia. Changes also vary widely in response to different drugs of abuse, with evidence reflective of features of astrocytopathy to astrogliosis, varying across drug classes, route of administration and length of withdrawal.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kati L Healey
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States..
| |
Collapse
|
4
|
Frazer KM, Richards Q, Keith DR. The long-term effects of cocaine use on cognitive functioning: A systematic critical review. Behav Brain Res 2018; 348:241-262. [PMID: 29673580 DOI: 10.1016/j.bbr.2018.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND The predominant view of chronic cocaine use maintains that it causes a broad range of cognitive deficits. However, concerns about the possibly deleterious impact of cocaine on cognitive functioning have yet to be thoroughly vetted. This review addresses the impact of cocaine use on such cognitive domains as executive function, memory, language, and psychomotor speed. Additionally, relevant neuroimaging data is considered to understand the neural basis underlying cocaine-related effects on cognitive functioning. METHODS We searched PubMed, Google Scholar, and Embase using the search terms "cocaine and cognition," "cocaine and cognitive functioning," and "cocaine and cognitive deficits or impairment." To meet inclusion criteria we evaluated only cognitive and neuroimaging studies describing the long-term effects of cocaine on cognitive functioning published from 1999 to 2016. RESULTS The majority of studies reported statistically significant differences between cocaine users and non-drug-using controls in brain structures, blood-oxygen-level dependent signals, and brain metabolism. However, differences in cognitive performance were observed on a minority of measures. Additionally, the majority of studies were not compared against normative data. CONCLUSIONS The current evidence does not support the view that chronic cocaine use is associated with broad cognitive deficits. The view that cocaine users have broad cognitive deficits is inaccurate based upon current evidence, and the perpetuation of this view may have negative implications for treatment programs and development of public policies.
Collapse
Affiliation(s)
- Kirsten M Frazer
- Department of Psychology, Columbia University, 1190 Amsterdam Ave., New York, NY 10027, USA.
| | - Qwynten Richards
- Department of Psychology, Columbia University, 1190 Amsterdam Ave., New York, NY 10027, USA
| | - Diana R Keith
- Department of Psychiatry, University of Vermont Medical Center, 1 South Prospect Street, Burlington, VT 05401, USA
| |
Collapse
|
5
|
Nelson KH, Hempel BJ, Clasen MM, Rice KC, Riley AL. Conditioned taste avoidance, conditioned place preference and hyperthermia induced by the second generation 'bath salt' α-pyrrolidinopentiophenone (α-PVP). Pharmacol Biochem Behav 2017; 156:48-55. [PMID: 28427995 PMCID: PMC6155479 DOI: 10.1016/j.pbb.2017.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND α-Pyrrolidinopentiophenone (α-PVP) has been reported to be rewarding in a variety of pre-clinical models. Given that a number of drugs of abuse have both rewarding and aversive effects, the balance of which influences addiction potential, the present study examined the aversive properties of α-PVP by assessing its ability to induce taste avoidance. This assessment was made in a combined taste avoidance/place conditioning design that also allowed an evaluation of the relationship between α-PVP's aversive and rewarding effects. METHODS Male Sprague-Dawley rats were exposed to a novel saccharin solution, injected with one of four doses of α-PVP (0, 0.3, 1.0 and 3.0mg/kg) (IP) and placed on one side of a place conditioning apparatus. The next day, they were injected with vehicle, given access to water and placed on the other side. Following four conditioning cycles, saccharin avoidance and place preferences were then assessed. The effects of α-PVP on body temperature were also examined. RESULTS α-PVP induced dose-dependent taste avoidance as well as significant increases in time spent on the drug-paired side (although this effect was not dependent on dose). α-PVP also induced dose- and time-dependent hyperthermia. CONCLUSIONS α-PVP induced significant taste avoidance whose strength relative to the psychostimulants methylenedioxypyrovalerone (MDPV) and cocaine paralleled their relative binding to the dopamine transporter. Similar to other drugs of abuse, α-PVP has both aversive and rewarding effects. It will be important to assess how various experiential and subject variables impact these effects and their balance to predict abuse liability.
Collapse
Affiliation(s)
- Katharine H Nelson
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA.
| | - Briana J Hempel
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| | - Matthew M Clasen
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA.
| |
Collapse
|
6
|
King HE, Riley AL. The Affective Properties of Synthetic Cathinones: Role of Reward and Aversion in Their Abuse. Curr Top Behav Neurosci 2017; 32:165-181. [PMID: 27431397 DOI: 10.1007/7854_2016_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The drug class known as synthetic cathinones has gained significant attention in the last few years as a result of increased use and abuse. These compounds have been shown to possess reinforcing efficacy in that they are abused in human populations and are self-administered in animal models. The present chapter outlines the affective properties of synthetic cathinones that are thought to impact drug self-administration in general and presents research confirming that these drugs have both rewarding and aversive effects in standalone and concurrent assessments. The implications of these affective properties for the overall abuse potential of these compounds are discussed along with directions for future research.
Collapse
Affiliation(s)
- Heather E King
- Psychopharmacology Laboratory, Department of Psychology, American University, 4400 Massachusetts Ave, NW, Washington, DC, 20016, USA.
| | - Anthony L Riley
- Psychopharmacology Laboratory, Department of Psychology, American University, 4400 Massachusetts Ave, NW, Washington, DC, 20016, USA
| |
Collapse
|
7
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
8
|
Gonçalves J, Baptista S, Silva AP. Psychostimulants and brain dysfunction: a review of the relevant neurotoxic effects. Neuropharmacology 2014; 87:135-49. [PMID: 24440369 DOI: 10.1016/j.neuropharm.2014.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/18/2013] [Accepted: 01/06/2014] [Indexed: 12/21/2022]
Abstract
Psychostimulants abuse is a major public concern because is associated with serious health complications, including devastating consequences on the central nervous system (CNS). The neurotoxic effects of these drugs have been extensively studied. Nevertheless, numerous questions and uncertainties remain in our understanding of these toxic events. Thus, the purpose of the present manuscript is to review cellular and molecular mechanisms that might be responsible for brain dysfunction induced by psychostimulants. Topics reviewed include some classical aspects of neurotoxicity, such as monoaminergic system and mitochondrial dysfunction, oxidative stress, excitotoxicity and hyperthermia. Moreover, recent literature has suggested new phenomena regarding the toxic effects of psychostimulants. Thus, we also reviewed the impact of these drugs on neuroinflammatory response, blood-brain barrier (BBB) function and neurogenesis. Assessing the relative importance of these mechanisms on psychostimulants-induced brain dysfunction presents an exciting challenge for future research efforts. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- Joana Gonçalves
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal
| | - Sofia Baptista
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal
| | - Ana Paula Silva
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal.
| |
Collapse
|
9
|
Merluzzi AP, Hurwitz ZE, Briscione MA, Cobuzzi JL, Wetzell B, Rice KC, Riley AL. Age-dependent MDPV-induced taste aversions and thermoregulation in adolescent and adult rats. Dev Psychobiol 2013; 56:943-54. [PMID: 24122728 DOI: 10.1002/dev.21171] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/30/2013] [Indexed: 12/17/2022]
Abstract
Adolescent rats are more sensitive to the rewarding and less sensitive to the aversive properties of various drugs of abuse than their adult counterparts. Given a nationwide increase in use of "bath salts," the present experiment employed the conditioned taste aversion procedure to assess the aversive effects of 3,4-methylenedioxypyrovalerone (MDPV; 0, 1.0, 1.8, or 3.2 mg/kg), a common constituent in "bath salts," in adult and adolescent rats. As similar drugs induce thermoregulatory changes in rats, temperature was recorded following MDPV administration to assess if thermoregulatory changes were related to taste aversion conditioning. Both age groups acquired taste aversions, although these aversions were weaker and developed at a slower rate in the adolescent subjects. Adolescents increased and adults decreased body temperature following MDPV administration with no correlation to aversions. The relative insensitivity of adolescents to the aversive effects of MDPV suggests that MDPV may confer an increased risk in this population.
Collapse
Affiliation(s)
- Andrew P Merluzzi
- Psychopharmacology Laboratory, Department of Psychology, American University, 4400 Mass. Ave., NW, Washington, DC, 20016.
| | | | | | | | | | | | | |
Collapse
|
10
|
Hutchinson MR, Watkins LR. Why is neuroimmunopharmacology crucial for the future of addiction research? Neuropharmacology 2013; 76 Pt B:218-27. [PMID: 23764149 DOI: 10.1016/j.neuropharm.2013.05.039] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 12/13/2022]
Abstract
A major development in drug addiction research in recent years has been the discovery that immune signaling within the central nervous system contributes significantly to mesolimbic dopamine reward signaling induced by drugs of abuse, and hence is involved in the presentation of reward behaviors. Additionally, in the case of opioids, these hypotheses have advanced through to the discovery of the novel site of opioid action at the innate immune pattern recognition receptor Toll-like receptor 4 as the necessary triggering event that engages this reward facilitating central immune signaling. Thus, the hypothesis of major proinflammatory contributions to drug abuse was born. This review will examine these key discoveries, but also address several key lingering questions of how central immune signaling is able to contribute in this fashion to the pharmacodynamics of drugs of abuse. It is hoped that by combining the collective wisdom of neuroscience, immunology and pharmacology, into Neuroimmunopharmacology, we may more fully understanding the neuronal and immune complexities of how drugs of abuse, such as opioids, create their rewarding and addiction states. Such discoveries will point us in the direction such that one day soon we might successfully intervene to successfully treat drug addiction. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Mark R Hutchinson
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Level 5, Medical School South, Frome Rd, Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
11
|
Coller JK, Hutchinson MR. Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther 2012; 134:219-45. [PMID: 22316499 DOI: 10.1016/j.pharmthera.2012.01.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/12/2023]
Abstract
In the past two decades a trickle of manuscripts examining the non-neuronal central nervous system immune consequences of the drugs of abuse has now swollen to a significant body of work. Initially, these studies reported associative evidence of central nervous system proinflammation resulting from exposure to the drugs of abuse demonstrating key implications for neurotoxicity and disease progression associated with, for example, HIV infection. However, more recently this drug-induced activation of central immune signaling is now understood to contribute substantially to the pharmacodynamic actions of the drugs of abuse, by enhancing the engagement of classical mesolimbic dopamine reward pathways and withdrawal centers. This review will highlight the key in vivo animal, human, biological and molecular evidence of these central immune signaling actions of opioids, alcohol, cocaine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA). Excitingly, this new appreciation of central immune signaling activity of drugs of abuse provides novel therapeutic interventions and opportunities to identify 'at risk' individuals through the use of immunogenetics. Discussion will also cover the evidence of modulation of this signaling by existing clinical and pre-clinical drug candidates, and novel pharmacological targets. Finally, following examination of the breadth of central immune signaling actions of the drugs of abuse highlighted here, the current known common immune signaling components will be outlined and their impact on established addiction neurocircuitry discussed, thereby synthesizing a common neuroimmune hypothesis of addiction.
Collapse
Affiliation(s)
- Janet K Coller
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
12
|
Jaehne EJ, Majumder I, Salem A, Irvine RJ. Increased effects of 3,4-methylenedioxymethamphetamine (ecstasy) in a rat model of depression. Addict Biol 2011; 16:7-19. [PMID: 20192951 DOI: 10.1111/j.1369-1600.2009.00196.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is associated with increases in core body temperature (T(C)) and depressive mood states in users. Flinders Sensitive Line (FSL) rats represent a rat model of depression originally bred from Sprague-Dawley (SD) rats. They are more sensitive to both muscarinic and serotonergic agonists and have altered thermoregulatory responses to various drugs. To examine the link between MDMA and depression, eight FSL and eight SD rats were administered saline and 5 and 7.5 mg/kg MDMA. Immediately following administration, rats were confined to an area with an ambient temperature (T(A)) of 30 ± 1°C for 30 minutes before being allowed access to a thermal gradient for four hours. The brains were removed one week after final dose of MDMA and concentrations of serotonin and dopamine were measured. Treatment with MDMA at both doses led to a higher T(C) in the FSL rats than the SD rats at high T(A) (P < 0.01). Fatalities due to hyperthermia occurred in the FSL rats after both doses, whereas all but one of the SD rats recovered well. Heart rate was also much higher after MDMA in the FSL rats throughout the experiments. The FSL rats showed significant decreases in all transmitters measured (P < 0.05). These differences between strains were not accounted for by altered blood or brain concentrations of MDMA. The results indicate that the FSL rats may be more susceptible to developing MDMA-induced hyperthermia and possible damage to the brain. These findings may be of importance to human users of MDMA who also have depression.
Collapse
|
13
|
Braida D, Zani A, Capurro V, Rossoni G, Pegorini S, Gori E, Sala M. Diazepam Protects Against the Enhanced Toxicity of Cocaine Adulterated With Atropine. J Pharmacol Sci 2008; 107:408-18. [DOI: 10.1254/jphs.08085fp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
14
|
Jaehne EJ, Salem A, Irvine RJ. Pharmacological and behavioral determinants of cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine, and para-methoxyamphetamine-induced hyperthermia. Psychopharmacology (Berl) 2007; 194:41-52. [PMID: 17530474 DOI: 10.1007/s00213-007-0825-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/06/2007] [Indexed: 11/25/2022]
Abstract
RATIONALE Cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), and para-methoxyamphetamine (PMA) disrupt normal thermoregulation in humans, with PMA being associated with more severe cases of hyperthermia. Harm minimization advice on how to prevent overheating depends on appropriate thermoregulatory behavior by drug users. OBJECTIVES The purpose of the current study was to establish dose-response relationships for the effects of a number of commonly used illicit stimulants and investigate the behavioral response to increased core temperature. MATERIALS AND METHODS Sprague-Dawley rats with telemetry implants were administered either saline or 4, 12, 26, 40 or 80 micromol/kg of cocaine, methamphetamine, MDMA, or PMA and confined to an ambient temperature of 30 degrees C for 30 min, before being able to choose their preferred temperature on a thermally graded runway (11-41 degrees C). RESULTS The increased core temperature caused by administration of cocaine, methamphetamine, and MDMA treatment led to the animals seeking the cool end of the runway to correct their core temperature, although this did not occur in PMA-treated rats. The order of potency for increasing core temperature was methamphetamine >PMA = MDMA>cocaine. This differed to the slopes of the dose-response curves where MDMA and PMA showed the steepest slope for the doses used followed by methamphetamine then cocaine. CONCLUSIONS These results suggest that behavioral aspects of thermoregulation are important in assessing the potential of individual drugs to cause harmful increases in core temperature.
Collapse
Affiliation(s)
- Emily Joy Jaehne
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Level 5 Medical School North, Adelaide, South Australia 5005, Australia.
| | | | | |
Collapse
|
15
|
Klongpanichapak S, Govitrapong P, Sharma SK, Ebadi M. Attenuation of cocaine and methamphetamine neurotoxicity by coenzyme Q10. Neurochem Res 2006; 31:303-11. [PMID: 16733807 DOI: 10.1007/s11064-005-9025-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neurotoxic effects of cocaine and methamphetamine (METH) were studied in mice brain with a primary objective to determine the neuroprotective potential of coenzyme Q10 (CoQ10) in drug addiction. Repeated treatment of cocaine or METH induced significant reduction in the striatal dopamine and CoQ10 in mice. Cocaine or METH-treated mice exhibited increased thiobarbituric acid reactive substances (TBARs) in the striatum and cerebral cortex without any significant change in the cerebellum. Complex I immunoreactivity was inhibited in both cocaine and METH-treated mice, whereas tyrosine hydroxylase (TH) immunoreactivity was decreased in METH-treated mice and increased in cocaine-treated mice. Neither cocaine nor METH could induce significant change in alpha-synuclein expression at the doses and duration we have used in the present study. CoQ10 treatment attenuated cocaine and METH-induced inhibition in the striatal 18F-DOPA uptake as determined by high-resolution microPET neuroimaging. Hence exogenous administration of CoQ10 may provide neuroprotection in drug addiction.
Collapse
Affiliation(s)
- Sirirat Klongpanichapak
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine & Health Sciences, University of North Dakota, 501 North Columbia Road, Grand Forks, ND, 58203, USA
| | | | | | | |
Collapse
|
16
|
Colado MI, O'Shea E, Green AR. Acute and long-term effects of MDMA on cerebral dopamine biochemistry and function. Psychopharmacology (Berl) 2004; 173:249-63. [PMID: 15083264 DOI: 10.1007/s00213-004-1788-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 12/22/2003] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES The majority of experimental and clinical studies on the pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) tend to focus on its action on 5-HT biochemistry and function. However, there is considerable evidence for MDMA having marked acute effects on dopamine release. Furthermore, while MDMA produces long-term effects on 5-HT neurones in most species examined, in mice its long-term effects appear to be restricted to the dopamine system. The objective of this review is to examine the actions of MDMA on dopamine biochemistry and function in mice, rats, guinea pigs, monkeys and humans. RESULTS AND DISCUSSION MDMA appears to produce a major release of dopamine from its nerve endings in all species investigated. This release plays a significant role in the expression of many of the behaviours that occur, including behavioural changes, alterations of the mental state in humans and the potentially life-threatening hyperthermia that can occur. While MDMA appears to be a selective 5-HT neurotoxin in most species examined (rats, guinea pigs and primates), it is a selective dopamine neurotoxin in mice. Selectivity may be a consequence of what neurotoxic metabolites are produced (which may depend on dosing schedules), their selectivity for monoamine nerve endings, or the endogenous free radical trapping ability of specific nerve endings, or both. We suggest more focus be made on the actions of MDMA on dopamine neurochemistry and function to provide a better understanding of the acute and long-term consequences of using this popular recreational drug.
Collapse
Affiliation(s)
- M Isabel Colado
- Departamento de Farmacologia, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
| | | | | |
Collapse
|
17
|
Lipton JW, Gyawali S, Borys ED, Koprich JB, Ptaszny M, McGuire SO. Prenatal cocaine administration increases glutathione and alpha-tocopherol oxidation in fetal rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 147:77-84. [PMID: 14741753 DOI: 10.1016/j.devbrainres.2003.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent findings suggest that prenatal cocaine exposure results in significant attenuation of uterine and placental blood flow. The extent of blood flow reduction to fetuses positively correlates with reductions in glial-derived neurotrophic factor (GDNF) and dopamine (DA). However, whether such changes in uterine blood flow are sufficient to induce oxidative stress have yet to be determined. In the following experiments, the impact of prenatal cocaine exposure on fetal brain levels of the endogenous antioxidant glutathione (GSH and its oxidized form GSSG) or the exogenous antioxidant alpha-tocopherol (alpha-T and its oxidized quinone form) was investigated. It was hypothesized that cocaine exposure would result in greater oxidation of both GSH and alpha-T. Results indicated that a single injection of cocaine to a drug-naive pregnant dam results in significant (-16.38%) reductions in the levels of GSH. GSSG can be either raised or reduced as a result of fetal uterine position: fetuses at the ovarian extremes show significant increases in GSSG in response to cocaine (+64.73%), whereas cervically situated fetuses show decreased GSSG (-47.91%). Additionally, cocaine significantly decreased the levels of alpha-T (-15.9%) and increased the levels of its oxidative product alpha-Tquinone (alpha-Tq, +34.05%). Levels of alpha-T were not affected by fetal uterine position. These data collectively suggest that cocaine exposure increases the utilization of both endogenous and exogenous anti-oxidants in the fetal rat brain. Along with previous studies, these data support the hypothesis that cocaine-induced vasoconstriction results in oxidative stress in the gestating fetus.
Collapse
Affiliation(s)
- Jack W Lipton
- Department of Neurological Sciences, Rush University, Rush-Presbyterian-St. Luke's Medical Center, 2242 W. Harrison Street, Suite 265, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Lipton JW, Vu TQ, Ling Z, Gyawali S, Mayer JR, Carvey PM. Prenatal cocaine exposure induces an attenuation of uterine blood flow in the rat. Neurotoxicol Teratol 2002; 24:143-8. [PMID: 11943502 DOI: 10.1016/s0892-0362(01)00209-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously demonstrated that maternal cocaine injections result in a gradient of fetal brain cocaine levels that decrease as a function of the fetuses' proximity to the ovaries at embryonic (E) day 15. Our prior data suggest that cocaine-induced vasoconstriction may (1) limit cocaine's entry into the brain and (2) cause damage to DA neurons through injury associated with hypoxia or ischemia of the utero-placental junction. Therefore, using the microsphere technique (labeled with Ru(103)), the following study sought to determine whether the previously observed pattern of cocaine distribution among fetuses in the uterus were due to position-specific reductions in uterine or placental blood flow. On day 15, a single subcutaneous injection of 30 mg/kg cocaine HCl was administered to each rat. Thirty minutes after the cocaine injection, reference blood samples were drawn from the ventral tail artery. Uterine segments and placentae were removed and subjected to gamma counting. While results regarding placental blood flow were equivocal, cocaine significantly reduced average uterine blood flow by 54.6%. In addition, as one moves more proximal to the ovaries, cocaine progressively attenuates blood flow in uterine tissue segments. These data support the hypothesis that the pattern of drug distribution and subsequent brain alterations from prenatal cocaine exposure in our previous reports are likely due to differences in uterine blood flow.
Collapse
Affiliation(s)
- Jack W Lipton
- Department of Pharmacology, Rush Medical College of Rush University, Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Fleckenstein AE, Gibb JW, Hanson GR. Differential effects of stimulants on monoaminergic transporters: pharmacological consequences and implications for neurotoxicity. Eur J Pharmacol 2000; 406:1-13. [PMID: 11011026 DOI: 10.1016/s0014-2999(00)00639-7] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many psychostimulants alter plasmalemmal monoaminergic transporter function. Some, such as cocaine, prevent the reuptake of newly released dopamine, serotonin or norepinephrine into their associated neurons. Others, such as the amphetamines, facilitate release of these transmitters into the extraneuronal space by causing a reversal of function of these carrier proteins. An understanding of how psychostimulants regulate the function of not only plasmalemmal, but also vesicular monoamine transporter function is important to appreciate the pharmacological and sometimes neurotoxic consequences of administering these drugs, as well as the physiological regulation of these carrier proteins. Hence, this review will describe recent ex vivo studies investigating the rapid and differential affects of several stimulants on both plasmalemmal and vesicular monoamine transporter function.
Collapse
Affiliation(s)
- A E Fleckenstein
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Rm 201, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
20
|
Giorgetti M, Zhdanova IV. Chronic cocaine treatment induces dysregulation in the circadian pattern of rats' feeding behavior. Brain Res 2000; 877:170-5. [PMID: 10986329 DOI: 10.1016/s0006-8993(00)02671-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of protracted cocaine administration (15 mg/kg i.p., twice a day for 9 days) on the circadian pattern of feeding behavior was studied in individually housed male Sprague-Dawley rats, maintained under a 12:12 light:dark cycle. Water and food were available ad libitum and food intake was measured twice a day before, during and after withdrawal of cocaine (or saline) treatment. Neither total 24-h food intake, nor body mass at the end of the experiment, was significantly different between cocaine-treated and control animals. However, cocaine administration affected the temporal distribution of food consumption. During the dark (activity) phase, rats receiving cocaine injections consumed significantly less food than control animals, and this effect persisted for up to 3 days of cocaine withdrawal. During the light (rest) phase, cocaine administration promoted food consumption and a significantly higher food intake was also observed during the first five cocaine withdrawal days. Continuous monitoring of locomotor activity did not reveal significant changes in the circadian pattern of activity between the two experimental groups during different treatment periods, except for an acute increase in locomotion within an hour after daytime cocaine injection. The results of this study demonstrate that sub-chronic cocaine administration alters the circadian pattern of rats' feeding behavior.
Collapse
Affiliation(s)
- M Giorgetti
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
21
|
Murphy CA, Ghazi L, Kokabi A, Ellison G. Prenatal cocaine produces signs of neurodegeneration in the lateral habenula. Brain Res 1999; 851:175-82. [PMID: 10642841 DOI: 10.1016/s0006-8993(99)02181-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lateral habenula is a nucleus in the dorsal thalamus that innervates midbrain dopaminergic and serotonergic nuclei via projections through its major efferent pathway, the fasciculus retroflexus (FR). It was previously demonstrated that cocaine administered continuously to adult rats over several days produces neurodegeneration in the lateral habenula and FR. Because exposure to cocaine during pregnancy reportedly can cause neurobehavioral deficits, we examined whether rat fetuses exposed to continuous cocaine during the last week of gestation would similarly demonstrate selective neurodegeneration in the lateral habenula. On day 17 of gestation, dams were implanted with two silicone pellets, each containing either vehicle or one of 2 doses of cocaine (80 mg or 55 mg per pellet). Degenerating neurons containing silver deposits were counted in lateral habenula and in the striatum. Cocaine-exposed pups had significantly more silver-stained cells in the lateral habenula than vehicle-treated pups, but similar numbers of silver-stained cells were present in the striatum of all three groups. When similarly treated vehicle- and cocaine-exposed animals were tested behaviorally at 60 days of age, they did not differ on measures of open field activity, open arm avoidance on the elevated plus-maze or conditioned place preference for cocaine, although a linear trend analysis indicated some hyperactivity of the cocaine-pretreated pups during the place preference test. These results indicate that continuous cocaine exposure has selective neurotoxic effects on the habenula of the developing fetus similar to cocaine's effects in the adult.
Collapse
Affiliation(s)
- C A Murphy
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604, USA.
| | | | | | | |
Collapse
|