1
|
Meghdadi AH, Giesbrecht B, Eckstein MP. EEG signatures of contextual influences on visual search with real scenes. Exp Brain Res 2021; 239:797-809. [PMID: 33398454 DOI: 10.1007/s00221-020-05984-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/07/2020] [Indexed: 01/23/2023]
Abstract
The use of scene context is a powerful way by which biological organisms guide and facilitate visual search. Although many studies have shown enhancements of target-related electroencephalographic activity (EEG) with synthetic cues, there have been fewer studies demonstrating such enhancements during search with scene context and objects in real world scenes. Here, observers covertly searched for a target in images of real scenes while we used EEG to measure the steady state visual evoked response to objects flickering at different frequencies. The target appeared in its typical contextual location or out of context while we controlled for low-level properties of the image including target saliency against the background and retinal eccentricity. A pattern classifier using EEG activity at the relevant modulated frequencies showed target detection accuracy increased when the target was in a contextually appropriate location. A control condition for which observers searched the same images for a different target orthogonal to the contextual manipulation, resulted in no effects of scene context on classifier performance, confirming that image properties cannot explain the contextual modulations of neural activity. Pattern classifier decisions for individual images were also related to the aggregated observer behavioral decisions for individual images. Together, these findings demonstrate target-related neural responses are modulated by scene context during visual search with real world scenes and can be related to behavioral search decisions.
Collapse
Affiliation(s)
- Amir H Meghdadi
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, 93106-9660, USA.
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, 93106-5100, USA.
| | - Barry Giesbrecht
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, 93106-9660, USA
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, 93106-5100, USA
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA, 93106-5100, USA
| | - Miguel P Eckstein
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, 93106-9660, USA
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, 93106-5100, USA
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA, 93106-5100, USA
| |
Collapse
|
2
|
Klocke C, Sethi S, Lein PJ. The developmental neurotoxicity of legacy vs. contemporary polychlorinated biphenyls (PCBs): similarities and differences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8885-8896. [PMID: 31713823 PMCID: PMC7220795 DOI: 10.1007/s11356-019-06723-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/07/2019] [Indexed: 05/11/2023]
Abstract
Although banned from production for decades, PCBs remain a significant risk to human health. A primary target of concern is the developing brain. Epidemiological studies link PCB exposures in utero or during infancy to increased risk of neuropsychiatric deficits in children. Nonclinical studies of legacy congeners found in PCB mixtures synthesized prior to the ban on PCB production suggest that non-dioxin-like (NDL) congeners are predominantly responsible for the developmental neurotoxicity associated with PCB exposures. Mechanistic studies suggest that NDL PCBs alter neurodevelopment via ryanodine receptor-dependent effects on dendritic arborization. Lightly chlorinated congeners, which were not present in the industrial mixtures synthesized prior to the ban on PCB production, have emerged as contemporary environmental contaminants, but there is a paucity of data regarding their potential developmental neurotoxicity. PCB 11, a prevalent contemporary congener, is found in the serum of children and their mothers, as well as in the serum of pregnant women at increased risk for having a child diagnosed with a neurodevelopmental disorder (NDD). Recent data demonstrates that PCB 11 modulates neuronal morphogenesis via mechanisms that are convergent with and divergent from those implicated in the developmental neurotoxicity of legacy NDL PCBs. This review summarizes these data and discusses their relevance to adverse neurodevelopmental outcomes in humans.
Collapse
Affiliation(s)
- Carolyn Klocke
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Crows control working memory before and after stimulus encoding. Sci Rep 2020; 10:3253. [PMID: 32094457 PMCID: PMC7039964 DOI: 10.1038/s41598-020-59975-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022] Open
Abstract
The capacity of working memory is limited and this limit is comparable in crows and primates. To maximize this resource, humans use attention to select only relevant information for maintenance. Interestingly, attention-cues are effective not only before but also after the presentation of to-be-remembered stimuli, highlighting control mechanisms beyond sensory selection. Here we explore if crows are also capable of these forms of control over working memory. Two crows (Corvus corone) were trained to memorize two, four or six visual stimuli. Comparable to our previous results, the crows showed a decrease in performance with increasing working memory load. Using attention cues, we indicated the critical stimulus on a given trial. These cues were either presented before (pre-cue) or after sample-presentation (retro-cue). On other trials no cue was given as to which stimulus was critical. We found that both pre- and retro-cues enhance the performance of the birds. These results show that crows, like humans, can utilize attention to select relevant stimuli for maintenance in working memory. Importantly, crows can also utilize cues to make the most of their working memory capacity even after the stimuli are already held in working memory. This strongly implies that crows can engage in efficient control over working memory.
Collapse
|
4
|
Zhang S, Meng W, Wang L, Li L, Long Y, Hei Y, Zhou L, Wu S, Zheng Z, Luo L, Jiang F. Preparation of Nano-Copper Sulfide and Its Adsorption Properties for 17α-Ethynyl Estradiol. NANOSCALE RESEARCH LETTERS 2020; 15:48. [PMID: 32088775 PMCID: PMC7036085 DOI: 10.1186/s11671-020-3274-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 05/03/2023]
Abstract
In the present work, a tubular nano-copper sulfide was successfully synthesized by hydrothermal method. The physical and chemical properties of the prepared materials were characterized by XRD, SEM, TEM, and BET. The synthesized copper sulfide was used as an adsorbent for removing 17α-ethynyl estradiol (EE2) and exhibited excellent adsorption properties. At 25 °C, 15 mg of adsorbent was applied for 50 mL of 5 mg/L EE2 solution, adsorption equilibrium was reached after 180 min, and the adsorption rate reached nearly 90%. In addition, the kinetics, isothermal adsorption, and thermodynamics of the adsorption process were discussed on the basis of theoretical calculations and experimental results. The theoretical maximum adsorption capacity of copper sulfide was calculated to be 147.06 mg/g. The results of this study indicated that copper sulfide was a stable and efficient adsorbent with promising practical applications.
Collapse
Affiliation(s)
- Sifeng Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Wenxiang Meng
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Lulu Wang
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Lingxin Li
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Yanju Long
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Yunrui Hei
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Luting Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Shenglan Wu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Ziguang Zheng
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Lijun Luo
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, China
| | - Fengzhi Jiang
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
5
|
Klocke C, Lein PJ. Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Developmental Neurotoxicity. Int J Mol Sci 2020; 21:E1013. [PMID: 32033061 PMCID: PMC7037228 DOI: 10.3390/ijms21031013] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Despite being banned from production for decades, polychlorinated biphenyls (PCBs) continue to pose a significant risk to human health. This is due to not only the continued release of legacy PCBs from PCB-containing equipment and materials manufactured prior to the ban on PCB production, but also the inadvertent production of PCBs as byproducts of contemporary pigment and dye production. Evidence from human and animal studies clearly identifies developmental neurotoxicity as a primary endpoint of concern associated with PCB exposures. However, the relative role(s) of specific PCB congeners in mediating the adverse effects of PCBs on the developing nervous system, and the mechanism(s) by which PCBs disrupt typical neurodevelopment remain outstanding questions. New questions are also emerging regarding the potential developmental neurotoxicity of lower chlorinated PCBs that were not present in the legacy commercial PCB mixtures, but constitute a significant proportion of contemporary human PCB exposures. Here, we review behavioral and mechanistic data obtained from experimental models as well as recent epidemiological studies that suggest the non-dioxin-like (NDL) PCBs are primarily responsible for the developmental neurotoxicity associated with PCBs. We also discuss emerging data demonstrating the potential for non-legacy, lower chlorinated PCBs to cause adverse neurodevelopmental outcomes. Molecular targets, the relevance of PCB interactions with these targets to neurodevelopmental disorders, and critical data gaps are addressed as well.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA;
| |
Collapse
|
6
|
Wang L, Krauzlis RJ. Visual Selective Attention in Mice. Curr Biol 2018; 28:676-685.e4. [PMID: 29456140 DOI: 10.1016/j.cub.2018.01.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/17/2017] [Accepted: 01/12/2018] [Indexed: 12/28/2022]
Abstract
Visual selective attention is a fundamental cognitive ability that allows us to process relevant visual stimuli while ignoring irrelevant distracters and has been extensively studied in human and non-human primate subjects. Mice have emerged as a powerful animal model for studying aspects of the visual system but have not yet been shown to exhibit visual selective attention. Differences in the organization of the visual systems of primates and mice raise the possibility that selective visual attention might not be present in mice, at least not in the forms that are well established in primates. Here, we tested for selective visual attention in mice by using three behavioral paradigms adapted from classic studies of attention. In a Posner-style cueing task, a spatial cue indicated the probable location of the relevant visual event, and we found that accuracy was higher and reaction times were shorter on validly cued trials. In a cue versus no-cue task, an informative spatial cue was provided on half the trials, and mice had higher accuracy and shorter reaction times with spatial cues and also lower detection thresholds measured from psychometric curves. In a filter task, the spatial cue indicated the location of the relevant visual event, and we found that mice could be trained to ignore irrelevant but otherwise identical visual events at uncued locations. Together, these results demonstrate that mice exhibit visual selective attention, paving the way to use classic attention paradigms in mice to study the genetic and neuronal circuit mechanisms of selective attention.
Collapse
Affiliation(s)
- Lupeng Wang
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892-4435, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892-4435, USA.
| |
Collapse
|
7
|
Affiliation(s)
- Miguel P. Eckstein
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-9660
| |
Collapse
|
8
|
Bal-Price A, Lein PJ, Keil KP, Sethi S, Shafer T, Barenys M, Fritsche E, Sachana M, Meek MEB. Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity. Neurotoxicology 2016; 59:240-255. [PMID: 27212452 DOI: 10.1016/j.neuro.2016.05.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 12/12/2022]
Abstract
The Adverse Outcome Pathway (AOP) concept has recently been proposed to support a paradigm shift in regulatory toxicology testing and risk assessment. This concept is similar to the Mode of Action (MOA), in that it describes a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis for predicting effects of structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed. A variety of cellular and molecular processes are known to be critical for normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of the principles of MOA and AOPs, examples of potential or putative adverse outcome pathways specific for developmental or adult neurotoxicity are summarized and aspects of their assessment considered. Their possible application in developing mechanistically informed Integrated Approaches to Testing and Assessment (IATA) is also discussed.
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Timothy Shafer
- Integrated Systems Toxicology Division, Office of Research and Development, U.S. Environmental Protection Agency, RTP, USA
| | - Marta Barenys
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Magdalini Sachana
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - M E Bette Meek
- McLaughlin Centre for Risk Science, University of Ottawa, Ottawa, Canada
| |
Collapse
|
9
|
Eckstein MP, Mack SC, Liston DB, Bogush L, Menzel R, Krauzlis RJ. Rethinking human visual attention: spatial cueing effects and optimality of decisions by honeybees, monkeys and humans. Vision Res 2013; 85:5-19. [PMID: 23298793 DOI: 10.1016/j.visres.2012.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 11/25/2022]
Abstract
Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target and assessing the effect of the validity of the cue on perceptual performance and its neural correlates. Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged within a block of trials, for the monkey and human studies we randomized the contrast of the signal to simulate more real world conditions in which the organism is uncertain about the strength of the signal. A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the cue validity to maximize overall performance is used as a benchmark of comparison against the three animals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cueing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus strength is low. A more biologically plausible model that includes an additive bias to the sensory response from the cued location, although not mathematically equivalent to the optimal observer for the case stimulus strength uncertainty, can approximate the benefits of the more computationally complex optimal Bayesian model. We discuss the implications of our findings on the field's common conceptualization of covert visual attention in the cueing task and what aspects, if any, might be unique to humans.
Collapse
Affiliation(s)
- Miguel P Eckstein
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Lynch CD, Jackson LW, Kostyniak PJ, McGuinness BM, Buck Louis GM. The effect of prenatal and postnatal exposure to polychlorinated biphenyls and child neurodevelopment at age twenty four months. Reprod Toxicol 2012; 34:451-6. [PMID: 22569275 DOI: 10.1016/j.reprotox.2012.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 03/27/2012] [Accepted: 04/27/2012] [Indexed: 11/26/2022]
Abstract
We examined the association between prenatal and postnatal exposure to PCBs and development at age 24 months as measured by the Bayley Scales of Infant Development II. 44 (85%) of 52 children had information available. When prenatal and postnatal exposure were modeled together, we found no association between total PCB exposure and the mental development index (MDI) or the physical development index (PDI). In examining PCB 153, we found no association between PCB 153 and MDI, while higher levels of postnatal exposure was associated with a decrease in PDI after adjustment [β for highest tertile=-24.9; 95% CI (-44.3, -5.5)]. Higher levels of prenatal PCB 153 exposure were associated with a statistically significant increased odds of screening positive for a motor delay. In sum, when prenatal and postnatal exposures were considered together, breast milk exposure to PCB 153 appears to be associated with decrements in motor development; however, we cannot rule out that the finding was due to chance.
Collapse
Affiliation(s)
- Courtney D Lynch
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, OH 43210, United States.
| | | | | | | | | |
Collapse
|
11
|
Beasley TE, Evansky PA, Bushnell PJ. Behavioral effects of sub-acute inhalation of toluene in adult rats. Neurotoxicol Teratol 2012; 34:83-9. [DOI: 10.1016/j.ntt.2011.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022]
|
12
|
Ahmed R. Perinatal TCDD exposure alters developmental neuroendocrine system. Food Chem Toxicol 2011; 49:1276-84. [DOI: 10.1016/j.fct.2011.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/26/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
13
|
de Souza AS, Fernandes FS, do Carmo MDGT. Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning, and memory. Nutr Rev 2011; 69:132-44. [PMID: 21348877 DOI: 10.1111/j.1753-4887.2011.00374.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Undernutrition still affects mothers and children in developing countries and thus remains the major focus of nutritional intervention efforts. Neuronal development, which classically includes neurogenesis, migration, maturation, and synapse refinement, begins in utero and continues into the early postnatal period. These processes are not only genetically regulated but also clearly susceptible to environmental manipulation. Dietary deprivation during early life is known to have adverse effects on brain anatomy, physiology, and biochemistry, and may even lead to permanent brain damage. Although all nutrients are important for the structural development of the central nervous system, lipids such as long-chain polyunsaturated fatty acids, especially docosahexaenoic acid (22:6 n-3) and arachidonic acid (20:4 n-6), are important for normal brain development. The purpose of this literature review is to examine how early undernutrition involving a deficiency in long-chain polyunsaturated fatty acids can affect brain development and function and produce deficits in spatial cognitive learning ability.
Collapse
Affiliation(s)
- Amanda Santos de Souza
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
14
|
Beasley TE, Evansky PA, Gilbert ME, Bushnell PJ. Behavioral effects of subchronic inhalation of toluene in adult rats. Neurotoxicol Teratol 2010; 32:611-9. [DOI: 10.1016/j.ntt.2010.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/07/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
|
15
|
Acute inhalation of 2,2,4-trimethylpentane alters visual evoked potentials and signal detection behavior in rats. Neurotoxicol Teratol 2010; 32:525-35. [DOI: 10.1016/j.ntt.2010.04.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/16/2010] [Accepted: 04/22/2010] [Indexed: 11/20/2022]
|
16
|
Park HY, Hertz-Picciotto I, Sovcikova E, Kocan A, Drobna B, Trnovec T. Neurodevelopmental toxicity of prenatal polychlorinated biphenyls (PCBs) by chemical structure and activity: a birth cohort study. Environ Health 2010; 9:51. [PMID: 20731829 PMCID: PMC2939589 DOI: 10.1186/1476-069x-9-51] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 08/23/2010] [Indexed: 05/13/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are ubiquitous environmental toxins. Although there is growing evidence to support an association between PCBs and deficits of neurodevelopment, the specific mechanisms are not well understood. The potentially different roles of specific PCB groups defined by chemical structures or hormonal activities e.g., dioxin-like, non-dioxin like, or anti-estrogenic PCBs, remain unclear. Our objective was to examine the association between prenatal exposure to defined subsets of PCBs and neurodevelopment in a cohort of infants in eastern Slovakia enrolled at birth in 2002-2004. METHODS Maternal and cord serum samples were collected at delivery, and analyzed for PCBs using high-resolution gas chromatography. The Bayley Scales of Infant Development -II (BSID) were administered at 16 months of age to over 750 children who also had prenatal PCB measurements. RESULTS Based on final multivariate-adjusted linear regression model, maternal mono-ortho-substituted PCBs were significantly associated with lower scores on both the psychomotor (PDI) and mental development indices (MDI). Also a significant association between cord mono-ortho-substituted PCBs and reduced PDI was observed, but the association with MDI was marginal (p = 0.05). Anti-estrogenic and di-ortho-substituted PCBs did not show any statistically significant association with cognitive scores, but a suggestive association between di-ortho-substituted PCBs measured in cord serum and poorer PDI was observed. CONCLUSION Children with higher prenatal mono-ortho-substituted PCB exposures performed more poorly on the Bayley Scales. Evidence from this and other studies suggests that prenatal dioxin-like PCB exposure, including mono-ortho congeners, may interfere with brain development in utero. Non-dioxin-like di-ortho-substituted PCBs require further investigation.
Collapse
Affiliation(s)
- Hye-Youn Park
- Divisions of Epidemiology, and of Environmental and Occupational Health, Department of Public Health Sciences, School of Medicine, University of California, Davis, 95616, USA
| | - Irva Hertz-Picciotto
- Divisions of Epidemiology, and of Environmental and Occupational Health, Department of Public Health Sciences, School of Medicine, University of California, Davis, 95616, USA
| | - Eva Sovcikova
- Department of Toxic Organic Pollutants, Slovak Medical University, Bratislava, Slovakia
| | - Anton Kocan
- Department of Toxic Organic Pollutants, Slovak Medical University, Bratislava, Slovakia
| | - Beata Drobna
- Department of Toxic Organic Pollutants, Slovak Medical University, Bratislava, Slovakia
| | - Tomas Trnovec
- Department of Toxic Organic Pollutants, Slovak Medical University, Bratislava, Slovakia
| |
Collapse
|
17
|
Executive Function following Developmental Exposure to Polychlorinated Biphenyls (PCBs). ACTA ACUST UNITED AC 2010. [DOI: 10.1201/9781420004335.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
18
|
Londoño M, Shimokawa N, Miyazaki W, Iwasaki T, Koibuchi N. Hydroxylated PCB induces Ca2+oscillations and alterations of membrane potential in cultured cortical cells. J Appl Toxicol 2009; 30:334-42. [DOI: 10.1002/jat.1501] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
A computational model reveals classical conditioning mechanisms underlying visual signal detection in rats. Behav Processes 2009; 82:340-51. [DOI: 10.1016/j.beproc.2009.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 07/28/2009] [Accepted: 08/13/2009] [Indexed: 11/21/2022]
|
20
|
Role of N-methyl-D-aspartate receptors in polychlorinated biphenyl mediated neurotoxicity. Toxicol Lett 2009; 184:50-5. [DOI: 10.1016/j.toxlet.2008.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/20/2008] [Accepted: 10/21/2008] [Indexed: 12/16/2022]
|
21
|
Hojo R, Kakeyama M, Kurokawa Y, Aoki Y, Yonemoto J, Tohyama C. Learning behavior in rat offspring after in utero and lactational exposure to either TCDD or PCB126. Environ Health Prev Med 2008; 13:169-80. [PMID: 19568902 DOI: 10.1007/s12199-008-0026-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 01/04/2008] [Indexed: 05/25/2023] Open
Abstract
OBJECTIVES We studied and compared the possible effects of in utero and lactational exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) or 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126) on learning behavior in offspring. METHODS Pregnant Long-Evans Hooded rats were administered either TCDD (50, 200, or 800 ng/kg) or PCB126 (500, 2,000 or 8,000 ng/kg) on gestational day 15. A procedure of schedule-controlled operant behavior was applied to examine learning behavior in the male and female offspring at 11 weeks of age for 30 days. Three indices, namely, response rates in a fixed ratio (FR) and in a differential reinforcement of low rates (DRL), and reward rate in the DRL component in multiple FR 20 DRL 20 s (mult-FR 20 DRL 20-s) test sessions, were used for the evaluation of learning behavior. RESULTS Toxic effects on learning behavior in male and female pups following in utero and lactational exposure to TCDD or PCB126 were observed mainly in the FR learning component. However, no linear dose-dependent effects of either of the two compounds were observed for the above three indices. The response rates of animals in the low-dose TCDD and PCB126 groups decreased and those in medium-dose TCDD and PCB126 groups appeared to induce hyperactive behavior. The high dose of PCB126 appeared to have a distinct toxicity from that of TCDD in terms of the acquisition of learning behavior. CONCLUSIONS Toxicities of PCB126 and TCDD in learning behavior might be similar to each other and the current toxic equivalency factor (TEF) of 0.1 for PCB126 can be considered to be appropriate for this endpoint.
Collapse
Affiliation(s)
- Rieko Hojo
- Research Center for Environmental Risk, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Characterization of the effects of inhaled perchloroethylene on sustained attention in rats performing a visual signal detection task. Neurotoxicol Teratol 2008; 30:167-74. [PMID: 18299185 DOI: 10.1016/j.ntt.2008.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 12/06/2007] [Accepted: 01/05/2008] [Indexed: 11/23/2022]
Abstract
The aliphatic hydrocarbon perchloroethylene (PCE) has been associated with neurobehavioral dysfunction including reduced attention in humans. The current study sought to assess the effects of inhaled PCE on sustained attention in rats performing a visual signal detection task (SDT). Due to its similarities in physiological effect to toluene and trichloroethylene (TCE), two other commonly used volatile organic compounds (VOCs) known to reduce attention in rats, we hypothesized (1) that acute inhalation of PCE (0, 500, 1000, 1500 ppm) would disrupt performance of the SDT in rats; (2) that impaired accuracy would result from changes in attention to the visual signal; and (3) that these acute effects would diminish upon repetition of exposure. PCE impaired performance of the sustained attention task as evidenced by reduced accuracy [P(correct): 500 to 1500 ppm], elevated response time [RT: 1000 and 1500 ppm] and reduced number of trials completed [1500 ppm]. These effects were concentration-related and either increased (RT and trial completions) or remained constant [P(correct)] across the 60-min test session. The PCE-induced reduction in accuracy was primarily due to an increase in false alarms, a pattern consistent with reduced attention to the signal. A repeat of the exposures resulted in smaller effects on these performance measures. Thus, like toluene and TCE, inhaled PCE acutely impaired sustained attention in rats, and its potency weakened upon repetition of the exposure.
Collapse
|
23
|
Vitalone A, Catalani A, Chiodi V, Cinque C, Fattori V, Goldoni M, Matteucci P, Poli D, Zuena AR, Costa LG. Neurobehavioral assessment of rats exposed to low doses of PCB126 and methyl mercury during development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 25:103-113. [PMID: 21783843 DOI: 10.1016/j.etap.2007.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 09/14/2007] [Accepted: 09/19/2007] [Indexed: 05/31/2023]
Abstract
Epidemiological and laboratory studies have suggested that polychlorinated biphenyls (PCBs) and methyl mercury (MeHg) may have additive or synergistic effects on CNS function. Aim of this study was to characterize the effects of exposure to low levels of MeHg (0.5mg/kgday in drinking water) and PCB126 (100ng/kgday in food), alone and in combination, on neurobehavioral development in Wistar rats. Dams were treated from gestational day 7 to post-natal day (PND) 21. Animals were tested for developmental landmarks and reflexes (PND1-21), attention deficits (PND40), locomotor activity (PND30, 110), spatial learning (PND75), coordination and balance (PND90), object discrimination (PND80), anxiety (PND100), and conditioned learning (PND110). Parameters related to pregnancy, sex ratio at birth, and physical development (at weaning) did not differ among groups, though PCB126 decreased number of pups at birth. A slight delay in negative geotaxis was found in female rats in all treatment groups. No significant effects were seen in attention, coordination and balance, object discrimination, and spatial and conditioned learning. Increased motor activity was present in PCB126-treated male and in MeHg+PCB-treated female rats in the elevated plus maze test, and in PCB126-treated male rats in the open field test (PND110). The results do not support the hypothesis that co-exposure to MeHg and PCB126 results in additive or synergistic effects. This finding is in agreement with more recent in vitro and in vivo studies.
Collapse
Affiliation(s)
- Annabella Vitalone
- Department of Human Anatomy, Pharmacology and Forensic Sciences, University of Parma Medical School, Parma, Via Volturno 39, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bushnell PJ, Oshiro WM, Samsam TE, Klinger R. The role of physical activity and feeding schedule on the kinetics of inhaled and oral toluene in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1806-1814. [PMID: 17934953 DOI: 10.1080/15287390701459155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Published studies of the kinetics of toluene in rats have shown that its concentration in the blood rises during inhalation and falls after exposure stops; a similar uptake profile and longer persistence in blood typify the kinetics after oral exposure. Because rats in these studies are typically inactive during exposure, and behavioral tests of the acute effects of toluene require physical activity and altered feeding schedules, this study examined the role of physical activity and feeding status on the uptake of toluene given by the two routes. Two groups of adult male Long-Evans rats were conditioned to eat in the lab during the day. A group of "conditioned-active" (C-A) rats performed a lever-pressing task (LPT) for 1 h, either while inhaling toluene vapor (2000 ppm) or after a gavage dose (800 mg/kg toluene in corn oil). Another group of "conditioned-sedentary" (C-S) rats was dosed similarly but did not perform the LPT. A third group of "home cage" (HC) rats was not conditioned to eat during the day, but was maintained under typical laboratory conditions (eating at night in the home cage) before receiving toluene by gavage. In the conditioned rats, physical activity during inhalation exposure increased the concentrations of toluene in blood (from 35.8 +/- 2.5 to 45.2 +/- 3.2 mg/L after 60 min) and brain (from 73.4 +/- 5.3 to 103.0 +/- 3.8 mg/L after 60 min), but did not affect those concentrations after oral toluene. The time course of the uptake of toluene into blood and brain of HC rats followed that of published data. In contrast, toluene concentrations in the blood and brain of orally dosed conditioned rats fell rapidly compared to HC rats and published data (at 60 min after dosing, blood concentrations were: C-S rats, 17.2 +/- 1.7 mg/L; HC rats, 69.4 +/- 9.6 mg/L; and brain concentrations were: C-S rats, 30.9 +/- 5.0 mg/L; HC rats, 96.6 +/- 18.5 mg/L). These studies demonstrate the importance of physical activity for the uptake of inhaled toluene, and the importance of feeding conditions for the elimination of oral toluene.
Collapse
Affiliation(s)
- Philip J Bushnell
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | |
Collapse
|
25
|
Coccini T, Roda E, Castoldi AF, Goldoni M, Poli D, Bernocchi G, Manzo L. Perinatal co-exposure to methylmercury and PCB153 or PCB126 in rats alters the cerebral cholinergic muscarinic receptors at weaning and puberty. Toxicology 2007; 238:34-48. [PMID: 17618726 DOI: 10.1016/j.tox.2007.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
In the last few decades, combined exposure to methylmercury (MeHg) and polychlorinated biphenyls (PCBs) from fish and seafood, and their potentially interactive effects on neurodevelopment, have been giving increasing cause for concern. We examined the combined effects of MeHg and either a non-dioxin PCB (PCB153) or a dioxin-like PCB (PCB126) congener on the developing brain cholinergic muscarinic receptors (MRs). These receptors are known to play a major role in many central functions including higher cognitive processes and the modulation of extrapyramidal motor activity. MRs in pup rat brains diminished following prenatal and lactational exposure, from gestational day [GD]7 to postnatal day [PND]21, to MeHg (0.5mg/kgbodyweight[bw]/day), PCB153 (5mg/kgbw/day), and PCB126 (100ng/kg/day), alone or in combination. Total MR density, as well as M1, M2, and M3 receptor subtypes of the weanling and pubertal rats, were affected in a brain-area-, gender-, time- and compound-dependent fashion. MeHg decreased (by 15-20%) the total MR density in a delayed (PND36) manner in the cerebral cortex of both genders, and early (at weaning) in the cerebellum of both genders, with the effect lasting until puberty (in males only). MeHg decreased the ACh M1- and M3-immunopositive neurons in the cerebral cortex and also increased the M2-immunopositive Bergmann glia in the cerebellum. PCB153 also induced a delayed (PND36) decrease (of 20%) in total MR number in the cerebellum of the male offspring and in the cerebral cortex of both genders. The latter effect was coupled with a decrease in ACh M1- and ACh M3-immunopositive neuron populations. PCB126 decreased (by 30-40%) total MR density in a gender-dependent manner, males being more sensitive than females. The effect was evident early (at PND21) and lasted until puberty in the cerebellum, while it was observed later (at PND36) in the cerebral cortex. The M1 and M3 receptors were similarly affected by PCB126. Co-exposure to MeHg and either PCB153 or PCB126 had the same effect on the cerebral MRs as exposure to each compound alone. The results rule out additive or synergistic interactions between MeHg and PCB153 or PCB126 on MRs in the brain areas examined. Some early-onset changes persisted until puberty, while other modifications became manifest only at the advanced time point (PND36), when the brain levels of total Hg, PCB153, and PCB126 had declined. These data support the ability of MeHg and PCBs to induce delayed neurotoxicity after developmental exposure.
Collapse
Affiliation(s)
- Teresa Coccini
- IRCCS Salvatore Maugeri Foundation, Toxicology Division, Institute of Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
Oshiro WM, Krantz QT, Bushnell PJ. Repeated inhalation of toluene by rats performing a signal detection task leads to behavioral tolerance on some performance measures. Neurotoxicol Teratol 2007; 29:247-54. [PMID: 17175136 DOI: 10.1016/j.ntt.2006.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/17/2006] [Accepted: 11/02/2006] [Indexed: 11/22/2022]
Abstract
Previous work showed that trichloroethylene (TCE) impairs sustained attention as evidenced by a reduction in accuracy and elevation of response latencies in rats trained to perform a visual signal detection task (SDT). This work also showed that these effects abate during repeated exposures if rats inhale TCE while performing the SDT. The present experiment sought to determine whether toluene, another commonly-used solvent, would induce tolerance similarly if inhaled repeatedly during SDT testing. Sixteen male, Long-Evans rats were trained to perform the SDT. Upon completion of training, rats were divided into 2 groups. In Phase I, concentration-effect functions were determined for toluene (0, 1200, 1600, 2000, 2400 ppm) in both groups. Toluene reduced the proportion of correct responses [P(correct)], and increased response time (RT) and response failures. In Phase II, Group-Tol inhaled 1600 ppm toluene while Group-Air inhaled clean air during 11 daily SDT sessions. In Group-Tol the effect of toluene on P(correct) abated after 3 days, while RT remained elevated for the duration of the repeated exposures. In Phase III, toluene concentration-effect functions were re-determined for both groups. Group-Air remained impaired on all test measures, whereas for Group-Tol, toluene did not reduce P(correct), but continued to increase RT. These data confirm our previous hypothesis that animals can develop tolerance to chemical exposures that impair appetitively-motivated behaviors if that impairment leads to loss of reinforcement.
Collapse
Affiliation(s)
- Wendy M Oshiro
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | |
Collapse
|
27
|
Maier MSV, Legare ME, Hanneman WH. The aryl hydrocarbon receptor agonist 3,3',4,4',5-pentachlorobiphenyl induces distinct patterns of gene expression between hepatoma and glioma cells: chromatin remodeling as a mechanism for selective effects. Neurotoxicology 2007; 28:594-612. [PMID: 17316808 DOI: 10.1016/j.neuro.2007.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/01/2007] [Accepted: 01/04/2007] [Indexed: 11/30/2022]
Abstract
Genome-wide oligonucleotide DNA microarrays and real time RT-PCR were used to assess differential gene expression in rat glioma and hepatoma cell lines after exposure to the aryl hydrocarbon receptor (AhR) agonist 3,3',4,4',5-pentachlorobiphenyl (penta-CB). Under maximal inducing concentrations for cytochrome P450 1A1 (CYP1A1) in H4IIE rat hepatoma cells, both H4IIE and C6 rat glioma cells were exposed to sub-micromolar concentrations of penta-CB for 24h. Differential gene expression for approximately 28,000 gene probes were computationally analyzed and compared. As expected, penta-CB potently activated CYP1A1/2 transcription in liver-derived H4IIE hepatoma cells yet did not do so in brain-derived C6 glioma cells. Additionally, we show that penta-CB causes: (1) distinct patterns of gene expression between tumor cells derived from liver or brain; (2) robust transcriptional activation of select C6 glioma gene ontologies; (3) over-expression of H4IIE hepatoma genes associated with tumor progression in liver; (4) greater than 100-fold over-expression of C6 glioma genes associated with protein processing and programmed cell death and/or metastasis; (5) tissue-selective histone deacetylase inhibition in C6 glioma, but not H4IIE hepatoma cells as signaled by galectin-1 over-expression.
Collapse
Affiliation(s)
- Mark S V Maier
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA
| | | | | |
Collapse
|
28
|
Mariussen E, Fonnum F. Neurochemical targets and behavioral effects of organohalogen compounds: an update. Crit Rev Toxicol 2006; 36:253-89. [PMID: 16686424 DOI: 10.1080/10408440500534164] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Organohalogen compounds (OHCs) have been used and still are used extensively as pesticides, flame retardants, hydraulic fluids, and in other industrial applications. These compounds are stable, most often lipophilic, and may therefore easily biomagnify. Today these compounds are found distributed both in human tissue, including breast milk, and in wildlife animals. In the late 1960s and early 1970s, high levels of the polychlorinated biphenyls (PCBs) and the pesticide dichlorodiphenyl trichloroethane (DDT) were detected in the environment. In the 1970s it was discovered that PCBs and some chlorinated pesticides, such as lindane, have neurotoxic potentials after both acute and chronic exposure. Although the use of PCBs, DDT, and other halogenated pesticides has been reduced, and environmental levels of these compounds are slowly diminishing, other halogenated compounds with potential of toxic effects are being found in the environment. These include the brominated flame retardants, chlorinated paraffins (PCAs), and perfluorinated compounds, whose levels are increasing. It is now established that several OHCs have neurobehavioral effects, indicating adverse effects on the central nervous system (CNS). For instance, several reports have shown that OHCs alter neurotransmitter functions in CNS and Ca2+ homeostatic processes, induce protein kinase C (PKC) and phospholipase A2 (PLA2) mobilization, and induce oxidative stress. In this review we summarize the findings of the neurobehavioral and neurochemical effects of some of the major OHCs with our main focus on the PCBs. Further, we try to elucidate, on the basis of available literature, the possible implications of these findings on human health.
Collapse
Affiliation(s)
- E Mariussen
- Norwegian Institute for Air Research, Kjeller, Norway.
| | | |
Collapse
|
29
|
Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to the presence of non dioxin-like polychlorinated biphenyls (PCB) in feed and food. EFSA J 2005. [DOI: 10.2903/j.efsa.2005.284] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
30
|
Abstract
The vigilance decrement in perceptual sensitivity was examined in 10 patients with mild Alzheimer's disease (AD) and 20 age-matched controls. A visual high-event rate digit-discrimination task lasting 7.2 min. (six 1.2 min blocks) was presented at different levels of stimulus degradation. Previous studies have shown that sensitivity decrements (d') over time at high-stimulus degradation result from demands on effortful processing. For all degradation levels, the overall level of vigilance (d') was lower in AD patients than in controls. All participants showed sensitivity decrement over blocks, with greater decrement at higher degradation levels. AD patients exhibited greater sensitivity decrement over time at the highest degradation level they all could perform relative to control participants. There were no concomitant changes in either response bias (C) or response times. The results indicate that mild AD patients have overall lower levels of vigilance under conditions that require both automatic and effortful processing. Mild AD patients also exhibit a deficit in the maintenance of vigilance over time under effortful processing conditions. Although the sample of AD patients was small, results further suggest that both possible and probable AD patients had greater sensitivity decrement over time at the highest degradation level than did control participants, but only probable AD patients had lower overall levels of vigilance. In the possible AD patients as a group, the decrement in vigilance occurred in the absence of concurrent deficits on standard attentional tasks, such as the Stroop and Trail Making tests, suggesting that deficits in vigilance over time may appear earlier than deficits in selective attention.
Collapse
|
31
|
Branchi I, Capone F, Vitalone A, Madia F, Santucci D, Alleva E, Costa LG. Early Developmental Exposure to BDE 99 or Aroclor 1254 Affects Neurobehavioural Profile: Interference from the Administration Route. Neurotoxicology 2005; 26:183-92. [PMID: 15713339 DOI: 10.1016/j.neuro.2004.11.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 11/23/2004] [Indexed: 10/26/2022]
Abstract
Among the most persistent and bio-accumulative environmental pollutants are the polybrominated diphenyl ethers (PBDEs), a class of chemicals widely used as flame retardants in plastics and textile coating, and the polychlorinated biphenyls (PCBs), previously used as coolants and lubricants in electrical equipment. Monitoring programs revealed high levels of both these classes of compounds in human breast milk, raising concerns for their potential noxious effects on infants. The aim of the present study was to investigate the neurotoxic effects of 2,2',4,4',5-penta BDE (BDE 99: 18mg/kg/day) or Aroclor 1254 (A1254, a PCB mixture: 10mg/kg/day) administration, from gestational day (GD) 6 to postnatal day (PND) 21, on neurobehavioral development in the CD-1 Swiss mouse. In addition, we investigated whether the administration route affects the emergence or the magnitude of the toxic effects of BDE 99 or A1254. In particular, we compared self-administration, consisting in letting the mouse drink spontaneously the compound dissolved in oil from a syringe, with gavage, consisting in force-feeding a substance by a tube inserted in the mouth and then into the stomach, a procedure reported to be stress-inducing. Both compounds induced hyperactivity, though BDE 99 affected activity profile only during adolescence and A1254 mainly at adulthood. Levels of total circulating thyroxine were decreased by both BDE 99 and A1254 administration, though only in the latter group the decrease was statistically significant. These findings suggest a different neurotoxic action exerted by PBDEs and PCBs. An effect of the administration route, independent from the compound administered, was found on thigmotactic behavior and gavage administration affected pup body weight gain only in the A1254 group, suggesting that the stress induced by gavage procedure may either affect results per se or modulate the detrimental action of selected compounds.
Collapse
Affiliation(s)
- Igor Branchi
- Istituto Superiore di Sanità, Section of Behavioural Neuroscience, Department of Cell Biology and Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The assessment of cognitive functions in rodents represents a critical experimental variable in many research fields, ranging from the basic cognitive neurosciences to psychopharmacology and neurotoxicology. The increasing use of animal behavioral tests as 'assays' for the assessment of effects on learning and memory has resulted in a considerable heterogeneity of data, particularly in the field of behavioral and psycho pharmacology. The limited predictive validity of changes in behavioral performance observed in standard animal tests of learning and memory indicates that a renewed effort to scrutinize the validity of these tests is warranted. In humans, levels of processing (effortful vs. automatic) and categories of information (procedural vs. episodic/declarative) are important variables of cognitive operations. The design of tasks that assess the recall of 'episodic' or 'declarative' information appears to represent a particular challenge for research using laboratory rodents. For example, the hypothesis that changes in inspection time for a previously encountered place or object are based on the recall of declarative/episodic information requires substantiation. In order to generalize findings on the effects of neuronal or pharmacological manipulations on learning and memory, obtained from one species and one task, to other species and other tasks, the mediating role of important sets of variables which influence learning and memory (e.g. attentional, affective) needs to be determined. Similar to the view that a neuronal manipulation (e.g. a lesion) represents a theory of the condition modeled (e.g. a degenerative disorder), an animal behavioral task represents a theory of the behavioral/cognitive process of interest. Therefore, the test of hypotheses regarding the validity of procedures used to assess cognitive functions in animals is an inherent part of the research process.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology, University of Michigan, 4032 East Hall, 525 E. University Avenue, Ann Arbor, MI 48109-1109, USA.
| |
Collapse
|
33
|
Ozcan M, Yilmaz B, King WM, Carpenter DO. Hippocampal long-term potentiation (LTP) is reduced by a coplanar PCB congener. Neurotoxicology 2005; 25:981-8. [PMID: 15474616 DOI: 10.1016/j.neuro.2004.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 03/31/2004] [Indexed: 11/18/2022]
Abstract
Neurotoxicity of polychlorinated biphenyls (PCBs) is usually ascribed to the ortho-substituted congeners. We have examined the effects of acute perfusion of 3,3',4,4'-tetrachlorobiphenyl (PCB 77), a coplanar, dioxin-like congener, on long-term potentiation (LTP) in the Schaffer collateral-CA1 and the mossy fiber-CA3 pathways in mouse hippocampus. LTP in both pathways was blocked by PCB 77, with a threshold effect at a concentration of 1 microM. LTP is a useful model of learning and memory function in which a patterned stimulation of an afferent pathway produces a persistent increase in the efficacy of synaptic transmission. LTP is reduced by PCB mixtures and ortho-substituted congeners at concentrations comparable to those studied here. These observations provide evidence in support of the hypothesis that dioxin-like and non-dioxin-like PCB congeners are equally potent in causing the cognitive decrements seen in children exposed prenatally to PCBs.
Collapse
Affiliation(s)
- Mete Ozcan
- School of Public Health, University at Albany, One University Place, Rensselaer, NY 12144-3456, USA
| | | | | | | |
Collapse
|
34
|
Oshiro WM, Krantz QT, Bushnell PJ. A search for residual behavioral effects of trichloroethylene (TCE) in rats exposed as young adults. Neurotoxicol Teratol 2004; 26:239-51. [PMID: 15019957 DOI: 10.1016/j.ntt.2003.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 12/16/2003] [Accepted: 12/16/2003] [Indexed: 10/26/2022]
Abstract
Trichloroethylene (TCE) is an organic solvent with robust acute effects on the nervous system, but poorly documented long-term effects. This study employed a signal detection task (SDT) to assess the persistence of effects of repeated daily inhalation of TCE on sustained attention in rats. Adult male Long-Evans rats inhaled TCE at 0, 1600, or 2400 ppm, 6 h/day for 20 days (n=8/group) and began learning the SDT 3 weeks later. Rats earned food by pressing one retractable response lever in a signal trial and a second lever in a blank (no signal) trial. TCE did not affect acquisition of the response rule or performance of the SDT after the intertrial interval (ITI) was changed from a constant value to a variable one. Increasing the trial presentation rate reduced accuracy equivalently in all groups. Injections of ethanol (0, 0.5, 1.0, 1.5 g/kg ip) and d-amphetamine (0, 0.1, 0.3, 1.0 mg/kg sc) systematically impaired performance as functions of drug dose. d-Amphetamine (1.0 mg/kg) reduced P(hit) more in the 2400-ppm TCE group than in the other groups. All rats required remedial training to learn a reversal of the response contingencies, which TCE did not interfere with. Thus, a history of exposure to TCE did not significantly alter learning or sustained attention in the absence of drugs. Although ethanol did not differentially affect the TCE groups, the effect of d-amphetamine is consistent with solvent-induced changes in dopaminergic functions in the CNS. Calculations indicated power values of 0.5 to 0.8 to detect main effects of TCE for the three primary endpoints.
Collapse
Affiliation(s)
- Wendy M Oshiro
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, B105-04, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | |
Collapse
|
35
|
Bushnell PJ, Benignus VA, Case MW. Signal detection behavior in humans and rats: a comparison with matched tasks. Behav Processes 2003; 64:121-129. [PMID: 12915002 DOI: 10.1016/s0376-6357(03)00146-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Animal models of human cognitive processes are essential for studying the neurobiological mechanisms of these processes and for developing therapies for intoxication and neurodegenerative diseases. A discrete-trial signal detection task was developed for assessing sustained attention in rats; a previous study showed that rats perform as predicted from the human sustained attention literature. In this study, we measured the behavior of humans in a task formally homologous to the task for rats, varying two of the three parameters previously shown to affect performance in rats. Signal quality was manipulated by varying the increment in the intensity of a lamp. Trial rate was varied among values of 4, 7, and 10 trials/min. Accuracy of signal detection was quantified by the proportion of correct detections of the signal (P(hit)) and the proportion of false alarms (P(fa), i.e. incorrect responses on non-signal trials). As with rats, P(hit) in humans increased with increasing signal intensity whereas P(fa) did not. Like rats, humans were sensitive to the trial rate, though the change in behavior depended on the sex of the subject. These data show that visual signal detection behavior in rats and humans is controlled similarly by two important parameters, and suggest that this task assesses similar processes of sustained attention in the two species.
Collapse
Affiliation(s)
- Philip J. Bushnell
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 27711, Research Triangle Park, NC, USA
| | | | | |
Collapse
|
36
|
Oshiro WM, Krantz QT, Bushnell PJ. Characterizing tolerance to trichloroethylene (TCE): effects of repeated inhalation of TCE on performance of a signal detection task in rats. Neurotoxicol Teratol 2001; 23:617-28. [PMID: 11792530 DOI: 10.1016/s0892-0362(01)00182-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous work showed that rats develop tolerance to the acute behavioral effects of trichloroethylene (TCE) on signal detection if they inhale TCE while performing the task and that this tolerance depends more upon learning than upon changes in metabolism of TCE. The present study sought to characterize this tolerance by assessing signal detection in rats during three phases of TCE exposures. Tolerance was induced in Phase 1 (daily 1-h test sessions concurrent with TCE exposure), extinguished in Phase 2 (daily tests in air with intermittent probe tests in TCE), and reinduced in Phase 3. Original induction in Phase 1 required 2 weeks, whereas reinduction in Phase 3 required less than 1 week. Tolerance persisted for 2 (accuracy) or 8 weeks [response time] in Phase 2 and was resistant to changes in test conditions in Phase 3. The slow induction, gradual extinction, savings during reinduction and lack of disruption from altered test conditions suggest mediation by instrumental learning processes. These data and most other evidence for behavioral tolerance to solvents can be explained by solvent-induced loss of reinforcement.
Collapse
Affiliation(s)
- W M Oshiro
- Neurotoxicology Division, MD-74B, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | |
Collapse
|
37
|
Widholm JJ, Clarkson GB, Strupp BJ, Crofton KM, Seegal RF, Schantz SL. Spatial reversal learning in Aroclor 1254-exposed rats: sex-specific deficits in associative ability and inhibitory control. Toxicol Appl Pharmacol 2001; 174:188-98. [PMID: 11446834 DOI: 10.1006/taap.2001.9199] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been associated with cognitive deficits in children exposed in utero. Cognitive deficits due to PCB exposure have also been documented in animal models, but the underlying behavioral mechanisms responsible for those deficits remain to be elucidated. The current study examined the effects of gestational and lactational exposure to PCBs on spatial discrimination-reversal learning (spatial RL) in rats using standard two-lever operant testing chambers. Pregnant Long-Evans rats (10/dose) received either 0 or 6 mg/kg Aroclor 1254 (A1254) po in corn oil from gestational day 6 to postnatal day 21. One male and one female from each litter were tested on spatial RL beginning at 190-220 days of age. Animals were reinforced with a 45-mg food pellet for pressing the lever associated with the correct spatial location (either left or right). After reaching 85% correct performance for 2 consecutive days, the opposite spatial location was reinforced. Five of these position reversals were given. Male rats exposed to A1254 made significantly more total errors (121.6 +/- 12.5) on the first reversal than controls (90.7 +/- 5.8). In contrast, female rats exposed to A1254 exhibited deficits on the fourth and fifth reversals (23.6 +/- 4.2, 17.0 +/- 2.8 and 36.7 +/- 4.7, 26.8 +/- 2.5 for control and exposed animals, respectively). Response-pattern analyses in the A1254-exposed male and female rats revealed fundamental differences in the underlying behavioral mechanisms responsible for the deficits. A1254-exposed males exhibited an increased tendency to incorrectly respond to the previously correct stimulus (i.e., perseverate) following a reversal while A1254-exposed females exhibited impairments in their ability to make new associations with a reinforced spatial location (i.e., associative deficit). These data provide new insights into the underlying behavioral mechanisms that may be responsible for the spatial learning deficits observed in PCB-exposed rodents and monkeys.
Collapse
Affiliation(s)
- J J Widholm
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The neurological effects of polychlorinated biphenyls (PCBs) have been extensively investigated in humans and in animals. The main focus in human studies has been on the effects in neonates and young children, although studies of adults have also been conducted. A great deal of concern exists that even low levels of PCBs transferred to the fetus across the placenta may induce long-lasting neurological damage. Because PCBs are lipophilic substances, there is also concem that significant amounts might be transferred to nursing infants via breast milk. Studies in humans who consumed large amounts of Great Lakes fish contaminated with environmentally persistent chemicals, including PCBs. have provided evidence that PCBs are important contributors to subtle neurobehavioral alterations observed in newborn children and that some of these alterations persist during childhood. Some consistent observations at birth have been motor immaturity and hyporeflexia and lower psychomotor scores between 6 months and 2 years old. There is preliminary evidence that highly chlorinated PCB congeners, which accumulate in certain fish, are associated with neurobehavioral alterations seen in some newbom children. Subtle neurobehavioral alterations have also been observed in children bom to mothers in the general population with the highest PCB body burdens. Because of the limitations of epidemiological studies, these effects cannot be attributed entirely to PCB exposure. In one general population study, there was strong evidence that dioxins, as well as PCBs, were contributors to the neurobehavioral effects seen in exposed children. Children born to women who accidentally consumed rice oil contaminated with relatively high amounts of PCBs and chlorinated dibenzofurans (CDFs) during pregnancy also had neurodevelopmental changes. Studies in animals support the human data. Neurobehavioral alterations have been also observed in rats and monkeys following prenatal and/or postnatal exposure to commercial Aroclor mixtures, defined experimental congener mixtures, single PCB congeners, and Great Lakes contaminated fish. In addition, monkeys exposed postnatally to PCB mixtures of congeneric composition and concentration similar to that found in human breast milk showed learning deficits long after exposure had ceased. A few other generalizations can be made from the data in animals. It appears that ortho-substituted PCB congeners are more active than coplanar PCBs in modifying cognitive processes. In addition, one effect observed in both rats and monkeys--deficits on delayed spatial alternation--has been known to be induced by exposure to ortho-substituted PCBs, defined experimental mixtures, and commercial Aroclors. Both dioxin-like and non-dioxin-like PCB congeners have been shown to induce neurobehavioral alterations in animals. Changes in levels of neurotransmitters in various brain areas have also been observed in monkeys, rats, and mice. Of all the observed changes, the most consistent has been a decrease in dopamine content in basal ganglia and prefrontal cortex, but further research is needed before specific neurobehavioral deficits can be correlated with PCB-induced changes in specific neurotransmitters in specific brain areas.
Collapse
Affiliation(s)
- O Faroon
- Agency for Toxic Substances and Disease Registry (ATSDR) US Department of Health and Human Services, Atlanta, Georgia 30333, USA.
| | | | | |
Collapse
|
39
|
Geller AM, Bushnell PJ, Rice DC. Behavioral and electrophysiological estimates of visual thresholds in awake rats treated with 3,3',4,4',5-pentachlorobiphenyl (PCB 126). Neurotoxicol Teratol 2000; 22:521-31. [PMID: 10974590 DOI: 10.1016/s0892-0362(00)00067-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Visual thresholds for luminance increments were obtained behaviorally and electrophysiologically from rats exposed to a polychlorinated biphenyl (PCB) during development. Male Long-Evans rats exposed to 0, 0.25, or 1.0 microg/kg/day of 3,3',4,4', 5-pentachlorobiphenyl (PCB 126) through gestation and weaning were trained as adults to perform a signal detection task. Estimates of threshold were derived from psychometric functions for each animal relating the proportion of hits to signal intensity. Thresholds derived under three luminance conditions did not differ significantly among the PCB-treated groups. After behavioral testing was completed, flash-evoked potentials were recorded from dark-adapted awake animals. Peak amplitudes increased linearly over approximately 3 log units of intensity. Extrapolations to 0 amplitude along the linear portion of the amplitude-log intensity functions produced estimates of absolute threshold of -5.44 to -5.53 log cd/m(2)-s. Waveforms recorded from awake animals had a large late negative component that was absent in previously reported anesthetized preparations. Developmental exposure to PCB 126 had no significant effect on absolute threshold or peak amplitudes and latencies.
Collapse
Affiliation(s)
- A M Geller
- Neurotoxicology Division, US EPA, Research Triangle Park, NC 27711, USA.
| | | | | |
Collapse
|
40
|
Inglefield JR, Shafer TJ. Perturbation by the PCB mixture aroclor 1254 of GABA(A) receptor-mediated calcium and chloride responses during maturation in vitro of rat neocortical cells. Toxicol Appl Pharmacol 2000; 164:184-95. [PMID: 10764632 DOI: 10.1006/taap.2000.8898] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GABA(A) receptors are targets of highly chlorinated environmental chemicals and have important roles in developing neurons. As such, we examined effects of polychlorinated biphenyls (PCBs) on GABA(A) receptor responses in primary cultures of rat neocortical cells using fluorescence imaging techniques. Between days in vitro (DIV) 5 and 8, the effect of GABA(A) receptor stimulation switched from excitatory (Ca(2+) entry following a Cl(-) efflux; DIV </=6) to inhibitory (Cl(-) influx without a Ca(2+) rise; DIV >/=7). GABA(A)-receptor-stimulated increases in [Ca(2+)](i) were diminished in a concentration-dependent (1-20 microM) manner following 1 h of exposure to the PCB mixture Aroclor 1254 (A1254), with significant reductions at concentrations as low as 2 microM. A1254 (1-20 microM) also led to concentration-dependent increases in basal [Ca(2+)](i), irrespective of DIV. A1254 (10 and 20 microM) significantly increased basal Ca(2+)(i); the Ca(2+)(i) was elevated to 426 +/- 39 nM by 20 microM A1254 but this concentration was not cytotoxic at 1 h. In addition, the mixture, A1254, as well as ortho- and non-ortho-chlorinated PCB congeners (IUPAC Nos. 4, 15, 126, and 138; 5-10 microM) individually decreased GABA(A)-stimulated Ca(2+)(i) responses and this tended not to depend on increases in basal Ca(2+)(i). In cultures DIV 7 and older, A1254 (20 microM) also impaired inhibitory GABA(A) responses as evidenced by an approximately 50% reduction of GABA(A)-stimulated Cl(-) influx (from approximately 6 to 8 mM net accumulation in controls). The results demonstrate that: (1) GABA(A) receptor increases in Ca(2+)(i) and Cl(-)(i) are inhibited by 2-20 microM A1254, regardless of whether the responses are at excitatory or inhibitory stages of development; (2) Ca(2+)(i) homeostasis in cortical cells is disrupted by 10 microM A1254; yet (3) disruption of excitatory GABA(A) responses by A1254 or PCB congeners does not necessarily depend on impaired Ca(2+) homeostasis. These novel observations suggest that GABA(A) receptor responses are a sensitive target for PCB effects in the rat developing nervous system.
Collapse
Affiliation(s)
- J R Inglefield
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina 27711, USA
| | | |
Collapse
|
41
|
Bushnell PJ, Oshiro WM. Behavioral components of tolerance to repeated inhalation of trichloroethylene (TCE) in rats. Neurotoxicol Teratol 2000; 22:221-9. [PMID: 10758351 DOI: 10.1016/s0892-0362(99)00078-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The possibility that the acute neurotoxic effects of organic solvents change with repeated exposure will affect risk assessment of these pollutants. We observed previously that rats inhaling trichloroethylene (TCE) showed a progressive attenuation of impairment of signal detection behavior across several weeks of intermittent exposure, suggesting the development of tolerance. Here, we explored the development of tolerance to TCE during two weeks of daily exposures, and the degree to which learned behavioral modifications ("behavioral tolerance") could account for the effect. Adult Long-Evans rats were trained to perform a visual signal detection task (SDT) in which a press on one lever yielded food if a visual stimulus (a "signal") had occurred on that trial, and a press on a second lever produced food if no signal had been presented. In two experiments, with 2000 and 2400 ppm of TCE respectively, trained rats were divided into two groups (n = 8/group) with equivalent accuracy and then exposed to TCE in two-phase studies. In Phase 1, one group of rats received daily SDT tests paired with 70-min TCE exposures, followed by 70-min exposures to clean air after testing. The other group received daily SDT tests in clean air, followed by 70-min exposures to TCE (unpaired exposure and testing). All rats thus received the same number and daily sequence of exposures to TCE that differed only in the pairing with SDT testing. Both concentrations of TCE disrupted performance of the paired groups and this disruption abated over the 9 days of exposure. In Phase 2, the pairing of exposure and test conditions were reversed for the two groups. The groups that were shifted from unpaired to paired exposures (Unpaired-Paired groups) showed qualitatively similar patterns of deficit and recovery as did the rats whose tests were initially paired with TCE (Paired-Unpaired groups), indicating that task-specific learning was involved in the development of tolerance. Quantitative differences in the magnitude and duration of the effects of TCE in the two groups indicated that other factors, not specific to the SDT, also contributed to the development tolerance to TCE. Published by Elsevier Science Inc.
Collapse
Affiliation(s)
- P J Bushnell
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|