1
|
Geng B, Pham N, Xue Q, Zheng X. A three-dimensional vocal fold posturing model based on muscle mechanics and magnetic resonance imaging of a canine larynx. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:2597. [PMID: 32359330 DOI: 10.1121/10.0001093] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
In this work, a high-fidelity three-dimensional continuum model of the canine laryngeal framework was developed for simulating laryngeal posturing. By building each muscle and cartilage from magnetic resonance imaging (MRI), the model is highly realistic in anatomy. The muscle mechanics is modeled using the finite-element method. The model was tested by simulating vocal fold postures under systematic activations of individual as well as groups of laryngeal muscles, and it accurately predicted vocal fold posturing parameters reported from in vivo canine larynges. As a demonstration of its application, the model was then used to investigate muscle controls of arytenoid movements, medial surface morphology, and vocal fold abduction. The results show that the traditionally categorized adductor and abductor muscles can have opposite effects on vocal fold posturing, making highly complex laryngeal adjustments in speech and singing possible. These results demonstrate that a realistic comprehensive larynx model is feasible, which is a critical step toward a causal physics-based model of voice production.
Collapse
Affiliation(s)
- Biao Geng
- Department of Mechanical Engineering, University of Maine, Orono, Maine 04473, USA
| | - Ngoc Pham
- Department of Mechanical Engineering, University of Maine, Orono, Maine 04473, USA
| | - Qian Xue
- Department of Mechanical Engineering, University of Maine, Orono, Maine 04473, USA
| | - Xudong Zheng
- Department of Mechanical Engineering, University of Maine, Orono, Maine 04473, USA
| |
Collapse
|
2
|
Finkel S, Veit R, Lotze M, Friberg A, Vuust P, Soekadar S, Birbaumer N, Kleber B. Intermittent theta burst stimulation over right somatosensory larynx cortex enhances vocal pitch-regulation in nonsingers. Hum Brain Mapp 2019; 40:2174-2187. [PMID: 30666737 PMCID: PMC6865578 DOI: 10.1002/hbm.24515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/06/2018] [Accepted: 01/07/2019] [Indexed: 02/02/2023] Open
Abstract
While the significance of auditory cortical regions for the development and maintenance of speech motor coordination is well established, the contribution of somatosensory brain areas to learned vocalizations such as singing is less well understood. To address these mechanisms, we applied intermittent theta burst stimulation (iTBS), a facilitatory repetitive transcranial magnetic stimulation (rTMS) protocol, over right somatosensory larynx cortex (S1) and a nonvocal dorsal S1 control area in participants without singing experience. A pitch-matching singing task was performed before and after iTBS to assess corresponding effects on vocal pitch regulation. When participants could monitor auditory feedback from their own voice during singing (Experiment I), no difference in pitch-matching performance was found between iTBS sessions. However, when auditory feedback was masked with noise (Experiment II), only larynx-S1 iTBS enhanced pitch accuracy (50-250 ms after sound onset) and pitch stability (>250 ms after sound onset until the end). Results indicate that somatosensory feedback plays a dominant role in vocal pitch regulation when acoustic feedback is masked. The acoustic changes moreover suggest that right larynx-S1 stimulation affected the preparation and involuntary regulation of vocal pitch accuracy, and that kinesthetic-proprioceptive processes play a role in the voluntary control of pitch stability in nonsingers. Together, these data provide evidence for a causal involvement of right larynx-S1 in vocal pitch regulation during singing.
Collapse
Affiliation(s)
- Sebastian Finkel
- Institute of Medical Psychology and Behavioral NeurobiologyEberhard Karls University TübingenTübingenGermany
| | - Ralf Veit
- Institute of Medical Psychology and Behavioral NeurobiologyEberhard Karls University TübingenTübingenGermany
| | - Martin Lotze
- Functional Imaging Unit; Center for Diagnostic Radiology and NeuroradiologyUniversity of GreifswaldGreifswaldGermany
| | - Anders Friberg
- Department of Speech, Music and HearingKTH Royal Institute of TechnologyStockholmSweden
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Surjo Soekadar
- Department of Psychiatry and Psychotherapy and Neuroscience Research Center (NWFZ)Charité Campus Mitte (CCM)BerlinGermany
- Department of Psychiatry and PsychotherapyUniversity Hospital of TübingenTübingenGermany
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral NeurobiologyEberhard Karls University TübingenTübingenGermany
- Wyss Center for Bio and NeuroengineeringGenevaSwitzerland
| | - Boris Kleber
- Institute of Medical Psychology and Behavioral NeurobiologyEberhard Karls University TübingenTübingenGermany
- Center for Music in the Brain, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
3
|
Quantitative Measurement of the Three-dimensional Structure of the Vocal Folds and Its Application in Identifying the Type of Cricoarytenoid Joint Dislocation. J Voice 2018; 33:611-619. [PMID: 30146235 DOI: 10.1016/j.jvoice.2018.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/28/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The objective of this study was to quantitatively measure the three-dimensional (3D) structure of the vocal folds in normal subjects and in patients with different types of cricoarytenoid dislocation. We will analyze differences in parameters between the groups and also determine if any morphologic parameters possess utility in distinguishing the type and the degree of cricoarytenoid dislocation. STUDY DESIGN This retrospective study was conducted using university hospital data. METHODS Subjects' larynges were scanned using dual-source computed tomography (CT). The normal subjects were divided into deep-inhalation and phonation groups, and patients with cricoarytenoid joint dislocation were divided into anterior-dislocation and posterior-dislocation groups. Membranous vocal fold length and width were measured directly on the thin-section CT images. Vocal fold and airway 3D models were constructed using Mimics software and used in combination to measure vocal fold thickness, subglottal convergence angle, and oblique angle of the vocal folds. RESULTS The phonation group displayed a greater vocal fold width, greater oblique angle, thinner vocal folds, and a smaller subglottal convergence angle than those of the deep-inhalation group (P < 0.05). The anterior-dislocation group displayed a smaller oblique angle and subglottal convergence angle than the posterior-dislocation group (P < 0.05). CONCLUSIONS The 3D structure of the vocal folds during deep inhalation and phonation can be accurately measured using dual-source CT and laryngeal 3D reconstruction. As the anterior-dislocation group yielded negative values for the oblique angle and the posterior-dislocation group yielded positive values, the oblique angle of the vocal folds may possess utility for distinguishing the type and for quantitatively determining the degree of cricoarytenoid dislocation.
Collapse
|
4
|
Moisik SR, Gick B. The Quantal Larynx: The Stable Regions of Laryngeal Biomechanics and Implications for Speech Production. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2017; 60:540-560. [PMID: 28241199 DOI: 10.1044/2016_jslhr-s-16-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
PURPOSE Recent proposals suggest that (a) the high dimensionality of speech motor control may be reduced via modular neuromuscular organization that takes advantage of intrinsic biomechanical regions of stability and (b) computational modeling provides a means to study whether and how such modularization works. In this study, the focus is on the larynx, a structure that is fundamental to speech production because of its role in phonation and numerous articulatory functions. METHOD A 3-dimensional model of the larynx was created using the ArtiSynth platform (http://www.artisynth.org). This model was used to simulate laryngeal articulatory states, including inspiration, glottal fricative, modal prephonation, plain glottal stop, vocal-ventricular stop, and aryepiglotto-epiglottal stop and fricative. RESULTS Speech-relevant laryngeal biomechanics is rich with "quantal" or highly stable regions within muscle activation space. CONCLUSIONS Quantal laryngeal biomechanics complement a modular view of speech control and have implications for the articulatory-biomechanical grounding of numerous phonetic and phonological phenomena.
Collapse
Affiliation(s)
- Scott Reid Moisik
- Division of Linguistics and Multilingual Studies, Nanyang Technological University, SingaporeThe Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Bryan Gick
- Department of Linguistics, University of British Columbia, Vancouver, CanadaHaskins Laboratories, New Haven, CT
| |
Collapse
|
5
|
Control of the glottal configuration in ex vivo human models: quantitative anatomy for clinical and experimental practices. Surg Radiol Anat 2016; 39:257-262. [PMID: 27600801 DOI: 10.1007/s00276-016-1738-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The objective of this paper was to identify the determining factors of the glottal prephonatory configuration from the point of view of the resulting muscular actions (i.e., arytenoids adduction, membranous vocal fold adduction, and tension). MATERIALS AND METHODS 21 human non-embalmed excised larynges (12 females and 9 males) were studied. Experiment A (11 larynges) studied four conditions of adduction of the vocal folds and arytenoids. Experiment B (10 larynges) studied the effect of cricothyroid approximation on the vocal fold length and the cricothyroid angle. RESULTS Experiment A: The mean glottal area significantly decreased from 41.2 mm2 mean with no adduction, to 10.2 mm2 mean with arytenoid adduction, to 9.2 mm2 with membranous vocal fold adduction, and down to 1.1 mm2 with the combination of arytenoid and membranous adduction. The effect of the task was statistically significant. Experiment B: The length of vocal folds increased from 13.61 mm median to 14.48 mm median, and the cricothyroid angle decreased of 10.05 median along with cricothyroid approximation. DISCUSSION The results of experiment A emphasize the sub-division of adductor intrinsic muscles in arytenoids adductors (i.e., LCA and IA), and membranous vocal fold adductor (i.e., TA). The results of experiment B quantify the effect of cricothyroid approximation on the vocal folds length. The implications of these results can be useful in both clinical practice and experimental studies.
Collapse
|
6
|
Kawamoto-Hirano A, Honkura Y, Shibata S, Abe SI, Murakami G, Katori Y. Cricoarytenoid Articulation in Elderly Japanese With Special Reference to Morphology of the Synovial Tissue. Ann Otol Rhinol Laryngol 2015; 125:219-27. [DOI: 10.1177/0003489415606450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Objective: To clarify composite fibers and cells in the synovial tissues of the cricoarytenoid joint (CA joint). Methods: Routine histology and immunohistrochemistry using sagittal or nearly sagittal sections obtained from 18 elderly cadaveric specimens. Results: The CA joint capsule was thin and contained few elastic fibers. A limited supportive ligament, namely, a thickened fascia of the posterior cricoarytenoid muscles, was sometimes evident on the lateral aspect of the CA joint. However, even in the weaker medial aspect of the joint, no marked destruction of the synovial tissues was found. The CA joint always contained synovial folds—a short medial fold and long lateral folds—but these contained no or few macrophages, lymphocytes, and blood capillaries. In 2 exceptional specimens showing inflammatory cell infiltration in the submucosal tissue of the larynx, the macrophage-rich area extended toward the capsule and medial synovial fold. Conclusions: The lateral aspect of the CA joint was likely to be supported mechanically by the muscle-associated tissues. Strong support of the arytenoid by muscles might reduce the degree of CA joint injury with age. However, some patients with hoarseness due to mucosal inflammation of the larynx might have accompanying synovitis and subsequent cartilage injury in the CA joint.
Collapse
Affiliation(s)
- Ai Kawamoto-Hirano
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunichi Shibata
- Department of Oral Anatomy, School of Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shin-ichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Gen Murakami
- Division of Internal Medicine, Iwamizawa Asuka Hospital, Iwamizawa, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Yang A, Berry DA, Kaltenbacher M, Döllinger M. Three-dimensional biomechanical properties of human vocal folds: parameter optimization of a numerical model to match in vitro dynamics. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:1378-90. [PMID: 22352511 PMCID: PMC3292609 DOI: 10.1121/1.3676622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 05/24/2023]
Abstract
The human voice signal originates from the vibrations of the two vocal folds within the larynx. The interactions of several intrinsic laryngeal muscles adduct and shape the vocal folds to facilitate vibration in response to airflow. Three-dimensional vocal fold dynamics are extracted from in vitro hemilarynx experiments and fitted by a numerical three-dimensional-multi-mass-model (3DM) using an optimization procedure. In this work, the 3DM dynamics are optimized over 24 experimental data sets to estimate biomechanical vocal fold properties during phonation. Accuracy of the optimization is verified by low normalized error (0.13 ± 0.02), high correlation (83% ± 2%), and reproducible subglottal pressure values. The optimized, 3DM parameters yielded biomechanical variations in tissue properties along the vocal fold surface, including variations in both the local mass and stiffness of vocal folds. That is, both mass and stiffness increased along the superior-to-inferior direction. These variations were statistically analyzed under different experimental conditions (e.g., an increase in tension as a function of vocal fold elongation and an increase in stiffness and a decrease in mass as a function of glottal airflow). The study showed that physiologically relevant vocal fold tissue properties, which cannot be directly measured during in vivo human phonation, can be captured using this 3D-modeling technique.
Collapse
Affiliation(s)
- Anxiong Yang
- Department of Phoniatrics and Pediatric Audiology, University Hospital Erlangen, Medical School, Bohlenplatz 21, 91054 Erlangen, Germany.
| | | | | | | |
Collapse
|
8
|
Döllinger M, Kobler J, Berry DA, Mehta DD, Luegmair G, Bohr C. Experiments on Analysing Voice Production: Excised (Human, Animal) and In Vivo (Animal) Approaches. Curr Bioinform 2011; 6:286-304. [PMID: 26581597 DOI: 10.2174/157489311796904673] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experiments on human and on animal excised specimens as well as in vivo animal preparations are so far the most realistic approaches to simulate the in vivo process of human phonation. These experiments do not have the disadvantage of limited space within the neck and enable studies of the actual organ necessary for phonation, i.e., the larynx. The studies additionally allow the analysis of flow, vocal fold dynamics, and resulting acoustics in relation to well-defined laryngeal alterations. PURPOSE OF REVIEW This paper provides an overview of the applications and usefulness of excised (human/animal) specimen and in vivo animal experiments in voice research. These experiments have enabled visualization and analysis of dehydration effects, vocal fold scarring, bifurcation and chaotic vibrations, three-dimensional vibrations, aerodynamic effects, and mucosal wave propagation along the medial surface. Quantitative data will be shown to give an overview of measured laryngeal parameter values. As yet, a full understanding of all existing interactions in voice production has not been achieved, and thus, where possible, we try to indicate areas needing further study. RECENT FINDINGS A further motivation behind this review is to highlight recent findings and technologies related to the study of vocal fold dynamics and its applications. For example, studies of interactions between vocal tract airflow and generation of acoustics have recently shown that airflow superior to the glottis is governed by not only vocal fold dynamics but also by subglottal and supraglottal structures. In addition, promising new methods to investigate kinematics and dynamics have been reported recently, including dynamic optical coherence tomography, X-ray stroboscopy and three-dimensional reconstruction with laser projection systems. Finally, we touch on the relevance of vocal fold dynamics to clinical laryngology and to clinically-oriented research.
Collapse
Affiliation(s)
- Michael Döllinger
- University Hospital Erlangen, Medical School, Laboratory for Computational Medicine, Department for Phoniatrics and Pediatric Audiology, Bohlenplatz 21, 91054 Erlangen, Germany
| | - James Kobler
- Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital, 620 Thier Building, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - David A Berry
- The Laryngeal Dynamics Laboratory, Division of Head & Neck Surgery, UCLA School of Medicine, 31-24 Rehab Center, 1000 Veteran Ave., Los Angeles, CA, 90095-1794, USA
| | - Daryush D Mehta
- Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital, One Bowdoin Square, 11 Floor, Boston, Massachusetts 02114, USA
| | - Georg Luegmair
- University Hospital Erlangen, Medical School, Laboratory for Computational Medicine, Department for Phoniatrics and Pediatric Audiology, Bohlenplatz 21, 91054 Erlangen, Germany
| | - Christopher Bohr
- University Hospital Erlangen, Medical School, ENT-Hospital, Waldstrasse 1, 91054 Erlangen, Germany
| |
Collapse
|
9
|
Yang A, Stingl M, Berry DA, Lohscheller J, Voigt D, Eysholdt U, Dollinger M. Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:948-64. [PMID: 21877808 PMCID: PMC3195891 DOI: 10.1121/1.3605551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
With the use of an endoscopic, high-speed camera, vocal fold dynamics may be observed clinically during phonation. However, observation and subjective judgment alone may be insufficient for clinical diagnosis and documentation of improved vocal function, especially when the laryngeal disease lacks any clear morphological presentation. In this study, biomechanical parameters of the vocal folds are computed by adjusting the corresponding parameters of a three-dimensional model until the dynamics of both systems are similar. First, a mathematical optimization method is presented. Next, model parameters (such as pressure, tension and masses) are adjusted to reproduce vocal fold dynamics, and the deduced parameters are physiologically interpreted. Various combinations of global and local optimization techniques are attempted. Evaluation of the optimization procedure is performed using 50 synthetically generated data sets. The results show sufficient reliability, including 0.07 normalized error, 96% correlation, and 91% accuracy. The technique is also demonstrated on data from human hemilarynx experiments, in which a low normalized error (0.16) and high correlation (84%) values were achieved. In the future, this technique may be applied to clinical high-speed images, yielding objective measures with which to document improved vocal function of patients with voice disorders.
Collapse
Affiliation(s)
- Anxiong Yang
- Department of Phoniatrics and Pediatric Audiology, University Hospital Erlangen, Medical School, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Norris BK, Schweinfurth JM. Arytenoid dislocation: An analysis of the contemporary literature. Laryngoscope 2011; 121:142-6. [PMID: 21181984 DOI: 10.1002/lary.21276] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES/HYPOTHESIS To discuss the incidence, diagnosis, laryngeal findings, and management of arytenoid dislocation as a separate entity from vocal fold paralysis. STUDY DESIGN Literature review. METHODS A contemporary review of the literature was performed by searching the terms arytenoid cartilage dislocation and subluxation in various combinations. Articles were analyzed and selected based on relevance and content. RESULTS Arytenoid dislocation is described as an uncommon laryngeal finding associated with intubation or blunt laryngeal trauma. The majority of recent publications are case reports or small case series. Diagnosis of arytenoid dislocation with flexible laryngoscopy, helical computed tomography, videostroboscopy, and laryngeal electromyography is recommended. In most reported cases, diagnosis has been made based on the position of the arytenoid at laryngoscopy. Reduction and repositioning of the arytenoid cartilage is reported with limited success noted with delayed diagnosis. Speech therapy may also be a beneficial treatment option. CONCLUSIONS Although arytenoid dislocation is reported in the literature, the body of available evidence fails to sufficiently differentiate it as a separate entity from unilateral vocal fold paralysis. Flexible laryngoscopy is inadequate as a standalone procedure to distinguish arytenoid dislocation from laryngeal nerve injury.
Collapse
Affiliation(s)
- Byron K Norris
- Department of Otolaryngology and Communicative Sciences, University of Mississippi, Jackson, Mississippi, USA.
| | | |
Collapse
|
11
|
Perkins JD, Raffetto J, Thompson C, Weller R, Piercy RJ, Pfau T. Three-dimensional biomechanics of simulated laryngeal abduction in horses. Am J Vet Res 2010; 71:1003-10. [DOI: 10.2460/ajvr.71.9.1003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Mau T, Weinheimer KT. Three-dimensional arytenoid movement induced by vocal fold injections. Laryngoscope 2010; 120:1563-8. [DOI: 10.1002/lary.20973] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Titze IR, Hunter EJ. A two-dimensional biomechanical model of vocal fold posturing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:2254-60. [PMID: 17471739 PMCID: PMC6371396 DOI: 10.1121/1.2697573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The forces and torques governing effective two-dimensional (2D) translation and rotation of the laryngeal cartilages (cricoid, thyroid, and arytenoids) are quantified on the basis of more complex three-dimensional movement. The motions between these cartilages define the elongation and adduction (collectively referred to as posturing) of the vocal folds. Activations of the five intrinsic laryngeal muscles, the cricothyroid, thyroarytenoid, lateral cricoarytenoid, posterior cricoarytenoid, and interarytenoid are programmed as inputs, in isolation and in combination, to produce the dynamics of 2D posturing. Parameters for the muscles are maximum active stress, passive stress, activation time, contraction time, and maximum shortening velocity. The model accepts measured electromyographic signals as inputs. A repeated adductory-abductory gesture in the form /hi-hi-hi-hi-hi/ is modeled with electromyographic inputs. Movement and acoustic outputs are compared between simulation and measurement.
Collapse
Affiliation(s)
- Ingo R Titze
- Department of Speech Pathology and Audiology, The University of Iowa, Iowa City 52242, USA.
| | | |
Collapse
|
14
|
Abstract
Vocal fold abduction/adduction posturing is key to phonation control. As biomechanical models of the larynx increase in complexity, there is a need to verify them with laboratory data. To help experimental cross-validation of models, ranges of vocal process displacement were reviewed and combined. Although general inter-study agreement was found, there was substantial variation. Using a model of vocal fold posturing, insights were uncovered that could not otherwise be made; best-practice guidelines and research avenues for future studies of vocal posturing were also outlined.
Collapse
Affiliation(s)
| | - Ingo R. Titze
- National Center for Voice and Speech, Department of Speech Pathology and Audiology, The University of Iowa, Iowa City, Iowa 52242, and National Center for Voice and Speech, The Denver Center for the Performing Arts, Denver, Colorado 80204
| |
Collapse
|
15
|
Poletto CJ, Verdun LP, Strominger R, Ludlow CL. Correspondence between laryngeal vocal fold movement and muscle activity during speech and nonspeech gestures. J Appl Physiol (1985) 2004; 97:858-66. [PMID: 15133000 PMCID: PMC2376825 DOI: 10.1152/japplphysiol.00087.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To better understand the role of each of the laryngeal muscles in producing vocal fold movement, activation of these muscles was correlated with laryngeal movement during different tasks such as sniff, cough or throat clear, and speech syllable production. Four muscles [the posterior cricoarytenoid, lateral cricoarytenoid, cricothyroid (CT), and thyroarytenoid (TA)] were recorded with bipolar hooked wire electrodes placed bilaterally in four normal subjects. A nasoendoscope was used to record vocal fold movement while simultaneously recording muscle activity. Muscle activation level was correlated with ipsilateral vocal fold angle for vocal fold opening and closing. Pearson correlation coefficients and their statistical significance were computed for each trial. Significant effects of muscle (P < or = 0.0005) and task (P = 0.034) were found on the r (transformed to Fisher's Z') values. All of the posterior cricoarytenoid recordings related significantly with vocal opening, whereas CT activity was significantly correlated with opening only during sniff. The TA and lateral cricoarytenoid activities were significantly correlated with vocal fold closing during cough. During speech, the CT and TA activity correlated with both opening and closing. Laryngeal muscle patterning to produce vocal fold movement differed across tasks; reciprocal muscle activity only occurred on cough, whereas speech and sniff often involved simultaneous contraction of muscle antagonists. In conclusion, different combinations of muscle activation are used for biomechanical control of vocal fold opening and closing movements during respiratory, airway protection, and speech tasks.
Collapse
Affiliation(s)
- Christopher J Poletto
- Laryngeal and Speech Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892-1416, USA.
| | | | | | | |
Collapse
|