1
|
Mori Y, Ohta A, Kuhara A. Molecular, neural, and tissue circuits underlying physiological temperature responses in Caenorhabditis elegans. Neurosci Res 2025; 214:23-31. [PMID: 39547476 DOI: 10.1016/j.neures.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 11/17/2024]
Abstract
Temperature is a constant environmental factor on Earth, acting as a continuous stimulus that organisms must constantly perceive to survive. Organisms possess neural systems that receive various types of environmental information, including temperature, and mechanisms for adapting to their surroundings. This paper provides insights into the neural circuits and intertissue networks involved in physiological temperature responses, specifically the mechanisms of "cold tolerance" and "temperature acclimation," based on an analysis of the nematode Caenorhabditis elegans as an experimental system for neural and intertissue information processing.
Collapse
Affiliation(s)
- Yukina Mori
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| | - Akane Ohta
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
2
|
Serey M, Retamales E, Ibañez G, Riadi G, Orio P, Castillo JP, Calixto A. Interspecies relationships of natural amoebae and bacteria with C. elegans create environments propitious for multigenerational diapause. mSystems 2025; 10:e0156624. [PMID: 40111038 PMCID: PMC12013276 DOI: 10.1128/msystems.01566-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
The molecular and physical communication within the microscopic world underpins the entire web of life as we know it. However, how organisms, such as bacteria, amoebae, and nematodes-all ubiquitous-interact to sustain their ecological niches, particularly how their associations generate and influence behavior, remains largely unknown. In this study, we developed a framework to examine long-term interactions between microbes and animals. From soil samples collected in a temperate, semi-arid climate, we isolated culturable bacterial genera, including Comamonas, Stenotrophomonas, Chryseobacterium, and Rhodococcus, as well as the amoeba, Tetramitus. This microbial ensemble was fed to the nematode C. elegans in experiments spanning over 20 nematode generations to assess developmental rate, dauer entry, fertility, and feeding behavior. Our findings reveal that microbes and nematodes create a stable environment where no species are exhausted, and where nematodes enter diapause after several generations. We have termed this phenomenon dauer formation on naturally derived ensembles (DaFNE). DaFNE occurs across a range of optimal temperatures, from 15°C to 25°C, and is dependent on the nematode's pheromone biosynthesis pathway. The phenomenon intensifies with each passing generation, exhibiting both strong intergenerational and transgenerational effects. Moreover, the RNA interference (RNAi) pathway-both systemic and cell-autonomous-is essential for initiating DaFNE, while heritable RNAi effectors are required for its transgenerational effects. These findings indicate that RNA-mediated communication plays a critical role in bacterially induced behaviors in natural environments.IMPORTANCEMicroscopic nematodes are the most abundant multicellular animals on Earth, which implies they have evolved highly successful relationships with their associated microbiota. However, little is known about how nematode behavior is influenced within complex ecosystems where multiple organisms interact. In this study, we used four bacteria and an amoeba from a natural ecosystem to explore behavioral responses in the nematode Caenorhabditis elegans over an 8 week period. The most striking finding was the nematodes' commitment to a form of hibernation known as diapause. We have termed this phenomenon dauer formation on naturally derived ensembles (DaFNE). Our results suggest that nematodes in nature may frequently enter hibernation as a result of communication with their microbial partners. DaFNE requires the production of nematode pheromones, as well as the RNA interference pathway, indicating that the RNA communication between nematodes and their microbiota may play a critical role. Interestingly, at higher temperatures, fewer animals are needed to trigger DaFNE, suggesting that a mild increase in temperature may promote diapause in natural environments without causing stress to the animals.
Collapse
Affiliation(s)
- Marcela Serey
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Valparaíso Region, Chile
| | - Esteban Retamales
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Valparaíso Region, Chile
| | | | - Gonzalo Riadi
- Department of Bioinformatics, ANID–Millennium Science Initiative Program Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, University of Talca, Talca, Maule Region, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Valparaíso Region, Chile
| | - Juan P. Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Valparaíso Region, Chile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Valparaíso Region, Chile
| |
Collapse
|
3
|
Chai CM, Taylor SR, Tischbirek CH, Wong WR, Cai L, Miller DM, Sternberg PW. The forkhead transcription factor FKH-7/FOXP acts in chemosensory neurons to regulate developmental decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638733. [PMID: 40027766 PMCID: PMC11870486 DOI: 10.1101/2025.02.17.638733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Autism is a complex neurodevelopmental disorder with many associated genetic factors, including the forkhead transcription factor FOXP1. Although FOXP1's neuronal role is well-studied, the specific molecular consequences of different FOXP1 pathogenic variants in physiologically-relevant contexts are unknown. Here we ascribe the first function to Caenorhabditis elegans FKH-7/FOXP, which acts in two chemosensory neuron classes to promote the larval decision to enter the alternative, developmentally-arrested dauer life stage. We demonstrate that human FOXP1 can functionally substitute for C. elegans FKH-7 in these neurons and that engineering analogous FOXP1 hypomorphic missense mutations in the endogenous fkh-7 locus also impairs developmental decision-making. In a fkh-7/FOXP1 missense variant, single-cell transcriptomics identifies downregulated expression of autism-associated kcnl-2/KCNN2 calcium-activated potassium channel in a serotonergic sensory neuron. Our findings establish a novel framework linking two evolutionarily-conserved autism-associated genes for deeper characterization of variant-specific molecular pathology at single neuron resolution in the context of a developmental decision-making paradigm.
Collapse
Affiliation(s)
- Cynthia M. Chai
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
- Present address: Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY 10027, USA
| | - Seth R. Taylor
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Present address: Department of Cell Biology & Physiology, Brigham Young University, 4005 Life Sciences Building, Provo, UT 84602, USA
| | - Carsten H. Tischbirek
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Wan-Rong Wong
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Long Cai
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - David M. Miller
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Program in Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Paul W. Sternberg
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
- Lead contact
| |
Collapse
|
4
|
Ohta A, Morimoto C, Kamino S, Tezuka M. Temperature Acclimation and Cold Tolerance in Caenorhabditis Elegans are Regulated by Multiorgan Coordination. Zoolog Sci 2025; 42. [PMID: 39932747 DOI: 10.2108/zs240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/02/2024] [Indexed: 05/08/2025]
Abstract
To ensure survival and reproduction, organisms must continually adapt to environmental fluctuations, such as temperature, humidity, oxygen level, and salinity. Particularly, temperature profoundly influences biochemical reactions crucial for survival. Here, we present the mechanisms employed by the nematode Caenorhabditis elegans to anticipate and respond to cold temperatures. Our findings reveal that temperature is detected by specific neurons linked to various physiological processes in the gut, spermatheca, and muscles. Notably, the gut, a primary fat storage organ in C. elegans, regulates fat mobilization and accumulation in a temperature-dependent manner, thereby contributing to temperature adaptation. Furthermore, normal spermatogenetic mechanisms influence cold tolerance by modulating the responsiveness of thermosensory neurons to temperature changes. Considering our results together with recent reports, we suggest that a polyU-specific endoribonuclease expressed in muscle cells plays a role in cold tolerance through a non-cell-autonomous mechanism, possibly involving transportation intertissues. Thus, understanding cold tolerance and temperature acclimation in C. elegans can provide valuable insights on systemic physiological regulation in response to temperature fluctuations. Moreover, they could help elucidate the actions of thermosensory neurons and their downstream neuronal circuits or neuropeptides on the peripheral organs.
Collapse
Affiliation(s)
- Akane Ohta
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan,
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| | - Chinatsu Morimoto
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| | - Seiya Kamino
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| | - Moe Tezuka
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
5
|
Carstensen HR, Hong RL. Dafadine Does Not Promote Dauer Development in Pristionchus pacificus. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001470. [PMID: 39916877 PMCID: PMC11799934 DOI: 10.17912/micropub.biology.001470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
In response to unfavorable conditions, nematodes develop into the stress-resistant dauer larvae. Under favorable conditions, many nematodes are known to synthesize dafachronic acids (DAs) that bind to the conserved nuclear hormone receptor DAF-12 to suppress dauer development. However, the enzymes involved in the production of DAs have not been thoroughly investigated in Pristionchus pacificus . Here we show that the cytochrome P450 inhibitor Dafadine-A, which suppresses DAF-9 in DA biosynthesis in C. elegans and other nematode species, does not cause constitutive dauer formation or gonad migration defects in P. pacificus wild type. Instead, Dafadine-A may slightly reduce P. pacificus growth rate.
Collapse
Affiliation(s)
- Heather R. Carstensen
- Biology Department, California State University, Northridge, Northridge, California, United States
| | - Ray L. Hong
- Biology Department, California State University, Northridge, Northridge, California, United States
| |
Collapse
|
6
|
Zhu H, Bruck-Haimson R, Zaretsky A, Cohen I, Falk R, Achache H, Tzur YB, Cohen E. A nucleolar mechanism suppresses organismal proteostasis by modulating TGFβ/ERK signalling. Nat Cell Biol 2025; 27:87-102. [PMID: 39753948 DOI: 10.1038/s41556-024-01564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/21/2024] [Indexed: 01/18/2025]
Abstract
The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer's disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases. Yet the identification of proteostasis regulators is needed to assess the feasibility of this approach. Here we report that knocking down the activity of the nucleolar FIB-1-NOL-56 complex protects model nematodes from proteotoxicity of the Alzheimer's disease-causing amyloid-β peptide and of abnormally long poly-glutamine stretches. This mechanism promotes proteostasis across tissues by modulating the activity of TGFβ signalling and by enhancing proteasome activity. Our findings point at research avenues towards the development of proteostasis-promoting therapies for neurodegenerative maladies.
Collapse
Affiliation(s)
- Huadong Zhu
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Bruck-Haimson
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam Zaretsky
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irit Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roni Falk
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanna Achache
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonatan B Tzur
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
7
|
Wang Z, Zhang Q, Jiang Y, Zhou J, Tian Y. ASI-RIM neuronal axis regulates systemic mitochondrial stress response via TGF-β signaling cascade. Nat Commun 2024; 15:8997. [PMID: 39426950 PMCID: PMC11490647 DOI: 10.1038/s41467-024-53093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Morphogens play a critical role in coordinating stress adaptation and aging across tissues, yet their involvement in neuronal mitochondrial stress responses and systemic effects remains unclear. In this study, we reveal that the transforming growth factor beta (TGF-β) DAF-7 is pivotal in mediating the intestinal mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans under neuronal mitochondrial stress. Two ASI sensory neurons produce DAF-7, which targets DAF-1/TGF-β receptors on RIM interneurons to orchestrate a systemic UPRmt response. Remarkably, inducing mitochondrial stress specifically in ASI neurons activates intestinal UPRmt, extends lifespan, enhances pathogen resistance, and reduces both brood size and body fat levels. Furthermore, dopamine positively regulates this UPRmt activation, while GABA acts as a systemic suppressor. This study uncovers the intricate mechanisms of systemic mitochondrial stress regulation, emphasizing the vital role of TGF-β in metabolic adaptations that are crucial for organismal fitness and aging during neuronal mitochondrial stress.
Collapse
Affiliation(s)
- Zihao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yayun Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Jun Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100093, Beijing, China.
| |
Collapse
|
8
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Lee H, Boor SA, Hilbert ZA, Meisel JD, Park J, Wang Y, McKeown R, Fischer SEJ, Andersen EC, Kim DH. Genetic variants that modify neuroendocrine gene expression and foraging behavior of C. elegans. SCIENCE ADVANCES 2024; 10:eadk9481. [PMID: 38865452 PMCID: PMC11168454 DOI: 10.1126/sciadv.adk9481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
The molecular mechanisms underlying diversity in animal behavior are not well understood. A major experimental challenge is determining the contribution of genetic variants that affect neuronal gene expression to differences in behavioral traits. In Caenorhabditis elegans, the neuroendocrine transforming growth factor-β ligand, DAF-7, regulates diverse behavioral responses to bacterial food and pathogens. The dynamic neuron-specific expression of daf-7 is modulated by environmental and endogenous bacteria-derived cues. Here, we investigated natural variation in the expression of daf-7 from the ASJ pair of chemosensory neurons. We identified common genetic variants in gap-2, encoding a Ras guanosine triphosphatase (GTPase)-activating protein homologous to mammalian synaptic Ras GTPase-activating protein, which modify daf-7 expression cell nonautonomously and promote exploratory foraging behavior in a partially DAF-7-dependent manner. Our data connect natural variation in neuron-specific gene expression to differences in behavior and suggest that genetic variation in neuroendocrine signaling pathways mediating host-microbe interactions may give rise to diversity in animal behavior.
Collapse
Affiliation(s)
- Harksun Lee
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sonia A. Boor
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zoë A. Hilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua D. Meisel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jaeseok Park
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sylvia E. J. Fischer
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Erik C. Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21212, USA
| | - Dennis H. Kim
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Ciccarelli EJ, Wing Z, Bendelstein M, Johal RK, Singh G, Monas A, Savage-Dunn C. TGF-β ligand cross-subfamily interactions in the response of Caenorhabditis elegans to a bacterial pathogen. PLoS Genet 2024; 20:e1011324. [PMID: 38875298 PMCID: PMC11210861 DOI: 10.1371/journal.pgen.1011324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/27/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
The Transforming Growth Factor beta (TGF-β) family consists of numerous secreted peptide growth factors that play significant roles in cell function, tissue patterning, and organismal homeostasis, including wound repair and immunity. Typically studied as homodimers, these ligands have the potential to diversify their functions through ligand interactions that may enhance, repress, or generate novel functions. In the nematode Caenorhabditis elegans, there are only five TGF-β ligands, providing an opportunity to dissect ligand interactions in fewer combinations than in vertebrates. As in vertebrates, these ligands can be divided into bone morphogenetic protein (BMP) and TGF-β/Activin subfamilies that predominantly signal through discrete signaling pathways. The BMP subfamily ligand DBL-1 has been well studied for its role in the innate immune response in C. elegans. Here we show that all five TGF-β ligands play a role in survival on bacterial pathogens. We also demonstrate that multiple TGF-β ligand pairs act nonredundantly as part of this response. We show that the two BMP-like ligands-DBL-1 and TIG-2-function independently of each other in the immune response, while TIG-2/BMP and the TGF-β/Activin-like ligand TIG-3 function together. Structural modeling supports the potential for TIG-2 and TIG-3 to form heterodimers. Additionally, we identify TIG-2 and TIG-3 as members of a rare subset of TGF-β ligands lacking the conserved cysteine responsible for disulfide linking mature dimers. Finally, we show that canonical DBL-1/BMP receptor and Smad signal transducers function in the response to bacterial pathogens, while components of the DAF-7 TGF-β/Activin signaling pathway do not play a major role in survival. These results demonstrate a novel potential for BMP and TGF-β/Activin subfamily ligands to interact and may provide a mechanism for distinguishing the developmental and homeostatic functions of these ligands from an acute response such as the innate immune response to bacterial pathogens.
Collapse
Affiliation(s)
- Emma Jo Ciccarelli
- Department of Biology, Queens College, City University of New York, New York City, New York, United States of America
- PhD Program in Biology, The Graduate Center, City University of New York, New York City, New York, United States of America
| | - Zachary Wing
- Department of Biology, Queens College, City University of New York, New York City, New York, United States of America
| | - Moshe Bendelstein
- Department of Biology, Queens College, City University of New York, New York City, New York, United States of America
| | - Ramandeep Kaur Johal
- Department of Biology, Queens College, City University of New York, New York City, New York, United States of America
| | - Gurjot Singh
- Department of Biology, Queens College, City University of New York, New York City, New York, United States of America
| | - Ayelet Monas
- Department of Biology, Queens College, City University of New York, New York City, New York, United States of America
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, New York City, New York, United States of America
- PhD Program in Biology, The Graduate Center, City University of New York, New York City, New York, United States of America
| |
Collapse
|
11
|
Hashizume O, Kawabe T, Funato Y, Miki H. Intestinal Mg 2+ accumulation induced by cnnm mutations decreases the body size by suppressing TORC2 signaling in Caenorhabditis elegans. Dev Biol 2024; 509:59-69. [PMID: 38373693 DOI: 10.1016/j.ydbio.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Mg2+ is a vital ion involved in diverse cellular functions by forming complexes with ATP. Intracellular Mg2+ levels are tightly regulated by the coordinated actions of multiple Mg2+ transporters, such as the Mg2+ efflux transporter, cyclin M (CNNM). Caenorhabditis elegans (C. elegans) worms with mutations in both cnnm-1 and cnnm-3 exhibit excessive Mg2+ accumulation in intestinal cells, leading to various phenotypic abnormalities. In this study, we investigated the mechanism underlying the reduction in body size in cnnm-1; cnnm-3 mutant worms. RNA interference (RNAi) of gtl-1, which encodes a Mg2+-intake channel in intestinal cells, restored the worm body size, confirming that this phenotype is due to excessive Mg2+ accumulation. Moreover, RNAi experiments targeting body size-related genes and analyses of mutant worms revealed that the suppression of the target of rapamycin complex 2 (TORC2) signaling pathway was involved in body size reduction, resulting in downregulated DAF-7 expression in head ASI neurons. As the DAF-7 signaling pathway suppresses dauer formation under stress, cnnm-1; cnnm-3 mutant worms exhibited a greater tendency to form dauer upon induction. Collectively, our results revealed that excessive accumulation of Mg2+ repressed the TORC2 signaling pathway in C. elegans worms and suggest the novel role of the DAF-7 signaling pathway in the regulation of their body size.
Collapse
Affiliation(s)
- Osamu Hashizume
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan; Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomofumi Kawabe
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yosuke Funato
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan; Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Miki
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan; Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Abstract
Numerous examples of different phenotypic outcomes in response to varying environmental conditions have been described across phyla, from plants to mammals. Here, we examine the impact of the environment on different developmental traits, focusing in particular on one key environmental variable, nutrient availability. We present advances in our understanding of developmental plasticity in response to food variation using the nematode Caenorhabditis elegans, which provides a near-isogenic context while permitting lab-controlled environments and analysis of wild isolates. We discuss how this model has allowed investigators not only to describe developmental plasticity events at the organismal level but also to zoom in on the tissues involved in translating changes in the environment into a plastic response, as well as the underlying molecular pathways, and sometimes associated changes in behaviour. Lastly, we also discuss how early life starvation experiences can be logged to later impact adult physiological traits, and how such memory could be wired.
Collapse
Affiliation(s)
- Sophie Jarriault
- Université de Strasbourg, CNRS, Inserm, IGBMC, Development and Stem Cells Department, UMR 7104 - UMR-S 1258, F-67400 Illkirch, France
| | - Christelle Gally
- Université de Strasbourg, CNRS, Inserm, IGBMC, Development and Stem Cells Department, UMR 7104 - UMR-S 1258, F-67400 Illkirch, France
| |
Collapse
|
13
|
Boor SA, Meisel JD, Kim DH. Neuroendocrine gene expression coupling of interoceptive bacterial food cues to foraging behavior of C. elegans. eLife 2024; 12:RP91120. [PMID: 38231572 PMCID: PMC10945577 DOI: 10.7554/elife.91120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Animal internal state is modulated by nutrient intake, resulting in behavioral responses to changing food conditions. The neural mechanisms by which internal states are generated and maintained are not well understood. Here, we show that in the nematode Caenorhabditis elegans, distinct cues from bacterial food - interoceptive signals from the ingestion of bacteria and gustatory molecules sensed from nearby bacteria - act antagonistically on the expression of the neuroendocrine TGF-beta ligand DAF-7 from the ASJ pair of sensory neurons to modulate foraging behavior. A positive-feedback loop dependent on the expression of daf-7 from the ASJ neurons acts to promote transitions between roaming and dwelling foraging states and influence the persistence of roaming states. SCD-2, the C. elegans ortholog of mammalian anaplastic lymphoma kinase (ALK), which has been implicated in the central control of metabolism of mammals, functions in the AIA interneurons to regulate foraging behavior and cell-non-autonomously control the expression of DAF-7 from the ASJ neurons. Our data establish how a dynamic neuroendocrine daf-7 expression feedback loop regulated by SCD-2 functions to couple sensing and ingestion of bacterial food to foraging behavior. We further suggest that this neuroendocrine feedback loop underlies previously characterized exploratory behaviors in C. elegans. Our data suggest that the expression of daf-7 from the ASJ neurons contributes to and is correlated with an internal state of 'unmet need' that regulates exploratory foraging behavior in response to bacterial cues in diverse physiological contexts.
Collapse
Affiliation(s)
- Sonia A Boor
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Joshua D Meisel
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
| | - Dennis H Kim
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| |
Collapse
|
14
|
Boor SA, Meisel JD, Kim DH. Neuroendocrine Gene Expression Coupling of Interoceptive Bacterial Food Cues to Foraging Behavior of C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.15.549072. [PMID: 37503081 PMCID: PMC10369937 DOI: 10.1101/2023.07.15.549072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Animal internal state is modulated by nutrient intake, resulting in behavioral responses to changing food conditions. The neural mechanisms by which internal states are generated and maintained are not well understood. Here, we show that in the nematode Caenorhabditis elegans, distinct cues from bacterial food - interoceptive signals from the ingestion of bacteria and gustatory molecules sensed from nearby bacteria - act antagonistically on the expression of the neuroendocrine TGF-beta ligand DAF-7 from the ASJ pair of sensory neurons to modulate foraging behavior. A positive-feedback loop dependent on the expression of daf-7 from the ASJ neurons acts to promote transitions between roaming and dwelling foraging states and influence the persistence of roaming states. SCD-2, the C. elegans ortholog of mammalian Anaplastic Lymphoma Kinase (ALK), which has been implicated in the central control of metabolism of mammals, functions in the AIA interneurons to regulate foraging behavior and cell-non-autonomously control the expression of DAF-7 from the ASJ neurons. Our data establish how a dynamic neuroendocrine daf-7 expression feedback loop regulated by SCD-2 functions to couple sensing and ingestion of bacterial food to foraging behavior. We further suggest that this neuroendocrine feedback loop underlies previously characterized exploratory behaviors in C. elegans. Our data suggest that the expression of daf-7 from the ASJ neurons contributes to and is correlated with an internal state of "unmet need" that regulates exploratory foraging behavior in response to bacterial cues in diverse physiological contexts.
Collapse
Affiliation(s)
- Sonia A. Boor
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joshua D. Meisel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Dennis H. Kim
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
15
|
Godoy LF, Hochbaum D. Transcriptional and spatiotemporal regulation of the dauer program. Transcription 2023; 14:27-48. [PMID: 36951297 PMCID: PMC10353326 DOI: 10.1080/21541264.2023.2190295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Caenorhabditis elegans can enter a diapause stage called "dauer" when it senses that the environment is not suitable for development. This implies a detour from the typical developmental trajectory and requires a tight control of the developmental clock and a massive tissue remodeling. In the last decades, core components of the signaling pathways that govern the dauer development decision have been identified, but the tissues where they function for the acquisition of dauer-specific traits are still under intense study. Growing evidence demonstrates that these pathways engage in complex cross-talk and feedback loops. In this review, we summarize the current knowledge regarding the transcriptional regulation of the dauer program and the relevant tissues for its achievement. A better understanding of this process will provide insight on how developmental plasticity is achieved and how development decisions are under a robust regulation to ensure an all-or-nothing response. Furthermore, this developmental decision can also serve as a simplified model for relevant developmental disorders.Abbreviations: AID Auxin Induced Degron DA dafachronic acid Daf-c dauer formation constitutive Daf-d dauer formation defective DTC Distal Tip Cells ECM modified extracellular matrix GPCRs G protein-coupled receptors IIS insulin/IGF-1 signaling ILPs insulin-like peptides LBD Ligand Binding Domain PDL4 Post Dauer L4 TGF-β transforming growth factor beta WT wild-type.
Collapse
Affiliation(s)
- Luciana F Godoy
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
16
|
Yamamoto KK, Savage-Dunn C. TGF-β pathways in aging and immunity: lessons from Caenorhabditis elegans. Front Genet 2023; 14:1220068. [PMID: 37732316 PMCID: PMC10507863 DOI: 10.3389/fgene.2023.1220068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
The Transforming Growth Factor-β (TGF-β) superfamily of signaling molecules plays critical roles in development, differentiation, homeostasis, and disease. Due to the conservation of these ligands and their signaling pathways, genetic studies in invertebrate systems including the nematode Caenorhabditis elegans have been instrumental in identifying signaling mechanisms. C. elegans is also a premier organism for research in longevity and healthy aging. Here we summarize current knowledge on the roles of TGF-β signaling in aging and immunity.
Collapse
Affiliation(s)
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, and PhD Program in Biology, The Graduate Center, City University of New York, New York City, NY, United States
| |
Collapse
|
17
|
Mingjie Y, Yair A, Tali G. The RIDD activity of C. elegans IRE1 modifies neuroendocrine signaling in anticipation of environment stress to ensure survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552841. [PMID: 37609168 PMCID: PMC10441387 DOI: 10.1101/2023.08.10.552841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Xbp1 splicing and regulated IRE1-dependent RNA decay (RIDD) are two RNase activities of the ER stress sensor IRE1. While Xbp1 splicing has important roles in stress responses and animal physiology, the physiological role(s) of RIDD remain enigmatic. Genetic evidence in C. elegans connects XBP1-independent IRE1 activity to organismal stress adaptation, but whether this is via RIDD, and what are the targets is yet unknown. We show that cytosolic kinase/RNase domain of C. elegans IRE1 is indeed capable of RIDD in human cells, and that sensory neurons use RIDD to signal environmental stress, by degrading mRNA of TGFβ-like growth factor DAF-7. daf-7 was degraded in human cells by both human and worm IRE1 RNAse activity with same efficiency and specificity as Blos1, confirming daf-7 as RIDD substrate. Surprisingly, daf-7 degradation in vivo was triggered by concentrations of ER stressor tunicamycin too low for xbp-1 splicing. Decrease in DAF-7 normally signals food limitation and harsh environment, triggering adaptive changes to promote population survival. Because C. elegans is a bacteriovore, and tunicamycin, like other common ER stressors, is an antibiotic secreted by Streptomyces spp., we asked whether daf-7 degradation by RIDD could signal pending food deprivation. Indeed, pre-emptive tunicamycin exposure increased survival of C. elegans populations under food limiting/high temperature stress, and this protection was abrogated by overexpression of DAF-7. Thus, C. elegans uses stress-inducing metabolites in its environment as danger signals, and employs IRE1's RIDD activity to modulate the neuroendocrine signaling for survival of upcoming environmental challenge.
Collapse
Affiliation(s)
- Ying Mingjie
- Department of Biology, Drexel University, Philadelphia, PA
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Argon Yair
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
18
|
Ohta A, Yamashiro S, Kuhara A. Temperature acclimation: Temperature shift induces system conversion to cold tolerance in C. elegans. Neurosci Res 2023:S0168-0102(23)00075-5. [PMID: 37086751 DOI: 10.1016/j.neures.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023]
Abstract
Acclimation to temperature is one of the survival strategies used by organisms to adapt to changing environmental temperatures. Caenorhabditis elegans' cold tolerance is altered by previous cultivation temperature, and similarly, past low-temperature induces a longer lifespan. Temperature is thought to cause a large shift in homeostasis, lipid metabolism, and reproduction in the organism because it is a direct physiological factor during chemical events. This paper will share and discuss what we know so far about the neural and molecular mechanisms that control cold tolerance and lifespan by altering lipid metabolism and physiological characteristics. We hope that this will contribute to a better understanding of how organisms respond to temperature changes.
Collapse
Affiliation(s)
- Akane Ohta
- Graduate School of Natural Science, Konan University, Kobe 658-8501, JAPAN; Faculty of Science and Engineering, Konan University, Kobe 658-8501, JAPAN; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, JAPAN; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, JAPAN.
| | - Serina Yamashiro
- Graduate School of Natural Science, Konan University, Kobe 658-8501, JAPAN; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, JAPAN
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe 658-8501, JAPAN; Faculty of Science and Engineering, Konan University, Kobe 658-8501, JAPAN; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, JAPAN; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, JAPAN.
| |
Collapse
|
19
|
Lee KE, Cho JH, Song HO. Calumenin, a Ca 2+ Binding Protein, Is Required for Dauer Formation in Caenorhabditis elegans. BIOLOGY 2023; 12:biology12030464. [PMID: 36979156 PMCID: PMC10044922 DOI: 10.3390/biology12030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Caenorhabditis elegans can adapt and survive in dynamically changing environments by the smart and delicate switching of molecular plasticity. C. elegans dauer diapause is a form of phenotypic and developmental plasticity that induces reversible developmental arrest upon environmental cues. An ER (endoplasmic reticulum)-resident Ca2+ binding protein, calumenin has been reported to function in a variety of malignant diseases in vertebrates and in the process of muscle contraction-relaxation. In C. elegans, CALU-1 is known to function in Ca2+-regulated behaviors (pharyngeal pumping and defecation) and cuticle formation. The cuticles of dauer larvae are morphologically distinct from those of larvae that develop in favorable conditions. The structure of the dauer cuticle is thicker and more highly reinforced than that of other larval stages to protect dauer larvae from various environmental insults. Since the calu-1(tm1783) mutant exhibited abnormal cuticle structures such as highly deformed annuli and alae, we investigated whether CALU-1 is involved in dauer formation or not. Ascaroside pheromone (ascr#2) and crude daumone were used under starvation conditions to analyze the rate of dauer formation in the calu-1(tm1783) mutant. Surprisingly, the dauer ratio of the calu-1(tm1783) mutant was extremely low compared to that of the wild type. In fact, the calu-1(tm1783) mutants were mostly unable to enter diapause. We also found that calu-1 is expressed in body-wall muscle and AIA interneurons at the dauer stage. Taken together, our results suggest that CALU-1 is required for normal entry into diapause in C. elegans.
Collapse
Affiliation(s)
- Kyung Eun Lee
- Department of Infection Biology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Jeong Hoon Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju 61452, Republic of Korea
| | - Hyun-Ok Song
- Department of Infection Biology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
- Department of Biomedical Science, Graduate School, Wonkwang University, Iksan 54538, Republic of Korea
- Institute of Wonkwang Medical Science, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
20
|
Lenuzzi M, Witte H, Riebesell M, Rödelsperger C, Hong RL, Sommer RJ. Influence of environmental temperature on mouth-form plasticity in Pristionchus pacificus acts through daf-11-dependent cGMP signaling. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:214-224. [PMID: 34379868 DOI: 10.1002/jez.b.23094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Mouth-form plasticity in the nematode Pristionchus pacificus has become a powerful system to identify the genetic and molecular mechanisms associated with developmental (phenotypic) plasticity. In particular, the identification of developmental switch genes that can sense environmental stimuli and reprogram developmental processes has confirmed long-standing evolutionary theory. However, how these genes are involved in the direct sensing of the environment, or if the switch genes act downstream of another, primary environmental sensing mechanism, remains currently unknown. Here, we study the influence of environmental temperature on mouth-form plasticity. We find that environmental temperature does influence mouth-form plasticity in most of the 10 wild isolates of P. pacificus tested in this study. We used one of these strains, P. pacificus RSA635, for detailed molecular analysis. Using forward and reverse genetic technology including CRISPR/Cas9, we show that mutations in the guanylyl cyclase Ppa-daf-11, the Ppa-daf-25/AnkMy2, and the cyclic nucleotide-gated channel Ppa-tax-2 eliminate the response to elevated temperatures. Together, our study indicates that DAF-11, DAF-25, and TAX-2 have been co-opted for environmental sensing during mouth-form plasticity regulation in P. pacificus.
Collapse
Affiliation(s)
- Maša Lenuzzi
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Metta Riebesell
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ray L Hong
- Department of Biology, California State University, Northridge, California, USA
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
21
|
Chai CM, Park H, Sternberg PW. Brain-wide bidirectional neuropeptide modulation of individual neuron classes regulates a developmental decision. Curr Biol 2022; 32:3365-3373.e6. [PMID: 35679871 PMCID: PMC10588560 DOI: 10.1016/j.cub.2022.05.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Secreted neuromodulators, like biogenic amines and neuropeptides, can reconfigure circuit functions both locally and at a distance and establish global brain states that alter circuit outputs over prolonged timescales.1-3 Despite their diversity and ubiquitous presence, many studies on neuromodulation tend to focus on dissecting the function and site of action of individual neuropeptides. Here, we take a different approach by conducting a systems-level investigation of neuropeptide receptor signaling function and cell-type-specific distribution in the context of the Caenorhabditis elegans diapause entry developmental decision. C. elegans diapause entry is controlled by sensory perception of external factors and is regulated by neuropeptide signaling.4-8 We performed a comprehensive functional screen of neuropeptide receptor mutants for pheromone-induced diapause entry phenotypes and integrated these results with published C. elegans single-cell RNA-seq data to reveal that almost all neuron classes expressed at least one receptor with a role in diapause entry.9 Our receptor expression analysis also identified four highly modulated neural hubs with no previously reported roles in diapause entry that are distributed throughout the animal's body, possibly as a means of synchronizing the whole-organism transition into the appropriate larval morph. Furthermore, most neuron classes expressed unique neuropeptide receptor repertoires that have opposing effects on the diapause entry decision. We propose that brain-wide antagonistic neuropeptide modulation of individual neuron classes by distinct neuropeptide receptor subsets could serve as a strategy against overmodulation and that this motif might generalize to other decision-making paradigms in other organisms.
Collapse
Affiliation(s)
- Cynthia M Chai
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| | - Heenam Park
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
22
|
Chai CM, Torkashvand M, Seyedolmohadesin M, Park H, Venkatachalam V, Sternberg PW. Interneuron control of C. elegans developmental decision-making. Curr Biol 2022; 32:2316-2324.e4. [PMID: 35447086 DOI: 10.1016/j.cub.2022.03.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 01/18/2023]
Abstract
Natural environments are highly dynamic, and this complexity challenges animals to accurately integrate external cues to shape their responses. Adaptive developmental plasticity enables organisms to remodel their physiology, morphology, and behavior to better suit the predicted future environment and ultimately enhance their ecological success.1 Understanding how an animal generates a neural representation of current and forecasted environmental conditions and converts these circuit computations into a predictive adaptive physiological response may provide fundamental insights into the molecular and cellular basis of decision-making over developmentally relevant timescales. Although it is known that sensory cues usually trigger the developmental switch and that downstream inter-tissue signaling pathways enact the alternative developmental phenotype, the integrative neural mechanisms that transduce external inputs into effector pathways are less clear.2,3 In adverse environments, Caenorhabditis elegans larvae can enter a stress-resistant diapause state with arrested metabolism and reproductive physiology.4 Amphid sensory neurons feed into both rapid chemotactic and short-term foraging mode decisions, mediated by amphid and pre-motor interneurons, as well as the long-term diapause entry decision. Here, we identify amphid interneurons that integrate pheromone cues and propagate this information via a neuropeptidergic pathway to influence larval developmental fate, bypassing the pre-motor system. AIA interneuron-derived FLP-2 neuropeptide signaling promotes reproductive growth, and AIA activity is suppressed by pheromones. FLP-2 signaling is inhibited by upstream glutamatergic transmission via the metabotropic receptor MGL-1 and mediated by the broadly expressed neuropeptide G-protein-coupled receptor NPR-30. Thus, metabotropic signaling allows the reuse of parts of a sensory system for a decision with a distinct timescale.
Collapse
Affiliation(s)
- Cynthia M Chai
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| | - Mahdi Torkashvand
- Department of Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | | | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| | - Vivek Venkatachalam
- Department of Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
23
|
Synergistic interaction of gut microbiota enhances the growth of nematode through neuroendocrine signaling. Curr Biol 2022; 32:2037-2050.e4. [PMID: 35397201 DOI: 10.1016/j.cub.2022.03.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 01/21/2023]
Abstract
Animals are associated with a diverse bacterial community that impacts host physiology. It is well known that nutrients and enzymes synthesized by bacteria largely expand host metabolic capacity. Bacteria also impact a wide range of animal physiology that solely depends on host genetics through direct interaction. However, studying the synergistic effects of the bacterial community remains challenging due to its complexity. The omnivorous nematode Pristionchus pacificus has limited digestive efficiency on bacteria. Therefore, we established a bacterial collection that represents the natural gut microbiota that are resistant to digestion. Using this collection, we show that the bacterium Lysinibacillus xylanilyticus by itself provides limited nutritional value, but in combination with Escherichia coli, it significantly promotes life-history traits of P. pacificus by regulating the neuroendocrine peptide in sensory neurons. This gut-to-brain communication depends on undigested L. xylanilyticus providing Pristionchus nematodes a specific fitness advantage to compete with nematodes that rupture bacteria efficiently. Using RNA-seq and CRISPR-induced mutants, we show that 1-h exposure to L. xylanilyticus is sufficient to stimulate the expression of daf-7-type TGF-β signaling ligands, which induce a global transcriptome change. In addition, several effects of L. xylanilyticus depend on TGF-β signaling, including olfaction, body size regulation, and a switch of energy allocation from lipid storage to reproduction. Our results reveal the beneficial effects of a gut bacterium to modify life-history traits and maximize nematode survival in natural habitats.
Collapse
|
24
|
Dogra D, Kulalert W, Schroeder FC, Kim DH. Neuronal KGB-1 JNK MAPK signaling regulates the dauer developmental decision in response to environmental stress in Caenorhabditis elegans. Genetics 2022; 220:iyab186. [PMID: 34726729 PMCID: PMC8733477 DOI: 10.1093/genetics/iyab186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/15/2021] [Indexed: 11/14/2022] Open
Abstract
In response to stressful growth conditions of high population density, food scarcity, and elevated temperature, young larvae of nematode Caenorhabditis elegans can enter a developmentally arrested stage called dauer that is characterized by dramatic anatomic and metabolic remodeling. Genetic analysis of dauer formation of C. elegans has served as an experimental paradigm for the identification and characterization of conserved neuroendocrine signaling pathways. Here, we report the identification and characterization of a conserved c-Jun N-terminal Kinase-like mitogen-activated protein kinase (MAPK) pathway that is required for dauer formation in response to environmental stressors. We observed that loss-of-function mutations in the MLK-1-MEK-1-KGB-1 MAPK pathway suppress dauer entry. A loss-of-function mutation in the VHP-1 MAPK phosphatase, a negative regulator of KGB-1 signaling, results in constitutive dauer formation, which is dependent on the presence of dauer pheromone but independent of diminished food levels or elevated temperatures. Our data suggest that the KGB-1 pathway acts in the sensory neurons, in parallel to established insulin and TGF-β signaling pathways, to transduce the dauer-inducing environmental cues of diminished food levels and elevated temperature.
Collapse
Affiliation(s)
- Deepshikha Dogra
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Warakorn Kulalert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dennis H Kim
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Britz S, Markert SM, Witvliet D, Steyer AM, Tröger S, Mulcahy B, Kollmannsberger P, Schwab Y, Zhen M, Stigloher C. Structural Analysis of the Caenorhabditis elegans Dauer Larval Anterior Sensilla by Focused Ion Beam-Scanning Electron Microscopy. Front Neuroanat 2021; 15:732520. [PMID: 34819841 PMCID: PMC8607169 DOI: 10.3389/fnana.2021.732520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
At the end of the first larval stage, the nematode Caenorhabditis elegans developing in harsh environmental conditions is able to choose an alternative developmental path called the dauer diapause. Dauer larvae exhibit different physiology and behaviors from non-dauer larvae. Using focused ion beam-scanning electron microscopy (FIB-SEM), we volumetrically reconstructed the anterior sensory apparatus of C. elegans dauer larvae with unprecedented precision. We provide a detailed description of some neurons, focusing on structural details that were unknown or unresolved by previously published studies. They include the following: (1) dauer-specific branches of the IL2 sensory neurons project into the periphery of anterior sensilla and motor or putative sensory neurons at the sub-lateral cords; (2) ciliated endings of URX sensory neurons are supported by both ILso and AMso socket cells near the amphid openings; (3) variability in amphid sensory dendrites among dauers; and (4) somatic RIP interneurons maintain their projection into the pharyngeal nervous system. Our results support the notion that dauer larvae structurally expand their sensory system to facilitate searching for more favorable environments.
Collapse
Affiliation(s)
- Sebastian Britz
- Imaging Core Facility of the Biocenter, Theodor-Boveri-Institute, Julius-Maximilians-University, Würzburg, Germany
| | - Sebastian Matthias Markert
- Imaging Core Facility of the Biocenter, Theodor-Boveri-Institute, Julius-Maximilians-University, Würzburg, Germany
| | - Daniel Witvliet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Physiology and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anna Maria Steyer
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Sarah Tröger
- Imaging Core Facility of the Biocenter, Theodor-Boveri-Institute, Julius-Maximilians-University, Würzburg, Germany
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Physiology and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, Julius-Maximilians-University, Würzburg, Germany
| | - Yannick Schwab
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Physiology and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Christian Stigloher
- Imaging Core Facility of the Biocenter, Theodor-Boveri-Institute, Julius-Maximilians-University, Würzburg, Germany
| |
Collapse
|
26
|
Vlaar LE, Bertran A, Rahimi M, Dong L, Kammenga JE, Helder J, Goverse A, Bouwmeester HJ. On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. Parasit Vectors 2021; 14:554. [PMID: 34706780 PMCID: PMC8555053 DOI: 10.1186/s13071-021-04953-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Nematodes are presumably the most abundant Metazoa on Earth, and can even be found in some of the most hostile environments of our planet. Various types of hypobiosis evolved to adapt their life cycles to such harsh environmental conditions. The five most distal major clades of the phylum Nematoda (Clades 8-12), formerly referred to as the Secernentea, contain many economically relevant parasitic nematodes. In this group, a special type of hypobiosis, dauer, has evolved. The dauer signalling pathway, which culminates in the biosynthesis of dafachronic acid (DA), is intensively studied in the free-living nematode Caenorhabditis elegans, and it has been hypothesized that the dauer stage may have been a prerequisite for the evolution of a wide range of parasitic lifestyles among other nematode species. Biosynthesis of DA is not specific for hypobiosis, but if it results in exit of the hypobiotic state, it is one of the main criteria to define certain behaviour as dauer. Within Clades 9 and 10, the involvement of DA has been validated experimentally, and dauer is therefore generally accepted to occur in those clades. However, for other clades, such as Clade 12, this has hardly been explored. In this review, we provide clarity on the nomenclature associated with hypobiosis and dauer across different nematological subfields. We discuss evidence for dauer-like stages in Clades 8 to 12 and support this with a meta-analysis of available genomic data. Furthermore, we discuss indications for a simplified dauer signalling pathway in parasitic nematodes. Finally, we zoom in on the host cues that induce exit from the hypobiotic stage and introduce two hypotheses on how these signals might feed into the dauer signalling pathway for plant-parasitic nematodes. With this work, we contribute to the deeper understanding of the molecular mechanisms underlying hypobiosis in parasitic nematodes. Based on this, novel strategies for the control of parasitic nematodes can be developed.
Collapse
Affiliation(s)
- Lieke E Vlaar
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Andre Bertran
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Mehran Rahimi
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Luo J, Portman DS. Sex-specific, pdfr-1-dependent modulation of pheromone avoidance by food abundance enables flexibility in C. elegans foraging behavior. Curr Biol 2021; 31:4449-4461.e4. [PMID: 34437843 DOI: 10.1016/j.cub.2021.07.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/20/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
To make adaptive feeding and foraging decisions, animals must integrate diverse sensory streams with multiple dimensions of internal state. In C. elegans, foraging and dispersal behaviors are influenced by food abundance, population density, and biological sex, but the neural and genetic mechanisms that integrate these signals are poorly understood. Here, by systematically varying food abundance, we find that chronic avoidance of the population-density pheromone ascr#3 is modulated by food thickness, such that hermaphrodites avoid ascr#3 only when food is scarce. The integration of food and pheromone signals requires the conserved neuropeptide receptor PDFR-1, as pdfr-1 mutant hermaphrodites display strong ascr#3 avoidance, even when food is abundant. Conversely, increasing PDFR-1 signaling inhibits ascr#3 aversion when food is sparse, indicating that this signal encodes information about food abundance. In both wild-type and pdfr-1 hermaphrodites, chronic ascr#3 avoidance requires the ASI sensory neurons. In contrast, PDFR-1 acts in interneurons, suggesting that it modulates processing of the ascr#3 signal. Although a sex-shared mechanism mediates ascr#3 avoidance, food thickness modulates this behavior only in hermaphrodites, indicating that PDFR-1 signaling has distinct functions in the two sexes. Supporting the idea that this mechanism modulates foraging behavior, ascr#3 promotes ASI-dependent dispersal of hermaphrodites from food, an effect that is markedly enhanced when food is scarce. Together, these findings identify a neurogenetic mechanism that sex-specifically integrates population and food abundance, two important dimensions of environmental quality, to optimize foraging decisions. Further, they suggest that modulation of attention to sensory signals could be an ancient, conserved function of pdfr-1.
Collapse
Affiliation(s)
- Jintao Luo
- Department of Biomedical Genetics, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Douglas S Portman
- Department of Biomedical Genetics, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
28
|
Karp X. Hormonal Regulation of Diapause and Development in Nematodes, Insects, and Fishes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diapause is a state of developmental arrest adopted in response to or in anticipation of environmental conditions that are unfavorable for growth. In many cases, diapause is facultative, such that animals may undergo either a diapause or a non-diapause developmental trajectory, depending on environmental cues. Diapause is characterized by enhanced stress resistance, reduced metabolism, and increased longevity. The ability to postpone reproduction until suitable conditions are found is important to the survival of many animals, and both vertebrate and invertebrate species can undergo diapause. The decision to enter diapause occurs at the level of the whole animal, and thus hormonal signaling pathways are common regulators of the diapause decision. Unlike other types of developmental arrest, diapause is programmed, such that the diapause developmental trajectory includes a pre-diapause preparatory phase, diapause itself, recovery from diapause, and post-diapause development. Therefore, developmental pathways are profoundly affected by diapause. Here, I review two conserved hormonal pathways, insulin/IGF signaling (IIS) and nuclear hormone receptor signaling (NHR), and their role in regulating diapause across three animal phyla. Specifically, the species reviewed are Austrofundulus limnaeus and Nothobranchius furzeri annual killifishes, Caenorhabditis elegans nematodes, and insect species including Drosophila melanogaster, Culex pipiens, and Bombyx mori. In addition, the developmental changes that occur as a result of diapause are discussed, with a focus on how IIS and NHR pathways interact with core developmental pathways in C. elegans larvae that undergo diapause.
Collapse
|
29
|
Godini R, Handley A, Pocock R. Transcription Factors That Control Behavior-Lessons From C. elegans. Front Neurosci 2021; 15:745376. [PMID: 34646119 PMCID: PMC8503520 DOI: 10.3389/fnins.2021.745376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022] Open
Abstract
Behavior encompasses the physical and chemical response to external and internal stimuli. Neurons, each with their own specific molecular identities, act in concert to perceive and relay these stimuli to drive behavior. Generating behavioral responses requires neurons that have the correct morphological, synaptic, and molecular identities. Transcription factors drive the specific gene expression patterns that define these identities, controlling almost every phenomenon in a cell from development to homeostasis. Therefore, transcription factors play an important role in generating and regulating behavior. Here, we describe the transcription factors, the pathways they regulate, and the neurons that drive chemosensation, mechanosensation, thermosensation, osmolarity sensing, complex, and sex-specific behaviors in the animal model Caenorhabditis elegans. We also discuss the current limitations in our knowledge, particularly our minimal understanding of how transcription factors contribute to the adaptive behavioral responses that are necessary for organismal survival.
Collapse
|
30
|
CREB mediates the C. elegans dauer polyphenism through direct and cell-autonomous regulation of TGF-β expression. PLoS Genet 2021; 17:e1009678. [PMID: 34260587 PMCID: PMC8312985 DOI: 10.1371/journal.pgen.1009678] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/26/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
Animals can adapt to dynamic environmental conditions by modulating their developmental programs. Understanding the genetic architecture and molecular mechanisms underlying developmental plasticity in response to changing environments is an important and emerging area of research. Here, we show a novel role of cAMP response element binding protein (CREB)-encoding crh-1 gene in developmental polyphenism of C. elegans. Under conditions that promote normal development in wild-type animals, crh-1 mutants inappropriately form transient pre-dauer (L2d) larvae and express the L2d marker gene. L2d formation in crh-1 mutants is specifically induced by the ascaroside pheromone ascr#5 (asc-ωC3; C3), and crh-1 functions autonomously in the ascr#5-sensing ASI neurons to inhibit L2d formation. Moreover, we find that CRH-1 directly binds upstream of the daf-7 TGF-β locus and promotes its expression in the ASI neurons. Taken together, these results provide new insight into how animals alter their developmental programs in response to environmental changes.
Collapse
|
31
|
Rasmussen NR, Smith HE, Reiner DJ. The MLK-1/SCD-4 Mixed Lineage Kinase/MAP3K functions to promote dauer formation upstream of DAF-2/InsR. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34142023 PMCID: PMC8207178 DOI: 10.17912/micropub.biology.000405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The C. elegans dauer is an alternative third stage larva induced by dense population and adverse environmental conditions. Genes whose mutants caused dauer formation constitutive (Daf-c) and dauer formation defective (Daf-d) phenotypes were ordered via epistasis into a signaling network, with upstream DAF-7/TGF-beta and DAF-11/receptor guanylyl cyclase defining sensory branches and downstream DAF-2/Insulin receptor and DAF-12/nuclear hormone receptor executing the dauer decision. Mutations in the Scd genes were defined as incompletely penetrant suppressors of the constitutive dauer phenotype conferred by mutation of the DAF-7/TGF-beta signaling axis. SCD-2 was previously shown to be an ortholog of mammalian ALK (Anaplastic Lymphoma Kinase), a receptor tyrosine kinase. Mutations disrupting the HEN-1/Jeb ligand, SOC-1/DOS/GAB adaptor protein and SMA-5/ERK5 atypical MAP Kinase caused Scd phenotypes similar to that of mutant SCD-2. This group regulated expression from a TGF-beta-responsive GFP reporter. Here we find that a strain harboring a mutation in the uncharacterized SCD-4 is mutant for MLK-1, the C. elegans ortholog of mammalian Mixed Lineage Kinase and Drosophila slipper (slpr), a MAP3 kinase. We validated this finding by showing that a previously characterized deletion in MLK-1 caused a Scd phenotype similar to that of mutant SCD-4 and altered expression from the TGF-beta-responsive GFP reporter, suggesting that SCD-4 and MLK-1 are the same protein. Based on shared phenotypes and molecular identities, we hypothesize that MLK-1 functions as a MAP3K in the SCD-2/ALK cascade that signals through SMA-5/ERK5 MAP Kinase to modulate the output of the TGF-beta cascade controlling dauer formation in response to environmental cues.
Collapse
Affiliation(s)
| | - Harold E Smith
- National Institute of Diabetes and Digestive and Kidney Diseases
| | | |
Collapse
|
32
|
Manterola M, Palominos MF, Calixto A. The Heritability of Behaviors Associated With the Host Gut Microbiota. Front Immunol 2021; 12:658551. [PMID: 34054822 PMCID: PMC8155505 DOI: 10.3389/fimmu.2021.658551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
What defines whether the interaction between environment and organism creates a genetic memory able to be transferred to subsequent generations? Bacteria and the products of their metabolism are the most ubiquitous biotic environments to which every living organism is exposed. Both microbiota and host establish a framework where environmental and genetic factors are integrated to produce adaptive life traits, some of which can be inherited. Thus, the interplay between host and microbe is a powerful model to study how phenotypic plasticity is inherited. Communication between host and microbe can occur through diverse molecules such as small RNAs (sRNAs) and the RNA interference machinery, which have emerged as mediators and carriers of heritable environmentally induced responses. Notwithstanding, it is still unclear how the organism integrates sRNA signaling between different tissues to orchestrate a systemic bacterially induced response that can be inherited. Here we discuss current evidence of heritability produced by the intestinal microbiota from several species. Neurons and gut are the sensing systems involved in transmitting changes through transcriptional and post-transcriptional modifications to the gonads. Germ cells express inflammatory receptors, and their development and function are regulated by host and bacterial metabolites and sRNAs thus suggesting that the dynamic interplay between host and microbe underlies the host's capacity to transmit heritable behaviors. We discuss how the host detects changes in the microbiota that can modulate germ cells genomic functions. We also explore the nature of the interactions that leave permanent or long-term memory in the host and propose mechanisms by which the microbiota can regulate the development and epigenetic reprogramming of germ cells, thus influencing the inheritance of the host. We highlight the vast contribution of the bacterivore nematode C. elegans and its commensal and pathogenic bacteria to the understanding on how behavioral adaptations can be inter and transgenerational inherited.
Collapse
Affiliation(s)
- Marcia Manterola
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M. Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Programa de Doctorado en Ciencias, mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
33
|
Sakai N, Ohno H, Yoshida M, Iwamoto E, Kurogi A, Jiang D, Sato T, Miyazato M, Kojima M, Kato J, Ida T. Characterization of putative tachykinin peptides in Caenorhabditis elegans. Biochem Biophys Res Commun 2021; 559:197-202. [PMID: 33945998 DOI: 10.1016/j.bbrc.2021.04.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/19/2022]
Abstract
Tachykinin-like peptides, such as substance P, neurokinin A, and neurokinin B, are among the earliest discovered and best-studied neuropeptide families, and research on them has contributed greatly to our understanding of the endocrine control of many physiological processes. However, there are still many orphan tachykinin receptor homologs for which cognate ligands have not yet been identified, especially in small invertebrates, such as the nematode Caenorhabditis elegans (C. elegans). We here show that the C. elegans nlp-58 gene encodes putative ligands for the orphan G protein-coupled receptor (GPCR) TKR-1, which is a worm ortholog of tachykinin receptors. We first determine, through an unbiased biochemical screen, that a peptide derived from the NLP-58 preprotein stimulates TKR-1. Three mature peptides that are predicted to be generated from NLP-58 show potent agonist activity against TKR-1. We designate these peptides as C. elegans tachykinin (CeTK)-1, -2, and -3. The CeTK peptides contain the C-terminal sequence GLR-amide, which is shared by tachykinin-like peptides in other invertebrate species. nlp-58 exhibits a strongly restricted expression pattern in several neurons, implying that CeTKs behave as neuropeptides. The discovery of CeTKs provides important information to aid our understanding of tachykinin-like peptides and their functional interaction with GPCRs.
Collapse
Affiliation(s)
- Naoko Sakai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hayao Ohno
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Morikatsu Yoshida
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, 564-8565, Japan
| | - Eri Iwamoto
- Clinical Research Center, Kurume University Hospital, Fukuoka, 830-0011, Japan
| | - Akito Kurogi
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Danfeng Jiang
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka, 830-0011, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, 564-8565, Japan
| | - Masayasu Kojima
- Division of Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka, 830-0011, Japan
| | - Johji Kato
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Takanori Ida
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research, University of Miyazaki, Miyazaki, 889-1692, Japan.
| |
Collapse
|
34
|
Hino T, Hirai S, Ishihara T, Fujiwara M. EGL-4/PKG regulates the role of an interneuron in a chemotaxis circuit of C. elegans through mediating integration of sensory signals. Genes Cells 2021; 26:411-425. [PMID: 33817914 DOI: 10.1111/gtc.12849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Interneurons, innervated by multiple sensory neurons, need to integrate information from these sensory neurons and respond to sensory stimuli adequately. Mechanisms how sensory information is integrated to form responses of interneurons are not fully understood. In Caenorhabditis elegans, loss-of-function mutations of egl-4, which encodes a cGMP-dependent protein kinase (PKG), cause a defect in chemotaxis to odorants. Our genetic and imaging analyses revealed that the response property of AIY interneuron to an odorant is reversed in the egl-4 mutant, while the responses of two upstream olfactory neurons, AWA and AWC, are largely unchanged. Cell- ablation experiments show that AIY in the egl-4 mutant functions to suppress chemotaxis. Furthermore, the reversal of AIY response occurs only in the presence of sensory signals from both AWA and AWC. These results suggest that sensory signals are inadequately integrated in the egl-4 mutant. We also show that egl-4 expression in AWA and another sensory neuron prevents the reversed AIY response and restores chemotaxis in the egl-4 mutants. We propose that EGL-4/PKG, by suppressing aberrant integration of signals from olfactory neurons, converts the response property of an interneuron to olfactory stimuli and maintains the role of the interneuron in the circuit to execute chemotactic behavior.
Collapse
Affiliation(s)
- Takahiro Hino
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shota Hirai
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Takeshi Ishihara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Manabi Fujiwara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
Dauer Formation in C. elegans Is Modulated through AWC and ASI-Dependent Chemosensation. eNeuro 2021; 8:ENEURO.0473-20.2021. [PMID: 33712439 PMCID: PMC8174048 DOI: 10.1523/eneuro.0473-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 12/30/2022] Open
Abstract
The perception of our surrounding environment is an amalgamation of stimuli detected by sensory neurons. In Caenorhabditis elegans, olfaction is an essential behavior that determines various behavioral functions such as locomotion, feeding and development. Sensory olfactory cues also initiate downstream neuroendocrine signaling that controls aging, learning, development and reproduction. Innate sensory preferences toward odors (food, pathogens) and reproductive pheromones are modulated by 11 pairs of amphid chemosensory neurons in the head region of C. elegans. Amongst these sensory neurons, the ASI neuron has neuroendocrine functions and secretes neuropeptides, insulin-like peptide (DAF-28) and the TGF-β protein, DAF-7. Its expression levels are modulated by the presence of food (increased levels) and population density (decreased levels). A recent study has shown that EXP-1, an excitatory GABA receptor regulates DAF-7/TGF-β levels and participates in DAF-7/TGF-β-mediated behaviors such as aggregation and bordering. Here, we show that exp-1 mutants show defective responses toward AWC-sensed attractive odors in a non-autonomous manner through ASI neurons. Our dauer experiments reveal that in daf-7 mutants, ASI expressed EXP-1 and STR-2 (a G-protein-coupled receptor; GPCR) that partially maintained reproductive growth of animals. Further, studies suggest that neuronal connections between ASI and AWC neurons are allowed at least partially through ASI secreted DAF-7 or through alternate TGF- β pathway/s regulated by EXP-1 and STR-2. Together, our behavioral, genetic and imaging experiments propose that EXP-1 and STR-2 integrate food cues and allow the animals to display DAF-7/TGF-β neuroendocrine dependent or independent behavioral responses contributing to chemosensensory and developmental plasticity.
Collapse
|
36
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
37
|
Patel DS, Diana G, Entchev EV, Zhan M, Lu H, Ch'ng Q. A Multicellular Network Mechanism for Temperature-Robust Food Sensing. Cell Rep 2020; 33:108521. [PMID: 33357442 PMCID: PMC7773553 DOI: 10.1016/j.celrep.2020.108521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022] Open
Abstract
Responsiveness to external cues is a hallmark of biological systems. In complex environments, it is crucial for organisms to remain responsive to specific inputs even as other internal or external factors fluctuate. Here, we show how the nematode Caenorhabditis elegans can discriminate between different food levels to modulate its lifespan despite temperature perturbations. This end-to-end robustness from environment to physiology is mediated by food-sensing neurons that communicate via transforming growth factor β (TGF-β) and serotonin signals to form a multicellular gene network. Specific regulations in this network change sign with temperature to maintain similar food responsiveness in the lifespan output. In contrast to robustness of stereotyped outputs, our findings uncover a more complex robustness process involving the higher order function of discrimination in food responsiveness. This process involves rewiring a multicellular network to compensate for temperature and provides a basis for understanding gene-environment interactions. Together, our findings unveil sensory computations that integrate environmental cues to govern physiology. C. elegans’ ability to modulate lifespan in response to food is robust to temperature Robustness requires TGF-β and serotonin signaling in a neuronal network Specific regulations in the neuronal network change sign with temperature Temperature-dependent regulations compensate for temperature
Collapse
Affiliation(s)
- Dhaval S Patel
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Giovanni Diana
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Eugeni V Entchev
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Mei Zhan
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Hang Lu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - QueeLim Ch'ng
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
38
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
39
|
Hwang HY, Dankovich L, Wang J. Thermotolerance of tax-2 Is Uncoupled From Life Span Extension and Influenced by Temperature During Development in C. elegans. Front Genet 2020; 11:566948. [PMID: 33133151 PMCID: PMC7573314 DOI: 10.3389/fgene.2020.566948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Thermotolerance of an organism is a complex trait that is influenced by a multitude of genetic and environmental factors. Many factors controlling thermotolerance in Caenorhabditis elegans are known to extend life. To understand the regulation of thermotolerance, we performed a genetic screen for mutants with better survival at warm temperature. Here we identified by dauer survival a tax-2 mutation and several mutations disrupting an insulin signaling pathway including the daf-2 gene. While the tax-2 mutant has improved thermotolerance and long life span, the newly identified daf-2 and other insulin signaling mutants, unlike the canonical daf-2(e1370), do not show improved thermotolerance despite being long-lived. Examination of tax-2 mutations and their mutant phenotypes suggest that the control of thermotolerance is not coupled with the control of life span or dauer survival. With genetic interaction studies, we concluded that tax-2 has complex roles in life span and dauer survival and that tax-2 is a negative regulator of thermotolerance independent of other known thermotolerance genes including those in the insulin signaling pathway. Moreover, cold growth temperature during development weakens the improved thermotolerance associated with tax-2 and other thermotolerance-inducing mutations. Together, this study reveals previously unknown genetic and environmental factors controlling thermotolerance and their complex relationship with life span regulation.
Collapse
Affiliation(s)
- Ho-Yon Hwang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - Laura Dankovich
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
40
|
Abstract
Caenorhabditis elegans' behavioral states, like those of other animals, are shaped by its immediate environment, its past experiences, and by internal factors. We here review the literature on C. elegans behavioral states and their regulation. We discuss dwelling and roaming, local and global search, mate finding, sleep, and the interaction between internal metabolic states and behavior.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Young-Jai You
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan
| |
Collapse
|
41
|
Billard B, Gimond C, Braendle C. [Genetics and evolution of developmental plasticity in the nematode C. elegans: Environmental induction of the dauer stage]. Biol Aujourdhui 2020; 214:45-53. [PMID: 32773029 DOI: 10.1051/jbio/2020006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 12/28/2022]
Abstract
Adaptive developmental plasticity is a common phenomenon across diverse organisms and allows a single genotype to express multiple phenotypes in response to environmental signals. Developmental plasticity is thus thought to reflect a key adaptation to cope with heterogenous habitats. Adaptive plasticity often relies on highly regulated processes in which organisms sense environmental cues predictive of unfavourable environments. The integration of such cues may involve sophisticated neuro-endocrine signaling pathways to generate subtle or complete developmental shifts. A striking example of adaptive plasticity is found in the nematode C. elegans, which can undergo two different developmental trajectories depending on the environment. In favourable conditions, C. elegans develops through reproductive growth to become an adult in three days at 20 °C. In contrast, in unfavourable conditions (high population density, food scarcity, elevated temperature) larvae can adopt an alternative developmental stage, called dauer. dauer larvae are highly stress-resistant and exhibit specific anatomical, metabolic and behavioural features that allow them to survive and disperse. In C. elegans, the sensation of environmental cues is mediated by amphid ciliated sensory neurons by means of G-coupled protein receptors. In favourable environments, the perception of pro-reproductive cues, such as food and the absence of pro-dauer cues, upregulates insulin and TGF-β signaling in the nervous system. In unfavourable conditions, pro-dauer cues lead to the downregulation of insulin and TGF-β signaling. In favourable conditions, TGF-β and insulin act in parallel to promote synthesis of dafachronic acid (DA) in steroidogenic tissues. Synthetized DA binds to the DAF-12 nuclear receptor throughout the whole body. DA-bound DAF-12 positively regulates genes of reproductive development in all C. elegans tissues. In poor conditions, the inhibition of insulin and TGF-β signaling prevents DA synthesis, thus the unliganded DAF-12 and co-repressor DIN-1 repress genes of reproductive development and promote dauer formation. Wild C. elegans have often been isolated as dauer larvae suggesting that dauer formation is very common in nature. Natural populations of C. elegans have colonized a great variety of habitats across the planet, which may differ substantially in environmental conditions. Consistent with divergent adaptation to distinct ecological niches, wild isolates of C. elegans and other nematode species isolated from different locations show extensive variation in dauer induction. Quantitative genetic and population-genomic approaches have identified many quantitative trait loci (QTL) associated with differences in dauer induction as well as a few underlying causative molecular variants. In this review, we summarize how C. elegans dauer formation is genetically regulated and how this trait evolves- both within and between species.
Collapse
|
42
|
He L, Liu H, Zhang BY, Li FF, Di WD, Wang CQ, Zhou CX, Liu L, Li TT, Zhang T, Fang R, Hu M. A daf-7-related TGF-β ligand (Hc-tgh-2) shows important regulations on the development of Haemonchus contortus. Parasit Vectors 2020; 13:326. [PMID: 32586367 PMCID: PMC7318536 DOI: 10.1186/s13071-020-04196-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In most multicellular organisms, the transforming growth factor-β (TGF-β) signalling pathway is involved in regulating the growth and stem cell differentiation. Previous studies have demonstrated the importance of three key molecules in this pathway in the parasitic nematode Haemonchus contortus, including one TGF-β type I receptor (Hc-tgfbr1), one TGF-β type II receptor (Hc-tgfbr2), and one co-Smad (Hc-daf-3), which regulated the developmental transition from the free-living to the parasitic stages of this parasite. However, almost nothing is known about the function of the TGF-β ligand (Hc-tgh-2) of H. contortus. METHODS Here, the temporal transcription profiles of Hc-tgh-2 at eight different developmental stages and spatial expression patterns of Hc-TGH-2 in adult female and male worms of H. contortus have been examined by real-time PCR and immunohistochemistry, respectively. In addition, RNA interference (RNAi) by soaking was employed to assess the importance of Hc-tgh-2 in the development from exsheathed third-stage larvae (xL3s) to fourth-stage larvae (L4s) in H. contortus. RESULTS Hc-tgh-2 was continuously transcribed in all eight developmental stages of H. contortus studied with the highest level in the infective third-stage larvae (iL3) and Hc-TGH-2 was located in the muscle of the body wall, intestine, ovary of adult females and testes of adult males. Silencing Hc-tgh-2 by the specific double-stranded RNA (dsRNA), decreased the transcript level of Hc-tgh-2 and resulted in fewer xL3s developing to L4s in vitro. CONCLUSIONS These results suggested that the TGF-β ligand, Hc-TGH-2, could play important roles in the developmental transition from the free-living (L3s) to the parasitic stage (L4s). Furthermore, it may also take part in the processes such as digestion, absorption, host immune response and reproductive development in H. contortus adults.
Collapse
Affiliation(s)
- Li He
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hui Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bi-Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Fang-Fang Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wen-Da Di
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chun-Qun Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Cai-Xian Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ting-Ting Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ting Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
43
|
C. elegans Males Integrate Food Signals and Biological Sex to Modulate State-Dependent Chemosensation and Behavioral Prioritization. Curr Biol 2020; 30:2695-2706.e4. [PMID: 32531276 DOI: 10.1016/j.cub.2020.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 04/15/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Dynamic integration of internal and external cues is essential for flexible, adaptive behavior. In C. elegans, biological sex and feeding state regulate expression of the food-associated chemoreceptor odr-10, contributing to plasticity in food detection and the decision between feeding and exploration. In adult hermaphrodites, odr-10 expression is high, but in well-fed adult males, odr-10 expression is low, promoting exploratory mate-searching behavior. Food-deprivation transiently activates male odr-10 expression, heightening food sensitivity and reducing food leaving. Here, we identify a neuroendocrine feedback loop that sex-specifically regulates odr-10 in response to food deprivation. In well-fed males, insulin-like (insulin/IGF-1 signaling [IIS]) and transforming growth factor β (TGF-β) signaling repress odr-10 expression. Upon food deprivation, odr-10 is directly activated by DAF-16/FoxO, the canonical C. elegans IIS effector. The TGF-β ligand DAF-7 likely acts upstream of IIS and links feeding to odr-10 only in males, due in part to the male-specific expression of daf-7 in ASJ. Surprisingly, these responses to food deprivation are not triggered by internal metabolic cues but rather by the loss of sensory signals associated with food. When males are starved in the presence of inedible food, they become nutritionally stressed, but odr-10 expression remains low and exploratory behavior is suppressed less than in starved control males. Food signals are detected by a small number of sensory neurons whose activity non-autonomously regulates daf-7 expression, IIS, and odr-10. Thus, adult C. elegans males employ a neuroendocrine feedback loop that integrates food detection and genetic sex to dynamically modulate chemoreceptor expression and influence the feeding-versus-exploration decision.
Collapse
|
44
|
Hu M, Crossman D, Prasain JK, Miller MA, Serra RA. Transcriptomic Profiling of DAF-7/TGFβ Pathway Mutants in C. elegans. Genes (Basel) 2020; 11:E288. [PMID: 32182864 PMCID: PMC7140792 DOI: 10.3390/genes11030288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
The transforming growth factor beta superfamily encompasses a large family of ligands that are well conserved across many organisms. They are regulators of a number of physiological and pathological processes. The model nematode Caenorhabditis elegans has been instrumental in identifying key components of the transforming growth factor beta (TGFβ) pathway. In C. elegans, the TGFβ homolog DAF-7 signals through the DAF-1 Type I and DAF-4 Type II receptors to phosphorylate downstream R-SMADs DAF-8 and DAF-14. These R-SMADs translocate into the nucleus to inhibit Co-SMAD DAF-3. Many of the roles of the canonical DAF-7 pathway, involving both DAF-1 and DAF-3, have been identified using targeted genetic studies. Few have assessed the global transcriptomic changes in response to these genes, especially in adult animals. In this study, we performed RNA sequencing on wild type, daf-1, and daf-1; daf-3 adult hermaphrodites. To assess the overall trends of the data, we identified differentially expressed genes (DEGs) and performed gene ontology analysis to identify the types of downstream genes that are differentially expressed. Hierarchical clustering showed that the daf-1; daf-3 double mutants are transcriptionally more similar to wild type than daf-1 mutants. Analysis of the DEGs showed a disproportionally high number of genes whose expression is increased in daf-1 mutants, suggesting that DAF-1 acts as a general repressor of gene expression in wild type animals. Gene ontology analysis of the DEGs produced many significantly enriched terms, including Molting Cycle, Response to Topologically Incorrect Protein, and Response to Biotic Stimulus. Understanding the direct and indirect targets of the DAF-7 TGFβ pathway through this RNA-seq dataset can provide insight into novel roles of the multifunctional signaling pathway, as well as identify novel genes that may participate in previously reported functions of TGFβ signaling.
Collapse
Affiliation(s)
- Muhan Hu
- Department of Cell Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.M.); (R.A.S.)
| | - David Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Jeevan K. Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Michael A. Miller
- Department of Cell Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.M.); (R.A.S.)
| | - Rosa A. Serra
- Department of Cell Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.A.M.); (R.A.S.)
| |
Collapse
|
45
|
He L, Gasser RB, Li T, Di W, Li F, Zhang H, Zhou C, Fang R, Hu M. A TGF-β type II receptor that associates with developmental transition in Haemonchus contortus in vitro. PLoS Negl Trop Dis 2019; 13:e0007913. [PMID: 31790412 PMCID: PMC6938378 DOI: 10.1371/journal.pntd.0007913] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/31/2019] [Accepted: 11/09/2019] [Indexed: 11/19/2022] Open
Abstract
Background The TGF-β signalling pathway plays a key role in regulating dauer formation in the free-living nematode Caenorhabditis elegans, and previous work has shown that TGF-β receptors are involved in parasitic nematodes. Here, we explored the structure and function of a TGF-β type II receptor homologue in the TGF-β signalling pathway in Haemonchus contortus, a highly pathogenic, haematophagous parasitic nematode. Methodology/Principal findings Amino acid sequence and phylogenetic analyses revealed that the protein, called Hc-TGFBR2 (encoded by the gene Hc-tgfbr2), is a member of TGF-β type II receptor family and contains conserved functional domains, both in the extracellular region containing cysteine residues that form a characteristic feature (CXCX4C) of TGF-β type II receptor and in the intracellular regions containing a serine/threonine kinase domain. The Hc-tgfbr2 gene was transcribed in all key developmental stages of H. contortus, with particularly high levels in the infective third-stage larvae (L3s) and male adults. Immunohistochemical results revealed that Hc-TGFBR2 was expressed in the intestine, ovary and eggs within the uterus of female adults, and also in the testes of male adults of H. contortus. Double-stranded RNA interference (RNAi) in this nematode by soaking induced a marked decrease in transcription of Hc-tgfbr2 and in development from the exsheathed L3 to the fourth-stage larva (L4) in vitro. Conclusions/Significance These results indicate that Hc-TGFBR2 plays an important role in governing developmental processes in H. contortus via the TGF-β signalling pathway, particularly in the transition from the free-living to the parasitic stages. Haemonchus contortus is a gastrointestinal parasitic nematode that causes major economic losses in small ruminants. Here, we investigated the structure and function of a TGF-β type II receptor homologue (Hc-TGFBR2) and its role in regulating H. contortus development. The results showed that the Hc-tgfbr2 gene was transcribed in all developmental stages of H. contortus, with the highest level in L3s and male adults; the encoded protein Hc-TGFBR2 was expressed in the intestine and gonads of adult stages of this nematode. The transcriptional abundance of Hc-tgfbr2 decreased significantly following knockdown by RNA interference in xL3s of H. contortus, which also caused a marked reduction in the number of xL3s developing to L4s in vitro. These findings reveal that the TGF-β type II receptor (Hc-TGFBR2) associates with development of H. contortus, particularly in its transition from the free-living to the parasitic stage.
Collapse
Affiliation(s)
- Li He
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Robin B. Gasser
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenda Di
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangfang Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongrun Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Caixian Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
46
|
Hubbard EJA, Schedl T. Biology of the Caenorhabditis elegans Germline Stem Cell System. Genetics 2019; 213:1145-1188. [PMID: 31796552 PMCID: PMC6893382 DOI: 10.1534/genetics.119.300238] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cell systems regulate tissue development and maintenance. The germline stem cell system is essential for animal reproduction, controlling both the timing and number of progeny through its influence on gamete production. In this review, we first draw general comparisons to stem cell systems in other organisms, and then present our current understanding of the germline stem cell system in Caenorhabditis elegans In contrast to stereotypic somatic development and cell number stasis of adult somatic cells in C. elegans, the germline stem cell system has a variable division pattern, and the system differs between larval development, early adult peak reproduction and age-related decline. We discuss the cell and developmental biology of the stem cell system and the Notch regulated genetic network that controls the key decision between the stem cell fate and meiotic development, as it occurs under optimal laboratory conditions in adult and larval stages. We then discuss alterations of the stem cell system in response to environmental perturbations and aging. A recurring distinction is between processes that control stem cell fate and those that control cell cycle regulation. C. elegans is a powerful model for understanding germline stem cells and stem cell biology.
Collapse
Affiliation(s)
- E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York 10016
| | - Tim Schedl
- and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
47
|
Selection and gene flow shape niche-associated variation in pheromone response. Nat Ecol Evol 2019; 3:1455-1463. [PMID: 31548647 PMCID: PMC6764921 DOI: 10.1038/s41559-019-0982-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/14/2019] [Indexed: 11/18/2022]
Abstract
From quorum sensing in bacteria to pheromone signaling in social insects, chemical communication mediates interactions among individuals in a local population. In Caenorhabditis elegans, ascaroside pheromones can dictate local population density, in which high levels of pheromones inhibit the reproductive maturation of individuals. Little is known about how natural genetic diversity affects the pheromone responses of individuals from diverse habitats. Here, we show that a niche-associated variation in pheromone receptor genes contributes to natural differences in pheromone responses. We identified putative loss-of-function deletions that impair duplicated pheromone receptor genes (srg-36 and srg-37), which were shown previously to be lost in population-dense laboratory cultures. A common natural deletion in srg-37 arose recently from a single ancestral population that spread throughout the world and underlies reduced pheromone sensitivity across the global C. elegans population. We found that many local populations harbor individuals with wild-type or a deletion allele of srg-37, suggesting that balancing selection has maintained the recent variation in this pheromone receptor gene. The two srg-37 genotypes are associated with niche diversity underlying boom-and-bust population dynamics. We hypothesize that human activities likely contributed to the gene flow and balancing selection of srg-37 variation through facilitating migration of species and providing favorable niche for recently arose srg-37 deletion.
Collapse
|
48
|
Shi D, Levina A, Noori HR. Refined parcellation of the nervous system by algorithmic detection of hidden features within communities. Phys Rev E 2019; 100:012301. [PMID: 31499866 DOI: 10.1103/physreve.100.012301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 11/07/2022]
Abstract
The nervous system can be represented as a multiscale network comprised by single cells or ensembles that are linked by physical or functional connections. Groups of morphologically and physiologically diverse neurons are wired as connectivity patterns with a certain degree of universality across species and individual variability. Thereby, community detection approaches are often used to characterize how neural units cluster into such densely interconnected groups. However, the communities may possess deeper structural features that remain undetected by current algorithms. We present a scheme for refined parcellation of neuronal networks, by identifying local integrator units (LU) that are contained in network communities. An LU is defined as a connected subnetwork in which all neuronal connections are constrained within this unit, and can be formed for instance by a set of interneurons. Our method uses the Louvain algorithm to detect communities and participation coefficients to discriminate local neurons from global hubs. The sensitivity of the algorithm for discovering LUs with respect to the choice of community detection algorithm and network parameters was tested by simulations of different synthetic networks. The appropriateness of the algorithm for real-world scenarios was demonstrated on weighted and binary Caenorhabditis elegans connectomes. The detected LUs are distinctly localized within the worm body and clearly define functional groups. This approach provides a robust, observer-independent parcellation strategy that is useful for functional structure confirmation and potentially contributes to the current efforts in quantitative whole-brain architectonics of different species as well as the analysis of functional connectivity networks.
Collapse
Affiliation(s)
- Dongmei Shi
- Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Anna Levina
- Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany.,Department of Computer Science, University of Tübingen, Tübingen 72076, Germany
| | - Hamid R Noori
- Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany.,Courant Institute for Mathematical Sciences, New York University, New York 10012, USA
| |
Collapse
|
49
|
Jia R, Zhang J, Jia K. Neuroendocrine regulation of fat metabolism by autophagy gene atg-18 in C. elegans dauer larvae. FEBS Open Bio 2019; 9:1623-1631. [PMID: 31368651 PMCID: PMC6722879 DOI: 10.1002/2211-5463.12708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/10/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
In environments with limited food and high population density, Caenorhabditis elegans larvae may enter the dauer stage, in which metabolism is shifted to fat accumulation to allow larvae to survive for months without food. Mutations in the insulin‐like receptor gene daf‐2 force C. elegans to constitutively form dauer larva at higher temperature. It has been reported that autophagy is required for fat accumulation in daf‐2 dauer larva. However, the mechanism underlying this process remains unknown. Here, we report that autophagy gene atg‐18 acts in a cell nonautonomous manner in neurons and intestinal cells to mediate the influence of daf‐2 signaling on fat metabolism. Moreover, ATG‐18 in chemosensory neurons plays a vital role in this metabolic process. Finally, we report that neuronal ATG‐18 functions through neurotransmitters to control fat storage in daf‐2 dauers, which suggests an essential role of autophagy in the neuroendocrine regulation of fat metabolism by insulin‐like signaling.
Collapse
Affiliation(s)
- Ray Jia
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| | - Jiuli Zhang
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| | - Kailiang Jia
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
50
|
An excreted small molecule promotes C. elegans reproductive development and aging. Nat Chem Biol 2019; 15:838-845. [PMID: 31320757 PMCID: PMC6650165 DOI: 10.1038/s41589-019-0321-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/31/2019] [Indexed: 01/16/2023]
Abstract
Excreted small-molecule signals can bias developmental trajectories and physiology in diverse animal species. However, the chemical identity of these signals remains largely obscure. Here we report identification of an unusual N-acylated glutamine derivative, nacq#1, that accelerates reproductive development and shortens lifespan in C. elegans. Produced predominantly by C. elegans males, nacq#1 hastens onset of sexual maturity in hermaphrodites by promoting exit from the larval dauer diapause and by accelerating late larval development. Even at picomolar concentrations, nacq#1 shortens hermaphrodite lifespan, suggesting a trade-off between reproductive investment and longevity. Acceleration of development by nacq#1 requires chemosensation and depends on three homologs of vertebrate steroid hormone receptors. Unlike ascaroside pheromones, which are restricted to nematodes, fatty acylated amino acid derivatives similar to nacq#1 have been reported from humans and invertebrates, suggesting that related compounds may serve signaling functions throughout Metazoa.
Collapse
|