1
|
Michel N, Young HMR, Atkin ND, Arshad U, Al-Humadi R, Singh S, Manukyan A, Gore L, Burbulis IE, Wang YH, McConnell MJ. Transcription-associated DNA DSBs activate p53 during hiPSC-based neurogenesis. Sci Rep 2022; 12:12156. [PMID: 35840793 PMCID: PMC9287420 DOI: 10.1038/s41598-022-16516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Neurons are overproduced during cerebral cortical development. Neural progenitor cells (NPCs) divide rapidly and incur frequent DNA double-strand breaks (DSBs) throughout cortical neurogenesis. Although half of the neurons born during neurodevelopment die, many neurons with inaccurate DNA repair survive leading to brain somatic mosaicism. Recurrent DNA DSBs during neurodevelopment are associated with both gene expression level and gene length. We used imaging flow cytometry and a genome-wide DNA DSB capture approach to quantify and map DNA DSBs during human induced pluripotent stem cell (hiPSC)-based neurogenesis. Reduced p53 signaling was brought about by knockdown (p53KD); p53KD led to elevated DNA DSB burden in neurons that was associated with gene expression level but not gene length in neural progenitor cells (NPCs). Furthermore, DNA DSBs incurred from transcriptional, but not replicative, stress lead to p53 activation in neurotypical NPCs. In p53KD NPCs, DNA DSBs accumulate at transcription start sites of genes that are associated with neurological and psychiatric disorders. These findings add to a growing understanding of how neuronal genome dynamics are engaged by high transcriptional or replicative burden during neurodevelopment.
Collapse
Affiliation(s)
- Nadine Michel
- Neuroscience Graduate Program, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Heather M Raimer Young
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Umar Arshad
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Reem Al-Humadi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Sandeep Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Lana Gore
- Lieber Institute for Brain Development, 855 N. Wolfe St., Ste. 300, Baltimore, MD, 21205, USA
| | - Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
- Sede de la Patagonia, Facultad de Medicina y Ciencias, Universidad San Sebastián, Puerto Montt, Chile
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Michael J McConnell
- Lieber Institute for Brain Development, 855 N. Wolfe St., Ste. 300, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Exploring the Origin and Physiological Significance of DNA Double Strand Breaks in the Developing Neuroretina. Int J Mol Sci 2022; 23:ijms23126449. [PMID: 35742893 PMCID: PMC9224223 DOI: 10.3390/ijms23126449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic mosaicism is an intriguing physiological feature of the mammalian brain that generates altered genetic information and provides cellular, and prospectively functional, diversity in a manner similar to that of the immune system. However, both its origin and its physiological significance remain poorly characterized. Most, if not all, cases of somatic mosaicism require prior generation and repair of DNA double strand breaks (DSBs). The relationship between DSB generation, neurogenesis, and early neuronal cell death revealed by our studies in the developing retina provides new perspectives on the different mechanisms that contribute to DNA rearrangements in the developing brain. Here, we speculate on the physiological significance of these findings.
Collapse
|
3
|
Proukakis C. Somatic mutations in neurodegeneration: An update. Neurobiol Dis 2020; 144:105021. [PMID: 32712267 DOI: 10.1016/j.nbd.2020.105021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mosaicism, the presence of genomic differences between cells due to post-zygotic somatic mutations, is widespread in the human body, including within the brain. A role for this in neurodegenerative diseases has long been hypothesised, and technical developments are now allowing the question to be addressed in detail. The rapidly accumulating evidence is discussed in this review, with a focus on recent developments. Somatic mutations of numerous types may occur, including single nucleotide variants (SNVs), copy number variants (CNVs), and retrotransposon insertions. They could act as initiators or risk factors, especially if they arise in development, although they could also result from the disease process, potentially contributing to progression. In common sporadic neurodegenerative disorders, relevant mutations have been reported in synucleinopathies, comprising somatic gains of SNCA in Parkinson's disease and multiple system atrophy, and in Alzheimer's disease, where a novel recombination mechanism leading to somatic variants of APP, as well as an excess of somatic SNVs affecting tau phosphorylation, have been reported. In Mendelian repeat expansion disorders, mosaicism due to somatic instability, first detected 25 years ago, has come to the forefront. Brain somatic SNVs occur in DNA repair disorders, and there is evidence for a role of several ALS genes in DNA repair. While numerous challenges, and need for further validation, remain, this new, or perhaps rediscovered, area of research has the potential to transform our understanding of neurodegeneration.
Collapse
Affiliation(s)
- Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
4
|
Rohrback S, Siddoway B, Liu CS, Chun J. Genomic mosaicism in the developing and adult brain. Dev Neurobiol 2018; 78:1026-1048. [PMID: 30027562 PMCID: PMC6214721 DOI: 10.1002/dneu.22626] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
Since the discovery of DNA, the normal developing and functioning brain has been assumed to be composed of cells with identical genomes, which remains the dominant view even today. However, this pervasive assumption is incorrect, as proven by increasing numbers of reports within the last 20 years that have identified multiple forms of somatically produced genomic mosaicism (GM), wherein brain cells-especially neurons-from a single individual show diverse alterations in DNA, distinct from the germline. Critically, these changes alter the actual DNA nucleotide sequences-in contrast to epigenetic mechanisms-and almost certainly contribute to the remarkably diverse phenotypes of single brain cells, including single-cell transcriptomic profiles. Here, we review the history of GM within the normal brain, including its major forms, initiating mechanisms, and possible functions. GM forms include aneuploidies and aneusomies, smaller copy number variations (CNVs), long interspersed nuclear element type 1 (LINE1) repeat elements, and single nucleotide variations (SNVs), as well as DNA content variation (DCV) that reflects all forms of GM with greatest coverage of large, brain cell populations. In addition, technical considerations are examined, along with relationships among GM forms and multiple brain diseases. GM affecting genes and loci within the brain contrast with current neural discovery approaches that rely on sequencing nonbrain DNA (e.g., genome-wide association studies (GWAS)). Increasing knowledge of neural GM has implications for mechanisms of development, diversity, and function, as well as understanding diseases, particularly considering the overwhelming prevalence of sporadic brain diseases that are unlinked to germline mutations. © 2018 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol, 2018.
Collapse
Affiliation(s)
- Suzanne Rohrback
- Biomedical Sciences Graduate Program, School of MedicineUniversity of California San DiegoLa JollaCalifornia92093
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
- Present address:
Illumina, Inc.San DiegoCA 92122USA
| | - Benjamin Siddoway
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| | - Christine S. Liu
- Biomedical Sciences Graduate Program, School of MedicineUniversity of California San DiegoLa JollaCalifornia92093
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| |
Collapse
|
5
|
Alt FW, Schwer B. DNA double-strand breaks as drivers of neural genomic change, function, and disease. DNA Repair (Amst) 2018; 71:158-163. [PMID: 30195640 DOI: 10.1016/j.dnarep.2018.08.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Early work from about two decades ago implicated DNA double-strand break (DSB) formation and repair in neuronal development. Findings emerging from recent studies of DSBs in proliferating neural progenitors and in mature, non-dividing neurons suggest important roles of DSBs in brain physiology, aging, cancer, psychiatric and neurodegenerative disorders. We provide an overview of some findings and speculate on what may lie ahead.
Collapse
Affiliation(s)
- Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States.
| | - Bjoern Schwer
- Department of Neurological Surgery and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94158, United States.
| |
Collapse
|
6
|
Mokretar K, Pease D, Taanman JW, Soenmez A, Ejaz A, Lashley T, Ling H, Gentleman S, Houlden H, Holton JL, Schapira AHV, Nacheva E, Proukakis C. Somatic copy number gains of α-synuclein (SNCA) in Parkinson’s disease and multiple system atrophy brains. Brain 2018; 141:2419-2431. [DOI: 10.1093/brain/awy157] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/16/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Katya Mokretar
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
- Department of Academic Haematology, University College London, UK
| | - Daniel Pease
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Jan-Willem Taanman
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Aynur Soenmez
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Ayesha Ejaz
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Helen Ling
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Anthony H V Schapira
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | | | - Christos Proukakis
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
7
|
Leija-Salazar M, Piette C, Proukakis C. Review: Somatic mutations in neurodegeneration. Neuropathol Appl Neurobiol 2018; 44:267-285. [PMID: 29369391 DOI: 10.1111/nan.12465] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/13/2018] [Indexed: 12/22/2022]
Abstract
Somatic mutations are postzygotic mutations which may lead to mosaicism, the presence of cells with genetic differences in an organism. Their role in cancer is well established, but detailed investigation in health and other diseases has only been recently possible. This has been empowered by the improvements of sequencing techniques, including single-cell sequencing, which can still be error-prone but is rapidly improving. Mosaicism appears relatively common in the human body, including the normal brain, probably arising in early development, but also potentially during ageing. In this review, we first discuss theoretical considerations and current evidence relevant to somatic mutations in the brain. We present a framework to explain how they may be integrated with current views on neurodegeneration, focusing mainly on sporadic late-onset neurodegenerative diseases (Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis). We review the relevant studies so far, with the first evidence emerging in Alzheimer's in particular. We also discuss the role of mosaicism in inherited neurodegenerative disorders, particularly somatic instability of tandem repeats. We summarize existing views and data to present a model whereby the time of origin and spatial distribution of relevant somatic mutations, combined with any additional risk factors, may partly determine the development and onset age of sporadic neurodegenerative diseases.
Collapse
Affiliation(s)
- M Leija-Salazar
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| | - C Piette
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| | - C Proukakis
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| |
Collapse
|
8
|
Hazen JL, Faust GG, Rodriguez AR, Ferguson WC, Shumilina S, Clark RA, Boland MJ, Martin G, Chubukov P, Tsunemoto RK, Torkamani A, Kupriyanov S, Hall IM, Baldwin KK. The Complete Genome Sequences, Unique Mutational Spectra, and Developmental Potency of Adult Neurons Revealed by Cloning. Neuron 2016; 89:1223-1236. [PMID: 26948891 DOI: 10.1016/j.neuron.2016.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/14/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023]
Abstract
Somatic mutation in neurons is linked to neurologic disease and implicated in cell-type diversification. However, the origin, extent, and patterns of genomic mutation in neurons remain unknown. We established a nuclear transfer method to clonally amplify the genomes of neurons from adult mice for whole-genome sequencing. Comprehensive mutation detection and independent validation revealed that individual neurons harbor ∼100 unique mutations from all classes but lack recurrent rearrangements. Most neurons contain at least one gene-disrupting mutation and rare (0-2) mobile element insertions. The frequency and gene bias of neuronal mutations differ from other lineages, potentially due to novel mechanisms governing postmitotic mutation. Fertile mice were cloned from several neurons, establishing the compatibility of mutated adult neuronal genomes with reprogramming to pluripotency and development.
Collapse
Affiliation(s)
- Jennifer L Hazen
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla CA 92037, USA
| | - Gregory G Faust
- Department of Biochemistry and Molecular Genetics, 1340 Jefferson Park Ave, University of Virginia School of Medicine, Charlottesville, VA 22901, USA
| | - Alberto R Rodriguez
- Mouse Genetics Core Facility, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - William C Ferguson
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla CA 92037, USA
| | - Svetlana Shumilina
- Department of Biochemistry and Molecular Genetics, 1340 Jefferson Park Ave, University of Virginia School of Medicine, Charlottesville, VA 22901, USA
| | - Royden A Clark
- Department of Biochemistry and Molecular Genetics, 1340 Jefferson Park Ave, University of Virginia School of Medicine, Charlottesville, VA 22901, USA
| | - Michael J Boland
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla CA 92037, USA
| | - Greg Martin
- Mouse Genetics Core Facility, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pavel Chubukov
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla CA 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rachel K Tsunemoto
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla CA 92037, USA.,Neuroscience Graduate Program, 9500 Gilman Drive, University of California San Diego, La Jolla, California, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sergey Kupriyanov
- Mouse Genetics Core Facility, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ira M Hall
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, USA.,Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Kristin K Baldwin
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla CA 92037, USA.,Neuroscience Graduate Program, 9500 Gilman Drive, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
9
|
Vlassaks E, Mencarelli C, Nikiforou M, Strackx E, Ferraz MJ, Aerts JM, De Baets MH, Martinez-Martinez P, Gavilanes AWD. Fetal asphyxia induces acute and persisting changes in the ceramide metabolism in rat brain. J Lipid Res 2013; 54:1825-33. [PMID: 23625371 DOI: 10.1194/jlr.m034447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Fetal asphyctic preconditioning, induced by a brief episode of experimental hypoxia-ischemia, offers neuroprotection to a subsequent more severe asphyctic insult at birth. Extensive cell stress and apoptosis are important contributing factors of damage in the asphyctic neonatal brain. Because ceramide acts as a second messenger for multiple apoptotic stimuli, including hypoxia/ischemia, we sought to investigate the possible involvement of the ceramide pathway in endogenous neuroprotection induced by fetal asphyctic preconditioning. Global fetal asphyxia was induced in rats by clamping both uterine and ovarian vasculature for 30 min. Fetal asphyxia resulted in acute changes in brain ceramide/sphingomyelin metabolic enzymes, ceramide synthase 1, 2, and 5, acid sphingomyelinase, sphingosine-1-phosphate phosphatase, and the ceramide transporter. This observation correlated with an increase in neuronal apoptosis and in astrocyte number. After birth, ceramide and sphingomyelin levels remained high in fetal asphyxia brains, suggesting that a long-term regulation of the ceramide pathway may be involved in the mechanism of tolerance to a subsequent, otherwise lethal, asphyctic event.
Collapse
Affiliation(s)
- Evi Vlassaks
- Department of Neuroscience, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
CASE MICHAELA, MACMILLAN HUGHR. ON SIMULATING THE GENERATION OF MOSAICISM DURING MAMMALIAN CEREBRAL CORTICAL DEVELOPMENT. J BIOL SYST 2011. [DOI: 10.1142/s0218339009002740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Renewed calls for a systems biology reflect the hope hat enduring biological questions at single-cell and cell-population scales will be resolved as modern molecular biology, with its reductionist program, approaches a nearly-complete characterization of the molecular mechanisms of specific cellular processes. Due to the confounding complexity of biological organization across these scales, computational science is sought to complement the intuition of experimentalists. However, with respect to the molecular basis of cellular processes during development and disease, a gulf between feasible simulations and realistic biology persists. Formidable are the mathematical and computational challenges to conducting and validating cell population-scale simulations, drawn from single-cell level and molecular level details. Nonetheless, in some biological contexts, a focus on core processes crafted by evolution can yield coarse-grained mathematical models that retain explanatory potential despite drastic simplification of known biochemical kinetics.In this article, we bring this modeling philosophy to bear on the nature of neural progenitor cell decision making during mammalian cerebral cortical development. Specifically, we present the computational component to a research program addressing developmental links between (i) the cellular response to endogenous DNA damage, (ii) primary mechanisms of neuronal genetic heterogeneity, or mosaicism, and (iii) the cell fate decision making that defines the population kinetics of neurogenesis.
Collapse
Affiliation(s)
- MICHAEL A. CASE
- Department of Mathematical Sciences, Clemson University, Box 340975, Clemson, SC, 29634-0975, USA
| | - HUGH R. MACMILLAN
- Department of Mathematical Sciences, Clemson University, Box 340975, Clemson, SC, 29634-0975, USA
| |
Collapse
|
11
|
McGowan PO, Hope TA, Meck WH, Kelsoe G, Williams CL. Impaired social recognition memory in recombination activating gene 1-deficient mice. Brain Res 2011; 1383:187-95. [PMID: 21354115 DOI: 10.1016/j.brainres.2011.02.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
The recombination activating genes (RAGs) encode two enzymes that play key roles in the adaptive immune system. RAG1 and RAG2 mediate VDJ recombination, a process necessary for the maturation of B- and T-cells. Interestingly, RAG1 is also expressed in the brain, particularly in areas of high neural density such as the hippocampus, although its function is unknown. We tested evidence that RAG1 plays a role in brain function using a social recognition memory task, an assessment of the acquisition and retention of conspecific identity. In a first experiment, we found that RAG1-deficient mice show impaired social recognition memory compared to mice wildtype for the RAG1 allele. In a second experiment, by breeding to homogenize background genotype, we found that RAG1-deficient mice show impaired social recognition memory relative to heterozygous or RAG2-deficient littermates. Because RAG1 and RAG2 null mice are both immunodeficient, the results suggest that the memory impairment is not an indirect effect of immunological dysfunction. RAG1-deficient mice show normal habituation to non-socially derived odors and habituation to an open-field, indicating that the observed effect is not likely a result of a general deficit in habituation to novelty. These data trace the origin of the impairment in social recognition memory in RAG1-deficient mice to the RAG1 gene locus and implicate RAG1 in memory formation.
Collapse
Affiliation(s)
- Patrick O McGowan
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| | | | | | | | | |
Collapse
|
12
|
Westra JW, Rivera RR, Bushman DM, Yung YC, Peterson SE, Barral S, Chun J. Neuronal DNA content variation (DCV) with regional and individual differences in the human brain. J Comp Neurol 2010; 518:3981-4000. [PMID: 20737596 DOI: 10.1002/cne.22436] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is widely assumed that the human brain contains genetically identical cells through which postgenomic mechanisms contribute to its enormous diversity and complexity. The relatively recent identification of neural cells throughout the neuraxis showing somatically generated mosaic aneuploidy indicates that the vertebrate brain can be genomically heterogeneous (Rehen et al. [2001] Proc. Natl. Acad. Sci. U. S. A. 98:13361-13366; Rehen et al. [2005] J. Neurosci. 25:2176-2180; Yurov et al. [2007] PLoS ONE:e558; Westra et al. [2008] J. Comp. Neurol. 507:1944-1951). The extent of human neural aneuploidy is currently unknown because of technically limited sample sizes, but is reported to be small (Iourov et al. [2006] Int. Rev. Cytol. 249:143-191). During efforts to interrogate larger cell populations by using DNA content analyses, a surprising result was obtained: human frontal cortex brain cells were found to display "DNA content variation (DCV)" characterized by an increased range of DNA content both in cell populations and within single cells. On average, DNA content increased by approximately 250 megabases, often representing a substantial fraction of cells within a given sample. DCV within individual human brains showed regional variation, with increased prevalence in the frontal cortex and less variation in the cerebellum. Further, DCV varied between individual brains. These results identify DCV as a new feature of the human brain, encompassing and further extending genomic alterations produced by aneuploidy, which may contribute to neural diversity in normal and pathophysiological states, altered functions of normal and disease-linked genes, and differences among individuals.
Collapse
Affiliation(s)
- Jurjen W Westra
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
DNA-PK promotes the survival of young neurons in the embryonic mouse retina. Cell Death Differ 2010; 17:1697-706. [PMID: 20448641 DOI: 10.1038/cdd.2010.46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Programmed cell death is a crucial process in neural development that affects mature neurons and glial cells, as well as proliferating precursors and recently born neurons at earlier stages. However, the regulation of the early phase of neural cell death and its function remain relatively poorly understood. In mouse models defective in homologous recombination or nonhomologous end-joining (NHEJ), which are both DNA double-strand break (DSB) repair pathways, there is massive cell death during neural development, even leading to embryonic lethality. These observations suggest that natural DSBs occur frequently in the developing nervous system. In this study, we have found that several components of DSB repair pathways are activated in the developing mouse retina at stages that coincide with the onset of neurogenesis. In short-term organotypic retinal cultures, we confirmed that the repair pathways can be modulated pharmacologically. Indeed, inhibiting the DNA-dependent protein kinase (DNA-PK) catalytic subunit, which is involved in NHEJ, with NU7026 increased caspase-dependent cell death and selectively reduced the neuron population. This observation concurs with an increase in the number of apoptotic neurons found after NU7026 treatment, as also observed in the embryonic scid mouse retina, a mutant that lacks DNA-PK catalytic subunit activity. Therefore, our results implicate the generation of DSB and DNA-PK-mediated repair in neurogenesis in the developing retina.
Collapse
|
14
|
Barzilai A, Biton S, Shiloh Y. The role of the DNA damage response in neuronal development, organization and maintenance. DNA Repair (Amst) 2008; 7:1010-27. [DOI: 10.1016/j.dnarep.2008.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Sharma S. Age-related nonhomologous end joining activity in rat neurons. Brain Res Bull 2007; 73:48-54. [PMID: 17499636 DOI: 10.1016/j.brainresbull.2007.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/30/2007] [Accepted: 02/01/2007] [Indexed: 11/17/2022]
Abstract
DNA double strand break (DSB) represents a potentially lethal form of DNA damage. Reports suggest that DSBs are introduced in neurons during the course of normal development, and repair of such DSBs is essential for neuronal survival. The molecular mechanisms of DSB repair by nonhomologous end joining (NHEJ) have been described in several cell types. The present study describes age-related NHEJ activity in the isolated neurons from rat cerebral cortex. Cell-free extracts prepared from rat cortical neurons support efficient NHEJ of linearized plasmid DNA in an in vitro DSB repair assay. End joining efficiency of young neurons is dependent on DNA end structure. A linear plasmid with blunt ends was joined less efficiently by the neuronal extracts than the cohesive or non-matching protruding DNA ends. NHEJ in neurons was blocked by the DNA-PKcs inhibitor wortmannin, and dNTP, and could occur in the absence of exogenously added ATP. The end joining process in young rat neurons is nonfaithful. In vitro NHEJ activity was considerably lower in adult brain, and neurons from old brain failed to support significant end joining. The age-dependent profile of neuronal NHEJ indicates that neurons in postnatal brain utilize error-prone NHEJ to repair DNA double strand breaks accumulated within the genome and this activity declines gradually with age.
Collapse
Affiliation(s)
- Sudha Sharma
- ICMR Center for Research on Aging and Brain (CRAB), Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
16
|
Besirli CG, Johnson EM. The activation loop phosphorylation of protein kinase D is an early marker of neuronal DNA damage. J Neurochem 2006; 99:218-25. [PMID: 16911582 DOI: 10.1111/j.1471-4159.2006.04116.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In neurons, DNA damage induces protein synthesis-dependent apoptosis mediated by the mitochondrial intrinsic cell-death pathway. Signal transduction cascades activated by genotoxic stress upstream of the mitochondria are largely unknown. We identified protein kinase D (PKD) as one of the earliest markers of neuronal DNA damage. Phosphorylation of the PKD-activation domain could be detected within 15 min of genotoxic stress and was concurrent with ataxia telangiectasia-mutated (ATM) activation. PKD stimulation was selective to DNA damage and did not occur with other stress stimuli examined. In vivo, both young and adult rats showed increased levels of phosphorylated PKD in neuronal tissues after injection of DNA-toxin etoposide. These results indicate that PKD activation is an early neuronal response to DNA damage, suggesting that signaling downstream of PKD may be critical for neuronal survival after genotoxic stress.
Collapse
Affiliation(s)
- Cagri G Besirli
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | |
Collapse
|
17
|
Maeda T, Sakoda S, Suzuki T, Makino N. Somatic DNA recombination in the brain. Can J Physiol Pharmacol 2006; 84:319-24. [PMID: 16902579 DOI: 10.1139/y05-099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Possible somatic DNA recombination in the brain has been investigated by attempting to capture direct or indirect evidence of it. Until recently, the biological significance of the DNA event, the genes is involved in the recombination, or even whether the event actually occurs in the brain has remained unclear. The DNA-rearranged locus-oriented approach and the recombination activity-oriented approach have mutually contributed to the elucidation of the biological features of extra-immune system somatic DNA recombination. There have been only 2 loci proposed for the candidate, one is a repetitive sequence and the other DNA recombination is nonrepetitive locus. This review states conventional concepts and discussions chronologically and finally to the newest aspects of DNA rearrangement in the brain.
Collapse
Affiliation(s)
- Toyoki Maeda
- Division of Molecular and Clinical Gerontology, Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Oita, Japan.
| | | | | | | |
Collapse
|
18
|
|
19
|
Osada T, Tamamaki N, Song SY, Kakazu N, Yamazaki Y, Makino H, Sasaki A, Hirayama T, Hamada S, Nave KA, Yanagimachi R, Yagi T. Developmental pluripotency of the nuclei of neurons in the cerebral cortex of juvenile mice. J Neurosci 2006; 25:8368-74. [PMID: 16162918 PMCID: PMC6725666 DOI: 10.1523/jneurosci.1591-05.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nuclei isolated from green fluorescent protein-marked neurons in the cerebral cortex of juvenile mice (14-21 d after birth) were injected into enucleated oocytes that were allowed to develop into blastocysts. Embryonic stem (ES) cell lines were established from the inner cell mass of 76 cloned blastocysts after injecting 2026 neuronal nuclei. Some ES cells were injected individually into enucleated oocytes (nuclear transfer). Other ES cells were transferred into the blastocoeles of tetraploid blastocysts (tetraploid complementation). Two-cell embryos after nuclear transfer were transferred to the oviducts of surrogate mothers. Four (1.5%) of 272 nuclear-transferred two-cell embryos developed to term, and two (0.7%) developed into fertile adults. Nineteen (1.9%) of 992 tetraploid blastocysts receiving ES cells reached term, and 10 (1.0%) developed into adults. These findings demonstrate that some of the nuclei of differentiated neurons in the cerebral cortex of juvenile mice maintain developmental pluripotency.
Collapse
Affiliation(s)
- Tomoharu Osada
- Core Research for Evolutional Science and Technology Research Agency, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Maeda T, Mizuno R, Sugano M, Satoh S, Oyama J, Sakoda S, Suzuki T, Makino N. Somatic DNA recombination in a mouse genomic region, BC-1, in brain and non-brain tissueThis paper is one of a selection of papers published in this Special Issue, entitled The Nucleus: A Cell Within A Cell. Can J Physiol Pharmacol 2006; 84:443-9. [PMID: 16902589 DOI: 10.1139/y05-098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genomic region BC-1 (GenBank acc. No. AB075899 ) on mouse chromosome 16 has been reported as a genomic region undergoing somatic DNA recombination producing circular DNA and genomic deletion in brain during late embryogenesis. The present study shows that the BC-1 circular DNA production had already started on the 13th day of embryonic age, earlier than the previous observation that the circular DNA production started on the 15th through 17th embryonic day. The BC-1 deletion was also observed in the spleen and ocular lens. In situ hybridization analysis indicated that a human-homologous region in the BC-1 sequence was expressed in the lens at a perinatal period. These data suggest that the somatic DNA recombination in the BC-1 region is not restricted to brain tissue, and that the BC-1 DNA recombination relates to lens development.
Collapse
Affiliation(s)
- Toyoki Maeda
- Division of Molecular and Clinical Gerontology, Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Tsurumihara, Beppu, Oita, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Programmed cell death is a relevant process in the physiology and pathology of the nervous system. Neuronal cell death during development is well characterized, and studies of this process have provided valuable information regarding the regulatory mechanisms of cell death in the nervous system. In the last few years, cell death occurring at earlier developmental stages and affecting proliferating neuroepithelial cells and recently born neuroblasts has been recognized. In this review we cover the observations on cell death in the early, proliferating stages of vertebrate neural development. Genetically modified mouse model systems and complementary in vivo approaches in other vertebrates have provided a solid basis for its relevance and contribution to normal neural development, as well as for the pathological consequences of its deregulation. However, the precise functional role of cell death remains a topic of debate.
Collapse
Affiliation(s)
- Patricia Boya
- Group of Growth Factors in Vertebrate Development, Department of Cell and Developmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|
22
|
Jaenisch R, Hochedlinger K, Blelloch R, Yamada Y, Baldwin K, Eggan K. Nuclear cloning, epigenetic reprogramming, and cellular differentiation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:19-27. [PMID: 16117629 DOI: 10.1101/sqb.2004.69.19] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- R Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lossi L, Cantile C, Tamagno I, Merighi A. Apoptosis in the mammalian CNS: Lessons from animal models. Vet J 2005; 170:52-66. [PMID: 15993789 DOI: 10.1016/j.tvjl.2004.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2004] [Indexed: 12/30/2022]
Abstract
It is generally assumed that about half of the neurons produced during neurogenesis die before completion of maturation of the central nervous system (CNS). Neural cell death is also relevant in aging and several neurodegenerative diseases. Among the modalities by which neurons die, apoptosis has very much attracted the interest of investigators because in this type of cell death neurons are actively responsible for their own demise by switching on a number of genes and activating a series of specific intracellular pathways. This review focuses on the cellular and molecular mechanisms of apoptosis in normal and transgenic animal models related to naturally occurring neuronal death within the CNS. We will also consider some examples of apoptotic cell death in canine neuropathologies. A thorough analysis of naturally occurring neuronal death in vivo will offer a basis for parallel and future studies involving secondary neuronal loss such as those in neurodegenerative disorders, trauma or ischaemia.
Collapse
Affiliation(s)
- L Lossi
- Dipartimento di Morfofisiologia Veterinaria, University of Torino, Via Leonardo da Vinci 44, I-10095 Grugliasco, Italy.
| | | | | | | |
Collapse
|
24
|
Abstract
DNA double-strand breaks (DSBs) require a coordinated molecular response to ensure cellular or organism survival. Many factors required for the DSB response, including those involved in non-homologous end joining (NHEJ) and homologous recombination repair (HRR) are essential during nervous system development. Additionally, human syndromes resulting from defective responses to DNA damage often feature overt neuropathology such as neurodegeneration. Thus, appropriate responses to DSBs are critical for the normal development and maintenance of the nervous system.
Collapse
Affiliation(s)
- Clint W Abner
- Department of Genetics & Tumor Cell Biology, St. Jude Children's Research Hospital, 332N Lauderdale, Memphis, TN 38105, USA
| | | |
Collapse
|
25
|
Sugo N, Niimi N, Aratani Y, Takiguchi-Hayashi K, Koyama H. p53 Deficiency rescues neuronal apoptosis but not differentiation in DNA polymerase beta-deficient mice. Mol Cell Biol 2004; 24:9470-7. [PMID: 15485914 PMCID: PMC522222 DOI: 10.1128/mcb.24.21.9470-9477.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammalian cells, DNA polymerase beta (Polbeta) functions in base excision repair. We have previously shown that Polbeta-deficient mice exhibit extensive neuronal cell death (apoptosis) in the developing nervous system and that the mice die immediately after birth. Here, we studied potential roles in the phenotype for p53, which has been implicated in DNA damage sensing, cell cycle arrest, and apoptosis. We generated Polbeta(-/-) p53(-/-) double-mutant mice and found that p53 deficiency dramatically rescued neuronal apoptosis associated with Polbeta deficiency, indicating that p53 mediates the apoptotic process in the nervous system. Importantly, proliferation and early differentiation of neuronal progenitors in Polbeta(-/-) p53(-/-) mice appeared normal, but their brains obviously displayed cytoarchitectural abnormalities; moreover, the mice, like Polbeta(-/-) p53(+/+) mice, failed to survive after birth. Thus, we strongly suggest a crucial role for Polbeta in the differentiation of specific neuronal cell types.
Collapse
Affiliation(s)
- Noriyuki Sugo
- Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | | | | | |
Collapse
|
26
|
McConnell MJ, Kaushal D, Yang AH, Kingsbury MA, Rehen SK, Treuner K, Helton R, Annas EG, Chun J, Barlow C. Failed clearance of aneuploid embryonic neural progenitor cells leads to excess aneuploidy in the Atm-deficient but not the Trp53-deficient adult cerebral cortex. J Neurosci 2004; 24:8090-6. [PMID: 15371510 PMCID: PMC6729802 DOI: 10.1523/jneurosci.2263-04.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 07/20/2004] [Accepted: 07/25/2004] [Indexed: 11/21/2022] Open
Abstract
Aneuploid neurons populate the normal adult brain, but the cause and the consequence of chromosome abnormalities in the CNS are poorly defined. In the adult cerebral cortex of three genetic mutants, one of which is a mouse model of the human neurodegenerative disease ataxia-telangiectasia (A-T), we observed divergent levels of sex chromosome (XY) aneuploidy. Although both A-T mutated (Atm)- and transformation related protein 53 (Trp53)-dependent mechanisms are thought to clear newly postmitotic neurons with chromosome abnormalities, we found a 38% increase in the prevalence of XY aneuploidy in the adult Atm-/- cerebral cortex and a dramatic 78% decrease in Trp53-/- mutant mice. A similar 43% decrease in adult XY aneuploidy was observed in DNA repair-deficient Xrcc5-/- mutants. Additional investigation found an elevated incidence of aneuploid embryonic neural progenitor cells (NPCs) in all three mutants, but elevated apoptosis, a likely fate of embryonic NPCs with severe chromosome abnormalities, was observed only in Xrcc5-/- mutants. These data lend increasing support to the hypothesis that hereditary mutations such as ATM-deficiency, which render abnormal cells resistant to developmental clearance, can lead to late-manifesting human neurological disorders.
Collapse
Affiliation(s)
- Michael J McConnell
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Narasimhaiah R, Tuchman A, Lin SL, Naegele JR. Oxidative damage and defective DNA repair is linked to apoptosis of migrating neurons and progenitors during cerebral cortex development in Ku70-deficient mice. ACTA ACUST UNITED AC 2004; 15:696-707. [PMID: 15342428 PMCID: PMC2801560 DOI: 10.1093/cercor/bhh171] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
DNA repair plays a critical, but imprecisely defined role in neuronal survival during cortical neurogenesis. We examined cortical development in mice deficient for the DNA end-joining protein, Ku70. At gestational day 14.5, corresponding to the peak of neurogenesis, the Ku70(-/-) embryonic cerebral cortex displayed 25- to 30-fold more cell death than heterozygous littermates, as judged by DNA breaks, pyknosis and active caspase-3. In Ku70(-/-) embryos only, large clusters of dying neurons were found in the intermediate zone. Cell death declined until P4, when the number of dying cells became comparable to that in heterozygous mice. Two groups of dying cells were evident: a GLAST(+) neural progenitor population in the subventricular and ventricular zones, and a doublecortin(+) immature neuron population in the intermediate zone, the latter exhibiting strong staining for oxidative DNA damage. Antioxidants and lower oxygen tension reduced the high levels of neuronal death in primary cortical cultures derived from Ku70(-/-) mice, but not the low levels of cell death in wildtype cortical cultures. Results indicate migrating cortical neurons undergo oxidative DNA damage, which is normally repaired by non-homologous end joining. Failure to repair oxidative damage triggers a form of apoptosis involving caspase-3 activation.
Collapse
Affiliation(s)
- Roopashree Narasimhaiah
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, CT 06459-0171, USA
| | - Alexander Tuchman
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, CT 06459-0171, USA
| | - Stanley L. Lin
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, CT 06459-0171, USA
- Department of Psychiatry, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | - Janice R. Naegele
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, CT 06459-0171, USA
| |
Collapse
|
28
|
Eggan K, Baldwin K, Tackett M, Osborne J, Gogos J, Chess A, Axel R, Jaenisch R. Mice cloned from olfactory sensory neurons. Nature 2004; 428:44-9. [PMID: 14990966 DOI: 10.1038/nature02375] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 01/14/2004] [Indexed: 11/08/2022]
Abstract
Cloning by nuclear transplantation has been successfully carried out in various mammals, including mice. Until now mice have not been cloned from post-mitotic cells such as neurons. Here, we have generated fertile mouse clones derived by transferring the nuclei of post-mitotic, olfactory sensory neurons into oocytes. These results indicate that the genome of a post-mitotic, terminally differentiated neuron can re-enter the cell cycle and be reprogrammed to a state of totipotency after nuclear transfer. Moreover, the pattern of odorant receptor gene expression and the organization of odorant receptor genes in cloned mice was indistinguishable from wild-type animals, indicating that irreversible changes to the DNA of olfactory neurons do not accompany receptor gene choice.
Collapse
Affiliation(s)
- Kevin Eggan
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Recent studies based predominantly on nucleotide hybridization techniques have identified aneuploid neurons and glia in the normal brain. To substantiate these findings and address how neural aneuploidy arises, we examined individual neural progenitor cells (NPCs) undergoing mitosis. Here we report the identification of chromosomal segregation defects in normal NPCs of the mouse cerebral cortex. Immunofluorescence in fixed tissue sections revealed the presence of supernumerary centrosomes and lagging chromosomes among mitotic NPCs. The extent of aneuploidy followed the prevalence of supernumerary centrosomes within distinct cell populations. Real-time imaging of live NPCs revealed lagging chromosomes and multipolar divisions. NPCs undergoing nondisjunction were also observed, along with interphase cells that harbored micronuclei or multiple nuclei, consistent with unbalanced nuclear division. These data independently confirm the presence of aneuploid NPCs and demonstrate the occurrence of mitotic segregation defects in normal cells that can mechanistically account for aneuploidy in the CNS.
Collapse
|
30
|
Besirli CG, Deckwerth TL, Crowder RJ, Freeman RS, Johnson EM. Cytosine arabinoside rapidly activates Bax-dependent apoptosis and a delayed Bax-independent death pathway in sympathetic neurons. Cell Death Differ 2003; 10:1045-58. [PMID: 12934079 DOI: 10.1038/sj.cdd.4401259] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cytosine arabinoside (ara-C) is a nucleoside analog used in the treatment of hematologic malignancies. One of the major side effects of ara-C chemotherapy is neurotoxicity. In this study, we have further characterized the cell death induced by ara-C in sympathetic neurons. Similar to neurons undergoing trophic factor deprivation-induced apoptosis, ara-C-exposed neurons became hypometabolic before death and upregulated c-myb, c-fos, and Bim. Bax deletion delayed, but did not prevent, ara-C toxicity. Neurons died by apoptosis, indicated by the release of mitochondrial cytochrome-c and caspase-3 activation. p53-deficient neurons demonstrated decreased sensitivity to ara-C, but neither p53 nor multiple p53-regulated genes were induced. Mature neurons showed increased ara-C resistance. These results demonstrate that molecular mechanisms underlying ara-C-induced death are similar to those responsible for trophic factor deprivation-induced apoptosis. However, substantial differences in neuronal death after these two distinct stress stimuli exist since ara-C toxicity, unlike the developmental death, can proceed in the absence of Bax.
Collapse
Affiliation(s)
- C G Besirli
- Departments of Neurology and Molecular Biology & Pharmacology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Frequent chromosomal aneuploidy has recently been discovered in normal neurons of the developing and mature murine CNS. Toward a more detailed understanding of aneuploidy and its effects on normal CNS cells, we examined the genomes of cells in the postnatal subventricular zone (SVZ), an area that harbors a large number of neural stem and progenitor cells (NPCs), which give rise to neurons and glia. Here we show that NPCs, neurons, and glia from the SVZ are frequently aneuploid. Karyotyping revealed that approximately 33% of mitotic SVZ cells lost or gained chromosomes in vivo, whereas interphase fluorescence in situ hybridization demonstrated aneuploidy in postnatal-born cells in the olfactory bulb (OB) in vivo, along with neurons, glia, and NPCs in vitro. One possible consequence of aneuploidy is altered gene expression through loss of heterozygosity (LOH). This was examined in a model of LOH: loss of transgene expression in mice hemizygous for a ubiquitously expressed enhanced green fluorescent protein (eGFP) transgene on chromosome 15. Concurrent examination of eGFP expression, transgene abundance, and chromosome 15 copy number demonstrated that a preponderance of living SVZ and OB cells not expressing eGFP lost one copy of chromosome 15; the eGFP transgene was lost in these cells as well. Although gene expression profiling revealed changes in expression levels of several genes relative to GFP-expressing controls, cells with LOH at chromosome 15 were morphologically normal and proliferated or underwent apoptosis at rates similar to those of euploid cells in vitro. These findings support the view that NPCs and postnatal-born neurons and glia can be aneuploid in vivo and functional gene expression can be permanently altered in living neural cells by chromosomal aneuploidy.
Collapse
|
32
|
Lossi L, Merighi A. In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog Neurobiol 2003; 69:287-312. [PMID: 12787572 DOI: 10.1016/s0301-0082(03)00051-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Apoptosis has been recognized to be an essential process during neural development. It is generally assumed that about half of the neurons produced during neurogenesis die before completion of the central nervous system (CNS) maturation, and this process affects nearly all classes of neurons. In this review, we discuss the experimental data in vivo on naturally occurring neuronal death in normal, transgenic and mutant animals, with special attention to the cerebellum as a study model. The emerging picture is that of a dual wave of apoptotic cell death affecting central neurons at different stages of their life. The first wave consists of an early neuronal death of proliferating precursors and young postmitotic neuroblasts, and appears to be closely linked to cell cycle regulation. The second wave affects postmitotic neurons at later stages, and is much better understood in functional terms, mainly on the basis of the neurotrophic concept in its broader definition. The molecular machinery of late apoptotic death of postmitotic neurons more commonly follows the mitochondrial pathway of intracellular signal transduction, but the death receptor pathway may also be involved.Undoubtedly, analysis of naturally occurring neuronal death (NOND) in vivo will offer a basis for parallel and future studies aiming to elucidate the mechanisms of pathologic neuronal loss occurring as the result of conditions such as neurodegenerative disorders, trauma or ischemia.
Collapse
Affiliation(s)
- L Lossi
- Department of Veterinary Morphophysiology, University of Torino, Via Leonardo da Vinci 44, I-10095 (TO), Grugliasco, Italy.
| | | |
Collapse
|
33
|
Yagi T. Diversity of the cadherin-related neuronal receptor/protocadherin family and possible DNA rearrangement in the brain. Genes Cells 2003; 8:1-8. [PMID: 12558794 DOI: 10.1046/j.1365-2443.2003.00614.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both the brain and the immune systems are complex. The complexity is generated by enormously diversified single cells. In the immune system, extensive cell death, gene regulation of immunoglobulin (Ig) and T-cell receptor (TCR) gene expression, and somatic rearrangement and mutations are known to generate an enormous diversity of lymphocytes. In this process, double-strand DNA breaks (DSBs) and DSB repair play significant roles. These processes at a DNA level are also physiologically significant in the nervous system during neurogenesis, and chromosomal variations have been detected in the nucleus of differentiated neurones. In another parallel with the immune system, cadherin-related neuronal receptors (CNRs) are diversified synaptic proteins. The CNR genes belong to protocadherin (Pcdh) gene clusters. Genomic organizations of CNR/Pcdh genes are similar to that of the Ig and TCR genes. Somatic mutations in and combinatorial gene regulation of CNR/Pcdh transcripts during neurogenesis have been reported. This review focuses on the diversity of the CNR/Pcdh genes and possible DNA diversification in the nervous system.
Collapse
Affiliation(s)
- Takeshi Yagi
- KOKORO Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan.
| |
Collapse
|
34
|
Kadota M, Shirayoshi Y, Oshimura M. Elevated apoptosis in pre-mature neurons differentiated from mouse ES cells containing a single human chromosome 21. Biochem Biophys Res Commun 2002; 299:599-605. [PMID: 12459181 DOI: 10.1016/s0006-291x(02)02686-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A decrease in the number and density of neurons is the most common phenotype in the brains of Down syndrome (DS) patients, causing mental retardation. Studies using primary cultured neurons from DS patients or from model mice have suggested that a defect in metabolism of reactive oxygen species, or diminished levels of glutathione, causes mitochondrial and caspase-mediated neuronal apoptosis in vitro. However, it is not well documented whether neuronal apoptosis also occurs in immature DS neurons, owing to the difficulty in isolating or identifying neuronal stem cells in human or mouse fetuses. Here we utilized an in vitro model system for neuronal differentiation, with mouse embryonic stem cells containing human chromosome 21 (TT2F/hChr.21) to examine the effect of an additional hChr.21 on the early phases of neurogenesis. The differentiation profile of TT2F/hChr.21 cells was essentially the same as those of parental TT2F ES cells. In differentiations of both TT2F and TT2F/hChr.21 cells, high level of apoptosis was observed in neuronal stem cells, but the rate of apoptosis in TT2F/hChr.21 cells was significantly higher than that of parental cells. These results suggest that quantitative changes in the level of apoptosis in DS neuronal stem cells may account for the reduction of neuronal number and density in the DS brain.
Collapse
Affiliation(s)
- Mitsutaka Kadota
- Division of Molecular and Cell Genetics, Department of Molecular and Cellular Biology, Faculty of Medicine, School of Life Sciences, Tottori University, Nishimachi 86, Yonago, Tottori 683-8503, Japan
| | | | | |
Collapse
|
35
|
Wang X, Su H, Bradley A. Molecular mechanisms governing Pcdh-gamma gene expression: evidence for a multiple promoter and cis-alternative splicing model. Genes Dev 2002; 16:1890-905. [PMID: 12154121 PMCID: PMC186422 DOI: 10.1101/gad.1004802] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The genomic architecture of protocadherin (Pcdh) gene clusters is remarkably similar to that of the immunoglobulin and T cell receptor gene clusters, and can potentially provide significant molecular diversity. Pcdh genes are abundantly expressed in the central nervous system. These molecules are primary candidates for establishing specific neuronal connectivity. Despite the extensive analyses of the genomic structure of both human and mouse Pcdh gene clusters, the definitive molecular mechanisms that control Pcdh gene expression are still unknown. Four theories have been proposed, including (1) DNA recombination followed by cis-splicing, (2) single promoter and cis-alternative splicing, (3) multiple promoters and cis-alternative splicing, and (4) multiple promoters and trans-splicing. Using a combination of molecular and genetic analyses, we evaluated the four models at the Pcdh-gamma locus. Our analysis provides evidence that the transcription of individual Pcdh-gamma genes is under the control of a distinct but related promoter upstream of each Pcdh-gamma variable exon, and posttranscriptional processing of each Pcdh-gamma transcript is predominantly mediated through cis-alternative splicing.
Collapse
MESH Headings
- Alleles
- Alternative Splicing/genetics
- Animals
- COS Cells
- Cadherin Related Proteins
- Cadherins/biosynthesis
- Cadherins/genetics
- Chlorocebus aethiops
- Embryo, Mammalian/cytology
- Exons/genetics
- Gene Expression Regulation
- Gene Library
- Gene Rearrangement/genetics
- Genes, Immunoglobulin
- Genes, Overlapping
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Models, Genetic
- Molecular Sequence Data
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Neurons/classification
- Neurons/metabolism
- Promoter Regions, Genetic/genetics
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombination, Genetic
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Xiaozhong Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
36
|
Roth KA, D'Sa C. Apoptosis and brain development. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 7:261-6. [PMID: 11754520 DOI: 10.1002/mrdd.1036] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuronal cell death in the embryonic brain was first recognized almost a century ago. Its significance for normal nervous system development and function has been a major focus of neuroscientific investigation ever since. Remarkable progress has been made in defining the cellular processes controlling neuronal cell death and studies performed over the last ten years have revealed extensive homology between the molecules regulating programmed cell death in Caenorhabditis elegans and apoptosis in mammalian cells. Targeted gene disruptions of members of the bcl-2 and caspase gene families have demonstrated particularly significant roles for bcl-x, bax, caspase-9 and caspase-3 in mammalian brain development. As expected from previous studies of synapse-bearing neurons and neurotrophic factors, reduced neuronal cell death in mice bearing mutations in key pro-apoptotic molecules resulted in increased numbers of neurons in a variety of neuronal subpopulations. However, targeted gene disruptions also demonstrated a heretofore underappreciated significance of neural precursor cell death and immature neuron death in nervous system development. Pathological activation of apoptotic death pathways may lead to neuroanatomic abnormalities and possibly to developmental disabilities.
Collapse
Affiliation(s)
- K A Roth
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
37
|
Hung FC, Zhao S, Chen Q, Overbeek PA. Retinal ablation and altered lens differentiation induced by ocular overexpression of BMP7. Vision Res 2002; 42:427-38. [PMID: 11853758 DOI: 10.1016/s0042-6989(01)00242-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The alphaA-crystallin promoter was used to target expression of bone morphogenetic protein 7 (BMP7) to lens fiber cells in transgenic mice. Surprisingly, lens-specific expression of BMP7 induced widespread apoptosis and rapid ablation of the neural retina in multiple families. Subsequent to retinal ablation, the lens bow region shifted posteriorly until lens epithelial cells completely enveloped the lens. Lens-specific expression of FGF3 was found to rescue the loss of fiber cell differentiation. Our results show that elevated BMP7 levels can induce rapid retinal degeneration accompanied by disruption of the endogenous ocular system for fiber cell induction.
Collapse
Affiliation(s)
- Fang Cheng Hung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
38
|
Yamazaki Y, Makino H, Hamaguchi-Hamada K, Hamada S, Sugino H, Kawase E, Miyata T, Ogawa M, Yanagimachi R, Yagi T. Assessment of the developmental totipotency of neural cells in the cerebral cortex of mouse embryo by nuclear transfer. Proc Natl Acad Sci U S A 2001; 98:14022-6. [PMID: 11698647 PMCID: PMC61160 DOI: 10.1073/pnas.231489398] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2001] [Indexed: 11/18/2022] Open
Abstract
When neural cells were collected from the entire cerebral cortex of developing mouse fetuses (15.5-17.5 days postcoitum) and their nuclei were transferred into enucleated oocytes, 5.5% of the reconstructed oocytes developed into normal offspring. This success rate was the highest among all previous mouse cloning experiments that used somatic cells. Forty-four percent of live embryos at 10.5 days postcoitum were morphologically normal when premature and early-postmitotic neural cells from the ventricular side of the cortex were used. In contrast, the majority (95%) of embryos were morphologically abnormal (including structural abnormalities in the neural tube) when postmitotic-differentiated neurons from the pial side of the cortex were used for cloning. Whereas 4.3% of embryos cloned with ventricular-side cells developed into healthy offspring, only 0.5% of those cloned with differentiated neurons in the pial side did so. These facts seem to suggest that the nuclei of neural cells in advanced stages of differentiation had lost their developmental totipotency. The underlying mechanism for this developmental limitation could be somatic DNA rearrangements in differentiating neural cells.
Collapse
Affiliation(s)
- Y Yamazaki
- Institute for Biogenesis Research, Department of Anatomy and Reproductive Biology, John Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J. Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci U S A 2001; 98:13361-6. [PMID: 11698687 PMCID: PMC60876 DOI: 10.1073/pnas.231487398] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A basic assumption about the normal nervous system is that its neurons possess identical genomes. Here we present direct evidence for genomic variability, manifested as chromosomal aneuploidy, among developing and mature neurons. Analysis of mouse embryonic cerebral cortical neuroblasts in situ detected lagging chromosomes during mitosis, suggesting the normal generation of aneuploidy in these somatic cells. Spectral karyotype analysis identified approximately 33% of neuroblasts as aneuploid. Most cells lacked one chromosome, whereas others showed hyperploidy, monosomy, and/or trisomy. The prevalence of aneuploidy was reduced by culturing cortical explants in medium containing fibroblast growth factor 2. Interphase fluorescence in situ hybridization on embryonic cortical cells supported the rate of aneuploidy observed by spectral karyotyping and detected aneuploidy in adult neurons. Our results demonstrate that genomes of developing and adult neurons can be different at the level of whole chromosomes.
Collapse
Affiliation(s)
- S K Rehen
- Department of Pharmacology, School of Medicine, University of California, San Diego, CA 92093-0636, USA
| | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- J Chun
- Department of Pharmacology, Neurosciences Program, Biomedical Sciences Program, School of Medicine, University of California, San Diego, La Jolla, California 92037, USA
| |
Collapse
|
41
|
Abstract
DNA-dependent protein kinase (DNA-PK) is a DNA repair enzyme composed of a DNA-binding component called Ku70/80 and a catalytic subunit called DNA-PKcs. Many investigators have utilized DNA-PKcs-deficient cells and cell lines derived from severe combined immunodeficiency (scid) mice to study DNA repair and apoptosis. However, little is known about the CNS of these mice. This study was carried out using primary neuronal cultures derived from the cerebral hemispheres of new-born wild-type and scid mice to investigate the effects of loss of DNA-PK function on neuronal maturation and survival. Purified neuronal cultures developed comparably in terms of neurite formation and expression of neuronal markers, but scid cultures showed a significant increase in the percentage of dying cells. Furthermore, when apoptosis was induced by staurosporine, scid neurons died more rapidly and in higher numbers. Apoptotic scid neurons exhibited nuclear condensation, DNA fragmentation and caspase-3 activation, but treatment with the general caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-(O-methyl) fluoromethyl ketone did not prevent staurosporine-induced apoptosis. We conclude that a DNA-PK deficiency in cultured scid neurons may cause an accumulation of DNA damage and increased susceptibility to caspase-independent forms of programmed cell death.
Collapse
Affiliation(s)
- M Chechlacz
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | |
Collapse
|
42
|
Sekiguchi JM, Gao Y, Gu Y, Frank K, Sun Y, Chaudhuri J, Zhu C, Cheng HL, Manis J, Ferguson D, Davidson L, Greenberg ME, Alt FW. Nonhomologous end-joining proteins are required for V(D)J recombination, normal growth, and neurogenesis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:169-81. [PMID: 11232282 DOI: 10.1101/sqb.1999.64.169] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J M Sekiguchi
- Howard Hughes Medical Institute, Children's Hospital, Center for Blood Research, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vemuri MC, Schiller E, Naegele JR. Elevated DNA double strand breaks and apoptosis in the CNS of scid mutant mice. Cell Death Differ 2001; 8:245-55. [PMID: 11319607 DOI: 10.1038/sj.cdd.4400806] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2000] [Revised: 10/06/2000] [Accepted: 10/31/2000] [Indexed: 01/18/2023] Open
Abstract
Genetic approaches have provided evidence that DNA end-joining problems serve an essential role in neuronal survival during development of mammalian embryos. In the present study, we tested whether the DNA repair enzyme, DNA dependent protein kinase, plays an important role in the survival of cerebral cortical neurons in mice. DNA-PK is comprised of a DNA-binding subunit called Ku and a catalytic subunit called DNA-PKcs. In mice with the scid mutation, DNA-PKcs is truncated near the kinase domain, which causes loss of kinase activity. We compared the spatial and temporal aspects of neuronal cell death in scid versus isogenic wild-type embryos and found a significant increase in dying cells in scid mice, as assessed by nuclear changes, DNA fragmentation and caspase-3 activity. Additional biochemical and immunocytochemical studies indicated that of several DNA repair enzymes investigated, only PARP was increased in scid mice, possibly in response to elevated DNA strand breaks.
Collapse
Affiliation(s)
- M C Vemuri
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, CT 06457, USA
| | | | | |
Collapse
|
44
|
Abstract
Maintenance of genome stability depends on the appropriate response to DNA damage. This response is based on complex networks of signaling pathways that activate numerous processes and lead ultimately to damage repair and cellular survival - or apoptosis. The protein kinases ATM and ATR are master controllers of some of these networks, acting either in concert or separately to orchestrate the responses to specific types of DNA damage or stalled replication. Understanding their mode of action is essential to our understanding of how cells cope with genotoxic stress.
Collapse
Affiliation(s)
- Y Shiloh
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
45
|
Abstract
Cellular genes that are mutated in neurodegenerative diseases code for proteins that are expressed throughout neural development. Genetic analysis suggests that these genes are essential for a broad range of normal neurodevelopmental processes. The proteins they code for interact with numerous other cellular proteins that are components of signaling pathways involved in patterning of the neural tube and in regional specification of neuronal subtypes. Further, pathogenetic mutations of these genes can cause progressive, sublethal alterations in the cellular homeostasis of evolving regional neuronal subpopulations, culminating in late-onset cell death. Therefore, as a consequence of the disease mutations, targeted cell populations may retain molecular traces of abnormal interactions with disease-associated proteins by exhibiting changes in a spectrum of normal cellular functions and enhanced vulnerability to a host of environmental stressors. These observations suggest that the normal functions of these disease-associated proteins are to ensure the fidelity and integration of developmental events associated with the progressive elaboration of neuronal subtypes as well as the maintenance of mature neuronal populations during adult life. The ability to identify alterations within vulnerable neuronal precursors present in pre-symptomatic individuals prior to the onset of irrevocable cellular injury may help foster the development of effective therapeutic interventions using evolving pharmacologic, gene and stem cell technologies.
Collapse
Affiliation(s)
- M F Mehler
- Laboratory of Developmental and Molecular Neuroscience, Department of Neurology, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, Bronx 10461, NY, USA.
| | | |
Collapse
|
46
|
Abstract
The durability of declarative memory suggests that it has either a chemical or a structural basis. Current models of long-term memory are based on the general assumption that traces of memory are stored by structural modifications of synaptic connections, resulting in alterations in the patterns of neural activity. Changes in gene expression, regulated at both the transcriptional and the translational levels, are considered essential for structural synaptic modifications. Here we present an alternative hypothesis stating that permanent memory has a chemical rather than a structural basis. We suggest that the mechanism of memory coding in the brain is similar to that in the immune system so that the permanence of memories in the nervous system is ensured at the genomic level by a somatic recombination mechanism. Thus, we hypothesize that traces of permanent declarative memory might present within cerebral neurons in the form of novel proteins coded by the modified genes. This discussion is intended to provide evidence in support of a DNA recombination mechanism for memory storage in the brain and to stimulate further research working toward the evaluation of this hypothesis.
Collapse
Affiliation(s)
- S Peña De Ortiz
- Department of Biology, University of Puerto Rico Rio Piedras Campus, San Juan, Puerto Rico
| | | |
Collapse
|
47
|
Abstract
Protocadherins constitute a large family belonging to the cadherin superfamily and function in different tissues of a wide variety of multicellular organisms. Protocadherins have unique features that are not found in classic cadherins. Expression of protocadherins is spatiotemporally regulated and they are localized at synapses in the CNS. Although protocadherins have Ca(2+)-dependent homophilic interaction activity, the activities are relatively weak. Some protocadherins have heterophilic interaction activity and the cytoplasmic domains associate with the unique cytoplasmic proteins, which are essential for their biological functions. Given the characteristic properties, the large size, and the diversity of members of the protocadherin family, protocadherins may participate in various biological processes. In particular, protocadherins seem to play a central role(s) in the CNS as related to synaptic function.
Collapse
Affiliation(s)
- S T Suzuki
- Division of Developmental Biology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai-shi, Aichi, 480-0392, Japan.
| |
Collapse
|
48
|
Thisse C, Neel H, Thisse B, Daujat S, Piette J. The Mdm2 gene of zebrafish (Danio rerio): preferential expression during development of neural and muscular tissues, and absence of tumor formation after overexpression of its cDNA during early embryogenesis. Differentiation 2000; 66:61-70. [PMID: 11100897 DOI: 10.1046/j.1432-0436.2000.660201.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Mdm2 protein is most probably the main negative cellular regulator of the p53 tumor-suppressor protein. It was found to be overexpressed in a great number of human tumors and is considered as a potential target for anti-tumor therapies. Mdm2 is an essential gene in mice, yet its role in normal development and tissue differentiation is unknown. In order to study the role of this important protein in an evolutionary perspective, we cloned an Mdm2 cDNA from the fish Danio rerio and analyzed its expression pattern as well as the phenotypic consequences of its overexpression. The main functional domains as well as the interaction between Mdm2 and p53 are conserved in zebrafish. Moreover, we show here that the gene is expressed specifically during early development in neural and muscular tissues. Surprisingly, microinjection of Mdm2 mRNA in two-cell-stage embryos led to inhibition of cellular convergence during gastrulation. The clones derived from Mdm2 microinjected blastomeres were significantly smaller than those derived from control microinjections, and, in contrast to what was observed in Xenopus, did not develop tumors. Our results suggest that Mdm2 expression may be important during the differentiation of neural and muscular tissues of zebrafish. They also point to important differences between phyla in the susceptibility to tumor formation.
Collapse
Affiliation(s)
- C Thisse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | | | | | | | | |
Collapse
|
49
|
Abstract
The important effect of cell death on projecting neurons during development is well established. However, this mainstream research might have diverted recognition of the cell death that occurs at earlier stages of neural development, affecting proliferating neural precursor cells and young neuroblasts. In this article, we briefly present observations supporting the occurrence of programmed cell death during early neural development in a regulated fashion that to some extent parallels the death of projecting neurons lacking neurotrophic support. These findings raise new questions, in particular the magnitude and the role of this early neural cell death.
Collapse
Affiliation(s)
- E J de la Rosa
- Dept of Cell and Developmental Biology, Centro de Investigaciones Biológicas, CSIC, Velázquez 144, E-28006, Madrid, Spain
| | | |
Collapse
|
50
|
Affiliation(s)
- EC Gilmore
- Dept of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|