1
|
Sun X, Yazejian B, Peskoff A, Grinnell AD. Experimentally monitored calcium dynamics at synaptic active zones during neurotransmitter release in neuron-muscle cell cultures. Eur J Neurosci 2024; 59:2293-2319. [PMID: 38483240 DOI: 10.1111/ejn.16289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 05/08/2024]
Abstract
Ca2+-dependent K+ (BK) channels at varicosities in Xenopus nerve-muscle cell cultures were used to quantify experimentally the instantaneous active zone [Ca2+]AZ resulting from different rates and durations of Ca2+ entry in the absence of extrinsic buffers and correlate this with neurotransmitter release. Ca2+ tail currents produce mean peak [Ca2+]AZ ~ 30 μM; with continued influx, [Ca2+]AZ reaches ~45-60 μM at different rates depending on Ca2+ driving force and duration of influx. Both IBK and release are dependent on Ca2+ microdomains composed of both N- and L-type Ca channels. Domains collapse with a time constant of ~0.6 ms. We have constructed an active zone (AZ) model that approximately fits this data, and depends on incorporation of the high-capacity, low-affinity fixed buffer represented by phospholipid charges in the plasma membrane. Our observations suggest that in this preparation, (1) some BK channels, but few if any of the Ca2+ sensors that trigger release, are located within Ca2+ nanodomains while a large fraction of both are located far enough from Ca channels to be blockable by EGTA, (2) the IBK is more sensitive than the excitatory postsynaptic current (EPSC) to [Ca2+]AZ (K1/2-26 μM vs. ~36 μM [Ca2+]AZ); (3) with increasing [Ca2+]AZ, the IBK grows with a Hill coefficient of 2.5, the EPSC with a coefficient of 3.9; (4) release is dependent on the highest [Ca2+] achieved, independent of the time to reach it; (5) the varicosity synapses differ from mature frog nmjs in significant ways; and (6) BK channels are useful reporters of local [Ca2+]AZ.
Collapse
Affiliation(s)
- Xiaoping Sun
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Bruce Yazejian
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Arthur Peskoff
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alan D Grinnell
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
2
|
Chen H, Monga M, Fang Q, Slitin L, Neef J, Chepurwar SS, Netto RCM, Lezirovitz K, Tabith A, Benseler F, Brose N, Kusch K, Wichmann C, Strenzke N, Vona B, Preobraschenski J, Moser T. Ca2+ binding to the C2E domain of otoferlin is required for hair cell exocytosis and hearing. Protein Cell 2024; 15:305-312. [PMID: 38066594 PMCID: PMC10984619 DOI: 10.1093/procel/pwad058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 04/04/2024] Open
Affiliation(s)
- Han Chen
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, 37075 Göttingen, Germany
| | - Mehar Monga
- Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, 37075 Göttingen, Germany
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Qinghua Fang
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Loujin Slitin
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, 37075 Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Shashank S Chepurwar
- Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, 37075 Göttingen, Germany
- Auditory Systems Physiology Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Regina Célia Mingroni Netto
- Departamento de Genética e Biologia Evolutiva, Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-220, Brazil
| | - Karina Lezirovitz
- Laboratório de Otorrinolaringologia/LIM32, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP 05508-220, Brazil
| | - Alfredo Tabith
- DERDIC, Pontifícia Universidade Católica de São Paulo, São Paulo 05508-220, Brazil
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Nils Brose
- Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Kathrin Kusch
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Functional Auditory Genomics Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, 37077 Göttingen, Germany
| | - Carolin Wichmann
- Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Nicola Strenzke
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany
- Auditory Systems Physiology Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Barbara Vona
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Hearing Genomics Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Institute of Human Genetics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Julia Preobraschenski
- Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
3
|
Li G, Gao Y, Wu H, Zhao T. Gentamicin administration leads to synaptic dysfunction in inner hair cells. Toxicol Lett 2024; 391:86-99. [PMID: 38101494 DOI: 10.1016/j.toxlet.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Ototoxicity is a major side effect of aminoglycosides, which can cause irreversible hearing loss. Previous studies on aminoglycoside-induced ototoxicity have primarily focused on the loss of sensory hair cells. Recent investigations have revealed that aminoglycosides can also lead to the loss of ribbon synapses in inner hair cells (IHCs). However, the functional implications of ribbon synapse loss and the underlying mechanisms remain unclear. In this study, we intraperitoneally injected C57BL/6 J mice with 300 mg/kg gentamicin once daily for 3, 10, and 20 days. Then, we performed immunofluorescence staining, patch-clamp recording, proteomics analysis and western blotting to characterize the changes in ribbon synapses in IHCs and the associated mechanisms. After gentamicin treatment, the auditory brainstem response (ABR) threshold was elevated, and the ABR wave I amplitude was decreased. We also observed loss of ribbon synapses in IHCs. Interestingly, ribbon synapse loss occurred on both the modiolar and pillar sides of IHCs. Whole-cell patch-clamp recordings in IHCs revealed a reduction in the calcium current amplitude, along with a shifted half-activation voltage and altered calcium voltage dependency. Moreover, exocytosis of IHCs was reduced, consistent with the reduction in the ABR wave I amplitude. Through proteomic analysis, western blotting, and immunofluorescence staining, we found that gentamicin treatment resulted in downregulation of myosin VI, a protein crucial for synaptic vesicle recycling and replenishment in IHCs. Furthermore, we evaluated the kinetics of endocytosis and found a significant reduction in IHC exocytosis, possibly reflecting the impact of myosin VI downregulation on synaptic vesicle recycling. In summary, our findings demonstrate that gentamicin treatment leads to synaptic dysfunction in IHCs, highlighting the important role of myosin VI downregulation in gentamicin-induced synaptic damage.
Collapse
Affiliation(s)
- Gen Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yunge Gao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Ting Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
4
|
Jaime Tobón LM, Moser T. Ca 2+ regulation of glutamate release from inner hair cells of hearing mice. Proc Natl Acad Sci U S A 2023; 120:e2311539120. [PMID: 38019860 DOI: 10.1073/pnas.2311539120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
In our hearing organ, sound is encoded at ribbon synapses formed by inner hair cells (IHCs) and spiral ganglion neurons (SGNs). How the underlying synaptic vesicle (SV) release is controlled by Ca2+ in IHCs of hearing animals remained to be investigated. Here, we performed patch-clamp SGN recordings of the initial rate of release evoked by brief IHC Ca2+-influx in an ex vivo cochlear preparation from hearing mice. We aimed to closely mimic physiological conditions by perforated-patch recordings from IHCs kept at the physiological resting potential and at body temperature. We found release to relate supralinearly to Ca2+-influx (power, m: 4.3) when manipulating the [Ca2+] available for SV release by Zn2+-flicker-blocking of the single Ca2+-channel current. In contrast, a near linear Ca2+ dependence (m: 1.2 to 1.5) was observed when varying the number of open Ca2+-channels during deactivating Ca2+-currents and by dihydropyridine channel-inhibition. Concurrent changes of number and current of open Ca2+-channels over the range of physiological depolarizations revealed m: 1.8. These findings indicate that SV release requires ~4 Ca2+-ions to bind to their Ca2+-sensor of fusion. We interpret the near linear Ca2+-dependence of release during manipulations that change the number of open Ca2+-channels to reflect control of SV release by the high [Ca2+] in the Ca2+-nanodomain of one or few nearby Ca2+-channels. We propose that a combination of Ca2+ nanodomain control and supralinear intrinsic Ca2+-dependence of fusion optimally links SV release to the timing and amplitude of the IHC receptor potential and separates it from other IHC Ca2+-signals unrelated to afferent synaptic transmission.
Collapse
Affiliation(s)
- Lina María Jaime Tobón
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen 37075, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen 37075, Germany
- Multiscale Bioimaging of Excitable Cells, Cluster of Excellence, Göttingen 37075, Germany
| | - Tobias Moser
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen 37075, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen 37075, Germany
- Multiscale Bioimaging of Excitable Cells, Cluster of Excellence, Göttingen 37075, Germany
| |
Collapse
|
5
|
Tichacek O, Mistrík P, Jungwirth P. From the outer ear to the nerve: A complete computer model of the peripheral auditory system. Hear Res 2023; 440:108900. [PMID: 37944408 DOI: 10.1016/j.heares.2023.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Computer models of the individual components of the peripheral auditory system - the outer, middle, and inner ears and the auditory nerve - have been developed in the past, with varying level of detail, breadth, and faithfulness of the underlying parameters. Building on previous work, we advance the modeling of the ear by presenting a complete, physiologically justified, bottom-up computer model based on up-to-date experimental data that integrates all of these parts together seamlessly. The detailed bottom-up design of the present model allows for the investigation of partial hearing mechanisms and their defects, including genetic, molecular, and microscopic factors. Also, thanks to the completeness of the model, one can study microscopic effects in the context of their implications on hearing as a whole, enabling the correlation with neural recordings and non-invasive psychoacoustic methods. Such a model is instrumental for advancing quantitative understanding of the mechanism of hearing, for investigating various forms of hearing impairment, as well as for devising next generation hearing aids and cochlear implants.
Collapse
Affiliation(s)
- Ondrej Tichacek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 160 00 Prague 6, Czech Republic.
| | | | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 160 00 Prague 6, Czech Republic.
| |
Collapse
|
6
|
Moser T, Karagulyan N, Neef J, Jaime Tobón LM. Diversity matters - extending sound intensity coding by inner hair cells via heterogeneous synapses. EMBO J 2023; 42:e114587. [PMID: 37800695 PMCID: PMC10690447 DOI: 10.15252/embj.2023114587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 10/07/2023] Open
Abstract
Our sense of hearing enables the processing of stimuli that differ in sound pressure by more than six orders of magnitude. How to process a wide range of stimulus intensities with temporal precision is an enigmatic phenomenon of the auditory system. Downstream of dynamic range compression by active cochlear micromechanics, the inner hair cells (IHCs) cover the full intensity range of sound input. Yet, the firing rate in each of their postsynaptic spiral ganglion neurons (SGNs) encodes only a fraction of it. As a population, spiral ganglion neurons with their respective individual coding fractions cover the entire audible range. How such "dynamic range fractionation" arises is a topic of current research and the focus of this review. Here, we discuss mechanisms for generating the diverse functional properties of SGNs and formulate testable hypotheses. We postulate that an interplay of synaptic heterogeneity, molecularly distinct subtypes of SGNs, and efferent modulation serves the neural decomposition of sound information and thus contributes to a population code for sound intensity.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging of Excitable Cells”GöttingenGermany
| | - Nare Karagulyan
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Hertha Sponer CollegeCluster of Excellence “Multiscale Bioimaging of Excitable Cells” Cluster of ExcellenceGöttingenGermany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Lina María Jaime Tobón
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Hertha Sponer CollegeCluster of Excellence “Multiscale Bioimaging of Excitable Cells” Cluster of ExcellenceGöttingenGermany
| |
Collapse
|
7
|
Ford CL, Riggs WJ, Quigley T, Keifer OP, Whitton JP, Valayannopoulos V. The natural history, clinical outcomes, and genotype-phenotype relationship of otoferlin-related hearing loss: a systematic, quantitative literature review. Hum Genet 2023; 142:1429-1449. [PMID: 37679651 PMCID: PMC10511631 DOI: 10.1007/s00439-023-02595-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Congenital hearing loss affects one in 500 newborns. Sequence variations in OTOF, which encodes the calcium-binding protein otoferlin, are responsible for 1-8% of congenital, nonsyndromic hearing loss and are the leading cause of auditory neuropathy spectrum disorders. The natural history of otoferlin-related hearing loss, the relationship between OTOF genotype and hearing loss phenotype, and the outcomes of clinical practices in patients with this genetic disorder are incompletely understood because most analyses have reported on small numbers of cases with homogeneous OTOF genotypes. Here, we present the first systematic, quantitative literature review of otoferlin-related hearing loss, which analyzes patient-specific data from 422 individuals across 61 publications. While most patients display a typical phenotype of severe-to-profound hearing loss with prelingual onset, 10-15% of patients display atypical phenotypes, including mild-to-moderate, progressive, and temperature-sensitive hearing loss. Patients' phenotypic presentations appear to depend on their specific genotypes. For example, non-truncating variants located in and immediately downstream of the C2E calcium-binding domain are more likely to produce atypical phenotypes. Additionally, the prevalence of certain sequence variants and their associated phenotypes varies between populations due to evolutionary founder effects. Our analyses also suggest otoacoustic emissions are less common in older patients and those with two truncating OTOF variants. Critically, our review has implications for the application and limitations of clinical practices, including newborn hearing screenings, hearing aid trials, cochlear implants, and upcoming gene therapy clinical trials. We conclude by discussing the limitations of available research and recommendations for future studies on this genetic cause of hearing loss.
Collapse
|
8
|
Calcium signaling and genetic rare diseases: An auditory perspective. Cell Calcium 2023; 110:102702. [PMID: 36791536 DOI: 10.1016/j.ceca.2023.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Deafness is a highly heterogeneous disorder which stems, for 50%, from genetic origins. Sensory transduction relies mainly on sensory hair cells of the cochlea, in the inner ear. Calcium is key for the function of these cells and acts as a fundamental signal transduction. Its homeostasis depends on three factors: the calcium influx, through the mechanotransduction channel at the apical pole of the hair cell as well as the voltage-gated calcium channel at the base of the cells; the calcium buffering via Ca2+-binding proteins in the cytoplasm, but also in organelles such as mitochondria and the reticulum endoplasmic mitochondria-associated membranes with specialized proteins; and the calcium extrusion through the Ca-ATPase pump, located all over the plasma membrane. In addition, the synaptic transmission to the central nervous system is also controlled by calcium. Genetic studies of inherited deafness have tremendously helped understand the underlying molecular pathways of calcium signaling. In this review, we discuss these different factors in light of the associated genetic diseases (syndromic and non-syndromic deafness) and the causative genes.
Collapse
|
9
|
Knutson KR, Whiteman ST, Alcaino C, Mercado-Perez A, Finholm I, Serlin HK, Bellampalli SS, Linden DR, Farrugia G, Beyder A. Intestinal enteroendocrine cells rely on ryanodine and IP 3 calcium store receptors for mechanotransduction. J Physiol 2023; 601:287-305. [PMID: 36428286 PMCID: PMC9840706 DOI: 10.1113/jp283383] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022] Open
Abstract
Enteroendocrine cells (EECs) are specialized sensors of luminal forces and chemicals in the gastrointestinal (GI) epithelium that respond to stimulation with a release of signalling molecules such as serotonin (5-HT). For mechanosensitive EECs, force activates Piezo2 channels, which generate a very rapidly activating and inactivating (∼10 ms) cationic (Na+ , K+ , Ca2+ ) receptor current. Piezo2 receptor currents lead to a large and persistent increase in intracellular calcium (Ca2+ ) that lasts many seconds to sometimes minutes, suggesting signal amplification. However, intracellular calcium dynamics in EEC mechanotransduction remain poorly understood. The aim of this study was to determine the role of Ca2+ stores in EEC mechanotransduction. Mechanical stimulation of a human EEC cell model (QGP-1) resulted in a rapid increase in cytoplasmic Ca2+ and a slower decrease in ER stores Ca2+ , suggesting the involvement of intracellular Ca2+ stores. Comparing murine primary colonic EECs with colonocytes showed expression of intercellular Ca2+ store receptors, a similar expression of IP3 receptors, but a >30-fold enriched expression of Ryr3 in EECs. In mechanically stimulated primary EECs, Ca2+ responses decreased dramatically by emptying stores and pharmacologically blocking IP3 and RyR1/3 receptors. RyR3 genetic knockdown by siRNA led to a significant decrease in mechanosensitive Ca2+ responses and 5-HT release. In tissue, pressure-induced increase in the Ussing short circuit current was significantly decreased by ryanodine receptor blockade. Our data show that mechanosensitive EECs use intracellular Ca2+ stores to amplify mechanically induced Ca2+ entry, with RyR3 receptors selectively expressed in EECs and involved in Ca2+ signalling, 5-HT release and epithelial secretion. KEY POINTS: A population of enteroendocrine cells (EECs) are specialized mechanosensors of the gastrointestinal (GI) epithelium that respond to mechanical stimulation with the release of important signalling molecules such as serotonin. Mechanical activation of these EECs leads to an increase in intracellular calcium (Ca2+ ) with a longer duration than the stimulus, suggesting intracellular Ca2+ signal amplification. In this study, we profiled the expression of intracellular Ca2+ store receptors and found an enriched expression of the intracellular Ca2+ receptor Ryr3, which contributed to the mechanically evoked increases in intracellular calcium, 5-HT release and epithelial secretion. Our data suggest that mechanosensitive EECs rely on intracellular Ca2+ stores and are selective in their use of Ryr3 for amplification of intracellular Ca2+ . This work advances our understanding of EEC mechanotransduction and may provide novel diagnostic and therapeutic targets for GI motility disorders.
Collapse
Affiliation(s)
- Kaitlyn R. Knutson
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Sara T. Whiteman
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Constanza Alcaino
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Arnaldo Mercado-Perez
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Medical Scientist Training Program (MSTP), Mayo Clinic, Rochester, Minnesota
| | - Isabelle Finholm
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Hannah K. Serlin
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Shreya S. Bellampalli
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Medical Scientist Training Program (MSTP), Mayo Clinic, Rochester, Minnesota
| | - David R. Linden
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology &Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Arthur Beyder
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology &Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Wu XS, Wu LG. Multiple Modes of Fusion and Retrieval at the Calyx of Held Synapse. ADVANCES IN NEUROBIOLOGY 2023; 33:43-62. [PMID: 37615863 DOI: 10.1007/978-3-031-34229-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitter in vesicles is released through a fusion pore when vesicles fuse with the plasma membrane. Subsequent retrieval of the fused vesicle membrane is the key step in recycling exocytosed vesicles. Application of advanced electrophysiological techniques to a large nerve terminal, the calyx of Held, has led to recordings of endocytosis, individual vesicle fusion and retrieval, and the kinetics of the fusion pore opening process and the fission pore closure process. These studies have revealed three kinetically different forms of endocytosis-rapid, slow, and bulk-and two forms of fusion-full collapse and kiss-and-run. Calcium influx triggers all kinetically distinguishable forms of endocytosis at calyces by activation of calmodulin/calcineurin signaling pathway and protein kinase C, which may dephosphorylate and phosphorylate endocytic proteins. Polymerized actin may provide mechanical forces to bend the membrane, forming membrane pits, the precursor for generating vesicles. These research advancements are reviewed in this chapter.
Collapse
Affiliation(s)
- Xin-Sheng Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
11
|
Kim J, Hemachandran S, Cheng AG, Ricci AJ. Identifying targets to prevent aminoglycoside ototoxicity. Mol Cell Neurosci 2022; 120:103722. [PMID: 35341941 PMCID: PMC9177639 DOI: 10.1016/j.mcn.2022.103722] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022] Open
Abstract
Aminoglycosides are potent antibiotics that are commonly prescribed worldwide. Their use carries significant risks of ototoxicity by directly causing inner ear hair cell degeneration. Despite their ototoxic side effects, there are currently no approved antidotes. Here we review recent advances in our understanding of aminoglycoside ototoxicity, mechanisms of drug transport, and promising sites for intervention to prevent ototoxicity.
Collapse
Affiliation(s)
- Jinkyung Kim
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sriram Hemachandran
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Vogl C, Neef J, Wichmann C. Methods for multiscale structural and functional analysis of the mammalian cochlea. Mol Cell Neurosci 2022; 120:103720. [DOI: 10.1016/j.mcn.2022.103720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 01/11/2023] Open
|
13
|
Levic S. SK Current, Expressed During the Development and Regeneration of Chick Hair Cells, Contributes to the Patterning of Spontaneous Action Potentials. Front Cell Neurosci 2022; 15:766264. [PMID: 35069114 PMCID: PMC8770932 DOI: 10.3389/fncel.2021.766264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Chick hair cells display calcium (Ca2+)-sensitive spontaneous action potentials during development and regeneration. The role of this activity is unclear but thought to be involved in establishing proper synaptic connections and tonotopic maps, both of which are instrumental to normal hearing. Using an electrophysiological approach, this work investigated the functional expression of Ca2+-sensitive potassium [IK(Ca)] currents and their role in spontaneous electrical activity in the developing and regenerating hair cells (HCs) in the chick basilar papilla. The main IK(Ca) in developing and regenerating chick HCs is an SK current, based on its sensitivity to apamin. Analysis of the functional expression of SK current showed that most dramatic changes occurred between E8 and E16. Specifically, there is a developmental downregulation of the SK current after E16. The SK current gating was very sensitive to the availability of intracellular Ca2+ but showed very little sensitivity to T-type voltage-gated Ca2+ channels, which are one of the hallmarks of developing and regenerating hair cells. Additionally, apamin reduced the frequency of spontaneous electrical activity in HCs, suggesting that SK current participates in patterning the spontaneous electrical activity of HCs.
Collapse
Affiliation(s)
- Snezana Levic
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
14
|
Chakrabarti R, Jaime Tobón LM, Slitin L, Redondo Canales M, Hoch G, Slashcheva M, Fritsch E, Bodensiek K, Özçete ÖD, Gültas M, Michanski S, Opazo F, Neef J, Pangrsic T, Moser T, Wichmann C. Optogenetics and electron tomography for structure-function analysis of cochlear ribbon synapses. eLife 2022; 11:79494. [PMID: 36562477 PMCID: PMC9908081 DOI: 10.7554/elife.79494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Ribbon synapses of cochlear inner hair cells (IHCs) are specialized to indefatigably transmit sound information at high rates. To understand the underlying mechanisms, structure-function analysis of the active zone (AZ) of these synapses is essential. Previous electron microscopy studies of synaptic vesicle (SV) dynamics at the IHC AZ used potassium stimulation, which limited the temporal resolution to minutes. Here, we established optogenetic IHC stimulation followed by quick freezing within milliseconds and electron tomography to study the ultrastructure of functional synapse states with good temporal resolution in mice. We characterized optogenetic IHC stimulation by patch-clamp recordings from IHCs and postsynaptic boutons revealing robust IHC depolarization and neurotransmitter release. Ultrastructurally, the number of docked SVs increased upon short (17-25 ms) and long (48-76 ms) light stimulation paradigms. We did not observe enlarged SVs or other morphological correlates of homotypic fusion events. Our results indicate a rapid recruitment of SVs to the docked state upon stimulation and suggest that univesicular release prevails as the quantal mechanism of exocytosis at IHC ribbon synapses.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany
| | - Lina María Jaime Tobón
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Loujin Slitin
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany
| | - Magdalena Redondo Canales
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany
| | - Gerhard Hoch
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Marina Slashcheva
- Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of GöttingenGöttingenGermany
| | - Elisabeth Fritsch
- Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of GöttingenGöttingenGermany
| | - Kai Bodensiek
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany
| | - Özge Demet Özçete
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied SciencesSoestGermany
| | - Susann Michanski
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,NanoTag Biotechnologies GmbHGöttingenGermany,Institute of Neuro- and Sensory Physiology, University Medical Center GöttingenGöttingenGermany
| | - Jakob Neef
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Tina Pangrsic
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany,Multiscale Bioimaging: from Molecular Machines to Networks of Excitable CellsGöttingenGermany,Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany
| | - Tobias Moser
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany,Multiscale Bioimaging: from Molecular Machines to Networks of Excitable CellsGöttingenGermany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Multiscale Bioimaging: from Molecular Machines to Networks of Excitable CellsGöttingenGermany
| |
Collapse
|
15
|
Abstract
Rapid and precise neuronal communication is enabled through a highly synchronous release of signaling molecules neurotransmitters within just milliseconds of the action potential. Yet neurotransmitter release lacks a theoretical framework that is both phenomenologically accurate and mechanistically realistic. Here, we present an analytic theory of the action-potential-triggered neurotransmitter release at the chemical synapse. The theory is demonstrated to be in detailed quantitative agreement with existing data on a wide variety of synapses from electrophysiological recordings in vivo and fluorescence experiments in vitro. Despite up to ten orders of magnitude of variation in the release rates among the synapses, the theory reveals that synaptic transmission obeys a simple, universal scaling law, which we confirm through a collapse of the data from strikingly diverse synapses onto a single master curve. This universality is complemented by the capacity of the theory to readily extract, through a fit to the data, the kinetic and energetic parameters that uniquely identify each synapse. The theory provides a means to detect cooperativity among the SNARE complexes that mediate vesicle fusion and reveals such cooperativity in several existing data sets. The theory is further applied to establish connections between molecular constituents of synapses and synaptic function. The theory allows competing hypotheses of short-term plasticity to be tested and identifies the regimes where particular mechanisms of synaptic facilitation dominate or, conversely, fail to account for the existing data for the paired-pulse ratio. The derived trade-off relation between the transmission rate and fidelity shows how transmission failure can be controlled by changing the microscopic properties of the vesicle pool and SNARE complexes. The established condition for the maximal synaptic efficacy reveals that no fine tuning is needed for certain synapses to maintain near-optimal transmission. We discuss the limitations of the theory and propose possible routes to extend it. These results provide a quantitative basis for the notion that the molecular-level properties of synapses are crucial determinants of the computational and information-processing functions in synaptic transmission.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physics, University of California, San DiegoLa JollaUnited States
| | - Olga K Dudko
- Department of Physics, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
16
|
Eshra A, Schmidt H, Eilers J, Hallermann S. Calcium dependence of neurotransmitter release at a high fidelity synapse. eLife 2021; 10:70408. [PMID: 34612812 PMCID: PMC8494478 DOI: 10.7554/elife.70408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022] Open
Abstract
The Ca2+-dependence of the priming, fusion, and replenishment of synaptic vesicles are fundamental parameters controlling neurotransmitter release and synaptic plasticity. Despite intense efforts, these important steps in the synaptic vesicles’ cycle remain poorly understood due to the technical challenge in disentangling vesicle priming, fusion, and replenishment. Here, we investigated the Ca2+-sensitivity of these steps at mossy fiber synapses in the rodent cerebellum, which are characterized by fast vesicle replenishment mediating high-frequency signaling. We found that the basal free Ca2+ concentration (<200 nM) critically controls action potential-evoked release, indicating a high-affinity Ca2+ sensor for vesicle priming. Ca2+ uncaging experiments revealed a surprisingly shallow and non-saturating relationship between release rate and intracellular Ca2+ concentration up to 50 μM. The rate of vesicle replenishment during sustained elevated intracellular Ca2+ concentration exhibited little Ca2+-dependence. Finally, quantitative mechanistic release schemes with five Ca2+ binding steps incorporating rapid vesicle replenishment via parallel or sequential vesicle pools could explain our data. We thus show that co-existing high- and low-affinity Ca2+ sensors mediate priming, fusion, and replenishment of synaptic vesicles at a high-fidelity synapse.
Collapse
Affiliation(s)
- Abdelmoneim Eshra
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
17
|
Jeffers PWC, Bourien J, Diuba A, Puel JL, Kujawa SG. Noise-Induced Hearing Loss in Gerbil: Round Window Assays of Synapse Loss. Front Cell Neurosci 2021; 15:699978. [PMID: 34385909 PMCID: PMC8354318 DOI: 10.3389/fncel.2021.699978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/05/2021] [Indexed: 01/31/2023] Open
Abstract
Previous work in animals with recovered hearing thresholds but permanent inner hair cell synapse loss after noise have suggested initial vulnerability of low spontaneous rate (SR) auditory nerve fibers (ANF). As these fibers have properties of response that facilitate robust sound coding in continuous noise backgrounds, their targeted loss would have important implications for function. To address the issue of relative ANF vulnerabilities after noise, we assessed cochlear physiologic and histologic consequences of temporary threshold shift-producing sound over-exposure in the gerbil, a species with well-characterized distributions of auditory neurons by SR category. The noise exposure targeted a cochlear region with distributed innervation (low-, medium- and high-SR neurons). It produced moderate elevations in outer hair cell-based distortion-product otoacoustic emission and whole nerve compound action potential thresholds in this region, with accompanying reductions in suprathreshold response amplitudes, quantified at 24 h. These parameters of response recovered well with post-exposure time. Chronic synapse loss was maximum in the frequency region initially targeted by the noise. Cochlear round window recorded mass potentials (spontaneous neural noise and sound-driven peri-stimulus time responses, PSTR) reflected parameters of the loss not detected by the conventional assays. Spontaneous activity was acutely reduced. Steady-state (PSTR plateau) activity was correlated with synapse loss in frequency regions with high concentrations of low-SR neurons, whereas the PSTR onset peak and spontaneous round window noise, both dominated by high-SR fiber activity, were relatively unaltered across frequency in chronic ears. Together, results suggest that acute targets of noise were of mixed SR subtypes, but chronic targets were predominantly low-SR neurons. PSTRs captured key properties of the auditory nerve response and vulnerability to injury that should yield important diagnostic information in hearing loss etiologies producing cochlear synaptic and neural loss.
Collapse
Affiliation(s)
- Penelope W C Jeffers
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Jérôme Bourien
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Artem Diuba
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Sharon G Kujawa
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Phase-Locking Requires Efficient Ca 2+ Extrusion at the Auditory Hair Cell Ribbon Synapse. J Neurosci 2021; 41:1625-1635. [PMID: 33446517 DOI: 10.1523/jneurosci.1324-18.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/25/2020] [Accepted: 12/27/2020] [Indexed: 11/21/2022] Open
Abstract
Proper perception of sounds in the environment requires auditory signals to be encoded with extraordinary temporal precision up to tens of microseconds, but how it originates from the hearing organs in the periphery is poorly understood. In particular, sound-evoked spikes in auditory afferent fibers in vivo are phase-locked to sound frequencies up to 5 kHz, but it is not clear how hair cells can handle intracellular Ca2+ changes with such high speed and efficiency. In this study, we combined patch-clamp recording and two-photon Ca2+ imaging to examine Ca2+ dynamics in hair cell ribbon synapses in the bullfrog amphibian papilla of both sexes. We found that Ca2+ clearance from single synaptic ribbons followed a double exponential function, and the weight of the fast component, but not the two time constants, was significantly reduced for prolonged stimulation, and during inhibition of the plasma membrane Ca2+ ATPase (PMCA), the mitochondrial Ca2+ uptake (MCU), or the sarcolemma/endoplasmic reticulum Ca2+ ATPase (SERCA), but not the Na+/Ca2+ exchanger (NCX). Furthermore, we found that both the basal Ca2+ level and the Ca2+ rise during sinusoidal stimulation were significantly increased by inhibition of PMCA, MCU, or SERCA. Consistently, phase-locking of synaptic vesicle releases from hair cells was also significantly reduced by blocking PMCA, MCU, or SERCA, but not NCX. We conclude that, in addition to fast diffusion mediated by mobile Ca2+ buffer, multiple Ca2+ extrusion pumps are required for phase-locking at the auditory hair cell ribbon synapse.SIGNIFICANCE STATEMENT Hair cell synapses can transmit sound-driven signals precisely in the kHz range. However, previous studies of Ca2+ handling in auditory hair cells have often been conducted in immature hair cells, with elevated extracellular Ca2+ concentration, or through steady-state stimulation that may not be physiologically relevant. Here we examine Ca2+ clearance from hair cell synaptic ribbons in a fully mature preparation at physiological concentration of external Ca2+ and at physiological temperature. By stimulating hair cells with sinusoidal voltage commands that mimic pure sound tones, we recapitulated the phase-locking of hair cell exocytosis with an in vitro approach. This allowed us to reveal the Ca2+ extrusion mechanisms that are required for phase-locking at auditory hair cell ribbon synapses.
Collapse
|
19
|
Özçete ÖD, Moser T. A sensory cell diversifies its output by varying Ca 2+ influx-release coupling among active zones. EMBO J 2020; 40:e106010. [PMID: 33346936 PMCID: PMC7917556 DOI: 10.15252/embj.2020106010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
The cochlea encodes sound pressures varying over six orders of magnitude by collective operation of functionally diverse spiral ganglion neurons (SGNs). The mechanisms enabling this functional diversity remain elusive. Here, we asked whether the sound intensity information, contained in the receptor potential of the presynaptic inner hair cell (IHC), is fractionated via heterogeneous synapses. We studied the transfer function of individual IHC synapses by combining patch‐clamp recordings with dual‐color Rhod‐FF and iGluSnFR imaging of presynaptic Ca2+ signals and glutamate release. Synapses differed in the voltage dependence of release: Those residing at the IHC' pillar side activated at more hyperpolarized potentials and typically showed tight control of release by few Ca2+ channels. We conclude that heterogeneity of voltage dependence and release site coupling of Ca2+ channels among the synapses varies synaptic transfer within individual IHCs and, thereby, likely contributes to the functional diversity of SGNs. The mechanism reported here might serve sensory cells and neurons more generally to diversify signaling even in close‐by synapses.
Collapse
Affiliation(s)
- Özge D Özçete
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
20
|
Soto J, Castaneda-Villa N, Gil A, Gonzalez-Velez V. Simulation of the efficiency of inner hair cell secretion in the auditory pathway. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2332-2335. [PMID: 31946367 DOI: 10.1109/embc.2019.8857293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sound coding involves several stages of processing along the auditory path. Specifically, the Inner Hair Cells (IHC) act as sensory receptors and transduce acoustic information -frequency, intensity and duration of the stimulus- into neuronal signals. In this work, a stochastic model was implemented to achieve a better understanding of the IHC-auditory nerve synapse, specifically, the process of Ready Releasable Pool (RRP) vesicle exocytosis, a complicated process to study experimentally because current protocols do not provide adequate temporal resolution, in the order of milliseconds. The presented model allows predicting the efficiency of glutamate release towards explaining maturation changes or disease impacts in the auditory pathway.
Collapse
|
21
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
22
|
Wu S, Su F, Magee HY, Meldrum DR, Tian Y. cRGD functionalized 2,1,3-benzothiadiazole (BTD)-containing two-photon absorbing red-emitter-conjugated amphiphilic poly(ethylene glycol)-block-poly( ε-caprolactone) for targeted bioimaging. RSC Adv 2019; 9:34235-34243. [PMID: 31798837 PMCID: PMC6886675 DOI: 10.1039/c9ra06694b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A two-photon absorbing (2PA) red emitter group was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers, and further grafted with cyclo(Arg-Gly-Asp) (cRGD) peptide to form micelle 1. Micelle 1 with cRGD targeting groups were used for targeted bioimaging. For comparison, micelle 2 without the cRGD targeting groups were also prepared and investigated. The micelles were characterized using dynamic light scattering (DLS), showing average diameters of around 77 nm. The cRGD targeting group is known to bind specifically with αvβ3 integrin in cancer cells. In this study, αvβ3 integrin overexpressed human glioblastoma U87MG cell line and αvβ3 integrin deficient human cervical cancer HeLa cell line were chosen. Results showed that the cRGD targeting group enhanced the cellular uptake efficiency of the micelles significantly in αvβ3 integrin rich U87MG cells. Higher temperature (37 °C versus 4 °C) and calcium ions (with 3 M calcium chloride in the cell culture medium versus no addition of calcium ions) enhanced the cellular uptake efficiency, suggesting that the uptake of the micelles is through the endocytosis pathway in cells. A 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay was used to evaluate the cytotoxicity of the micelles and no significant cytotoxicity was observed. The BTD-containing two-photon absorbing emitter in the micelles showed a two-photon absorbing cross-section of 236 GM (1 GM = 1 × 10−50 cm4 s per photonper molecule) at 820 nm, which is among the highest values reported for red 2PA emitters. Because of the two-photon absorbing characteristics, micelle 1 was successfully used for two-photon fluorescence imaging targeted to U87MG cells under a two-photon fluorescence microscope. This study is the first report regarding the targeted imaging of a specific cancer cell line (herein, U87MG) using the BTD-conjugated-fluorophore-containing block copolymers. A two-photon absorbing (2PA) red emitter group was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers, and further grafted with cyclo(Arg-Gly-Asp) (cRGD) peptide to form micelle 1.![]()
Collapse
Affiliation(s)
- Shanshan Wu
- Guangdong Industry Polytechnic, Foshan Municipality Anti-counterfeiting Engineering Research Center, Guangzhou, Guangdong 510300, China
| | - Fengyu Su
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hansa Y Magee
- Knowledge Enterprise, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Deirdre R Meldrum
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
23
|
Lundt A, Soós J, Seidel R, Henseler C, Müller R, Raj Ginde V, Imran Arshaad M, Ehninger D, Hescheler J, Sachinidis A, Broich K, Wormuth C, Papazoglou A, Weiergräber M. Functional implications of Ca v 2.3 R-type voltage-gated calcium channels in the murine auditory system - novel vistas from brainstem-evoked response audiometry. Eur J Neurosci 2019; 51:1583-1604. [PMID: 31603587 DOI: 10.1111/ejn.14591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Voltage-gated Ca2+ channels (VGCCs) are considered to play a key role in auditory perception and information processing within the murine inner ear and brainstem. In the past, Cav 1.3 L-type VGCCs gathered most attention as their ablation causes congenital deafness. However, isolated patch-clamp investigation and localization studies repetitively suggested that Cav 2.3 R-type VGCCs are also expressed in the cochlea and further components of the ascending auditory tract, pointing to a potential functional role of Cav 2.3 in hearing physiology. Thus, we performed auditory profiling of Cav 2.3+/+ controls, heterozygous Cav 2.3+/- mice and Cav 2.3 null mutants (Cav 2.3-/- ) using brainstem-evoked response audiometry. Interestingly, click-evoked auditory brainstem responses (ABRs) revealed increased hearing thresholds in Cav 2.3+/- mice from both genders, whereas no alterations were observed in Cav 2.3-/- mice. Similar observations were made for tone burst-related ABRs in both genders. However, Cav 2.3 ablation seemed to prevent mutant mice from total hearing loss particularly in the higher frequency range (36-42 kHz). Amplitude growth function analysis revealed, i.a., significant reduction in ABR wave WI and WIII amplitude in mutant animals. In addition, alterations in WI -WIV interwave interval were observed in female Cav 2.3+/- mice whereas absolute latencies remained unchanged. In summary, our results demonstrate that Cav 2.3 VGCCs are mandatory for physiological auditory information processing in the ascending auditory tract.
Collapse
Affiliation(s)
- Andreas Lundt
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Julien Soós
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Robin Seidel
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Ralf Müller
- Cognitive Neurophysiology, Department of Psychiatry and Psychotherapy and University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Varun Raj Ginde
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Dan Ehninger
- Molecular and Cellular Cognition, German Center for Neurodegenerative Diseases, (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Carola Wormuth
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| |
Collapse
|
24
|
Resveratrol Directly Controls the Activity of Neuronal Ryanodine Receptors at the Single-Channel Level. Mol Neurobiol 2019; 57:422-434. [PMID: 31376069 DOI: 10.1007/s12035-019-01705-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/10/2019] [Indexed: 01/14/2023]
Abstract
Calcium ion dyshomeostasis contributes to the progression of many neurodegenerative diseases and represents a target for the development of neuroprotective therapies, as reported by Duncan et al. (Molecules 15(3):1168-95, 2010), LaFerla (Nat Rev Neurosci 3(11):862-72, 2002), and Niittykoshi et al. (Invest Ophthalmol Vis Sci 51(12):6387-93, 2010). Dysfunctional ryanodine receptors contribute to calcium ion dyshomeostasis and potentially to the pathogenesis of neurodegenerative diseases by generating abnormal calcium ion release from the endoplasmic reticulum, according to Bruno et al. (Neurobiol Aging 33(5):1001 e1-6, 2012) and Stutzmann et al. (J Neurosci 24(2):508-13, 2004). Since ryanodine receptors share functional and structural similarities with potassium channels, as reported by Lanner et al. (Cold Spring Harb Perspect Biol 2(11):a003996, 2010), and small molecules with anti-oxidant properties, such as resveratrol (3,5,4'-trihydroxy-trans-stilbene), directly control the activity of potassium channels, according to Wang et al. (J Biomed Sci 23(1):47, 2016), McCalley et al. (Molecules 19(6):7327-40, 2014), Novakovic et al. (Mol Hum Reprod 21(6):545-51, 2015), Li et al. (Cardiovasc Res 45(4):1035-45, 2000), Gopalakrishnan et al. (Br J Pharmacol 129(7):1323-32, 2000), and Hambrock et al. (J Biol Chem 282(5):3347-56, 2007), we hypothesized that trans-resveratrol can modulate intracellular calcium signaling through direct binding and functional regulation of ryanodine receptors. The goal of our study was to identify and measure the control of ryanodine receptor activity by trans-resveratrol. Mechanisms of calcium signaling mediated by the direct interaction between trans-resveratrol and ryanodine receptors were identified and measured with single-channel electrophysiology. Addition of trans-resveratrol to the cytoplasmic face of the ryanodine receptor increased single-channel activity at physiological and elevated pathophysiological cytoplasmic calcium ion concentrations. The open probability of the channel increases after interacting with the small molecule in a dose-dependent manner, but remains also dependent on the concentration of its physiological ligand, cytoplasmic-free calcium ions. This study provides the first evidence of a direct functional interaction between trans-resveratrol and ryanodine receptors. Such functional control of ryanodine receptors by trans-resveratrol as a novel mechanism of action could provide additional rationales for the development of novel therapeutic strategies to treat and prevent neurodegenerative diseases.
Collapse
|
25
|
Miyano R, Miki T, Sakaba T. Ca-dependence of synaptic vesicle exocytosis and endocytosis at the hippocampal mossy fibre terminal. J Physiol 2019; 597:4373-4386. [PMID: 31294821 DOI: 10.1113/jp278040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS We used presynaptic capacitance measurements at the hippocampal mossy fibre terminal at room temperature to measure Ca-dependence of exo- and endocytotic kinetics. The readily releasable pool (RRP) of synaptic vesicles was released with a time constant of 30-40 ms and was sensitive to Ca buffers, BAPTA and EGTA. Our data suggest that recruitment of the vesicles to the RRP was Ca-insensitive and had a time constant of 1 s. In addition to the RRP, the reserve pool of vesicles, which had a similar size to RRP, was depleted during repetitive stimulation. Our data suggest that synaptic vesicle endocytosis was also Ca-insensitive. ABSTRACT Hippocampal mossy fibre terminals comprise one of the cortical terminals, which are sufficiently large to be accessible by patch clamp recordings. To measure Ca-dependence of exo- and endocytotic kinetics quantitatively, we applied presynaptic capacitance measurements to the mossy fibre terminal at room temperature. The time course of synaptic vesicle fusion was slow, with a time constant of tens of milliseconds, and was sensitive to Ca buffers EGTA and BAPTA, suggesting a loose coupling between Ca channels and synaptic vesicles. The size of the readily-releasable pool (RRP) of synaptic vesicles was relatively insensitive to Ca buffers. Once the RRP was depleted, it was recovered by a single exponential with a time constant of ∼1 s independent of the presence of Ca buffers, suggesting Ca independent vesicle replenishment. In addition to the RRP, the reserve pool of vesicles was released slowly during repetitive stimulation. Endocytosis was also insensitive to Ca buffers and had a slow time course, excluding the involvement of rapid vesicle cycling in vesicle replenishment. Although mossy fibre terminals are known to have various forms of Ca-dependent plasticity, some features of vesicle dynamics are robust and Ca-insensitive.
Collapse
Affiliation(s)
- Rinako Miyano
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Takafumi Miki
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
26
|
Chakrabarti R, Wichmann C. Nanomachinery Organizing Release at Neuronal and Ribbon Synapses. Int J Mol Sci 2019; 20:E2147. [PMID: 31052288 PMCID: PMC6539712 DOI: 10.3390/ijms20092147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022] Open
Abstract
A critical aim in neuroscience is to obtain a comprehensive view of how regulated neurotransmission is achieved. Our current understanding of synapses relies mainly on data from electrophysiological recordings, imaging, and molecular biology. Based on these methodologies, proteins involved in a synaptic vesicle (SV) formation, mobility, and fusion at the active zone (AZ) membrane have been identified. In the last decade, electron tomography (ET) combined with a rapid freezing immobilization of neuronal samples opened a window for understanding the structural machinery with the highest spatial resolution in situ. ET provides significant insights into the molecular architecture of the AZ and the organelles within the presynaptic nerve terminal. The specialized sensory ribbon synapses exhibit a distinct architecture from neuronal synapses due to the presence of the electron-dense synaptic ribbon. However, both synapse types share the filamentous structures, also commonly termed as tethers that are proposed to contribute to different steps of SV recruitment and exocytosis. In this review, we discuss the emerging views on the role of filamentous structures in SV exocytosis gained from ultrastructural studies of excitatory, mainly central neuronal compared to ribbon-type synapses with a focus on inner hair cell (IHC) ribbon synapses. Moreover, we will speculate on the molecular entities that may be involved in filament formation and hence play a crucial role in the SV cycle.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
- Collaborative Research Center 1286 "Quantitative Synaptology", 37099 Göttingen, Germany.
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
27
|
Real-Time Endocytosis Measurements by Membrane Capacitance Recording at Central Nerve Terminals. Methods Mol Biol 2019. [PMID: 30129012 DOI: 10.1007/978-1-4939-8719-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Endocytosis is fundamental to cell function. It can be monitored by capacitance measurements under patch-clamp recordings. Membrane capacitance recording measures the cell membrane surface area and its changes at high temporal-resolution and sensitivity, and it is a powerful biophysical approach in the field of exocytosis and endocytosis. A popular one is the frequency domain method that entails processing passive sinusoidal membrane currents induced by a sinusoidal voltage. This technique requires a phase-sensitive detector or "lock-in amplifier" implemented in hardware or software during patch-clamp recordings. It has been widely used in many secretory cells, but its application directly at central presynaptic terminals is technically challenging. We have applied this technique to study synaptic endocytosis in the calyx of Held, a large glutamatergic synaptic terminal, as well as mouse pancreatic β-cells. The presynaptic capacitance measurements provide a unique alternative to measuring transmitter release and presynaptic endocytosis. Here, we describe this method at the calyx of Held in acute brain slices and provide a practical guide to obtaining high quality capacitance measurements at presynaptic terminals.
Collapse
|
28
|
Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope. J Neurosci 2019; 39:4077-4099. [PMID: 30867259 DOI: 10.1523/jneurosci.1801-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
Phase locking of auditory-nerve-fiber (ANF) responses to the fine structure of acoustic stimuli is a hallmark of the auditory system's temporal precision and is important for many aspects of hearing. Period histograms from phase-locked ANF responses to low-frequency tones exhibit spike-rate and temporal asymmetries, but otherwise retain an approximately sinusoidal shape as stimulus level increases, even beyond the level at which the mean spike rate saturates. This is intriguing because apical cochlear mechanical vibrations show little compression, and mechanoelectrical transduction in the receptor cells is thought to obey a static sigmoidal nonlinearity, which might be expected to produce peak clipping at moderate and high stimulus levels. Here we analyze phase-locked responses of ANFs from cats of both sexes. We show that the lack of peak clipping is due neither to ANF refractoriness nor to spike-rate adaptation on time scales longer than the stimulus period. We demonstrate that the relationship between instantaneous pressure and instantaneous rate is well described by an exponential function whose slope decreases with increasing stimulus level. Relatively stereotyped harmonic distortions in the input to the exponential can account for the temporal asymmetry of the period histograms, including peak splitting. We show that the model accounts for published membrane-potential waveforms when assuming a power-of-three, but not a power-of-one, relationship to exocytosis. Finally, we demonstrate the relationship between the exponential transfer functions and the sigmoidal pseudotransducer functions obtained in the literature by plotting the maxima and minima of the voltage responses against the maxima and minima of the stimuli.SIGNIFICANCE STATEMENT Phase locking of auditory-nerve-fiber responses to the temporal fine structure of acoustic stimuli is important for many aspects of hearing, but the mechanisms underlying phase locking are not fully understood. Intriguingly, period histograms retain an approximately sinusoidal shape across sound levels, even when the mean rate has saturated. We find that neither refractoriness nor spike-rate adaptation is responsible for this behavior. Instead, the peripheral auditory system operates as though it contains an exponential transfer function whose slope changes with stimulus level. The underlying mechanism is distinct from the comparatively weak cochlear mechanical compression in the cochlear apex, and likely resides in the receptor cells.
Collapse
|
29
|
Viral Transfer of Mini-Otoferlins Partially Restores the Fast Component of Exocytosis and Uncovers Ultrafast Endocytosis in Auditory Hair Cells of Otoferlin Knock-Out Mice. J Neurosci 2019; 39:3394-3411. [PMID: 30833506 DOI: 10.1523/jneurosci.1550-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023] Open
Abstract
Transmitter release at auditory inner hair cell (IHC) ribbon synapses involves exocytosis of glutamatergic vesicles during voltage activation of L-type Cav1.3 calcium channels. At these synapses, the fast and indefatigable release of synaptic vesicles by IHCs is controlled by otoferlin, a six-C2-domain (C2-ABCDEF) protein that functions as a high-affinity Ca2+ sensor. The molecular events by which each otoferlin C2 domain contributes to the regulation of the synaptic vesicle cycle in IHCs are still incompletely understood. Here, we investigate their role using a cochlear viral cDNA transfer approach in vivo, where IHCs of mouse lacking otoferlin (Otof -/- mice of both sexes) were virally transduced with cDNAs of various mini-otoferlins. Using patch-clamp recordings and membrane capacitance measurements, we show that the viral transfer of mini-otoferlin containing C2-ACEF, C2-EF, or C2-DEF partially restores the fast exocytotic component in Otof -/- mouse IHCs. The restoration was much less efficient with C2-ACDF, underlining the importance of the C2-EF domain. None of the mini-otoferlins tested restored the sustained component of vesicle release, explaining the absence of hearing recovery. The restoration of the fast exocytotic component in the transduced Otof -/- IHCs was also associated with a recovery of Ca2+ currents with normal amplitude and fast time inactivation, confirming that the C-terminal C2 domains of otoferlin are essential for normal gating of Cav1.3 channels. Finally, the reintroduction of the mini-otoferlins C2-EF, C2-DEF, or C2-ACEF allowed us to uncover and characterize for the first time a dynamin-dependent ultrafast endocytosis in IHCs.SIGNIFICANCE STATEMENT Otoferlin, a large six-C2-domain protein, is essential for synaptic vesicle exocytosis at auditory hair cell ribbon synapses. Here, we show that the viral expression of truncated forms of otoferlin (C2-EF, C2-DEF, and C2-ACEF) can partially rescue the fast and transient release component of exocytosis in mouse hair cells lacking otoferlin, yet cannot sustain exocytosis after long repeated stimulation. Remarkably, these hair cells also display a dynamin-dependent ultrafast endocytosis. Overall, our study uncovers the pleiotropic role of otoferlin in the hair cell synaptic vesicle cycle, notably in triggering both ultrafast exocytosis and endocytosis and recruiting synaptic vesicles to the active zone.
Collapse
|
30
|
Kroll J, Jaime Tobón LM, Vogl C, Neef J, Kondratiuk I, König M, Strenzke N, Wichmann C, Milosevic I, Moser T. Endophilin-A regulates presynaptic Ca 2+ influx and synaptic vesicle recycling in auditory hair cells. EMBO J 2019; 38:e100116. [PMID: 30733243 PMCID: PMC6396150 DOI: 10.15252/embj.2018100116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
Ribbon synapses of cochlear inner hair cells (IHCs) operate with high rates of neurotransmission; yet, the molecular regulation of synaptic vesicle (SV) recycling at these synapses remains poorly understood. Here, we studied the role of endophilins-A1-3, endocytic adaptors with curvature-sensing and curvature-generating properties, in mouse IHCs. Single-cell RT-PCR indicated the expression of endophilins-A1-3 in IHCs, and immunoblotting confirmed the presence of endophilin-A1 and endophilin-A2 in the cochlea. Patch-clamp recordings from endophilin-A-deficient IHCs revealed a reduction of Ca2+ influx and exocytosis, which we attribute to a decreased abundance of presynaptic Ca2+ channels and impaired SV replenishment. Slow endocytic membrane retrieval, thought to reflect clathrin-mediated endocytosis, was impaired. Otoferlin, essential for IHC exocytosis, co-immunoprecipitated with purified endophilin-A1 protein, suggestive of a molecular interaction that might aid exocytosis-endocytosis coupling. Electron microscopy revealed lower SV numbers, but an increased occurrence of coated structures and endosome-like vacuoles at IHC active zones. In summary, endophilins regulate Ca2+ influx and promote SV recycling in IHCs, likely via coupling exocytosis to endocytosis, and contributing to membrane retrieval and SV reformation.
Collapse
Affiliation(s)
- Jana Kroll
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), University Medical Center Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Lina M Jaime Tobón
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Christian Vogl
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Jakob Neef
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Ilona Kondratiuk
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), University Medical Center Göttingen, Göttingen, Germany
| | - Melanie König
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Nicola Strenzke
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Auditory Systems Physiology Group and InnerEarLab, Department of Otolaryngology, University of Göttingen Medical Center, Göttingen, Germany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Ira Milosevic
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
31
|
Wong VSC, Meadows M, Goldberg D, Willis DE. Semaphorin 3A induces acute changes in membrane excitability in spiral ganglion neurons in vitro. Eur J Neurosci 2019; 50:1741-1758. [PMID: 30706560 DOI: 10.1111/ejn.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 11/29/2022]
Abstract
The development and survival of spiral ganglion neurons (SGNs) are dependent on multiple trophic factors as well as membrane electrical activity. Semaphorins (Sema) constitute a family of membrane-associated and secreted proteins that have garnered significant attention as a potential SGN "navigator" during cochlea development. Previous studies using mutant mice demonstrated that Sema3A plays a role in the SGN pathfinding. The mechanisms, however, by which Sema3A shapes SGNs firing behavior are not known. In these studies, we found that Sema3A plays a novel role in regulating SGN resting membrane potential and excitability. Using dissociated SGN from pre-hearing (P3-P5) and post-hearing mice (P12-P15), we recorded membrane potentials using whole-cell patch clamp recording techniques in apical and basal SGN populations. Recombinant Sema3A was applied to examine the effects on intrinsic membrane properties and action potentials evoked by current injections. Apical and basal SGNs from newborn mice treated with recombinant Sema3A (100 ng/ml) displayed a higher resting membrane potential, higher threshold, decreased amplitude, and prolonged latency and duration of spikes. Although a similar phenomenon was observed in SGNs from post-hearing mice, the resting membrane potential was essentially indistinguishable before and after Sema3A exposure. Sema3A-mediated changes in membrane excitability were associated with a significant decrease in K+ and Ca2+ currents. Sema3A acts through linopirdine-sensitive K+ channels in apical, but not in the basal SGNs. Therefore, Sema3A induces differential effects in SGN membrane excitability that are dependent on age and location, and constitutes an additional early and novel effect of Sema3A SGNs in vitro.
Collapse
Affiliation(s)
| | - Marc Meadows
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - David Goldberg
- The Burke Neurological Institute, White Plains, New York
| | - Dianna E Willis
- The Burke Neurological Institute, White Plains, New York.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| |
Collapse
|
32
|
Pangrsic T, Singer JH, Koschak A. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol Rev 2019; 98:2063-2096. [PMID: 30067155 DOI: 10.1152/physrev.00030.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Calcium influx through voltage-gated Ca (CaV) channels is the first step in synaptic transmission. This review concerns CaV channels at ribbon synapses in primary sense organs and their specialization for efficient coding of stimuli in the physical environment. Specifically, we describe molecular, biochemical, and biophysical properties of the CaV channels in sensory receptor cells of the retina, cochlea, and vestibular apparatus, and we consider how such properties might change over the course of development and contribute to synaptic plasticity. We pay particular attention to factors affecting the spatial arrangement of CaV channels at presynaptic, ribbon-type active zones, because the spatial relationship between CaV channels and release sites has been shown to affect synapse function critically in a number of systems. Finally, we review identified synaptopathies affecting sensory systems and arising from dysfunction of L-type, CaV1.3, and CaV1.4 channels or their protein modulatory elements.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Joshua H Singer
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Alexandra Koschak
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
33
|
Bahmer A, Gupta DS. Role of Oscillations in Auditory Temporal Processing: A General Model for Temporal Processing of Sensory Information in the Brain? Front Neurosci 2018; 12:793. [PMID: 30429770 PMCID: PMC6220050 DOI: 10.3389/fnins.2018.00793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
We review the role of oscillations in the brain and in the auditory system showing that the ability of humans to distinguish changes in pitch can be explained as a precise analysis of temporal information in auditory signals by neural oscillations. The connections between auditory brain stem chopper neurons construct neural oscillators, which discharge spikes at various constant intervals that are integer multiples of 0.4 ms, contributing to the temporal processing of auditory cochlear output. This is subsequently spatially mapped in the inferior colliculus. Electrophysiological measurements of auditory chopper neurons in different species show oscillations with periods which are integer multiples of 0.4 ms. The constant intervals of 0.4 ms can be attributed to the smallest synaptic delay between interconnected simulated chopper neurons. We also note the patterns of similarities between microcircuits in the brain stem and other parts of the brain (e.g., the pallidum, reticular formation, locus coeruleus, oculomotor nuclei, limbic system, amygdala, hippocampus, basal ganglia and substantia nigra), dedicated to the processing of temporal information. Similarities in microcircuits across the brain reflect the importance of one of the key mechanisms in the information processing in the brain, namely the temporal coupling of different neural events via coincidence detection.
Collapse
Affiliation(s)
- Andreas Bahmer
- Comprehensive Hearing Center, ENT Clinic, University of Würzburg, Würzburg, Germany
| | - Daya Shankar Gupta
- Biology Department, Camden County College, Gloucester Township, NJ, United States
| |
Collapse
|
34
|
The Transfer Characteristics of Hair Cells Encoding Mechanical Stimuli in the Lateral Line of Zebrafish. J Neurosci 2018; 39:112-124. [PMID: 30413644 PMCID: PMC6325263 DOI: 10.1523/jneurosci.1472-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/01/2022] Open
Abstract
Hair cells transmit mechanical information by converting deflection of the hair bundle into synaptic release of glutamate. We have investigated this process in the lateral line of larval zebrafish (male and female) to understand how stimuli are encoded within a neuromast. Using multiphoton microscopy in vivo, we imaged synaptic release of glutamate using the reporter iGluSnFR as well as deflections of the cupula. We found that the neuromast is composed of a functionally diverse population of hair cells. Half the hair cells signaled cupula motion in both directions from rest, either by increasing glutamate release in response to a deflection in the positive direction or by reducing release in the negative direction. The relationship between cupula deflection and glutamate release demonstrated maximum sensitivity at displacements of just ∼40 nm in the positive direction. The remaining hair cells only signaled motion in one direction and were less sensitive, extending the operating range of the neuromast beyond 1 μm. Adaptation of the synaptic output was also heterogeneous, with some hair cells generating sustained glutamate release in response to a steady deflection of the cupula and others generating transient outputs. Finally, a distinct signal encoded a return of the cupula to rest: a large and transient burst of glutamate release from hair cells unresponsive to the initial stimulus. A population of hair cells with these different sensitivities, operating ranges, and adaptive properties will allow the neuromast to encode weak stimuli while maintaining the dynamic range to signal the amplitude and duration of stronger deflections. SIGNIFICANCE STATEMENT Hair cells transmit information about mechanical stimuli by converting very small deflections of their hair bundle into changes in the release of the neurotransmitter glutamate. We have measured this input/output relation in the live fish using a fluorescent protein and find that different hair cells vary in their mechanical sensitivity and the time course of their response. These variations will allow the fish to sense the timing and duration of both very weak stimuli (∼40 nm deflections) and strong stimuli (∼1 μm), underlying the ability of the fish to avoid predators and maintain its body position in flowing water.
Collapse
|
35
|
Huet A, Batrel C, Wang J, Desmadryl G, Nouvian R, Puel JL, Bourien J. Sound Coding in the Auditory Nerve: From Single Fiber Activity to Cochlear Mass Potentials in Gerbils. Neuroscience 2018; 407:83-92. [PMID: 30342201 DOI: 10.1016/j.neuroscience.2018.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022]
Abstract
Auditory nerve fibers (ANFs) convey acoustic information from the sensory cells to the brainstem using an elaborated neural code based on both spike timing and rate. As the stimulus tone frequency increases, time coding fades and ceases, resulting in high-frequency tone encoding that relies mostly on the spike discharge rate. Here, we recapitulated our recent single-unit data from gerbil's auditory nerve to highlight the most relevant mode of coding (spike timing versus spike rate) in tone-in-noise. We report that high-spontaneous rate (SR) fibers driven by low-frequency tones in noise are able to phase lock ∼30 dB below the level that evoked a significant elevation of the discharge rate, whereas medium- and low-SR fibers switch their preferential mode of coding from rate coding in quiet, to time coding in noise. For high-frequency tone, the low-threshold/high-SR fibers reach their maximum discharge rate in noise and do not respond to tones, whereas medium- and low-SR fibers are still able to respond to tones making them more resistant to background noise. Based on these findings, we first discuss the ecological function of the ANF distribution according to their spontaneous discharge rate. Then, we point out the poor synchronization of the low-SR ANFs, accounting for the discrepancy between ANF number and the amplitude of the compound action potential of the of the auditory nerve. Finally, we proposed a new diagnostic tool to assess low-SR fibers, which does not rely on the onset response of the ANFs.
Collapse
Affiliation(s)
- A Huet
- INM, Inserm, Univ Montpellier, Montpellier, France
| | - C Batrel
- INM, Inserm, Univ Montpellier, Montpellier, France
| | - J Wang
- INM, Inserm, Univ Montpellier, Montpellier, France
| | - G Desmadryl
- INM, Inserm, Univ Montpellier, Montpellier, France
| | - R Nouvian
- INM, Inserm, Univ Montpellier, Montpellier, France
| | - J L Puel
- INM, Inserm, Univ Montpellier, Montpellier, France.
| | - J Bourien
- INM, Inserm, Univ Montpellier, Montpellier, France
| |
Collapse
|
36
|
Pangrsic T, Vogl C. Balancing presynaptic release and endocytic membrane retrieval at hair cell ribbon synapses. FEBS Lett 2018; 592:3633-3650. [PMID: 30251250 DOI: 10.1002/1873-3468.13258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 11/07/2022]
Abstract
The timely and reliable processing of auditory and vestibular information within the inner ear requires highly sophisticated sensory transduction pathways. On a cellular level, these demands are met by hair cells, which respond to sound waves - or alterations in body positioning - by releasing glutamate-filled synaptic vesicles (SVs) from their presynaptic active zones with unprecedented speed and exquisite temporal fidelity, thereby initiating the auditory and vestibular pathways. In order to achieve this, hair cells have developed anatomical and molecular specializations, such as the characteristic and name-giving 'synaptic ribbons' - presynaptically anchored dense bodies that tether SVs prior to release - as well as other unique or unconventional synaptic proteins. The tightly orchestrated interplay between these molecular components enables not only ultrafast exocytosis, but similarly rapid and efficient compensatory endocytosis. So far, the knowledge of how endocytosis operates at hair cell ribbon synapses is limited. In this Review, we summarize recent advances in our understanding of the SV cycle and molecular anatomy of hair cell ribbon synapses, with a focus on cochlear inner hair cells.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, University Medical Center Göttingen, Germany
| | - Christian Vogl
- Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, University Medical Center Göttingen, Germany
| |
Collapse
|
37
|
Filadi R, Basso E, Lefkimmiatis K, Pozzan T. Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:279-322. [PMID: 29594866 DOI: 10.1007/978-3-319-55858-5_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A typical characteristic of eukaryotic cells compared to prokaryotes is represented by the spatial heterogeneity of the different structural and functional components: for example, most of the genetic material is surrounded by a highly specific membrane structure (the nuclear membrane), continuous with, yet largely different from, the endoplasmic reticulum (ER); oxidative phosphorylation is carried out by organelles enclosed by a double membrane, the mitochondria; in addition, distinct domains, enriched in specific proteins, are present in the plasma membrane (PM) of most cells. Less obvious, but now generally accepted, is the notion that even the concentration of small molecules such as second messengers (Ca2+ and cAMP in particular) can be highly heterogeneous within cells. In the case of most organelles, the differences in the luminal levels of second messengers depend either on the existence on their membrane of proteins that allow the accumulation/release of the second messenger (e.g., in the case of Ca2+, pumps, exchangers or channels), or on the synthesis and degradation of the specific molecule within the lumen (the autonomous intramitochondrial cAMP system). It needs stressing that the existence of a surrounding membrane does not necessarily imply the existence of a gradient between the cytosol and the organelle lumen. For example, the nuclear membrane is highly permeable to both Ca2+ and cAMP (nuclear pores are permeable to solutes up to 50 kDa) and differences in [Ca2+] or [cAMP] between cytoplasm and nucleoplasm are not seen in steady state and only very transiently during cell activation. A similar situation has been observed, as far as Ca2+ is concerned, in peroxisomes.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Emy Basso
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
| | - Konstantinos Lefkimmiatis
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy.
- Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
38
|
The Interplay Between Spike-Time and Spike-Rate Modes in the Auditory Nerve Encodes Tone-In-Noise Threshold. J Neurosci 2018; 38:5727-5738. [PMID: 29793977 DOI: 10.1523/jneurosci.3103-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 11/21/2022] Open
Abstract
Auditory nerve fibers (ANFs) encode pure tones through two modes of coding, spike time and spike rate, depending on the tone frequency. In response to a low-frequency tone, ANF firing is phase locked to the sinusoidal waveform. Because time coding vanishes with an increase in the tone frequency, high-frequency tone coding relies on the spike rate of the ANFs. Adding a continuous broadband noise to a tone compresses the rate intensity function of ANFs and shifts its dynamic range toward higher intensities. Therefore, the ANFs with high-threshold/low-spontaneous rate (SR) are thought to contribute to behavioral tone detection in noise. However, this theory relies on the discharge rate of the ANFs. The direct comparison with the masking threshold through spike timing, irrespective of the spontaneous rate, has not so far been investigated. Taking advantage of a unique proxy to quantify the spike synchrony (i.e., the shuffle autocorrelogram), we show in female gerbils that high-SR ANFs are more adapted to encode low-frequency thresholds through temporal code, giving them a strong robustness in noise. By comparing behavioral thresholds measured using prepulse inhibition of the acoustical startle reflex with population thresholds calculated from ANFs pooled per octave band, we show that threshold-based spike timing provides a better estimate of behavioral thresholds in the low-frequency range, whereas the high-frequency behavioral thresholds rely on the spiking rate, particularly in noise. This emphasizes the complementarity of temporal and rate modes to code tone-in-noise thresholds over a large range of frequencies.SIGNIFICANCE STATEMENT There is a general agreement that high-threshold/low-spontaneous rate (SR) auditory nerve fibers (ANFs) are of prime importance for tone detection in noise. However, this theory is based on the discharge rate of the fibers. Comparing the behavioral thresholds and single ANF thresholds shows that this is only true in the high-frequency range of tone stimulations. In the low-frequency range of tones (up to 2.7 kHz in the gerbil), the most sensitive ANFs (high-SR fibers) carry neural information through a spike-timing mode, even for noise in which tones do not induce a noticeable increment in the spike rate. This emphasizes the interplay between spike-time and spike-rate modes in the auditory nerve to encode tone-in-noise threshold over a large range of tone frequencies.
Collapse
|
39
|
Zhang Q, Li S, Wong HTC, He XJ, Beirl A, Petralia RS, Wang YX, Kindt KS. Synaptically silent sensory hair cells in zebrafish are recruited after damage. Nat Commun 2018; 9:1388. [PMID: 29643351 PMCID: PMC5895622 DOI: 10.1038/s41467-018-03806-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/09/2018] [Indexed: 01/31/2023] Open
Abstract
Analysis of mechanotransduction among ensembles of sensory hair cells in vivo is challenging in many species. To overcome this challenge, we used optical indicators to investigate mechanotransduction among collections of hair cells in intact zebrafish. Our imaging reveals a previously undiscovered disconnect between hair-cell mechanosensation and synaptic transmission. We show that saturating mechanical stimuli able to open mechanically gated channels are unexpectedly insufficient to evoke vesicle fusion in the majority of hair cells. Although synaptically silent, latent hair cells can be rapidly recruited after damage, demonstrating that they are synaptically competent. Therefore synaptically silent hair cells may be an important reserve that acts to maintain sensory function. Our results demonstrate a previously unidentified level of complexity in sculpting sensory transmission from the periphery.
Collapse
Affiliation(s)
- Qiuxiang Zhang
- Section on Sensory Cell Development and Function, NIDCD/National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suna Li
- Section on Sensory Cell Development and Function, NIDCD/National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hiu-Tung C Wong
- Section on Sensory Cell Development and Function, NIDCD/National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xinyi J He
- Section on Sensory Cell Development and Function, NIDCD/National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alisha Beirl
- Section on Sensory Cell Development and Function, NIDCD/National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core, NIDCD/National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, NIDCD/National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
40
|
Altoè A, Pulkki V, Verhulst S. The effects of the activation of the inner-hair-cell basolateral K + channels on auditory nerve responses. Hear Res 2018; 364:68-80. [PMID: 29678326 DOI: 10.1016/j.heares.2018.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/23/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
The basolateral membrane of the mammalian inner hair cell (IHC) expresses large voltage and Ca2+ gated outward K+ currents. To quantify how the voltage-dependent activation of the K+ channels affects the functionality of the auditory nerve innervating the IHC, this study adopts a model of mechanical-to-neural transduction in which the basolateral K+ conductances of the IHC can be made voltage-dependent or not. The model shows that the voltage-dependent activation of the K+ channels (i) enhances the phase-locking properties of the auditory fiber (AF) responses; (ii) enables the auditory nerve to encode a large dynamic range of sound levels; (iii) enables the AF responses to synchronize precisely with the envelope of amplitude modulated stimuli; and (iv), is responsible for the steep offset responses of the AFs. These results suggest that the basolateral K+ channels play a major role in determining the well-known response properties of the AFs and challenge the classical view that describes the IHC membrane as an electrical low-pass filter. In contrast to previous models of the IHC-AF complex, this study ascribes many of the AF response properties to fairly basic mechanisms in the IHC membrane rather than to complex mechanisms in the synapse.
Collapse
Affiliation(s)
- Alessandro Altoè
- Department of Signal Processing and Acoustics, School of Electrical Engineering, Aalto University, P.O. Box 13000, FI-00076, Aalto, Finland.
| | - Ville Pulkki
- Department of Signal Processing and Acoustics, School of Electrical Engineering, Aalto University, P.O. Box 13000, FI-00076, Aalto, Finland
| | - Sarah Verhulst
- WAVES Department of Information Technology, Technologiepark 15, 9052, Zwijnaarde, Belgium
| |
Collapse
|
41
|
Variations in Ca 2+ Influx Can Alter Chelator-Based Estimates of Ca 2+ Channel-Synaptic Vesicle Coupling Distance. J Neurosci 2018; 38:3971-3987. [PMID: 29563180 DOI: 10.1523/jneurosci.2061-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
The timing and probability of synaptic vesicle fusion from presynaptic terminals is governed by the distance between voltage-gated Ca2+ channels (VGCCs) and Ca2+ sensors for exocytosis. This VGCC-sensor coupling distance can be determined from the fractional block of vesicular release by exogenous Ca2+ chelators, which depends on biophysical factors that have not been thoroughly explored. Using numerical simulations of Ca2+ reaction and diffusion, as well as vesicular release, we examined the contributions of conductance, density, and open duration of VGCCs, and the influence of endogenous Ca2+ buffers on the inhibition of exocytosis by EGTA. We found that estimates of coupling distance are critically influenced by the duration and amplitude of Ca2+ influx at active zones, but relatively insensitive to variations of mobile endogenous buffer. High concentrations of EGTA strongly inhibit vesicular release in close proximity (20-30 nm) to VGCCs if the flux duration is brief, but have little influence for longer flux durations that saturate the Ca2+ sensor. Therefore, the diversity in presynaptic action potential duration is sufficient to alter EGTA inhibition, resulting in errors potentially as large as 300% if Ca2+ entry durations are not considered when estimating VGCC-sensor coupling distances.SIGNIFICANT STATEMENT The coupling distance between voltage-gated Ca2+ channels and Ca2+ sensors for exocytosis critically determines the timing and probability of neurotransmitter release. Perfusion of presynaptic terminals with the exogenous Ca2+ chelator EGTA has been widely used for both qualitative and quantitative estimates of this distance. However, other presynaptic terminal parameters such as the amplitude and duration of Ca2+ entry can also influence EGTA inhibition of exocytosis, thus confounding conclusions based on EGTA alone. Here, we performed reaction-diffusion simulations of Ca2+-driven synaptic vesicle fusion, which delineate the critical parameters influencing an accurate prediction of coupling distance. Our study provides guidelines for characterizing and understanding how variability in coupling distance across chemical synapses could be estimated accurately.
Collapse
|
42
|
Lou X. Sensing Exocytosis and Triggering Endocytosis at Synapses: Synaptic Vesicle Exocytosis-Endocytosis Coupling. Front Cell Neurosci 2018; 12:66. [PMID: 29593500 PMCID: PMC5861208 DOI: 10.3389/fncel.2018.00066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/29/2022] Open
Abstract
The intact synaptic structure is critical for information processing in neural circuits. During synaptic transmission, rapid vesicle exocytosis increases the size of never terminals and endocytosis counteracts the increase. Accumulating evidence suggests that SV exocytosis and endocytosis are tightly connected in time and space during SV recycling, and this process is essential for synaptic function and structural stability. Research in the past has illustrated the molecular details of synaptic vesicle (SV) exocytosis and endocytosis; however, the mechanisms that timely connect these two fundamental events are poorly understood at central synapses. Here we discuss recent progress in SV recycling and summarize several emerging mechanisms by which synapses can “sense” the occurrence of exocytosis and timely initiate compensatory endocytosis. They include Ca2+ sensing, SV proteins sensing, and local membrane stress sensing. In addition, the spatial organization of endocytic zones adjacent to active zones provides a structural basis for efficient coupling between SV exocytosis and endocytosis. Through linking different endocytosis pathways with SV fusion, these mechanisms ensure necessary plasticity and robustness of nerve terminals to meet diverse physiological needs.
Collapse
Affiliation(s)
- Xuelin Lou
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
43
|
Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hear Res 2018; 360:55-75. [DOI: 10.1016/j.heares.2017.12.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/17/2017] [Accepted: 12/23/2017] [Indexed: 11/21/2022]
|
44
|
Neef J, Urban NT, Ohn TL, Frank T, Jean P, Hell SW, Willig KI, Moser T. Quantitative optical nanophysiology of Ca 2+ signaling at inner hair cell active zones. Nat Commun 2018; 9:290. [PMID: 29348575 PMCID: PMC5773603 DOI: 10.1038/s41467-017-02612-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
Ca2+ influx triggers the release of synaptic vesicles at the presynaptic active zone (AZ). A quantitative characterization of presynaptic Ca2+ signaling is critical for understanding synaptic transmission. However, this has remained challenging to establish at the required resolution. Here, we employ confocal and stimulated emission depletion (STED) microscopy to quantify the number (20-330) and arrangement (mostly linear 70 nm × 100-600 nm clusters) of Ca2+ channels at AZs of mouse cochlear inner hair cells (IHCs). Establishing STED Ca2+ imaging, we analyze presynaptic Ca2+ signals at the nanometer scale and find confined elongated Ca2+ domains at normal IHC AZs, whereas Ca2+ domains are spatially spread out at the AZs of bassoon-deficient IHCs. Performing 2D-STED fluorescence lifetime analysis, we arrive at estimates of the Ca2+ concentrations at stimulated IHC AZs of on average 25 µM. We propose that IHCs form bassoon-dependent presynaptic Ca2+-channel clusters of similar density but scalable length, thereby varying the number of Ca2+ channels amongst individual AZs.
Collapse
Affiliation(s)
- Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany.,Bernstein Focus for Neurotechnology, University of Göttingen, 37075 Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Nicolai T Urban
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany. .,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37099 Göttingen, Germany.
| | - Tzu-Lun Ohn
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany.,Bernstein Focus for Neurotechnology, University of Göttingen, 37075 Göttingen, Germany
| | - Thomas Frank
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099, Göttingen, Germany.,Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland
| | - Philippe Jean
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Stefan W Hell
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Katrin I Willig
- Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany. .,Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany. .,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37099 Göttingen, Germany. .,Optical Nanoscopy in Neuroscience, University Medical Center Göttingen, 37099, Göttingen, Germany.
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099, Göttingen, Germany. .,Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany. .,Bernstein Focus for Neurotechnology, University of Göttingen, 37075 Göttingen, Germany. .,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany. .,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37099 Göttingen, Germany. .,Bernstein Center for Computational Neuroscience, University of Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
45
|
Michalski N, Goutman JD, Auclair SM, Boutet de Monvel J, Tertrais M, Emptoz A, Parrin A, Nouaille S, Guillon M, Sachse M, Ciric D, Bahloul A, Hardelin JP, Sutton RB, Avan P, Krishnakumar SS, Rothman JE, Dulon D, Safieddine S, Petit C. Otoferlin acts as a Ca 2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses. eLife 2017; 6:e31013. [PMID: 29111973 PMCID: PMC5700815 DOI: 10.7554/elife.31013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023] Open
Abstract
Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C2-domain, Ca2+-binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice (OtofAla515,Ala517/Ala515,Ala517) with lower Ca2+-binding affinity of the C2C domain. The IHC ribbon synapse structure, synaptic Ca2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca2+ concentration, by varying Ca2+ influx through voltage-gated Ca2+-channels or Ca2+ uncaging. Otoferlin thus functions as a Ca2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone.
Collapse
Affiliation(s)
- Nicolas Michalski
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Juan D Goutman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| | - Sarah Marie Auclair
- Department of Cell BiologyYale University School of MedicineNew HavenUnited States
| | - Jacques Boutet de Monvel
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Margot Tertrais
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux NeurocampusUniversité de BordeauxBordeauxFrance
| | - Alice Emptoz
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Alexandre Parrin
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Sylvie Nouaille
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Marc Guillon
- Wave Front Engineering Microscopy Group, Neurophotonics Laboratory, Centre National de la Recherche Scientifique, UMR 8250University Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Martin Sachse
- Center for Innovation & Technological ResearchUltrapole, Institut PasteurParisFrance
| | - Danica Ciric
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Amel Bahloul
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
- Centre National de la Recherche ScientifiqueFrance
| | - Jean-Pierre Hardelin
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Roger Bryan Sutton
- Department of Cell Physiology and Molecular BiophysicsTexas Tech University Health Sciences CenterLubbockUnited States
- Center for Membrane Protein ResearchTexas Tech University Health Sciences CenterLubbockUnited States
| | - Paul Avan
- Laboratoire de Biophysique SensorielleUniversité Clermont AuvergneClermont-FerrandFrance
- UMR 1107, Institut National de la Santé et de la Recherche MédicaleClermont-FerrandFrance
- Centre Jean PerrinClermont-FerrandFrance
| | - Shyam S Krishnakumar
- Department of Cell BiologyYale University School of MedicineNew HavenUnited States
- Department of Clinical and Experimental EpilepsyInstitute of Neurology, University College LondonLondonUnited Kingdom
| | - James E Rothman
- Department of Cell BiologyYale University School of MedicineNew HavenUnited States
- Department of Clinical and Experimental EpilepsyInstitute of Neurology, University College LondonLondonUnited Kingdom
| | - Didier Dulon
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux NeurocampusUniversité de BordeauxBordeauxFrance
| | - Saaid Safieddine
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
- Centre National de la Recherche ScientifiqueFrance
| | - Christine Petit
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
- Syndrome de Usher et Autres Atteintes Rétino-CochléairesInstitut de la VisionParisFrance
- Collège de FranceParisFrance
| |
Collapse
|
46
|
Meese S, Cepeda AP, Gahlen F, Adams CM, Ficner R, Ricci AJ, Heller S, Reisinger E, Herget M. Activity-Dependent Phosphorylation by CaMKIIδ Alters the Ca 2+ Affinity of the Multi-C 2-Domain Protein Otoferlin. Front Synaptic Neurosci 2017; 9:13. [PMID: 29046633 PMCID: PMC5632675 DOI: 10.3389/fnsyn.2017.00013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/11/2017] [Indexed: 01/20/2023] Open
Abstract
Otoferlin is essential for fast Ca2+-triggered transmitter release from auditory inner hair cells (IHCs), playing key roles in synaptic vesicle release, replenishment and retrieval. Dysfunction of otoferlin results in profound prelingual deafness. Despite its crucial role in cochlear synaptic processes, mechanisms regulating otoferlin activity have not been studied to date. Here, we identified Ca2+/calmodulin-dependent serine/threonine kinase II delta (CaMKIIδ) as an otoferlin binding partner by pull-downs from chicken utricles and reassured interaction by a co-immunoprecipitation with heterologously expressed proteins in HEK cells. We confirmed the expression of CaMKIIδ in rodent IHCs by immunohistochemistry and real-time PCR. A proximity ligation assay indicates close proximity of the two proteins in rat IHCs, suggesting that otoferlin and CaMKIIδ also interact in mammalian IHCs. In vitro phosphorylation of otoferlin by CaMKIIδ revealed ten phosphorylation sites, five of which are located within C2-domains. Exchange of serines/threonines at phosphorylated sites into phosphomimetic aspartates reduces the Ca2+ affinity of the recombinant C2F domain 10-fold, and increases the Ca2+ affinity of the C2C domain. Concordantly, we show that phosphorylation of otoferlin and/or its interaction partners are enhanced upon hair cell depolarization and blocked by pharmacological CaMKII inhibition. We therefore propose that otoferlin activity is regulated by CaMKIIδ in IHCs.
Collapse
Affiliation(s)
- Sandra Meese
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, and Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Göttingen, Germany
| | - Andreia P Cepeda
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Göttingen, Germany.,Molecular Biology of Cochlear Neurotransmission Group, Department of Otorhinolaryngology, University Medical Center Göttingen, and Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Felix Gahlen
- Department of Otorhinolaryngology, Head and Neck Surgery, Ruhr-University Bochum, Bochum, Germany
| | - Christopher M Adams
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA, United States
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, and Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Anthony J Ricci
- Department of Otolaryngology, Head and Neck Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Stefan Heller
- Department of Otolaryngology, Head and Neck Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Ellen Reisinger
- Molecular Biology of Cochlear Neurotransmission Group, Department of Otorhinolaryngology, University Medical Center Göttingen, and Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Meike Herget
- Department of Otolaryngology, Head and Neck Surgery, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
47
|
Fettiplace R. Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. Compr Physiol 2017; 7:1197-1227. [PMID: 28915323 DOI: 10.1002/cphy.c160049] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sound pressure fluctuations striking the ear are conveyed to the cochlea, where they vibrate the basilar membrane on which sit hair cells, the mechanoreceptors of the inner ear. Recordings of hair cell electrical responses have shown that they transduce sound via submicrometer deflections of their hair bundles, which are arrays of interconnected stereocilia containing the mechanoelectrical transducer (MET) channels. MET channels are activated by tension in extracellular tip links bridging adjacent stereocilia, and they can respond within microseconds to nanometer displacements of the bundle, facilitated by multiple processes of Ca2+-dependent adaptation. Studies of mouse mutants have produced much detail about the molecular organization of the stereocilia, the tip links and their attachment sites, and the MET channels localized to the lower end of each tip link. The mammalian cochlea contains two categories of hair cells. Inner hair cells relay acoustic information via multiple ribbon synapses that transmit rapidly without rundown. Outer hair cells are important for amplifying sound-evoked vibrations. The amplification mechanism primarily involves contractions of the outer hair cells, which are driven by changes in membrane potential and mediated by prestin, a motor protein in the outer hair cell lateral membrane. Different sound frequencies are separated along the cochlea, with each hair cell being tuned to a narrow frequency range; amplification sharpens the frequency resolution and augments sensitivity 100-fold around the cell's characteristic frequency. Genetic mutations and environmental factors such as acoustic overstimulation cause hearing loss through irreversible damage to the hair cells or degeneration of inner hair cell synapses. © 2017 American Physiological Society. Compr Physiol 7:1197-1227, 2017.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
48
|
Mechanisms of synaptic depression at the hair cell ribbon synapse that support auditory nerve function. Proc Natl Acad Sci U S A 2017; 114:9719-9724. [PMID: 28827351 DOI: 10.1073/pnas.1706160114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Inner hair cells (IHCs) in the cochlea are the mammalian phono-receptors, transducing sound energy into graded changes in membrane potentials, the so called "receptor potentials." Ribbon synapses between IHCs and auditory nerve neurons are responsible for converting receptor potentials into spike rates. The characteristics of auditory nerve responses to sound have been described extensively. For instance, persistent acoustic stimulation produces sensory adaptation, which is revealed as a reduction in neuronal spike rate with time constants in the range of milliseconds to seconds. Since the amplitude of IHC receptor potentials is invariant during this period, the classic hypothesis pointed to vesicle depletion at the IHC as responsible for auditory adaptation. In this study, we observed that fast synaptic depression occurred in responses to stimuli of varying intensities. Nevertheless, release continued after this initial depression, via synaptic vesicles with slower exocytotic kinetics. Heterogeneity in kinetic elements, therefore, favored synaptic responses with an early peak and a sustained phase. The application of cyclothiazide (CTZ) revealed that desensitization of postsynaptic receptors contributed to synaptic depression, which was more pronounced during stronger stimulation. Thus, desensitization had a twofold effect: It abbreviated signaling between IHC and the auditory nerve and also balanced differences in decay kinetics between responses to different stimulation strengths. We therefore propose that both pre- and postsynaptic mechanisms at the IHC ribbon synapse contribute to synaptic depression at the IHC ribbon synapse and spike rate adaptation in the auditory nerve.
Collapse
|
49
|
Yue HY, Bieberich E, Xu J. Promotion of endocytosis efficiency through an ATP-independent mechanism at rat calyx of Held terminals. J Physiol 2017; 595:5265-5284. [PMID: 28555839 DOI: 10.1113/jp274275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/15/2017] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS At rat calyx of Held terminals, ATP was required not only for slow endocytosis, but also for rapid phase of compensatory endocytosis. An ATP-independent form of endocytosis was recruited to accelerate membrane retrieval at increased activity and temperature. ATP-independent endocytosis primarily involved retrieval of pre-existing membrane, which depended on Ca2+ and the activity of neutral sphingomyelinase but not clathrin-coated pit maturation. ATP-independent endocytosis represents a non-canonical mechanism that can efficiently retrieve membrane at physiological conditions without competing for the limited ATP at elevated neuronal activity. ABSTRACT Neurotransmission relies on membrane endocytosis to maintain vesicle supply and membrane stability. Endocytosis has been generally recognized as a major ATP-dependent function, which efficiently retrieves more membrane at elevated neuronal activity when ATP consumption within nerve terminals increases drastically. This paradox raises the interesting question of whether increased activity recruits ATP-independent mechanism(s) to accelerate endocytosis at the same time as preserving ATP availability for other tasks. To address this issue, we studied ATP requirement in three typical forms of endocytosis at rat calyx of Held terminals by whole-cell membrane capacitance measurements. At room temperature, blocking ATP hydrolysis effectively abolished slow endocytosis and rapid endocytosis but only partially inhibited excess endocytosis following intense stimulation. The ATP-independent endocytosis occurred at calyces from postnatal days 8-15, suggesting its existence before and after hearing onset. This endocytosis was not affected by a reduction of exocytosis using the light chain of botulinum toxin C, nor by block of clathrin-coat maturation. It was abolished by EGTA, which preferentially blocked endocytosis of retrievable membrane pre-existing at the surface, and was impaired by oxidation of cholesterol and inhibition of neutral sphingomyelinase. ATP-independent endocytosis became more significant at 34-35°C, and recovered membrane by an amount that, on average, was close to exocytosis. The results of the present study suggest that activity and temperature recruit ATP-independent endocytosis of pre-existing membrane (in addition to ATP-dependent endocytosis) to efficiently retrieve membrane at nerve terminals. This less understood endocytosis represents a non-canonical mechanism regulated by lipids such as cholesterol and sphingomyelinase.
Collapse
Affiliation(s)
- Hai-Yuan Yue
- Departments of Neuroscience and Regenerative Medicine, Augusta University, USA
| | - Erhard Bieberich
- Departments of Neuroscience and Regenerative Medicine, Augusta University, USA
| | - Jianhua Xu
- Departments of Neuroscience and Regenerative Medicine, Augusta University, USA.,Department of Neurology, Medical College of Georgia, Augusta University, USA
| |
Collapse
|
50
|
Synaptic Vesicle Endocytosis Occurs on Multiple Timescales and Is Mediated by Formin-Dependent Actin Assembly. Neuron 2017; 93:854-866.e4. [DOI: 10.1016/j.neuron.2017.02.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/12/2016] [Accepted: 01/23/2017] [Indexed: 11/21/2022]
|