1
|
Hills M, Ma L, Fang A, Chiremba T, Malloy S, Scott A, Perera A, Yu CR. Molecular, Cellular, and Developmental Organization of the Mouse Vomeronasal organ at Single Cell Resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581574. [PMID: 39253476 PMCID: PMC11383295 DOI: 10.1101/2024.02.22.581574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, previously unidentified class of cells that express the vomeronasal receptors and a population of canonical olfactory sensory neurons in the VNO. High resolution trajectory and cluster analyses reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molecular events that specify the V1r, V2r, and OR lineages from a common stem cell population. The expression of vomeronasal and olfactory receptors follow power law distributions, but there is high variability in average expression levels between individual receptor and cell types. Substantial co-expression is found between receptors across clades, from different classes, and between olfactory and vomeronasal receptors, with nearly half from pairs located on the same chromosome. Interestingly, the expression of V2r, but not V1r, genes is associated with various transcription factors, suggesting distinct mechanisms of receptor choice associated with the two cell types. We identify association between transcription factors, surface axon guidance molecules, and individual VRs, thereby uncovering a molecular code that guides the specification of the vomeronasal circuitry. Our study provides a wealth of data on the development and organization of the accessory olfactory system at both cellular and molecular levels to enable a deeper understanding of vomeronasal system function.
Collapse
Affiliation(s)
- Max Hills
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Limei Ma
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Ai Fang
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Thelma Chiremba
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Seth Malloy
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Allison Scott
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - C. Ron Yu
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Park SJ, Wang IH, Lee N, Jiang HC, Uemura T, Futai K, Kim D, Macosko E, Greer P. Combinatorial expression of neurexin genes regulates glomerular targeting by olfactory sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587570. [PMID: 38617205 PMCID: PMC11014570 DOI: 10.1101/2024.04.01.587570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Precise connectivity between specific neurons is essential for the formation of the complex neural circuitry necessary for executing intricate motor behaviors and higher cognitive functions. While trans -interactions between synaptic membrane proteins have emerged as crucial elements in orchestrating the assembly of these neural circuits, the synaptic surface proteins involved in neuronal wiring remain largely unknown. Here, using unbiased single-cell transcriptomic and mouse genetic approaches, we uncover that the neurexin family of genes enables olfactory sensory neuron (OSNs) axons to form appropriate synaptic connections with their mitral and tufted (M/T) cell synaptic partners, within the mammalian olfactory system. Neurexin isoforms are differentially expressed within distinct populations of OSNs, resulting in unique pattern of neurexin expression that is specific to each OSN type, and synergistically cooperate to regulate axonal innervation, guiding OSN axons to their designated glomeruli. This process is facilitated through the interactions of neurexins with their postsynaptic partners, including neuroligins, which have distinct expression patterns in M/T cells. Our findings suggest a novel mechanism underpinning the precise assembly of olfactory neural circuits, driven by the trans -interaction between neurexins and their ligands.
Collapse
|
3
|
Mori K, Sakano H. Circuit formation and sensory perception in the mouse olfactory system. Front Neural Circuits 2024; 18:1342576. [PMID: 38434487 PMCID: PMC10904487 DOI: 10.3389/fncir.2024.1342576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
In the mouse olfactory system, odor information is converted to a topographic map of activated glomeruli in the olfactory bulb (OB). Although the arrangement of glomeruli is genetically determined, the glomerular structure is plastic and can be modified by environmental stimuli. If the pups are exposed to a particular odorant, responding glomeruli become larger recruiting the dendrites of connecting projection neurons and interneurons. This imprinting not only increases the sensitivity to the exposed odor, but also imposes the positive quality on imprinted memory. External odor information represented as an odor map in the OB is transmitted to the olfactory cortex (OC) and amygdala for decision making to elicit emotional and behavioral outputs using two distinct neural pathways, innate and learned. Innate olfactory circuits start to work right after birth, whereas learned circuits become functional later on. In this paper, the recent progress will be summarized in the study of olfactory circuit formation and odor perception in mice. We will also propose new hypotheses on the timing and gating of olfactory circuit activity in relation to the respiration cycle.
Collapse
Affiliation(s)
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| |
Collapse
|
4
|
Santiago C, Sharma N, Africawala N, Siegrist J, Handler A, Tasnim A, Anjum R, Turecek J, Lehnert BP, Renauld S, Nolan-Tamariz M, Iskols M, Magee AR, Paradis S, Ginty DD. Activity-dependent development of the body's touch receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559109. [PMID: 37790437 PMCID: PMC10542488 DOI: 10.1101/2023.09.23.559109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report a role for activity in the development of the primary sensory neurons that detect touch. Genetic deletion of Piezo2, the principal mechanosensitive ion channel in somatosensory neurons, caused profound changes in the formation of mechanosensory end organ structures and altered somatosensory neuron central targeting. Single cell RNA sequencing of Piezo2 conditional mutants revealed changes in gene expression in the sensory neurons activated by light mechanical forces, whereas other neuronal classes were less affected. To further test the role of activity in mechanosensory end organ development, we genetically deleted the voltage-gated sodium channel Nav1.6 (Scn8a) in somatosensory neurons throughout development and found that Scn8a mutants also have disrupted somatosensory neuron morphologies and altered electrophysiological responses to mechanical stimuli. Together, these findings indicate that mechanically evoked neuronal activity acts early in life to shape the maturation of the mechanosensory end organs that underlie our sense of gentle touch.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nikhil Sharma
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Nusrat Africawala
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Julianna Siegrist
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Annie Handler
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Josef Turecek
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Brendan P. Lehnert
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Sophia Renauld
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Nolan-Tamariz
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandra R. Magee
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lead Contact
| |
Collapse
|
5
|
Lin JM, Mitchell TA, Rothstein M, Pehl A, Taroc EZM, Katreddi RR, Parra KE, Zuloaga DG, Simoes-Costa M, Forni PE. Sociosexual behavior requires both activating and repressive roles of Tfap2e/AP-2ε in vomeronasal sensory neurons. eLife 2022; 11:e77259. [PMID: 36111787 PMCID: PMC9525060 DOI: 10.7554/elife.77259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Neuronal identity dictates the position in an epithelium, and the ability to detect, process, and transmit specific signals to specified targets. Transcription factors (TFs) determine cellular identity via direct modulation of genetic transcription and recruiting chromatin modifiers. However, our understanding of the mechanisms that define neuronal identity and their magnitude remain a critical barrier to elucidate the etiology of congenital and neurodegenerative disorders. The rodent vomeronasal organ provides a unique system to examine in detail the molecular mechanisms underlying the differentiation and maturation of chemosensory neurons. Here, we demonstrated that the identity of postmitotic/maturing vomeronasal sensory neurons (VSNs), and vomeronasal-dependent behaviors can be reprogrammed through the rescue of Tfap2e/AP-2ε expression in the Tfap2eNull mice, and partially reprogrammed by inducing ectopic Tfap2e expression in mature apical VSNs. We suggest that the TF Tfap2e can reprogram VSNs bypassing cellular plasticity restrictions, and that it directly controls the expression of batteries of vomeronasal genes.
Collapse
Affiliation(s)
- Jennifer M Lin
- Department of Biological Sciences, University at Albany, State University of New YorkAlbanyUnited States
- The RNA Institute, University at AlbanyAlbanyUnited States
| | - Tyler A Mitchell
- Department of Biological Sciences, University at Albany, State University of New YorkAlbanyUnited States
- The RNA Institute, University at AlbanyAlbanyUnited States
| | - Megan Rothstein
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Alison Pehl
- Department of Biological Sciences, University at Albany, State University of New YorkAlbanyUnited States
- The RNA Institute, University at AlbanyAlbanyUnited States
| | - Ed Zandro M Taroc
- Department of Biological Sciences, University at Albany, State University of New YorkAlbanyUnited States
- The RNA Institute, University at AlbanyAlbanyUnited States
| | - Raghu R Katreddi
- Department of Biological Sciences, University at Albany, State University of New YorkAlbanyUnited States
- The RNA Institute, University at AlbanyAlbanyUnited States
| | - Katherine E Parra
- Department of Psychology, University at Albany, State University of New YorkAlbanyUnited States
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, State University of New YorkAlbanyUnited States
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Paolo Emanuele Forni
- Department of Biological Sciences, University at Albany, State University of New YorkAlbanyUnited States
- The RNA Institute, University at AlbanyAlbanyUnited States
| |
Collapse
|
6
|
Dorrego-Rivas A, Grubb MS. Developing and maintaining a nose-to-brain map of odorant identity. Open Biol 2022; 12:220053. [PMID: 35765817 PMCID: PMC9240688 DOI: 10.1098/rsob.220053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
7
|
Ruiz Tejada Segura ML, Abou Moussa E, Garabello E, Nakahara TS, Makhlouf M, Mathew LS, Wang L, Valle F, Huang SSY, Mainland JD, Caselle M, Osella M, Lorenz S, Reisert J, Logan DW, Malnic B, Scialdone A, Saraiva LR. A 3D transcriptomics atlas of the mouse nose sheds light on the anatomical logic of smell. Cell Rep 2022; 38:110547. [PMID: 35320714 PMCID: PMC8995392 DOI: 10.1016/j.celrep.2022.110547] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
The sense of smell helps us navigate the environment, but its molecular architecture and underlying logic remain understudied. The spatial location of odorant receptor genes (Olfrs) in the nose is thought to be independent of the structural diversity of the odorants they detect. Using spatial transcriptomics, we create a genome-wide 3D atlas of the mouse olfactory mucosa (OM). Topographic maps of genes differentially expressed in space reveal that both Olfrs and non-Olfrs are distributed in a continuous and overlapping fashion over at least five broad zones in the OM. The spatial locations of Olfrs correlate with the mucus solubility of the odorants they recognize, providing direct evidence for the chromatographic theory of olfaction. This resource resolves the molecular architecture of the mouse OM and will inform future studies on mechanisms underlying Olfr gene choice, axonal pathfinding, patterning of the nervous system, and basic logic for the peripheral representation of smell.
Collapse
Affiliation(s)
- Mayra L Ruiz Tejada Segura
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | | | - Elisa Garabello
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy; Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Thiago S Nakahara
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Li Wang
- Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Filippo Valle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | | | - Joel D Mainland
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michele Caselle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | - Matteo Osella
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | - Stephan Lorenz
- Sidra Medicine, P.O. Box 26999, Doha, Qatar; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Darren W Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Luis R Saraiva
- Sidra Medicine, P.O. Box 26999, Doha, Qatar; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
8
|
Cheng RP, Dang P, Taku AA, Moon YJ, Pham V, Sun X, Zhao E, Raper JA. Loss of Neuropilin2a/b or Sema3fa alters olfactory sensory axon dynamics and protoglomerular targeting. Neural Dev 2022; 17:1. [PMID: 34980234 PMCID: PMC8725463 DOI: 10.1186/s13064-021-00157-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Olfactory Sensory Neuron (OSN) axons project from the zebrafish olfactory epithelium to reproducible intermediate target locations in the olfactory bulb called protoglomeruli at early stages in development. Two classes of OSNs expressing either OMP or TRPC2 exclusively target distinct, complementary protoglomeruli. Using RNAseq, we identified axon guidance receptors nrp2a and nrp2b, and their ligand sema3fa, as potential guidance factors that are differentially expressed between these two classes of OSNs. METHODS To investigate their role in OSN axon guidance, we assessed the protoglomerular targeting fidelity of OSNs labeled by OMP:RFP and TRPC2:Venus transgenes in nrp2a, nrp2b, or sema3fa mutants. We used double mutant and genetic interaction experiments to interrogate the relationship between the three genes. We used live time-lapse imaging to compare the dynamic behaviors of OSN growth cones during protoglomerular targeting in heterozygous and mutant larvae. RESULTS The fidelity of protoglomerular targeting of TRPC2-class OSNs is degraded in nrp2a, nrp2b, or sema3fa mutants, as axons misproject into OMP-specific protoglomeruli and other ectopic locations in the bulb. These misprojections are further enhanced in nrp2a;nrp2b double mutants suggesting that nrp2s work at least partially in parallel in the same guidance process. Results from genetic interaction experiments are consistent with sema3fa acting in the same biological pathway as both nrp2a and nrp2b. Live time-lapse imaging was used to examine the dynamic behavior of TRPC2-class growth cones in nrp2a mutants compared to heterozygous siblings. Some TRPC2-class growth cones ectopically enter the dorsal-medial region of the bulb in both groups, but in fully mutant embryos, they are less likely to correct the error through retraction. The same result was observed when TRPC2-class growth cone behavior was compared between sema3fa heterozygous and sema3fa mutant larvae. CONCLUSIONS Our results suggest that nrp2a and nrp2b expressed in TRPC2-class OSNs help prevent their mixing with axon projections in OMP-specific protoglomeruli, and further, that sema3fa helps to exclude TRPC2-class axons by repulsion from the dorsal-medial bulb.
Collapse
Affiliation(s)
- Ryan P Cheng
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Puneet Dang
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Alemji A Taku
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Yoon Ji Moon
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Vi Pham
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Xiaohe Sun
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Ethan Zhao
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Shen M, Chen Y, Tang W, Ming M, Tian Y, Ding F, Wu H, Ji Y. Semaphorin 3E promote Schwann cell proliferation and migration. Exp Cell Res 2022; 412:113019. [DOI: 10.1016/j.yexcr.2022.113019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
|
10
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
11
|
Lodovichi C. Topographic organization in the olfactory bulb. Cell Tissue Res 2021; 383:457-472. [PMID: 33404841 PMCID: PMC7873094 DOI: 10.1007/s00441-020-03348-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
The ability of the olfactory system to detect and discriminate a broad spectrum of odor molecules with extraordinary sensitivity relies on a wide range of odorant receptors and on the distinct architecture of neuronal circuits in olfactory brain areas. More than 1000 odorant receptors, distributed almost randomly in the olfactory epithelium, are plotted out in two mirror-symmetric maps of glomeruli in the olfactory bulb, the first relay station of the olfactory system. How does such a precise spatial arrangement of glomeruli emerge from a random distribution of receptor neurons? Remarkably, the identity of odorant receptors defines not only the molecular receptive range of sensory neurons but also their glomerular target. Despite their key role, odorant receptors are not the only determinant, since the specificity of neuronal connections emerges from a complex interplay between several molecular cues and electrical activity. This review provides an overview of the mechanisms underlying olfactory circuit formation. In particular, recent findings on the role of odorant receptors in regulating axon targeting and of spontaneous activity in the development and maintenance of synaptic connections are discussed.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute CNR, Department of Biomedical Science, Veneto Institute of Molecular Medicine, Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
12
|
Bahreini Jangjoo S, Lin JM, Etaati F, Fearnley S, Cloutier JF, Khmaladze A, Forni PE. Automated quantification of vomeronasal glomeruli number, size, and color composition after immunofluorescent staining. Chem Senses 2021; 46:6366009. [PMID: 34492099 PMCID: PMC8502234 DOI: 10.1093/chemse/bjab039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glomeruli are neuropil-rich regions of the main or accessory olfactory bulbs (AOB) where the axons of olfactory or vomeronasal neurons and dendrites of mitral/tufted cells form synaptic connections. In the main olfactory system, olfactory sensory neurons (OSNs) expressing the same receptor innervate 1 or 2 glomeruli. However, in the accessory olfactory system, vomeronasal sensory neurons (VSNs) expressing the same receptor can innervate up to 30 different glomeruli in the AOB. Genetic mutation disrupting genes with a role in defining the identity/diversity of olfactory and vomeronasal neurons can alter the number and size of glomeruli. Interestingly, 2 cell surface molecules, Kirrel2 and Kirrel3, have been indicated as playing a critical role in the organization of axons into glomeruli in the AOB. Being able to quantify differences in glomeruli features, such as number, size, or immunoreactivity for specific markers, is an important experimental approach to validate the role of specific genes in controlling neuronal connectivity and circuit formation in either control or mutant animals. Since the manual recognition and quantification of glomeruli on digital images is a challenging and time-consuming task, we generated a program in Python able to identify glomeruli in digital images and quantify their properties, such as size, number, and pixel intensity. Validation of our program indicates that our script is a fast and suitable tool for high-throughput quantification of glomerular features of mouse lines with different genetic makeup.
Collapse
Affiliation(s)
| | - Jennifer M Lin
- Department of Biological Sciences, University at Albany, Albany, NY, USA.,The RNA Institute, University at Albany, Albany, NY, USA
| | - Farhood Etaati
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Sydney Fearnley
- The Neuro, 3801 University, Montréal, QC H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Jean-François Cloutier
- The Neuro, 3801 University, Montréal, QC H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | | | - Paolo E Forni
- Department of Biological Sciences, University at Albany, Albany, NY, USA.,The RNA Institute, University at Albany, Albany, NY, USA
| |
Collapse
|
13
|
Abstract
In mammals, odor information detected by olfactory sensory neurons is converted to a topographic map of activated glomeruli in the olfactory bulb. Mitral cells and tufted cells transmit signals sequentially to the olfactory cortex for behavioral outputs. To elicit innate behavioral responses, odor signals are directly transmitted by distinct subsets of mitral cells from particular functional domains in the olfactory bulb to specific amygdala nuclei. As for the learned decisions, input signals are conveyed by tufted cells as well as by mitral cells to the olfactory cortex. Behavioral scene cells link the odor information to the valence cells in the amygdala to elicit memory-based behavioral responses. Olfactory decision and perception take place in relation to the respiratory cycle. How is the sensory quality imposed on the olfactory inputs for behavioral outputs? How are the two types of odor signals, innate and learned, processed during respiration? Here, we review recent progress on the study of neural circuits involved in decision making in the mouse olfactory system.
Collapse
Affiliation(s)
- Kensaku Mori
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan;
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1197, Japan;
| |
Collapse
|
14
|
Axonal Odorant Receptors Mediate Axon Targeting. Cell Rep 2020; 29:4334-4348.e7. [PMID: 31875544 PMCID: PMC6941231 DOI: 10.1016/j.celrep.2019.11.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 12/05/2022] Open
Abstract
In mammals, odorant receptors not only detect odors but also define the target in the olfactory bulb, where sensory neurons project to give rise to the sensory map. The odorant receptor is expressed at the cilia, where it binds odorants, and at the axon terminal. The mechanism of activation and function of the odorant receptor at the axon terminal is, however, still unknown. Here, we identify phosphatidylethanolamine-binding protein 1 as a putative ligand that activates the odorant receptor at the axon terminal and affects the turning behavior of sensory axons. Genetic ablation of phosphatidylethanolamine-binding protein 1 in mice results in a strongly disturbed olfactory sensory map. Our data suggest that the odorant receptor at the axon terminal of olfactory neurons acts as an axon guidance cue that responds to molecules originating in the olfactory bulb. The dual function of the odorant receptor links specificity of odor perception and axon targeting. Axonal odorant receptors respond to cues elaborated in the olfactory bulb PEBP1, expressed in the olfactory bulb, is a putative ligand of axonal receptors Genetic ablation of PEBP1 results in disrupted olfactory map in vivo Axonal odorant receptors modulate axon targeting in the sensory map formation
Collapse
|
15
|
Naik AS, Lin JM, Taroc EZM, Katreddi RR, Frias JA, Lemus AA, Sammons MA, Forni PE. Smad4-dependent morphogenic signals control the maturation and axonal targeting of basal vomeronasal sensory neurons to the accessory olfactory bulb. Development 2020; 147:147/8/dev184036. [PMID: 32341026 PMCID: PMC7197725 DOI: 10.1242/dev.184036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
The vomeronasal organ (VNO) contains two main types of vomeronasal sensory neurons (VSNs) that express distinct vomeronasal receptor (VR) genes and localize to specific regions of the neuroepithelium. Morphogenic signals are crucial in defining neuronal identity and network formation; however, if and what signals control maturation and homeostasis of VSNs is largely unexplored. Here, we found transforming growth factor β (TGFβ) and bone morphogenetic protein (BMP) signal transduction in postnatal mice, with BMP signaling being restricted to basal VSNs and at the marginal zones of the VNO: the site of neurogenesis. Using different Smad4 conditional knockout mouse models, we disrupted canonical TGFβ/BMP signaling in either maturing basal VSNs (bVSNs) or all mature VSNs. Smad4 loss of function in immature bVSNs compromises dendritic knob formation, pheromone induced activation, correct glomeruli formation in the accessory olfactory bulb (AOB) and survival. However, Smad4 loss of function in all mature VSNs only compromises correct glomeruli formation in the posterior AOB. Our results indicate that Smad4-mediated signaling drives the functional maturation and connectivity of basal VSNs. Summary: Genetic disruption of TGFβ/BMP signaling in maturing basal vomeronasal sensory neurons (VSNs) or in all mature VSNs indicates that Smad4 signaling drives maturation and connectivity of basal VSNs.
Collapse
Affiliation(s)
- Ankana S Naik
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jennifer M Lin
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ed Zandro M Taroc
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| | - Raghu R Katreddi
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jesus A Frias
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| | - Alex A Lemus
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| | - Morgan A Sammons
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| | - Paolo E Forni
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
16
|
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal Detection and Coding in the Accessory Olfactory System. Chem Senses 2019; 43:667-695. [PMID: 30256909 PMCID: PMC6211456 DOI: 10.1093/chemse/bjy061] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.
Collapse
Affiliation(s)
- Julia Mohrhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
17
|
Oleari R, Lettieri A, Paganoni A, Zanieri L, Cariboni A. Semaphorin Signaling in GnRH Neurons: From Development to Disease. Neuroendocrinology 2019; 109:193-199. [PMID: 30504719 DOI: 10.1159/000495916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/02/2018] [Indexed: 11/19/2022]
Abstract
In mammals, fertility critically depends on the pulsatile secretion of gonadotropin-releasing hormone (GnRH) by scattered hypothalamic neurons (GnRH neurons). During development, GnRH neurons originate in the nasal placode and migrate first into the nasal compartment and then through the nasal/forebrain junction, before they reach their final position in the hypothalamus. This neurodevelopmental process, which has been extensively studied in mouse models, is regulated by a plethora of factors that might control GnRH neuron migration or survival as well as the fasciculation/targeting of the olfactory/vomeronasal axons along which the GnRH neurons migrate. Defects in GnRH neuron development or release can lead to isolated GnRH deficiency, with the underlying genetic causes still being partially unknown. Recently, semaphorins and their receptors neuropilins and plexins, a large family of molecules implicated in neuronal development and plasticity, are emerging as key regulators of GnRH neuron biology and deficiency. Specifically, semaphorins have been shown to play different roles in GnRH neuron biology by regulating migration and survival during embryonic development as well as secretion in adulthood.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alyssa Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Luca Zanieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy,
| |
Collapse
|
18
|
Taroc EZM, Prasad A, Lin JM, Forni PE. The terminal nerve plays a prominent role in GnRH-1 neuronal migration independent from proper olfactory and vomeronasal connections to the olfactory bulbs. Biol Open 2017; 6:1552-1568. [PMID: 28970231 PMCID: PMC5665474 DOI: 10.1242/bio.029074] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gonadotropin-releasing hormone-1 (GnRH-1) neurons (GnRH-1 ns) migrate from the developing olfactory pit into the hypothalamus during embryonic development. Migration of the GnRH-1 neurons is required for mammalian reproduction as these cells control release of gonadotropins from the anterior pituitary gland. Disturbances in GnRH-1 ns migration, GnRH-1 synthesis, secretion or signaling lead to varying degrees of hypogonadotropic hypogonadism (HH), which impairs pubertal onset and fertility. HH associated with congenital olfactory defects is clinically defined as Kallmann Syndrome (KS). The association of olfactory defects with HH in KS suggested a potential direct relationship between defective olfactory axonal routing, lack of olfactory bulbs (OBs) and aberrant GnRH-1 ns migration. However, it has never been experimentally proven that the formation of axonal connections of the olfactory/vomeronasal neurons to their functional targets are necessary for the migration of GnRH-1 ns to the hypothalamus. Loss-of-function of the Arx-1 homeobox gene leads to the lack of proper formation of the OBs with abnormal axonal termination of olfactory sensory neurons (
Yoshihara et al., 2005). Our data prove that correct development of the OBs and axonal connection of the olfactory/vomeronasal sensory neurons to the forebrain are not required for GnRH-1 ns migration, and suggest that the terminal nerve, which forms the GnRH-1 migratory scaffold, follows different guidance cues and differs in gene expression from olfactory/vomeronasal sensory neurons. Summary: Our work reveals that correct olfactory bulb development is not required for GnRH-1 neuronal migration. This study challenges the idea that GnRH-1 neuronal migration to the hypothalamus relies on correct routing of the olfactory and vomeronasal neurons and supports the existence of the TN in mammals.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Aparna Prasad
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Jennifer M Lin
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Paolo E Forni
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
19
|
Loss of Kirrel family members alters glomerular structure and synapse numbers in the accessory olfactory bulb. Brain Struct Funct 2017; 223:307-319. [DOI: 10.1007/s00429-017-1485-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
|
20
|
Casoni F, Malone SA, Belle M, Luzzati F, Collier F, Allet C, Hrabovszky E, Rasika S, Prevot V, Chédotal A, Giacobini P. Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development 2016; 143:3969-3981. [DOI: 10.1242/dev.139444] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022]
Abstract
Fertility in mammals is controlled by hypothalamic neurons that secrete gonadotropin-releasing hormone (GnRH). These neurons differentiate in the olfactory placodes during embryogenesis and migrate from the nose to the hypothalamus before birth. Information regarding this process in humans is sparse. Here, we adapted new tissue-clearing and whole-mount immunohistochemical techniques to entire human embryos/fetuses to meticulously study this system during the first trimester of gestation in the largest series of human fetuses examined to date. Combining these cutting-edge techniques with conventional immunohistochemistry, we provide the first chronological and quantitative analysis of GnRH neuron origins, differentiation and migration, as well as a 3D atlas of their distribution in the fetal brain. We reveal not only that the number of GnRH-immunoreactive neurons in humans is significantly higher than previously thought, but that GnRH cells migrate into several extrahypothalamic brain regions in addition to the hypothalamus. Their presence in these areas raises the possibility that GnRH has non-reproductive roles, creating new avenues for research on GnRH functions in cognitive, behavioral and physiological processes.
Collapse
Affiliation(s)
- Filippo Casoni
- University of Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille 59000, France
- Inserm, UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille 59000, France
| | - Samuel A. Malone
- University of Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille 59000, France
- Inserm, UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille 59000, France
| | - Morgane Belle
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Federico Luzzati
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin 10123, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano 10043, Italy
| | - Francis Collier
- FHU 1,000 Days for Health, University of Lille, School of Medicine, Lille 5900, France
- CHU Lille, Gynaecology Service - Hospital Jeanne de Flandre, Lille 59000, France
| | - Cecile Allet
- University of Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille 59000, France
- Inserm, UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille 59000, France
| | - Erik Hrabovszky
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest 1083, Hungary
| | | | - Vincent Prevot
- University of Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille 59000, France
- Inserm, UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille 59000, France
- FHU 1,000 Days for Health, University of Lille, School of Medicine, Lille 5900, France
| | - Alain Chédotal
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Paolo Giacobini
- University of Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille 59000, France
- Inserm, UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille 59000, France
- FHU 1,000 Days for Health, University of Lille, School of Medicine, Lille 5900, France
| |
Collapse
|
21
|
Taku AA, Marcaccio CL, Ye W, Krause GJ, Raper JA. Attractant and repellent cues cooperate in guiding a subset of olfactory sensory axons to a well-defined protoglomerular target. Development 2016; 143:123-32. [PMID: 26732841 DOI: 10.1242/dev.127985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Olfactory sensory axons target well-defined intermediate targets in the zebrafish olfactory bulb called protoglomeruli well before they form odorant receptor-specific glomeruli. A subset of olfactory sensory neurons are labeled by expression of the or111-7:IRES:GAL4 transgene whose axons terminate in the central zone (CZ) protoglomerulus. Previous work has shown that some of these axons misproject to the more dorsal and anterior dorsal zone (DZ) protoglomerulus in the absence of Netrin 1/Dcc signaling. In search of additional cues that guide these axons to the CZ, we found that Semaphorin 3D (Sema3D) is expressed in the anterior bulb and acts as a repellent that pushes them towards the CZ. Further analysis indicates that Sema3D signaling is mediated through Nrp1a, while Nrp2b also promotes CZ targeting but in a Sema3D-independent manner. nrp1a, nrp2b and dcc transcripts are detected in or111-7 transgene-expressing neurons early in development and both Nrp1a and Dcc act cell-autonomously in sensory neurons to promote accurate targeting to the CZ. dcc and nrp1a double mutants have significantly more DZ misprojections than either single mutant, suggesting that the two signaling systems act independently and in parallel to direct a specific subset of sensory axons to their initial protoglomerular target.
Collapse
Affiliation(s)
- Alemji A Taku
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Christina L Marcaccio
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Wenda Ye
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Gregory J Krause
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Regeneration and rewiring of rodent olfactory sensory neurons. Exp Neurol 2016; 287:395-408. [PMID: 27264358 DOI: 10.1016/j.expneurol.2016.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/24/2022]
Abstract
The olfactory sensory neurons are the only neurons in the mammalian nervous system that not only regenerate naturally and in response to injury, but also project to specific targets in the brain. The stem cells in the olfactory epithelium commit to both neuronal and non-neuronal lineages depending on the environmental conditions. They provide a continuous supply of new neurons. A newly generated neuron must express a specific odorant receptor gene and project to a central target consist of axons expressing the same receptor type. Recent studies have provided insights into this highly regulated, complex process. However, the molecular mechanisms that determine the regenerative capacity of stem cells, and the ability of newly generated neurons in directing their axons toward specific targets, remain elusive. Here we review progresses and controversies in the field and offer testable models.
Collapse
|
23
|
Villegas G, Tufro A. Ontogeny of semaphorins 3A and 3F and their receptors neuropilins 1 and 2 in the kidney. Mech Dev 2016; 119 Suppl 1:S149-53. [PMID: 14516677 DOI: 10.1016/s0925-4773(03)00108-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Semaphorins 3A and 3F are axon guidance proteins during nervous system development. Their expression pattern and function outside the nervous system are unknown. Neuropilin 1 and 2 (NP-1, NP-2) are natural ligands for semaphorins 3A and 3F, respectively. NP-1 is also a co-receptor for vascular endothelial growth factor (VEGF) required for normal vascular development. We showed that VEGF is a direct chemoattractant for glomerular endothelial cells towards developing nephrons. To examine whether semaphorins could modulate VEGF endothelial cell guidance cues in the developing kidney, we studied the expression of semaphorin 3A and semaphorin 3F and their receptors NP-1 and NP-2 in the kidney during ontogeny using Northern blot analysis, in situ hybridization, Western blot analysis and immunohistochemistry. All four genes are developmentally regulated, with abundant expression during organogenesis and downregulation in the adult kidney. Semaphorin 3A and 3F are expressed by podocytes and tubules whereas their receptors NP-1 and NP-2 are localized to endothelial cells. In vitro, renal tubular epithelial cell lines (tsMPT, IRPT and MDCK) and glomerular endothelial cells express both semaphorins and their receptors, suggesting the presence of an autocrine system. The distribution of the receptors NP-1 and NP-2 in endothelial cells and developing vessels is complementary to that of the ligands in adjacent epithelial cells during kidney development. The sum of the guidance cues provided by VEGF and semaphorins 3A and 3F may be important determinants of the pattern of endothelial cell migration during kidney morphogenesis.
Collapse
Affiliation(s)
- Guillermo Villegas
- Department of Pediatrics/Nephrology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
24
|
Hernandez-Enriquez B, Wu Z, Martinez E, Olsen O, Kaprielian Z, Maness PF, Yoshida Y, Tessier-Lavigne M, Tran TS. Floor plate-derived neuropilin-2 functions as a secreted semaphorin sink to facilitate commissural axon midline crossing. Genes Dev 2016; 29:2617-32. [PMID: 26680304 PMCID: PMC4699389 DOI: 10.1101/gad.268086.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Commissural axon guidance depends on a myriad of cues expressed by intermediate targets. Secreted semaphorins signal through neuropilin-2/plexin-A1 receptor complexes on post-crossing commissural axons to mediate floor plate repulsion in the mouse spinal cord. Here, we show that neuropilin-2/plexin-A1 are also coexpressed on commissural axons prior to midline crossing and can mediate precrossing semaphorin-induced repulsion in vitro. How premature semaphorin-induced repulsion of precrossing axons is suppressed in vivo is not known. We discovered that a novel source of floor plate-derived, but not axon-derived, neuropilin-2 is required for precrossing axon pathfinding. Floor plate-specific deletion of neuropilin-2 significantly reduces the presence of precrossing axons in the ventral spinal cord, which can be rescued by inhibiting plexin-A1 signaling in vivo. Our results show that floor plate-derived neuropilin-2 is developmentally regulated, functioning as a molecular sink to sequester semaphorins, preventing premature repulsion of precrossing axons prior to subsequent down-regulation, and allowing for semaphorin-mediated repulsion of post-crossing axons.
Collapse
Affiliation(s)
| | - Zhuhao Wu
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York 10065, USA
| | - Edward Martinez
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | - Olav Olsen
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York 10065, USA
| | | | - Patricia F Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York 10065, USA
| | - Tracy S Tran
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
25
|
Brignall AC, Cloutier JF. Neural map formation and sensory coding in the vomeronasal system. Cell Mol Life Sci 2015; 72:4697-709. [PMID: 26329476 PMCID: PMC11113928 DOI: 10.1007/s00018-015-2029-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/31/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Sensory systems enable us to encode a clear representation of our environment in the nervous system by spatially organizing sensory stimuli being received. The organization of neural circuitry to form a map of sensory activation is critical for the interpretation of these sensory stimuli. In rodents, social communication relies strongly on the detection of chemosignals by the vomeronasal system, which regulates a wide array of behaviours, including mate recognition, reproduction, and aggression. The binding of these chemosignals to receptors on vomeronasal sensory neurons leads to activation of second-order neurons within glomeruli of the accessory olfactory bulb. Here, vomeronasal receptor activation by a stimulus is organized into maps of glomerular activation that represent phenotypic qualities of the stimuli detected. Genetic, electrophysiological and imaging studies have shed light on the principles underlying cell connectivity and sensory map formation in the vomeronasal system, and have revealed important differences in sensory coding between the vomeronasal and main olfactory system. In this review, we summarize the key factors and mechanisms that dictate circuit formation and sensory coding logic in the vomeronasal system, emphasizing differences with the main olfactory system. Furthermore, we discuss how detection of chemosignals by the vomeronasal system regulates social behaviour in mice, specifically aggression.
Collapse
Affiliation(s)
- Alexandra C Brignall
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Room MP105, Montréal, QC, H3A 2B4, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Room MP105, Montréal, QC, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada.
| |
Collapse
|
26
|
Nakano H, Iida Y, Suzuki M, Aoki M, Umemura M, Takahashi S, Takahashi Y. Activating transcription factor 5 (ATF5) is essential for the maturation and survival of mouse basal vomeronasal sensory neurons. Cell Tissue Res 2015; 363:621-33. [DOI: 10.1007/s00441-015-2283-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022]
|
27
|
Altered hippocampal-dependent memory and motor function in neuropilin 2-deficient mice. Transl Psychiatry 2015; 5:e521. [PMID: 25734514 PMCID: PMC4354347 DOI: 10.1038/tp.2015.17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/16/2014] [Accepted: 01/12/2015] [Indexed: 01/19/2023] Open
Abstract
Semaphorins have an important role in synapse refinement in the mammalian nervous system. The class 3 semaphorin-3F (Sema3F) acting through neuropilin 2/plexin-A3 (Nrp2/PlexA3) holoreceptor complex signals in vivo to restrain apical dendritic spine morphogenesis of cortical pyramidal neurons and hippocampal neurons during postnatal development and mediates excitatory synaptic transmission. Semaphorin signaling has been implicated in the etiology of a number of neurodevelopmental disorders; however, the effects on behavior and mental function of dysregulated Sema3F-Nrp2 signaling have not been fully addressed. The present study is the first behavioral investigation of mice harboring a mutation of the nrp2 gene. Given that loss of Nrp2 signaling alters cortical and hippocampal synaptic organization, we investigated performance of nrp2-deficient mice on learning and sensorimotor function that are known to depend on cortical and hippocampal circuitry. When compared with age-matched controls, nrp2 null mice showed striking impairments in object recognition memory and preference for social novelty. In addition, nrp2(-/-) mice displayed impaired motor function in the rotarod test and in observations of grooming behavior. Exploration of novel olfactory sensory stimuli and nociception were unaffected by the loss of Nrp2. Overall, loss of Nrp2 may induce aberrant processing within hippocampal and corticostriatal networks that may contribute to neurodevelopmental disease mechanisms.
Collapse
|
28
|
Giacobini P. Shaping the Reproductive System: Role of Semaphorins in Gonadotropin-Releasing Hormone Development and Function. Neuroendocrinology 2015; 102:200-15. [PMID: 25967979 DOI: 10.1159/000431021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/28/2015] [Indexed: 11/19/2022]
Abstract
The semaphorin proteins, which contribute to the morphogenesis and homeostasis of a wide range of systems, are among the best-studied families of guidance cues. Much recent research has focused on the role of semaphorins in the development and adult activity of hormone systems and, reciprocally, how circulating reproductive hormones regulate their expression and function. Specifically, several reports have focused on the molecular mechanisms underlying the effects of semaphorins on the migration, survival and structural and functional plasticity of neurons that secrete gonadotropin-releasing hormone (GnRH), essential for the acquisition and maintenance of reproductive competence in mammals. Alterations in the development of this neuroendocrine system lead to anomalous or absent GnRH secretion, resulting in heterogeneous reproductive disorders such as congenital hypogonadotropic hypogonadism (CHH) or other conditions characterized by infertility or subfertility. This review summarizes current knowledge of the role of semaphorins and their receptors on the development, differentiation and plasticity of the GnRH system. In addition, the involvement of genetic deficits in semaphorin signaling in some forms of CHH in humans is discussed.
Collapse
Affiliation(s)
- Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, School of Medicine, University of Lille, and Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
| |
Collapse
|
29
|
Locatelli FF, Rela L. Mosaic activity patterns and their relation to perceptual similarity: open discussions on the molecular basis and circuitry of odor recognition. J Neurochem 2014; 131:546-53. [PMID: 25123415 DOI: 10.1111/jnc.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023]
Abstract
Enormous advances have been made in the recent years in regard to the mechanisms and neural circuits by which odors are sensed and perceived. Part of this understanding has been gained from parallel studies in insects and rodents that show striking similarity in the mechanisms they use to sense, encode, and perceive odors. In this review, we provide a short introduction to the functioning of olfactory systems from transduction of odorant stimuli into electrical signals in sensory neurons to the anatomical and functional organization of the networks involved in neural representation of odors in the central nervous system. We make emphasis on the functional and anatomical architecture of the first synaptic relay of the olfactory circuit, the olfactory bulb in vertebrates and the antennal lobe in insects. We discuss how the exquisite and conserved architecture of this structure is established and how different odors are encoded in mosaic activity patterns. Finally, we discuss the validity of methods used to compare activation patterns in relation to perceptual similarity.
Collapse
Affiliation(s)
- Fernando F Locatelli
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE-CONICET, Argentina
| | | |
Collapse
|
30
|
Neural map formation in the mouse olfactory system. Cell Mol Life Sci 2014; 71:3049-57. [PMID: 24638094 PMCID: PMC4111858 DOI: 10.1007/s00018-014-1597-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/19/2023]
Abstract
In the mouse olfactory system, odorants are detected by ~1,000 different odorant receptors (ORs) produced by olfactory sensory neurons (OSNs). Each OSN expresses only one functional OR species, which is referred to as the “one neuron–one receptor” rule. Furthermore, OSN axons bearing the same OR converge to a specific projection site in the olfactory bulb (OB) forming a glomerular structure, i.e., the “one glomerulus–one receptor” rule. Based on these basic rules, binding signals of odorants detected by OSNs are converted to topographic information of activated glomeruli in the OB. During development, the glomerular map is formed by the combination of two genetically programmed processes: one is OR-independent projection along the dorsal–ventral axis, and the other is OR-dependent projection along the anterior-posterior axis. The map is further refined in an activity-dependent manner during the neonatal period. Here, we summarize recent progress of neural map formation in the mouse olfactory system.
Collapse
|
31
|
Messina A, Giacobini P. Semaphorin signaling in the development and function of the gonadotropin hormone-releasing hormone system. Front Endocrinol (Lausanne) 2013; 4:133. [PMID: 24065959 PMCID: PMC3779810 DOI: 10.3389/fendo.2013.00133] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
The semaphorin proteins are among the best-studied families of guidance cues, contributing to morphogenesis and homeostasis in a wide range of tissue types. The major semaphorin receptors are plexins and neuropilins, however other receptors and co-receptors are capable to mediate signaling by semaphorins. These guidance proteins were originally identified as growth cone "collapsing factors" or as inhibitory signals, crucial for nervous system development. Since those seminal discoveries, the list of functions of semaphorins has rapidly grown. Over the past few years, a growing body of data indicates that semaphorins are involved in the regulation of the immune and vascular systems, in tumor growth/cancer cell metastasis and in neural circuit formation. Recently there has been increasing emphasis on research to determine the potential influence of semaphorins on the development and homeostasis of hormone systems and how circulating reproductive hormones regulate their expression and functions. Here, we focus on the emerging role of semaphorins in the development, differentiation and plasticity of unique neurons that secrete gonadotropin-releasing hormone (GnRH), which are essential for the acquisition and maintenance of reproductive competence in all vertebrates. Genetic evidence is also provided showing that insufficient semaphorin signaling contributes to some forms of reproductive disorders in humans, characterized by the reduction or failure of sexual competence. Finally, we will review some studies with the goal of highlighting how the expression of semaphorins and their receptors might be regulated by gonadal hormones in physiological and pathological conditions.
Collapse
Affiliation(s)
- Andrea Messina
- INSERM, Laboratory of Development and Plasticity of the Postnatal Brain, Jean-Pierre Aubert Research Center, Unité 837, Lille, France
- School of Medicine, UDSL, Lille, France
| | - Paolo Giacobini
- INSERM, Laboratory of Development and Plasticity of the Postnatal Brain, Jean-Pierre Aubert Research Center, Unité 837, Lille, France
- School of Medicine, UDSL, Lille, France
- *Correspondence: Paolo Giacobini, INSERM, Laboratory of Development and Plasticity of the Postnatal Brain, Jean-Pierre Aubert Research Center, Unit 837, Place de Verdun, 59045 Lille Cedex, France e-mail:
| |
Collapse
|
32
|
Prince JEA, Brignall AC, Cutforth T, Shen K, Cloutier JF. Kirrel3 is required for the coalescence of vomeronasal sensory neuron axons into glomeruli and for male-male aggression. Development 2013; 140:2398-408. [PMID: 23637329 DOI: 10.1242/dev.087262] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The accessory olfactory system controls social and sexual interactions in mice that are crucial for survival. Vomeronasal sensory neurons (VSNs) form synapses with dendrites of second order neurons in glomeruli of the accessory olfactory bulb (AOB). Axons of VSNs expressing the same vomeronasal receptor coalesce into multiple glomeruli within spatially conserved regions of the AOB. Here we examine the role of the Kirrel family of transmembrane proteins in the coalescence of VSN axons within the AOB. We find that Kirrel2 and Kirrel3 are differentially expressed in subpopulations of VSNs and that their expression is regulated by activity. Although Kirrel3 expression is not required for early axonal guidance events, such as fasciculation of the vomeronasal tract and segregation of apical and basal VSN axons in the AOB, it is necessary for proper coalescence of axons into glomeruli. Ablation of Kirrel3 expression results in disorganization of the glomerular layer of the posterior AOB and formation of fewer, larger glomeruli. Furthermore, Kirrel3(-/-) mice display a loss of male-male aggression in a resident-intruder assay. Taken together, our results indicate that differential expression of Kirrels on vomeronasal axons generates a molecular code that dictates their proper coalescence into glomeruli within the AOB.
Collapse
Affiliation(s)
- Janet E A Prince
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec, H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
33
|
Dishevelled proteins are associated with olfactory sensory neuron presynaptic terminals. PLoS One 2013; 8:e56561. [PMID: 23437169 PMCID: PMC3577874 DOI: 10.1371/journal.pone.0056561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/11/2013] [Indexed: 11/28/2022] Open
Abstract
Olfactory sensory neurons (OSNs) project their axons from the olfactory epithelium toward the olfactory bulb (OB) in a heterogeneous and unsorted arrangement. However, as the axons approach the glomerular layer of the OB, axons from OSNs expressing the same odorant receptor (OR) sort and converge to form molecularly homogeneous glomeruli. Axon guidance cues, cell adhesion molecules, and OR induced activity have been implicated in the final targeting of OSN axons to specific glomeruli. Less understood, and often controversial, are the mechanisms used by OSN axons to initially navigate from the OE toward the OB. We previously demonstrated a role for Wnt and Frizzled (Fz) molecules in OSN axon extension and organization within the olfactory nerve. Building on that we now turned our attention to the downstream signaling cascades from Wnt-Fz interactions. Dishevelled (Dvl) is a key molecule downstream of Fz receptors. Three isoforms of Dvl with specific as well as overlapping functions are found in mammals. Here, we show that Dvl-1 expression is restricted to OSNs in the dorsal recess of the nasal cavity, and labels a unique subpopulation of glomeruli. Dvl-2 and Dvl-3 have a widespread distribution in both the OE and OB. Both Dvl-1 and Dvl-2 are associated with intra-glomerular pre-synaptic OSN terminals, suggesting a role in synapse formation/stabilization. Moreover, because Dvl proteins were observed in all OSN axons, we hypothesize that they are important determinants of OSN cell differentiation and axon extension.
Collapse
|
34
|
Lodovichi C, Belluscio L. Odorant receptors in the formation of the olfactory bulb circuitry. Physiology (Bethesda) 2012; 27:200-12. [PMID: 22875451 DOI: 10.1152/physiol.00015.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In mammals, smell is mediated by odorant receptors expressed by sensory neurons in the nose. These specialized receptors are found both on olfactory sensory neurons' cilia and axon terminals. Although the primary function of ciliary odorant receptors is to detect odorants, their axonal role remains unclear but is thought to involve axon guidance. This review discusses findings that show axonal odorant receptors are indeed functional and capable of modulating neural connectivity.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Venetian Institute of Molecular Medicine, and Institute of Neuroscience-CNR, Padua, Italy
| | | |
Collapse
|
35
|
Baudet ML, Bellon A, Holt CE. Role of microRNAs in Semaphorin function and neural circuit formation. Semin Cell Dev Biol 2012; 24:146-55. [PMID: 23219835 DOI: 10.1016/j.semcdb.2012.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/19/2012] [Accepted: 11/28/2012] [Indexed: 01/23/2023]
Abstract
Since the discovery of the first microRNA (miRNA) almost 20 years ago, insight into their functional role has gradually been accumulating. This class of non-coding RNAs has recently been implicated as key molecular regulators in the biology of most eukaryotic cells, contributing to the physiology of various systems including immune, cardiovascular, nervous systems and also to the pathophysiology of cancers. Interestingly, Semaphorins, a class of evolutionarily conserved signalling molecules, are acknowledged to play major roles in these systems also. This, combined with the fact that Semaphorin signalling requires tight spatiotemporal regulation, a hallmark of miRNA expression, suggests that miRNAs could be crucial regulators of Semaphorin function. Here, we review evidence suggesting that Semaphorin signalling is regulated by miRNAs in various systems in health and disease. In particular, we focus on neural circuit formation, including axon guidance, where Semaphorin function was first discovered.
Collapse
|
36
|
Giacobini P, Prevot V. Semaphorins in the development, homeostasis and disease of hormone systems. Semin Cell Dev Biol 2012; 24:190-8. [PMID: 23219659 DOI: 10.1016/j.semcdb.2012.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/02/2012] [Accepted: 11/28/2012] [Indexed: 11/16/2022]
Abstract
Semaphorin proteins are among the best-studied families of guidance cues. Initially characterized as repulsive neuronal guidance cues, during the last decade, significant progress has been made in defining their involvement in the regulation of dynamic changes in the cellular cytoskeleton during embryonic and postnatal neuronal development, under both physiological and pathological conditions. However, semaphorins are not restricted to the nervous system but widely expressed in other tissues, where they play key roles in angiogenesis and organogenesis. In recent years, there has been an increasing emphasis on the potential influence of semaphorins on the development and homeostasis of hormone systems, and conversely, how circulating reproductive hormones regulate semaphorin expression. In this review, we summarize recent studies analyzing the contribution of semaphorin signaling to the morphogenesis, differentiation and plasticity of fundamental neuroendocrine and endocrine systems that regulate key physiological processes, such as reproduction, bone formation and the control of energy homeostasis.
Collapse
Affiliation(s)
- Paolo Giacobini
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, Unit 837, France.
| | | |
Collapse
|
37
|
β3GnT2 null mice exhibit defective accessory olfactory bulb innervation. Mol Cell Neurosci 2012; 52:73-86. [PMID: 23006775 DOI: 10.1016/j.mcn.2012.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 08/14/2012] [Accepted: 09/14/2012] [Indexed: 01/19/2023] Open
Abstract
Vomeronasal sensory neurons (VSNs) extend axons to the accessory olfactory bulb (AOB) where they form synaptic connections that relay pheromone signals to the brain. The projections of apical and basal VSNs segregate in the AOB into anterior (aAOB) and posterior (pAOB) compartments. Although some aspects of this organization exhibit fundamental similarities with the main olfactory system, the mechanisms that regulate mammalian vomeronasal targeting are not as well understood. In the olfactory epithelium (OE), the glycosyltransferase β3GnT2 maintains expression of axon guidance cues required for proper glomerular positioning and neuronal survival. We show here that β3GnT2 also regulates guidance and adhesion molecule expression in the vomeronasal system in ways that are partially distinct from the OE. In wildtype mice, ephrinA5(+) axons project to stereotypic subdomains in both the aAOB and pAOB compartments. This pattern is dramatically altered in β3GnT2(-/-) mice, where ephrinA5 is upregulated exclusively on aAOB axons. Despite this, apical and basal VSN projections remain strictly segregated in the null AOB, although some V2r1b axons that normally project to the pAOB inappropriately innervate the anterior compartment. These fibers appear to arise from ectopic expression of V2r1b receptors in a subset of apical VSNs. The homotypic adhesion molecules Kirrel2 and OCAM that facilitate axon segregation and glomerular compartmentalization in the main olfactory bulb are ablated in the β3GnT2(-/-) aAOB. This loss is accompanied by a two-fold increase in the total number of V2r1b glomeruli and a failure to form morphologically distinct glomeruli in the anterior compartment. These results identify a novel function for β3GnT2 glycosylation in maintaining expression of layer-specific vomeronasal receptors, as well as adhesion molecules required for proper AOB glomerular formation.
Collapse
|
38
|
Abstract
Semaphorins are key players in the control of neural circuit development. Recent studies have uncovered several exciting and novel aspects of neuronal semaphorin signalling in various cellular processes--including neuronal polarization, topographical mapping and axon sorting--that are crucial for the assembly of functional neuronal connections. This progress is important for further understanding the many neuronal and non-neuronal functions of semaphorins and for gaining insight into their emerging roles in the perturbed neural connectivity that is observed in some diseases. This Review discusses recent advances in semaphorin research, focusing on novel aspects of neuronal semaphorin receptor regulation and previously unexplored cellular functions of semaphorins in the nervous system.
Collapse
|
39
|
Sharma A, Verhaagen J, Harvey AR. Receptor complexes for each of the Class 3 Semaphorins. Front Cell Neurosci 2012; 6:28. [PMID: 22783168 PMCID: PMC3389612 DOI: 10.3389/fncel.2012.00028] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/20/2012] [Indexed: 01/08/2023] Open
Abstract
The Class 3 Semaphorins (Sema3s) are a sub-family of proteins whose known biological roles are varied and growing. The mechanism of action of the Sema3s requires binding to transmembrane receptors that comprise heteromeric complexes of Neuropilins, Plexins and cell adhesion molecules (CAMs). However, knowledge of the receptor components of the Sema3s remains incomplete, and there may be receptor components which are as yet undiscovered. The receptor complexes of the Sema3s share receptor components with each other, and it is the specific combination of these components within a heteromeric complex that is thought to give rise to selective binding and signalling for individual Sema3s. This crosstalk makes it experimentally difficult to define a single holoreceptor for each Sema3. Furthermore, the receptor composition for a given Sema3 may differ between cell types, and change as a function of developmental state or pathological situation. Nevertheless, there are at least some known differences in the constitutive structure of the receptors for the Sema3s. For example in neural cells, Sema3a and Sema3f signal through different Neuropilins (Nrp1 and Nrp2 respectively) and L1cam only appears important for Sema3a signaling, while Nrcam forms a complex with Nrp2. Further complexity arises from crosstalk of other families of ligands (e.g., VEGF) with Sema3 receptor components. Thus the Sema3s, which have been shown as antagonists for each other, can also act as antagonists for other families of molecules. This review compiles experimental evidence describing the receptor components for the Sema3s, detailing the current state of knowledge of which components are important for signaling of each Sema3 before going on to consider possible future directions for the field.
Collapse
Affiliation(s)
- Anil Sharma
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley WA, Australia
| | | | | |
Collapse
|
40
|
Imai T, Sakano H. Axon-axon interactions in neuronal circuit assembly: lessons from olfactory map formation. Eur J Neurosci 2012; 34:1647-54. [PMID: 22103421 DOI: 10.1111/j.1460-9568.2011.07817.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During the development of the nervous system, neurons often connect axons and dendrites over long distances, which are navigated by chemical cues. During the past few decades, studies on axon guidance have focused on chemical cues provided by the axonal target or intermediate target. However, recent studies have shed light on the roles and mechanisms underlying axon-axon interactions during neuronal circuit assembly. The roles of axon-axon interactions are best exemplified in recent studies on olfactory map formation in vertebrates. Pioneer-follower interaction is essential for the axonal pathfinding process. Pre-target axon sorting establishes the anterior-posterior map order. The temporal order of axonal projection is converted to dorsal-ventral topography with the aid of secreted molecules provided by early-arriving axons. An activity-dependent process to form a discrete map also depends on axon sorting. Thus, an emerging principle of olfactory map formation is the 'self-organisation' of axons rather than the 'lock and key' matching between axons and targets. In this review, we discuss how axon-axon interactions contribute to neuronal circuit assembly.
Collapse
Affiliation(s)
- Takeshi Imai
- Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | |
Collapse
|
41
|
Svetlov SI, Prima V, Glushakova O, Svetlov A, Kirk DR, Gutierrez H, Serebruany VL, Curley KC, Wang KKW, Hayes RL. Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to "composite" blast. Front Neurol 2012; 3:15. [PMID: 22403567 PMCID: PMC3275793 DOI: 10.3389/fneur.2012.00015] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/24/2012] [Indexed: 01/23/2023] Open
Abstract
A number of experimental models of blast brain injury have been implemented in rodents and larger animals. However, the variety of blast sources and the complexity of blast wave biophysics have made data on injury mechanisms and biomarkers difficult to analyze and compare. Recently, we showed the importance of rat position toward blast generated by an external shock tube. In this study, we further characterized blast producing moderate traumatic brain injury and defined "composite" blast and primary blast exposure set-ups. Schlieren optics visualized interaction between the head and a shock wave generated by external shock tube, revealing strong head acceleration upon positioning the rat on-axis with the shock tube (composite blast), but negligible skull movement upon peak overpressure exposure off-axis (primary blast). Brain injury signatures of a primary blast hitting the frontal head were assessed and compared to damage produced by composite blast. Low to negligible levels of neurodegeneration were found following primary blast compared to composite blast by silver staining. However, persistent gliosis in hippocampus and accumulation of GFAP/CNPase in circulation was detected after both primary and composite blast. Also, markers of vascular/endothelial inflammation integrin alpha/beta, soluble intercellular adhesion molecule-1, and L-selectin along with neurotrophic factor nerve growth factor-beta were increased in serum within 6 h post-blasts and persisted for 7 days thereafter. In contrast, systemic IL-1, IL-10, fractalkine, neuroendocrine peptide Orexin A, and VEGF receptor Neuropilin-2 (NRP-2) were raised predominantly after primary blast exposure. In conclusion, biomarkers of major pathological pathways were elevated at all blast set-ups. The most significant and persistent changes in neuro-glial markers were found after composite blast, while primary blast instigated prominent systemic cytokine/chemokine, Orexin A, and Neuropilin-2 release, particularly when primary blast impacted rats with unprotected body.
Collapse
|
42
|
Jaworski A, Tessier-Lavigne M. Autocrine/juxtaparacrine regulation of axon fasciculation by Slit-Robo signaling. Nat Neurosci 2012; 15:367-9. [PMID: 22306607 DOI: 10.1038/nn.3037] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/19/2011] [Indexed: 11/08/2022]
Abstract
Axons travel to their targets in bundles or fascicles, but the molecules regulating fasciculation remain incompletely characterized. We found that Slit2 and its Robo receptors are expressed by motor axons, and that inactivation of Slit2 or Robo1 and Robo2 in mice caused axons to defasciculate prematurely at muscle targets. In vitro, Slit2 secreted by motoneurons regulated fasciculation through Robo1 and Robo2. These results support the idea that Slit2 promotes axon fasciculation via an autocrine and/or juxtaparacrine mechanism.
Collapse
|
43
|
Messina A, Ferraris N, Wray S, Cagnoni G, Donohue DE, Casoni F, Kramer PR, Derijck AA, Adolfs Y, Fasolo A, Pasterkamp RJ, Giacobini P. Dysregulation of Semaphorin7A/β1-integrin signaling leads to defective GnRH-1 cell migration, abnormal gonadal development and altered fertility. Hum Mol Genet 2011; 20:4759-74. [PMID: 21903667 DOI: 10.1093/hmg/ddr403] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Reproduction in mammals is dependent on the function of specific neurons that secrete gonadotropin-releasing hormone-1 (GnRH-1). These neurons originate prenatally in the nasal placode and migrate into the forebrain along the olfactory-vomeronasal nerves. Alterations in this migratory process lead to defective GnRH-1 secretion, resulting in heterogeneous genetic disorders such as idiopathic hypogonadotropic hypogonadism (IHH), and other reproductive diseases characterized by the reduction or failure of sexual competence. Combining mouse genetics with in vitro models, we demonstrate that Semaphorin 7A (Sema7A) is essential for the development of the GnRH-1 neuronal system. Loss of Sema7A signaling alters the migration of GnRH-1 neurons, resulting in significantly reduced numbers of these neurons in the adult brain as well as in reduced gonadal size and subfertility. We also show that GnRH-1 cells differentially express the Sema7 receptors β1-integrin and Plexin C1 as a function of their migratory stage, whereas the ligand is robustly expressed along developing olfactory/vomeronasal fibers. Disruption of Sema7A function in vitro inhibits β1-integrin-mediated migration. Analysis of Plexin C1(-/-) mice did not reveal any difference in the migratory process of GnRH-1 neurons, indicating that Sema7A mainly signals through β1-integrin to regulate GnRH-1 cell motility. In conclusion, we have identified Sema7A as a gene implicated in the normal development of the GnRH-1 system in mice and as a genetic marker for the elucidation of some forms of GnRH-1 deficiency in humans.
Collapse
Affiliation(s)
- Andrea Messina
- Department of Human and Animal Biology, University of Turin, Turin 10123, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
McIntyre JC, Titlow WB, McClintock TS. Axon growth and guidance genes identify nascent, immature, and mature olfactory sensory neurons. J Neurosci Res 2011; 88:3243-56. [PMID: 20882566 DOI: 10.1002/jnr.22497] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurogenesis of projection neurons requires that axons be initiated, extended, and connected. Differences in the expression of axon growth and guidance genes must drive these events, but comprehensively characterizing these differences in a single neuronal type has not been accomplished. Guided by a catalog of gene expression in olfactory sensory neurons (OSNs), in situ hybridization and immunohistochemistry revealed that Cxcr4 and Dbn1, two axon initiation genes, marked the developmental transition from basal progenitor cells to immature OSNs in the olfactory epithelium. The CXCR4 immunoreactivity of these nascent OSNs overlapped partially with markers of proliferation of basal progenitor cells and partially with immunoreactivity for GAP43, the canonical marker of immature OSNs. Intracellular guidance cue signaling transcripts Ablim1, Crmp1, Dypsl2, Dpysl3, Dpysl5, Gap43, Marcskl1, and Stmn1-4 were specific to, or much more abundant in, the immature OSN layer. Receptors that mediate axonal inhibition or repulsion tended to be expressed in both immature and mature OSNs (Plxna1, Plxna4, Nrp2, Efna5) or specifically in mature OSNs (Plxna3, Unc5b, Efna3, Epha5, Epha7), although some were specific to immature OSNs (Plxnb1, Plxnb2, Plxdc2, Nrp1). Cell adhesion molecules were expressed either by both immature and mature OSNs (Dscam, Ncam1, Ncam2, Nrxn1) or solely by immature OSNs (Chl1, Nfasc1, Dscaml1). Given the loss of intracellular signaling protein expression, the continued expression of guidance cue receptors in mature OSNs is consistent with a change in the role of these receptors, perhaps to sending signals back to the cell body and nucleus.
Collapse
Affiliation(s)
- Jeremy C McIntyre
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | |
Collapse
|
45
|
Correction of aberrant axon growth in the developing mouse olfactory bulb. Mol Cell Neurosci 2010; 46:282-95. [PMID: 20888913 DOI: 10.1016/j.mcn.2010.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 11/23/2022] Open
Abstract
During development of the primary olfactory system, sensory axons project from the nasal cavity to the glomerular layer of the olfactory bulb. In the process axons can branch inappropriately into several glomeruli and sometimes over-shoot the glomerular layer, entering the deeper external plexiform layer. However in the adult, axons are rarely observed within the external plexiform layer. While chemorepulsive cues are proposed to restrict axons to the glomerular layer in the embryonic animal, these cues are clearly insufficient for all axons in the postnatal animal. We hypothesised that the external plexiform layer is initially an environment in which axons are able to grow but becomes increasingly inhibitory to axon growth in later postnatal development. We have determined that rather than having short localised trajectories as previously assumed, many axons that enter the external plexiform layer had considerable trajectories and projected preferentially along the ventro-dorsal and rostro-caudal axes for up to 950 μm. With increasing age, fewer axons were detected within the external plexiform layer but axons continued to be present until P17. Thus the external plexiform layer is initially an environment in which axons can extensively grow. We next tested whether the external plexiform layer became increasingly inhibitory to axon growth by microdissecting various layers of the olfactory bulb and preparing protein extracts. When assayed using olfactory epithelium explants of the same embryonic age, primary olfactory axons became increasingly inhibited by extract prepared from the external plexiform layer of increasingly older animals. These results demonstrate that primary olfactory axons can initially grow extensively in the external plexiform layer, but that during postnatal development inhibitory cues are upregulated that reduce axon growth within the external plexiform layer.
Collapse
|
46
|
Takeuchi H, Inokuchi K, Aoki M, Suto F, Tsuboi A, Matsuda I, Suzuki M, Aiba A, Serizawa S, Yoshihara Y, Fujisawa H, Sakano H. Sequential arrival and graded secretion of Sema3F by olfactory neuron axons specify map topography at the bulb. Cell 2010; 141:1056-67. [PMID: 20550939 DOI: 10.1016/j.cell.2010.04.041] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/12/2010] [Accepted: 03/29/2010] [Indexed: 11/25/2022]
Abstract
In the mouse olfactory system, the anatomical locations of olfactory sensory neurons (OSNs) roughly correlate with their axonal projection sites along the dorsal-ventral (D-V) axis of the olfactory bulb (OB). Here we report that an axon guidance receptor, Neuropilin-2 (Nrp2), and its repulsive ligand, Semaphorin-3F (Sema3F), are expressed by OSNs in a complementary manner that is important for establishing olfactory map topography. Sema3F is secreted by early-arriving axons of OSNs and is deposited at the anterodorsal OB to repel Nrp2-positive axons that arrive later. Sequential arrival of OSN axons as well as the graded and complementary expression of Nrp2 and Sema3F by OSNs help to form the topographic order along the D-V axis.
Collapse
Affiliation(s)
- Haruki Takeuchi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Takahashi H, Yoshihara SI, Nishizumi H, Tsuboi A. Neuropilin-2 is required for the proper targeting of ventral glomeruli in the mouse olfactory bulb. Mol Cell Neurosci 2010; 44:233-45. [PMID: 20363325 DOI: 10.1016/j.mcn.2010.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/19/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022] Open
Abstract
Recent evidence shows that olfactory sensory neurons expressing a given odorant receptor (OR) are not necessarily confined to one of four zones, rather arranged in an overlapping manner in the olfactory epithelium (OE). In this study, in situ hybridization of OE sections with the OR probes indicated that the OR genes, the mRNAs of which were detected in an array of glomeruli on olfactory bulb (OB) along the anterodorsal/posteroventral (AD/PV) axis, are expressed in subareal zones within the most ventral zone, zone 4, along the dorsomedial/ventrolateral (DM/VL) axis. We also found that Neuropilin-2 (Nrp2) is expressed in a DM-low to VL-high gradient within zone 4 of OE. Furthermore, in Nrp2 mutant mice, we observed multiple glomeruli for zone 4 ORs in OB. These results suggest that the graded expression of Nrp2 in OE is required for the proper targeting of ventral glomeruli along the AD/PV axis in OB.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Laboratory for Molecular Biology of Neural System, Advanced Medical Research Center, Nara Medical University, Nara, Japan
| | | | | | | |
Collapse
|
48
|
Torre ER, Gutekunst CA, Gross RE. Expression by midbrain dopamine neurons of Sema3A and 3F receptors is associated with chemorepulsion in vitro but a mild in vivo phenotype. Mol Cell Neurosci 2010; 44:135-53. [PMID: 20298787 DOI: 10.1016/j.mcn.2010.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 02/17/2010] [Accepted: 03/03/2010] [Indexed: 12/23/2022] Open
Abstract
Here we explore the role of semaphorin 3A and 3F (Sema3A, Sema3F) in the formation of the mesotelencephalic pathway. We show that Sema3A and 3F are expressed in the ventral mesencephalon (VM) of E13.5 rat embryos; the receptors Neuropilin 1 and Neuropilin 2, and co-receptors L1CAM, NrCAM, and Plexins A1 and A3 but not A4 are expressed by VM dopaminergic neurons; these neurons bind Sema3A and 3F in vitro which induces collapse of their growth cones and elicits, with different potencies, a repulsive response; and this response is absent in axons from Nrp1 and Nrp2 null embryos. Despite these in vitro effects, only very mild anatomical defects were detected in the organization of the mesotelencephalic pathway in embryonic and adult Nrp1 or Nrp2 null mice. However, the dopaminergic meso-habenular pathway and catecholaminergic neurons in the parafascicular and paraventricular nuclei of the thalamus were significantly affected in Nrp2 null mice. These data are consistent with a model whereby Sema3A and 3F, in combination with other guidance molecules, contributes to the navigation of DA axons to their final synaptic targets.
Collapse
Affiliation(s)
- Enrique R Torre
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
49
|
Matsuda I, Fukaya M, Nakao H, Nakao K, Matsumoto H, Mori K, Watanabe M, Aiba A. Development of the somatosensory cortex, the cerebellum, and the main olfactory system in Semaphorin 3F knockout mice. Neurosci Res 2010; 66:321-9. [DOI: 10.1016/j.neures.2009.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 12/01/2009] [Accepted: 12/04/2009] [Indexed: 10/20/2022]
|
50
|
Licht T, Eavri R, Goshen I, Shlomai Y, Mizrahi A, Keshet E. VEGF is required for dendritogenesis of newly born olfactory bulb interneurons. Development 2010; 137:261-71. [DOI: 10.1242/dev.039636] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The angiogenic factor vascular endothelial growth factor A (VEGF) has been shown to have a role in neurogenesis, but how it affects adult neurogenesis is not fully understood. To delineate a role for VEGF in successive stages of olfactory bulb (OB) neurogenesis, we used a conditional transgenic system to suppress VEGF signaling at the adult mouse sub-ventricular zone (SVZ), rostral migratory stream (RMS) and OB, which constitute the respective sites of birth, the migration route, and sites where newly born interneurons mature and integrate within the existing OB circuitry. Following the development of fluorescently tagged adult-born neurons, we show that sequestration of VEGF that is constitutively expressed by distinct types of resident OB neurons greatly impaired dendrite development in incoming SVZ-born neurons. This was evidenced by reduced dendritic spine density of granule cells and significantly shorter and less branched dendrites in periglomerular neurons. Notably, the vasculature and perfusion of the SVZ, RMS and OB were not adversely affected when VEGF suppression was delayed until after birth, thus uncoupling the effect of VEGF on dendritogenesis from its known role in vascular maintenance. Furthermore, a requirement for VEGF was specific to newly born neurons, as already established OB neurons were not damaged by VEGF inhibition. This study thus uncovered a surprising perfusion-independent role of VEGF in the adult brain, namely, an essential role in the maturation of adult-born neurons.
Collapse
Affiliation(s)
- Tamar Licht
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Ronen Eavri
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Inbal Goshen
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Yael Shlomai
- Department of Neurobiology, Institute for Life Sciences, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Adi Mizrahi
- Department of Neurobiology, Institute for Life Sciences, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Eli Keshet
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| |
Collapse
|